[1] Klaus Aehlig and Helmut Schwichtenberg, A syntactical analysis of non-size-increasing polynomial time computation, Proceedings 15’th Symposium on Logic in Computer Science (LICS 2000), 2000, pp. 84–91.
[2] Ulrich Berger, Program extraction from normalization proofs, Typed Lambda Calculi and Applications (M. Bezem and J.F. Groote, eds.), LNCS, vol. 664, Springer Verlag, Berlin, Heidelberg, New York, 1993, pp. 91–106.
[3] Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg, Refined program extraction from classical proofs, Annals of Pure and Applied Logic 114 (2002), 3–25.
[4] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg, Term rewriting for normalization by evaluation, Information and Computation 183 (2003), 19–42.
[5] Ulrich Berger and Helmut Schwichtenberg, An inverse of the evaluation functional for typed λ-calculus, Proceedings 6’th Symposium on Logic in Computer Science (LICS’91) (R. Vemuri, ed.), IEEE Computer Society Press, Los Alamitos, 1991, pp. 203–211.
[6] Stefan Berghofer, Proofs, programs and executable specifications in higher order logic, Ph.D. thesis, Institut für Informatik, TU München, 2003.
[7] Martin Hofmann, Linear types and non-size-increasing polynomial time computation, Proceedings 14’th Symposium on Logic in Computer Science (LICS’99), 1999, pp. 464–473.
[8] Felix Joachimski and Ralph Matthes, Short proofs of normalisation for the simply-typed λ-calculus, permutative conversions and Gödel’s T, Archive for Mathematical Logic 42 (2003), 59–87.
[9] Ralph Matthes, Extensions of System F by Iteration and Primitive Recursion on Monotone Inductive Types, Ph.D. thesis, Mathematisches Institut der Universität München, 1998.
[10] Dale Miller, A logic programming language with lambda–abstraction, function variables and simple unification, Journal of Logic and Computation 2 (1991), no. 4, 497–536.
[11] Tobias Nipkow, Higher-order critical pairs, Proceedings of the Sixth Annual IEEE Symposium on Logic in Computer Science (Los Alamitos) (R. Vemuri, ed.), IEEE Computer Society Press, 1991, pp. 342–349.
[12] Viggo Stoltenberg-Hansen, Edward Griffor, and Ingrid Lindström, Mathematical theory of domains, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 1994.
[13] Anne S. Troelstra and Helmut Schwichtenberg, Basic proof theory, 2nd ed., Cambridge University Press, 2000.