Werner O. Amrein, Andreas M. Hinz, David B. Pearson (Eds.),Anyone interested in these topics may write to the e-mail address

Sturm-Liouville Theory, Past and Present, Birkhäuser, Basel, 2005.Topics from spectral theory of differential operators,

in: R. del Río, C. Villegas-Blas (Eds.), Spectral Theory of Schrödinger Operators,

American Mathematical Society, Providence RI, 2004, 1-50.Self-adjointness of Schrödinger operators, in:

J. C. Misra (Ed.), Applicable Mathematics in the Golden Age, Narosa, New Delhi, 2003, 285-304.The extraordinary spectral properties of radially periodic

Schrödinger operators, Proc. Indian Acad. Sci. Math. Sci. 112(2002), 85-98.(with B. M. Brown, M. S. P. Eastham, and K. M. Schmid)

Distribution of eigenvalues in gaps of the essential spectrum

of Sturm-Liouville operators - a numerical approach,

J. Comput. Anal. Appl. 6(2004), 85-95.Distribution of eigenvalues in the dense point spectrum of

Schrödinger operators, in: Weikard, R., Weinstein, G.,

Differential Equations and Mathematical Physics, American Mathematical

Society/International Press, Providence RI/Cambridge MA, 2000,

207-216.(with J. Denzler ) Catenaria Vera - The True Catenary,

Exposition. Math. 17(1999), 117-142.(with B. M. Brown , M. S. P. Eastham, T. Kriecherbauer ,

D. K. R. McCormack, and K. M. Schmidt)

Welsh Eigenvalues of Radially Periodic Schrödinger Operators,

J. Math. Anal. Appl. 225(1998), 347-357.(with E. B. Davies ) Kato class potentials for higher order

elliptic operators , J. London Math. Soc. (2) 58(1998), 669-678.(with E. B. Davies ) Explicit constants for Rellich inequalities

in L_p(Omega), Math. Z. 227(1998), 511-523.Hölder Continuity of Weak Solutions of Schrödinger

Equations, in: Proceedings of the International Conference

on Differential Equations and Mathematical Physics, International

Press, Cambridge MA, 1995, 96-101.Regularity of Solutions for Singular Schrödinger Equations,

in: W. F. Ames, E. M. Harrell II, J. V. Herold (Eds.),

Differential Equations with Applications to Mathematical Physics,

Academic Press, Boston, 1993, 167-176.(with G. Stolz ) Polynomial boundedness of eigensolutions

and the spectrum of Schrödinger operators, Math.

Ann. 294(1992), 195-211.Regularity of solutions for singular Schrödinger equations,

Rev. Math. Phys. 4(1992), 95-161.(with R. Hempel, I. Herbst, and H. Kalf) Intervals of dense

point spectrum for spherically symmetric Schrödinger

operators of the type - Delta + cos(|x|), J. London Math.

Soc. (2) 43(1991), 295-304.(with H. Kalf) Subsolution estimates and Harnack's inequality

for Schrödinger operators, J. Reine Angew. Math. 404(1990)

118-134.

below.

A joint project on "the distribution of eigenvalues in the dense

point spectrum of differential operators" with Cardiff University (Wales, U.K.)

(Prof.
M. Brown and Dr. D. K. R. McCormack, and

Prof. M. Eastham) has been awarded an ARC grant by the DAAD and

British Council in 1996, extended until 1999.

My collaborators on this project at the LMU in Munich were

Prof. Dr.
H. Kalf , Prof.
T. Kriecherbauer PhD, and Priv.-Doz.
K. M. Schmidt .

The results of that project are contained in the following publications:

A. M. Hinz, Distribution of eigenvalues in the dense point spectrum ofMy further research interests cover the

Schrödinger operators , in: Weikard, R., Weinstein, G.,

Differential Equations and Mathematical Physics, American Mathematical

Society/International Press, Providence RI/Cambridge MA, 2000,

207-216.B. M. Brown, M. S. P. Eastham, A. M. Hinz, T. Kriecherbauer, D. K. R. McCormack,

and K. M. Schmidt, Welsh Eigenvalues of Radially Periodic Schrödinger Operators,

J. Math. Anal. Appl. 225(1998), 347-357.B. M. Brown, M. S. P. Eastham, A. M. Hinz, and K. M. Schmidt,

Distribution of eigenvalues in gaps of the essential spectrum

of Sturm-Liouville operators - a numerical approach,

J. Comput. Anal. Appl. 6 (2004), 85-95.K. M. Schmidt, Oscillation of the perturbed Hill equation and the lower

spectrum of radially periodic Schrödinger operators in the plane,

Proc. Amer. Math. Soc. 127 (1999), 2367-2374.K. M. Schmidt, Critical coupling constants and eigenvalue asymptotics of

perturbed periodic Sturm-Liouville operators, Comm. Math. Phys. 211 (2000), 465-485.K. M. Schmidt, Eigenvalues in gaps of perturbed periodic Dirac operators:

numerical evidence, J. Comput. Appl. Math. 148(2002), 169-181.K. M. Schmidt, Eigenvalue asymptotics of perturbed periodic Dirac systems

in the slow-decay limit, Proc. Amer. Math. Soc. 131(2003), 1205-1214.

Information on my
** courses ** and
** lectures ** is also available.

My coordinates are on my
** personal homepage ** .

A. M. Hinz, hinz@math.lmu.de, 2018-09-18