

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD S. Gottwald Winter term 2014/15 Dec 04, 2014

FUNCTIONAL ANALYSIS II ASSIGNMENT 9

Problem 33. Let \mathcal{H} be a Hilbert space and let $A, B \in \mathcal{B}(\mathcal{H})$ be self-adjoint. Assume that $\mathbb{O} \leq A \leq B$ and $\lambda > 0$. Prove:

- (i) $A+\lambda \mathbb{I}$ and $B+\lambda \mathbb{I}$ are invertible, and $(B+\lambda \mathbb{I})^{-1} \leqslant (A+\lambda \mathbb{I})^{-1}$ for all $\lambda > 0$.
- (ii) If A is invertible then B is invertible too, and $B^{-1} \leq A^{-1}$.

Problem 34 (Stone's formula). Let \mathcal{H} be a Hilbert space and let $A \in \mathcal{B}(\mathcal{H})$ be self-adjoint. Prove for $a, b \in \mathbb{R}$, a < b, that

$$\frac{1}{\pi i} \int_{a}^{b} \left((A - \lambda - i\varepsilon)^{-1} - (A - \lambda + i\varepsilon)^{-1} \right) d\lambda \longrightarrow \chi_{[a,b]}(A) + \chi_{(a,b)}(A) \tag{*}$$

strongly, as $\varepsilon \to 0^+$. Both sides are defined via the measurable functional calculus.

Problem 35. Let $A \in \mathcal{B}(L^2([0,1]))$ be such that $A \geqslant 0$ and

$$A^{2014}e^A f(x) = ef(x) + e \int_0^x f(y) \, dy,$$

where $e := \exp(1)$. Find $\sigma(A)$. Moreover, calculate the limit (*) in Problem 34 for a = 0, b = 1, and the operator A from this exercise, and show that it is even in operator norm.

Problem 36 (Discrete Laplacian). Let $-\Delta: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ be given by

$$(-\Delta x)_n := \sum_{\substack{m \in \mathbb{Z}, \\ |m-n|=1}} (x_n - x_m) \quad \forall n \in \mathbb{Z}.$$

- (i) Show that $-\Delta$ is bounded and self-adjoint.
- (ii) Show that $\mathbb{O} \leqslant -\Delta \leqslant 4\mathbb{I}$
- (iii) Compute $\|-\Delta\|$.
- (iv) Determine $\sigma(-\Delta)$.
- (v) Find a measure space (\mathcal{M}, μ) , an isomorphism $U : \ell^2(\mathbb{Z}) \to L^2(\mathcal{M}, \mu)$, and a function $F : \mathcal{M} \to \mathbb{R}$ such that $U(-\Delta)U^{-1}$ is the operator of multiplication by F.

For more details please visit http://www.math.lmu.de/~gottwald/14FA2/