O.Forster: Selected Topics from Number Theory
im SS 2024
am Mathematischen Institut der LMU München
Mi 14-16, A027; Beginn 17.04.2024
Übungen
dazu 14-tägig, Mi 16-18, A027; Beginn 24.04.2024
Klausur am 17. Juli 2024, 14 hct, A027
Contents:
This course deals mainly with
Continued Fractions and
Diophantine Approximations
A regular continued fraction has the form
which we abbreviate by x = cfrac(a_0,a_1,a_2,...,a_n,...).
Every real number x admits such a CF (continued fraction)
expansion with integers a_n, where a_n >= 1 for n >= 1.
This expansion converges in the sense that the so called
convergents x_n := cfrac(a_0,a_1,...,a_n) converge to x
for n to infinity. Whereas the ordinary decimal expansion
of a rational number is periodic, the CF expansion of
a rational number is finite and quadratic irrationals have
a periodic CF expansion. For example
sqrt(2) = cfrac(1,2,2,2,...), sqrt(3) = cfrac(1,1,2,1,2,1,2,1,2,..)
and cfrac(1,1,1,1,1,1,...) is the famous golden ratio (1+sqrt(5))/2.
Some interesting CF expansions for the Euler number e
and the number pi = 3.14159... are
e = cfrac(2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,14,1,1,16,...) pi = cfrac(3,7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,2,1,...)
The first formula was proven by Euler, while the CF expansion for pi is completely mysterious, no pattern is known.
The convergents of the CF expansion of an irrational number x are rational numbers p/q, which give a good approximation of x, namely
|x - p/q| < 1/q^2.
On the other hand, a classical theorem of Liouville asserts that for every algebraic number x of degree n > 1 there exists c > 0 such that
|x - p/q| > c/q^n
for all rationals p/q. This enabled Liouville to construct the first explicit examples of transcendental numbers. The exponent n in Liouville's estimate was lowered to 2 + eps for every eps > 0 by Fields medalist F.K.Roth, which is best possible.
Continued fractions are also useful to solve Pell's equation
x^2 - Dy^2 = 1
and to determine the units
in real quadratic number fields.
Language: If everybody in the audience understands German,
the course will be given in German:
Ausgewählte Kapitel aus der Zahlentheorie
Kettenbrüche und diophantische Approximationen
Prerequisites: Basic notions of algebra, number theory and analysis
ECTS: 3 points
Masterstudiengang Mathematik PO 2021: WP 13, 16, 40, 41
Masterstudiengang Mathematik PO 2011: WP 18.1, 15.2, 17.2
Gliederung
- Einführung. Eindeutigkeit und Konvergenz
- Approximations-Eigenschaften von Kettenbrüchen
- Äquivalente Zahlen
- Periodische Kettenbrüche
- Faktorisierung mit Kettenbrüchen
- Pellsche Gleichung und die Einheiten reell-quadratischer Zahlkörper
- Kettenbruch-Entwicklung der Euler-Zahl e = exp(1).
- Irrationalitäs- und Transzendenz-Beweise für e und pi.
Literature
- J. Borwein, A. van der Poorten, J. Shallit, W. Zudilin: Neverending Fractions. Cambridge University Press 2014
- A. Baker: Transcendental Number Theory. Cambridge Mathematical Library 2022
- O. Forster: Algorithmische Zahlentheorie. 2.Aufl. Springer Spektrum 2015
- A.Ya. Khinchin: Continued Fractions. Dover 1997 (Nachdruck der engl. Übersetzung der 3. russ. Auflage)
- O. Perron: Die Lehre von den Kettenbrüchen, Bd I, II. Teubner 1954/1957
Vorlesungen vergangener Semester
|
Bücher/Books | Eprints | Software |
Otto Forster 2024-02-28