The following type is called the Curry-Howard interpretation of Brouwer's continuity principle

 $(CH-Cont) \qquad \Pi(f:\mathbb{N}^{\mathbb{N}}\to\mathbb{N})(\alpha:\mathbb{N}^{\mathbb{N}}).\ \Sigma(n:\mathbb{N}).\ \Pi(\beta:\mathbb{N}^{\mathbb{N}}).\ \alpha =_{n} \beta \to f(\alpha) = f(\beta).$

Theorem. In intensional Martin-Löf type theory (with Π, Σ, Id),

$$CH - Cont \rightarrow 0 = 1.$$

Proof.

1. Assuming CH-Cont, we get a modulus-of-continuity functional

$$M:(\mathbb{N}^{\mathbb{N}}\to\mathbb{N})\to\mathbb{N}$$

assigning a modulus M(f) to f at the point 0^{ω} , where

- 0^{ω} is the infinite sequence of zeros (0^{w}), and
- $0^n k^{\omega}$ consists of n zeros followed by infinitely many k's (n zeros-and-then k).
- Fact (i): $(0^n k^{\omega})(n) = k$ (zeros-and-then-spec₀).
- Fact (ii): $0^{\omega} =_n 0^n k^{\omega}$ (zeros-and-then-spec₁).
- 2. Let $m = M(\lambda \alpha.0)$. Define $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ by $f(\beta) = M(\lambda \alpha.\beta(\alpha m))$.
- 3. By expanding the definitions (which involves the ξ -rule), we get

$$f(0^{\omega}) = M(\lambda \alpha . 0^{\omega}(\alpha m)) = M(\lambda \alpha . 0) = m \quad (\texttt{claim}_0).$$

4. By the definition of M, we have

$$\Pi(\beta:\mathbb{N}^{\mathbb{N}}). \ 0^{\omega} =_{M(f)} \beta \to m = f\beta \quad (\texttt{claim}_1).$$

5. Choosing $\beta = 0^{M(f)+1} 1^{\omega}$, we have

$$0^{\omega} =_{M(f)} \beta \quad (\texttt{claim}_2)$$

and hence

$$m = f(\beta)$$
 (claim₃).

6. By the continuity of $\lambda \alpha . \beta(\alpha m)$, we get

$$\Pi(\alpha:\mathbb{N}^{\mathbb{N}}).\ 0^{\omega} =_m \alpha \to \beta 0 = \beta(\alpha m) \quad (\texttt{claim}_4).$$

7. Choosing $\alpha = 0^m (M(f) + 1)^{\omega}$, we have

$$0^{\omega} =_m \alpha$$
 (claim₅)

and hence

$$0=\beta 0=\beta(\alpha m)=\beta(M(f)+1)=1 \quad (\texttt{goal}).$$