Introduction	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$	Propositional truncations	Uniform continuity of functions $2^{\mathbb{N}} o \mathbb{N}$
00	0000	000	000000000

Continuity in Type Theory

Chuangjie Xu

Mathematisches Institut, Ludwig-Maximilians-Universität München

Executing Proofs as Computer Programs, wintersemester 2017/18

Introduction ●O	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ 0000	Propositional truncations 000	Uniform continuity of functions $2^{\mathbb{N}} o \mathbb{N}$ 0000000000
Introduction			

Brouwer's continuity principle

The value of $f(\alpha)$ of a function $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ depends only on a finite prefix of the sequence $\alpha \in \mathbb{N}^{\mathbb{N}}$.

In e.g. higher-type Heyting arithmetic (HA^{ω}),

 $\forall (f:\mathbb{N}^{\mathbb{N}}\to\mathbb{N}). \ \forall (\alpha:\mathbb{N}^{\mathbb{N}}). \ \exists (n:\mathbb{N}). \ \forall (\beta:\mathbb{N}^{\mathbb{N}}). \ \alpha =_{n} \beta \Rightarrow f(\alpha) = f(\beta)$

is not provable (or disprovable).

But it's validated by *e.g.* Johnstone's topological topos, among other well-known models.

Introduction O•	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ 0000	Propositional truncations	Uniform continuity of functions $2^{\mathbb{N}} o \mathbb{N}$ 0000000000
Introduction			

Continuity in type theory

How should it be formulated in intuitionistic type theory?

- We of course don't expect it to be provable.
- But much less we expect it to be disprovable.

Its Curry-Howard interpretation (CH-Cont)

 $\Pi(f:\mathbb{N}^{\mathbb{N}}\to\mathbb{N}).\ \Pi(\alpha:\mathbb{N}^{\mathbb{N}}).\ \Sigma(n:\mathbb{N}).\ \Pi(\beta:\mathbb{N}^{\mathbb{N}}).\ \alpha=_{n}\beta\to f(\alpha)=f(\beta)$

is provably false in intensional Martin-Löf type theory.

What does it mean?

What is the the correct formulation of the continuity principle in type theory?

What about uniform continuity of functions $2^{\mathbb{N}} o \mathbb{N}$?

Introduction	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$	Propositional truncations	Uniform continuity of functions $2^{\mathbb{N}} o \mathbb{N}$	
00	●000	000	000000000	
Failure of the CH interpretation of the continuity principle				

Failure of the CH interpretation of the continuity principle

A theorem in intensional Martin-Löf type theory (with $\mathbb{N}, \Pi, \Sigma, \mathrm{Id}$):

 $\left(\Pi(f:\mathbb{N}^{\mathbb{N}}\to\mathbb{N})(\alpha:\mathbb{N}^{\mathbb{N}}).\ \Sigma(n:\mathbb{N}).\ \Pi(\beta:\mathbb{N}^{\mathbb{N}}).\ \alpha=_{n}\beta\to f(\alpha)=f(\beta)\right)\to 0=1$

by adaptation of an old argument due to Kreisel, originally relying on choice and extensionality.

By projection, CH-Cont gives a modulus-of-continuity functional

 $M: (\mathbb{N}^{\mathbb{N}} \to \mathbb{N}) \times \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$

assigning a modulus $n = M(f, \alpha)$ to f at the point α .

Trouble: While all functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ may be continuous, there can't be any continuous modulus-of-continuity functional.

Introduction	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$	Propositional truncations	Uniform continuity of functions $2^{\mathbb{N}} o \mathbb{N}$ 0000000000
00	$O \bullet O O$	000	
Failure of the CH	interpretation of the continuity principle		

Proof of $CH-Cont \rightarrow 0 = 1$

- ► Assuming CH-Cont, we get M and write $M(f) = M(f, 0^{\omega})$, where
 - $\blacktriangleright~0^{\omega}$ is the infinite sequence of zeros, and
 - $0^n k^{\omega}$ consists of *n* zeros followed by infinitely many *k*'s.
 - Two facts: $0^{\omega} =_n 0^n k^{\omega}$ and $(0^n k^{\omega})(n) = k$ for any n, k.
- Let $m = M(\lambda \alpha.0)$.

Define $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ to be $f(\beta) = M(\lambda \alpha.\beta(\alpha m)).$

• By expanding the definitions (which involves the ξ -rule), we get

$$f(0^{\omega}) = M(\lambda \alpha . 0^{\omega}(\alpha m)) = M(\lambda \alpha . 0) = m.$$

• By the definition of M, we have

 $\Pi(\beta:\mathbb{N}^{\mathbb{N}}).\ 0^{\omega}=_{M(f)}\beta\rightarrow m=f\beta.$

- Choosing $\beta = 0^{M(f)+1}1^{\omega}$, we have $0^{\omega} =_{M(f)} \beta$ and hence $f(\beta) = m$.
- By the continuity of $\lambda \alpha . \beta(\alpha m)$, we get

$$\Pi(\alpha:\mathbb{N}^{\mathbb{N}}). \ 0^{\omega} =_m \alpha \to \beta 0 = \beta(\alpha m).$$

► Choosing $\alpha = 0^m (M(f) + 1)^{\omega}$, we have $0^{\omega} =_m \alpha$ and hence $0 = \beta 0 = \beta(\alpha m) = \beta(M(f) + 1) = 1.$

Introduction	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$	Propositional truncations	Uniform continuity of functions $2^{\mathbb{N}} o \mathbb{N}$ 0000000000		
00	0000	000			
Failure of the CH interpretation of the continuity principle					

Formalisation in Agda

Introduction	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$	Propositional truncations	Uniform continuity of functions $2^{\mathbb{N}} o \mathbb{N}$ 0000000000
00	000 \bullet	000	
Failure of the CH ir	nterpretation of the continuity principle		

Discussion

- 1. No continuous/extensional modulus-of-continuity functional M: We used our hypothetical M to define a non-continuous function f and hence prove M wrong.
- 2. And this is exactly what is happening in the topological topos:
 - All functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ are continuous.
 - But there is no continuous way of finding moduli of continuity.
- 3. The conversion

 $f(0^{\omega}) = M(\lambda \alpha . 0^{\omega}(\alpha m)) = M(\lambda \alpha . 0) = m$

in the proof relies on the ξ -rule (reduction under λ).

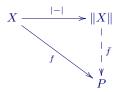
- 4. In HA^{ω} , the ξ -rule, the axiom of choice, and the continuity of all functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ are together impossible.
- 5. Since ξ -rule holds in categories, any locally cartesian closed category with a natural numbers object (*e.g.* any topos) disproves CH Cont.

Introduction	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$	Propositional truncations	Uniform continuity of functions $2^{\mathbb{N}} o \mathbb{N}$ 0000000000
00	0000	●○○	
Propositions and prop	positional truncations		

Propositional truncation

A type is called a proposition if it has at most one element.

A propositional truncation of a type X, if it exists, is a proposition ||X|| together with a map $|-|: X \to ||X||$ such that for any proposition P and $f: X \to P$ we can find $\overline{f}: ||X|| \to P$.



Intuitively, $\|X\|$ is

- ▶ the truth value of the inhabitedness of *X*;
- the quotient of the type X by the chaotic equivalence relation.

Introduction 00	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ 0000	Propositional truncations ○●○	Uniform continuity of functions $2^{\mathbb{N}} o \mathbb{N}$ 0000000000
Propositions and pr	opositional truncations		

The logic of propositions in HoTT and toposes

In HoTT, ||X|| is defined as a higher inductive type.

The logic of propositions

\perp	:=	0
Т	:=	1
$P \wedge Q$:=	$P \times Q$
$P \vee Q$:=	P+Q
$P \Rightarrow Q$:=	$P \rightarrow Q$
$\forall (x : A) . P(x)$:=	$\Pi(x\!:\!A).P(x)$
$\exists (x:A).P(x)$:=	$\ \Sigma(x\!:\!A).P(x)\ $

Introduction	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$	Propositional truncations	Uniform continuity of functions $2^{\mathbb{N}} o \mathbb{N}$ 0000000000
00	0000	00●	
Propositions and pr	opositional truncations		

The correct type-theoretic formulation of continuity

 $\Pi(f:\mathbb{N}^{\mathbb{N}}\to\mathbb{N})(\alpha:\mathbb{N}^{\mathbb{N}}).\parallel\Sigma(n:\mathbb{N}).\Pi(\beta:\mathbb{N}^{\mathbb{N}}).\ \alpha=_{n}\beta\to f(\alpha)=f(\beta)\parallel$

▶ It's validated in *e.g.* the topological topos.

- The continuous dependency of n on inputs f and α is now broken.
- Because the axiom of choice

 $\Pi(x\!:\!X).\|\Sigma(y\!:\!Y).A(x,y)\| \to \|\Sigma(f\!:\!X\!\to\!Y).\Pi(x\!:\!X).A(x,y)\|$

is not provable.

Introduction 00	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ 0000	Propositional truncations	Uniform continuity of functions $2^{\mathbb{N}} \to \mathbb{N}$ $\bullet 0000000000$	
Equivalence of the two formulations of uniform continuity				

Uniform continuity of functions $\mathbf{2}^{\mathbb{N}} o \mathbb{N}$

 $\forall (f: \mathbf{2}^{\mathbb{N}} \to \mathbb{N}). \ \exists (n: \mathbb{N}). \ \forall (\alpha, \beta: \mathbf{2}^{\mathbb{N}}). \ \alpha =_n \beta \Rightarrow f(\alpha) = f(\beta)$

- ▶ Not provable but consistent in HA^ω.
- Its Curry–Howard interpretation
 Π(f: 2^N → N). Σ(n: N). Π(α, β: 2^N). α =_n β → f(α) = f(β)
 is also consistent in MLTT.
- Moreover, it's logically equivalent to $\Pi(f: \mathbf{2}^{\mathbb{N}} \to \mathbb{N}). \parallel \Sigma(n: \mathbb{N}). \ \Pi(\alpha, \beta: \mathbf{2}^{\mathbb{N}}). \ \alpha =_{n} \beta \to f(\alpha) = f(\beta) \parallel$ assuming function extensionality.

Introduction 00	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ 0000	Propositional truncations	Uniform continuity of functions $2^{\mathbb{N}} o \mathbb{N}$ 000000000
Equivalence of the t			

Disclosing secrets from truncations

In general we don't have $||X|| \to X$ for arbitrary X, because it gives a constructive taboo and also contradicts univalence.

However, for some types X, we can disclose a secret ||X|| to X.

Lemma. For any family A of types indexed by natural numbers such that

- 1. A(n) is a proposition for every $n : \mathbb{N}$, and
- 2. A(n) implies that A(m) is decidable for every m < n

we have

$\Sigma(n\!:\!\mathbb{N}).A(n) \; \leftrightarrow \; \|\Sigma(n\!:\!\mathbb{N}).A(n)\|.$

Proof sketch of (\leftarrow). Given n with A(n), we can find the minimal k with A(k), using the decidability of A(m) for m < n. Since "having a minimal k with A(k)" is a proposition (proved using function extensionality), the elimination rule of $\| - \|$ gives the desired result.

Introduction	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$	Propositional truncations	Uniform continuity of functions $2^{\mathbb{N}} o \mathbb{N}$ 000000000
00	0000	000	
Equivalence of the	two formulations of uniform continuity		

Equivalence of the two formulations of uniform continuity

Theorem. The proposition

 $\Pi(f:\mathbf{2}^{\mathbb{N}}\to\mathbb{N}).\parallel\Sigma(n:\mathbb{N}).\;\Pi(\alpha,\beta:\mathbf{2}^{\mathbb{N}}).\;\alpha=_{n}\beta\to f(\alpha)=f(\beta)\parallel\Sigma(\alpha,\beta:\mathbf{2}^{\mathbb{N}}).$

is logically equivalent to the type

 $\Pi(f: \mathbf{2}^{\mathbb{N}} \to \mathbb{N}). \ \Sigma(n: \mathbb{N}). \ \Pi(\alpha, \beta: \mathbf{2}^{\mathbb{N}}). \ \alpha =_{n} \beta \to f(\alpha) = f(\beta).$

Proof sketch. Use the lemma by taking

 $A(n) :\equiv \Pi(\alpha, \beta : \mathbf{2}^{\mathbb{N}}). \ \alpha =_n \beta \to f(\alpha) = f(\beta).$

Introduction	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$	Propositional truncations	Uniform continuity of functions $2^{\mathbb{N}} o \mathbb{N}$ 000000000
00	0000	000	
Equivalence of the	two formulations of uniform continuity		

Adding uniform continuity to type theory

Simply adding a constant as an axiom Ax to a theory \mathcal{T} may destroy its canonicity, i.e. not every closed natural number in \mathcal{T} evaluates to a numeral.

Instead, one can build a constructive/computational model ${\cal M}$ of the theory ${\cal T}$

 $\mathcal{T} \xrightarrow{[\![-]\!]} \mathcal{M}$

such that the axiom Ax has an interpretation $[Ax] \in \mathcal{M}$.

Then the evaluation of terms in T + Ax becomes the one in the model M.

We build such a model of type theory extended with the uniform-continuity principle, using C-spaces.

Introduction	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$	Propositional truncations	Uniform continuity of functions $2^{\mathbb{N}} o \mathbb{N}$ 000000000
00	0000	000	
Equivalence of the	two formulations of uniform continuity		

C-spaces and continuous maps

Def. A C-topology on a set X is a collection P of probes $\mathbf{2}^{\mathbb{N}} \to X$ subject to the following probe axioms:

- 1. All constant maps are in P.
- If t: 2^N → 2^N is uniformly continuous and p ∈ P, then p ∘ t ∈ P. (Presheaf condition)

3. For any two maps $p_0, p_1 \in P$, the unique map $p: \mathbf{2}^{\mathbb{N}} \to X$ defined by $p(i * \alpha) = p_i(\alpha)$ is in P. (Sheaf condition)

A C-space is a set X equipped with C-topology.

A function $f: X \to Y$ of C-spaces is continuous if $f \circ p \in P_Y$ whenever $p \in P_X$. (Naturality condition)

Introduction	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$	Propositional truncations	Uniform continuity of functions $2^{\mathbb{N}} o \mathbb{N}$ 000000000
00	0000	000	
Equivalence of the	two formulations of uniform continuity		

Examples of C-spaces

All continuous maps from $2^{\mathbb{N}}$ (with the usual topology) to any topological space X form a C-topology on X:

- Any constant map $\mathbf{2}^{\mathbb{N}} \to X$ is continuous.
- The composite $\mathbf{2}^{\mathbb{N}} \xrightarrow{t} \mathbf{2}^{\mathbb{N}} \xrightarrow{p} X$ of two continuous maps is continuous.
- \blacktriangleright The sheaf condition is satisfied because $2^{\mathbb{N}}$ is compact Hausdorff.

Any continuous map of topological spaces is continuous w.r.t. the above $\rm C\text{-}topology,$ as composition preserves continuity.

Introduction 00	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ 0000	Propositional truncations 000	Uniform continuity of functions $2^{\mathbb{N}} \to \mathbb{N}$ 0000000000
Equivalence of the t	wo formulations of uniform continuity		

Discrete C-spaces

Def. A map $p: \mathbf{2}^{\mathbb{N}} \to X$ into a set X is called locally constant iff $\exists (n:\mathbb{N}). \ \forall (\alpha, \beta: \mathbf{2}^{\mathbb{N}}). \ \alpha =_n \beta \Rightarrow f(\alpha) = f(\beta).$

Lemma

The locally constant maps $2^{\mathbb{N}} \to X$ form a C-topology which has the smallest amount of probes on X.

Def. A C-space X is discrete if all functions $X \to Y$ into any C-space Y are continuous.

Lemma

A C-space is discrete iff its probes are precisely the locally constant functions.

Def. We thus refer to the collection of all locally constant maps $2^{\mathbb{N}} \to X$ as the discrete C-topology on X.

- The discrete C-topology on 2 or \mathbb{N} is the set of uniformly continuous maps.
- The discrete space 2 is the coproduct of two copies of the terminal space.
- The discrete space \mathbb{N} is the natural numbers object.

Introduction	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$	Propositional truncations	Uniform continuity of functions $2^{\mathbb{N}} o \mathbb{N}$ 0000000000
00	0000	000	
Equivalence of the	two formulations of uniform continuity		

Yoneda Lemma and Fan functional

The monoid C of uniformly continuous $2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is a C-topology on $2^{\mathbb{N}}$.

 $(\mathbf{2}^{\mathbb{N}}, C) =$ the exponential of the two discrete C-spaces

The Yoneda Lemma says that a map $2^{\mathbb{N}} \to X$ into a C-space X is a probe iff it is continuous in the sense of the category of C-spaces.

Lemma

```
The exponential \mathbb{N}^{2^{\mathbb{N}}} is a discrete C-space.
```

Theorem

There is a continuous functional $\mathrm{fan}\colon \mathbb{N}^{2^{\mathbb{N}}}\to \mathbb{N}$ that calculates (minimal) moduli of uniform continuity.

Introduction	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$	Propositional truncations	Uniform continuity of functions $2^{\mathbb{N}} \to \mathbb{N}$
00	0000	000	
Equivalence of the t	two formulations of uniform continuity		

Modelling uniform continuity

C-spaces provide a model of system T and dependent types:

- 1. Cartesian closed structure simply typed λ -calculus.
- 2. Locally cartesian closed structure dependent types.
- 3. Natural numbers object base type and primitive recursion principle.

Theorem

The uniform continuity axiom

$$\forall (f: \mathbf{2}^{\mathbb{N}} \to \mathbb{N}). \ \exists (n: \mathbb{N}). \ \forall (\alpha, \beta: \mathbf{2}^{\mathbb{N}}). \ \alpha =_n \beta \Rightarrow f(\alpha) = f(\beta)$$

is validated by the fan functional.

Introduction	Continuity of functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$	Propositional truncations	Uniform continuity of functions $2^{\mathbb{N}} \to \mathbb{N}$ 000000000
00	0000	000	
Equivalence of the two formulations of uniform continuity			

Computing moduli of uniform continuity

The least modulus of uniform continuity of f