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Abstract. Zariski’s lemma was formulated and used by Oscar Zariski
to prove Hilbert’s Nullstellensatz. This article gives an elementary and
constructive proof of Zariski’s lemma and only uses basics of integral
ring extensions under the condition that each field is discrete. After this
constructive proof we take a look at the computational side. We give a
computational interpretation of Zariski’s lemma and use our constructive
proof to develop an algorithm which realises the computational interpre-
tation. This is a typical approach in constructive mathematics.
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1 Introduction

1.1 Historical background

Presumably the first time Zariski’s lemma appeared was in [19]. There Oscar
Zariski used it to prove Hilbert’s Nullstellensatz. In 1976, John McCabe gave
an interesting but not constructive proof [9], which relied on the existence of
maximal ideals. In 2020 Daniel Wessel has avoided this maximality argument by
using Jacobson radicals [16]. However, the proof still contains a non-constructive
moment. To wit, if R is an algebra over a field K and S ⊆ R is a finite subset,
then there exists S0 ⊆ S maximal such that all elements in S0 are algebraically
independent over K. To avoid this, one could use Noether normalization. A con-
structive proof of Noether normalisation is given in [10] and Zariski’s lemma is
a corollary of it [5, 10, 13]. The proofs in [1, 2, 15, 19] are non-constructive but,
instead of a maximal algebraically independent subset, they use induction on
the number of generators of the algebra. This will also be part of our construc-
tive proof. The proof in the present paper is a direct and constructive proof of
Zariski’s lemma. To get this proof, we have analysed the proofs in the sources
above and put them together with some new ideas.

? I would like to thank the Istituto Nazionale di Alta Matematica “Francesco Severi”
for the financial support of my PhD study. Thanks for direct support goes to Daniel
Wessel for his ideas and taking a look at the manuscript, my supervisor Peter Schus-
ter for the selection of this topic and support of the publication, and Henri Lombardi
and Ihsen Yengui who helped to improve the proof with important comments.
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1.2 Method of proof interpretation

We have considered some non-constructive proofs of Zariski’s lemma, analysed
them and rebuilt them into a new constructive proof (Section 2). This approach
was inspired by the methods of proof mining [6, 7]. Inspired by the methods of
the formal program extraction from proofs as in [3, 14, 17], we have turned our
constructive proof into algorithms and realisability statements (Section 3). But
in contrast to formal program extraction, when we speak about “realisability” we
do not mean the rigorously defined realisability predicate of program extraction,
for example given in [14]. In this paper “realisability” is rather a heuristic notion.

Our approach shows a typical approach in constructive mathematics. Analysing
a theorem constructively often goes as follows:

- Formulate a quite constructive proof of the theorem.
- Formulate an algorithmic interpretation of the theorem.
- Inspired by the quite constructive proof formulate an algorithm which shall

realise the algorithmic interpretation.
- Prove that the algorithm is indeed a realiser of the algorithmic interpretation.

This paper is an example where these steps are done manually on paper and
where the formulation of the quite constructive proof is only necessary to get
an inspiration for the other steps. As the space in this paper is quite scarce we
have to forgo the fourth step. In particular, we do not give proofs in Section
3. However, in the example of program extraction from proofs above usually
only the quite constructive proof is formulated manually and the other steps are
done by the computer. Note that we have written “quite constructive” because
sometimes one can bypass a non-constructive moment or it can be included as
assumption in the algorithmic version. We also see an example of this in the
present paper: since our proof uses case distinction on x = 0 or x 6= 0 for
all x in a ring, we assume that this ring is discrete. However, this is the only
computational restriction we have to make.

1.3 Fundamental notions

Before formulating a proof of Zariski’s lemma and the computational interpre-
tation, we define the underlying objects. In Zariski’s lemma, we use axioms for
rings, field and algebra and their structures. But an algorithm cannot operate
on axioms. More specifically: if we state an algorithm about a field, we do not
use the field axioms in the algorithm but we use the field structure like +, ·, 0,
1 and so on. Therefore, we first define the underlying structures precisely:

In our setting a ring structure (R,+, ·, 0, 1,−,=) is a set R equipped with an
addition operator + : R×R→ R, a multiplication operator · : R×R→ R, a zero
element 0 ∈ R, an unit element 1 ∈ R, an additive inverse function − : R → R
and an equality = ⊆ R × R. If furthermore = is an equivalence relation and
compatible with +, ·,−, i.e. = is a congruence relation on (R,+, ·, 0, 1,−), and
the other ring axioms are fulfilled (w.r.t. the equality =), R is a ring. In our case
a ring is always commutative. We call (K,+, ·, 0, 1,−,−1,=) a field structure if
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(K,+, ·, 0, 1,−,=) is a ring structure and −1 : K → K is a map. If K is a ring,
xx−1 = 1 ∨ x = 0 for all x ∈ K and 1 6= 0, K is a field.

Since the notation of +, ·, 0, 1,−,−1 and = will not change, we do not mention
it and say that R is a ring (structure) or K is a field (structure) and so on. A
homomorphism φ : R→ S between two ring structures R and S is a map which
preserves the structure in the canonical way.

For a ring structure R we define the ring structure of polynomials R[X] with
coefficients in R by the well-known construction. For n ∈ IN we have also the
polynomial ring structure in n variables denoted by R[X1, . . . , Xn]. Obviously,
if R is a ring then so is R[X1, . . . , Xn].

An algebra structure R over a field structure K, or short K-algebra structure,
is a ring structure together with a map K → R. If R is a ring, K is a field
and the map K → R is a homomorphism, we call R a K-algebra. For a K-
algebra R and x1, . . . , xn ∈ R we get an extension K[X1, . . . , Xn] → R of the
homomorphism by Xi 7→ xi. We denote the image by K[x1, . . . , xn], where an
element is in the image of a homomorphism if it is equal (w.r.t. =) to a value of
the homomorphism.

The following definition comes from [8, 18]:

Definition 1. A ring structure R is discrete if all its operators are computable.
Here = is seen as a Boolean-valued function. A field structure K is discrete if
it is discrete as ring and −1 is computable.

Here, “computability” means that we can use the operations above freely in
our algorithms. In particular, we can use the ring operators arbitrarily, and can
distinguish between the cases x = y and x 6= y.

We do not specify the underlying theory of computability and how the ob-
jects are represented, as there are several possibilities. However, in Section 3 we
develop an algorithm out of the constructive proof. If one wants this algorithm
to be a Turing machine, a discrete structure should be interpreted as a structure
where all operators (including =) are representable by a Turing machine.

In this article we tacitly assume that each structure be discrete and make
case distinctions like x = 0 ∨ x 6= 0 without explicitly justifying them.

Remark 1. If K is a discrete field structure then the polynomial ring structure
K[X1, . . . , Xn] is also discrete and for f ∈ K[X1, . . . , Xn] we can decide whether
f ∈ K or f /∈ K because f ∈ K if and only if all non-constant coefficients are
zero. Similarly, it is even possible to compute deg(f) for every f ∈ K[X].

Let A ⊆ B be a ring extension, i.e. the inclusion A → B is a homomorphism.
An element x ∈ B is called integral over A if there are a0, . . . , ak−1 ∈ A such
that xk + ak−1x

k−1 + · · ·+ a0 = 0. The ring extension A ⊆ B is called integral,
if each x ∈ B is integral over A.

In our constructive proof we need the following two lemmas. The proofs of
them we refer to are also constructive.

Lemma 1. If A ⊆ B is an integral ring extension and B is a field then A is a
field, too.
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Proof. A constructive proof is given in [1, Proposition 5.7]. ut

Lemma 2. Let A ⊆ B a ring extension. If x1, . . . , xn ∈ B are integral over A
then the ring extension A ⊆ A[x1, . . . , xn] is integral.

Proof. This follows from Corollary 5.3 of [1]. ut

2 A constructive proof

In this section we give a new constructive proof of Zariski’s lemma. The proof
does not use any non-constructive principles (except that the rings be discrete).
In the next section we use this proof as basis to create an algorithmic version.

Theorem 1 (Zariski’s lemma). Let K be a field and R an algebra over K
which is a field. Suppose that R = K[x1, . . . , xn] for some x1, . . . , xn ∈ R. Then
x1, . . . xn are algebraic over K, i.e. there are f1, . . . , fn ∈ K[X]\K with fi(xi) =
0 for all i.

Proof. If n = 0, there is nothing to show. We continue by considering the case
n = 1: if x1 = 0 then R = K and we are done. Otherwise, x1 is invertible. Since
R is a field, there is p ∈ K[X]\{0} with x1p(x1) = 1. We set q := Xp−1 ∈ K[X].
Then q 6= 0 because deg(Xp) > 0 and q(x1) = 0.

Next, we consider the case n = 2: We show that x1 is algebraic. The argument
for x2 is analogous. If x2 = 0 we are done by the case n = 1 as above. Otherwise,
we have p ∈ K[X1, X2] with p(x1, x2)x2 = 1. Therefore, q := Xp(x1, X) − 1 is
a polynomial in K[x1][X] with q(x2) = 0 and q 6= 0 as its constant coefficient is
−1. Let y ∈ K[x1] be the leading coefficient of q, which is non-zero by definition.
Then K[x1, y

−1] ⊆ K[x1, x2] is an integral ring extension by Lemma 2 because
x2 is integral over K[x1, y

−1] witnessed by y−1q ∈ K[x1, y
−1][X]. Therefore,

K[x1, y
−1] is a field by Lemma 1.

With this preparation we are now able to construct a non-zero polynomial
with root x1. By y ∈ K[x1], there is f ∈ K[X] such that f(x1) = y. If f ∈ K
then K[x1, y

−1] = K[x1] and we are done by the case n = 1. So, we assume
f ∈ K[X]\K. If 1−f(x1) = 0 then x1 is algebraic over K. Otherwise, 1−f(x1)
is invertible4 in K[x1, y

−1] and therefore there is h ∈ K[X] and N ∈ IN with
(1− f(x1))−1 = h(x1)y−N = h(x1)f(x1)−N . So, we have

f(x1)N − h(x1)(1− f(x1)) = 0.

It remains to show that fN − h(1 − f) 6= 0 in K[X]. By the binomial theorem
there is a g ∈ K[X] with fN = 1 + (1− f)g, and so

fN − h(1− f) = 1 + (1− f)(g − h).

4 The idea to take 1− f(x1) is based on an idea by Daniel Wessel [16] and an hint by
Henri Lombardi. Inspired by [15], the first approach of the author was to take g(x1)
for some irreducible g ∈ K[X] with g - f .



An algorithmic version of Zariski’s lemma 5

Since f is non-constant, also 1−f is non-constant. Now assume that fN −h(1−
f) = 0 then g−h = 0 as otherwise deg((1−f)(g−h)) > 0 and 1+(1−f)(g−h) 6=
0. But then 0 = 1, a contradiction.

Finally, we assume n ≥ 2 and use induction over n. The base case n = 2 was
done above. For the induction step let n ≥ 3 be given. Again, we just show that
x1 is algebraic. The arguments for x2, . . . , xn are analogous. Let L := K(x1) the
field of fractions of K[x1]. Since R is a field, we can consider L ⊆ R and therefore
L[x2, . . . , xn] = R. By induction, each xi for i ∈ {2, . . . , n} is algebraic over L. So
for each such i, there is a monic polynomial fi ∈ L[X] with fi(xi) = 0. Let vi be
the product of the denominators of all coefficients in fi and v :=

∏n
i=2 vi. Then

all xi are integral over K[x1, v
−1]. Using Lemma 2, K[x1, v

−1] ⊆ K[x1, . . . , xn]
is an integral ring extension. By Lemma 1, also K[x1, v

−1] is a field. By the case
n = 2 it follows that x1 is algebraic over K. ut

3 Computational interpretation

The goal of this section is to build an algorithm out of the constructive proof
above. One could argue that this is not necessary as a constructive proof provides
an algorithm by definition and it is an easy exercise to extract it. However, as
we are not using computer support and the proof is not totally formal, there is
still some work to do. In particular, we consider the concepts we have used in
the proof and give them a computational meaning in the next two definitions.

3.1 Preliminary

We use the following syntactical abbreviations: ~x := x1, . . . , xn; ~X := X1, . . . , Xn;
~y := y1, . . . , ym and ~Y := Y1, . . . , Ym. For n ∈ IN and any I ∈ INn we define
~xI :=

∏n
i=1 x

Ii
i and ~XI :=

∏n
i=1X

Ii
i .

In Zariski’s lemma a K-algebra K[~x] is given. In particular, there is a surjec-

tive homomorphism from K[ ~X] to K[~x]. It is well-known that the existence of a
right-inverse of a surjection in general requires the axiom of choice. That is the
reason why we do not use it computationally and we work on the level of the
polynomial rings. The following definition is the computational interpretation of
K[~y] ⊆ K[~x] being a ring extension on the level of polynomials:

Definition 2. Let K be a field, R be a K-algebra and ~x, ~y ∈ R. We say that
K[~y] ⊆ K[~x] is a ring extension of K-algebras witnessed by ~h := h1, . . . , hm ∈
K[ ~X] if hi(~x) = yi for all i. In short notation we write ~h(~x) = ~y.

Similarly, the next definition is the computational interpretation of K[~x] being
a field on the level of polynomials:

Definition 3. Let a field K, a K-algebra R and ~x ∈ R be given. A computable
function ι : K[ ~X] → K[ ~X] with f(~x) = 0 ∨ (ι(f))(~x)f(~x) = 1 for all f ∈ K[ ~X]
is called algebraic inverse function on K[~x].
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Remark 2. An algebraic inverse function does not have to be compatible with the
equality relation of the ring structure K[ ~X]. From an algebraic inverse function

on K[~x] and a right inverse of a surjection K[ ~X] → K[~x] we get that K[~x] is
a field. But this is constructively delicate, so in both definitions above we have
avoided a direct use of K[~x] and we also do this in the following algorithms. The
occurrence of K[~x] in the definitions above is just a way of speaking.

Similar to above, “computable” means that we can use the algebraic inverse
function freely in our algorithm. For instance, if the algorithm shall be a Turing
machine, an algebraic inverse function has to be Turing computable.

In the light of the definitions above: an algorithm which realises Zariski’s lemma
takes an algebraic inverse function on K[~x] as input and returns polynomials
f1, . . . , fn ∈ K[X] \K with fi(xi) = 0 for all i ∈ {1, . . . , n}.

3.2 Some algorithms for integral extensions of algebras

The following lemma is an algorithmic version, in terms of algebras over a field,
of Lemma 2. Given a field K, R be a K-algebra and ~x, ~y ∈ R. As realiser of this
lemma we expect an algorithm which takes for each xi an integral equation in the
form Pi(~y)(xi) = 0 for some monic Pi ∈ K[~Y ][X] and some f ∈ K[ ~X] as input
and returns an integral equation of f(~x) as output in the form Q(~y)(f(~x)) = 0

for some monic Q ∈ K[~Y ][X].

Algorithm 1. Given a field structure K, f ∈ K[ ~X] and ki ∈ IN, g
(i)
ki−1, . . . , g

(i)
0 ∈

K[~Y ] for each i ∈ {1, . . . , n}. We compute k ∈ IN and gk−1, . . . , g0 ∈ K[~Y ]:

1. Define I := {I ∈ INn|I1 < ki, . . . , In < kn} and for each I ∈ I compute the

finite sum f ~XI =
∑

J∈INn fIJ ~X
J with fIJ ∈ K.

2. For each I ∈ I and i ∈ {1, . . . , n} replace each Xki
i by −g(i)ki−1X

ki−1 −
· · ·− g(i)0 in

∑
J∈INn fIJ ~X

J one by one until we get a polynomial of the form∑
J∈I gIJ

~XJ with gIJ ∈ K[~Y ]

3. Compute the characteristic polynomial P ∈ K[~Y ][X] of the matrix (gIJ)I,J∈I
as the determinant of the matrix (δIJX − gIJ)I,J∈I , where δIJX := X if
I = J , and δIJX := 0 if I 6= J .

4. Let P =
∑l

i=0 giX
i for some l ∈ IN and gi ∈ K[~Y ]. Return k :=

∏n
i=1 ki

and the first k coefficients gk−1, . . . , g0 of P , where gi := 0 if i > l.

Note that in Step 2 there is no order mention in which each Xi has to be replaced.
However, the following lemma is true for any possible order.

Lemma 3. In the situation of Algorithm 1 we assume that K is a field, R is a
K-algebra and ~x, ~y ∈ R with

xki
i + g

(i)
ki−1(~y)xki−1

i + · · ·+ g
(i)
0 (~y) = 0 (1)

for each i ∈ {1, . . . , n}. Then

(f(~x))k + gk−1(~y)(f(~x))k−1 + · · ·+ g0(~y) = 0.
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The next lemma is an algorithmic version of Lemma 1. In terms of K-algebras
and in the light of computational algebra, we want to compute an algebraic
inverse function on K[~y] from an algebraic inverse function on K[~x] and the
integral equations of ~x.

Algorithm 2. Let a field structure K, ~h := h1, . . . , hm ∈ K[ ~X], ι : K[ ~X] →
K[ ~X] and ki ∈ IN, g

(i)
ki−1, . . . , g

(i)
0 ∈ K[~Y ] for each i ∈ {1, . . . , n} be given. We

define a map ι̃ : K[~Y ]→ K[~Y ] as follows:

1. Given an input f ∈ K[~Y ], compute p := ι(f(~h)) ∈ K[ ~X].

2. Apply Algorithm 1 to K, p and ki, g
(i)
ki−1, . . . , g

(i)
0 for each i ∈ {1, . . . , n} to

get k ∈ IN and gk−1, . . . , g0 ∈ K[~Y ].
3. Return −gk−1 − gk−2f − · · · − g0fk−1.

Lemma 4. In the situation of Algorithm 2 we assume that K is a field and let
a K-algebra R and ~x, ~y ∈ R be given such that K[~y] ⊆ K[~x] is an extension of

K-algebras witnessed by ~h. Furthermore, we assume that ι is an algebraic inverse
function and

xki
i + g

(i)
ki−1(~y)xki−1

i + · · ·+ g
(i)
0 (~y) = 0

for all i ∈ {1, . . . , n}. Then ι̃ is an algebraic inverse function on K[~y].

3.3 An algorithm for Zariski’s lemma

In the following we give an algorithmic version of Zariski’s lemma. As in the
proof of Theorem 1, we first consider the cases n = 1 and n = 2. Hence, the next
two algorithms construct the polynomials which witness that the generators are
algebraic.

Algorithm 3. Given a discrete field structure K, a discrete K-algebra structure
R, x ∈ R and ι : K[X]→ K[X], we compute an element f ∈ K[X] as follows:

1. If x = 0, return X.
2. If x 6= 0, return Xι(X)− 1.

Lemma 5. In the situation of Algorithm 3 we assume that K is a field, R is
a K-algebra, x ∈ R and ι is an algebraic inverse function on K[x]. Then f is
non-constant and f(x) = 0, i.e. x is algebraic over K.

Algorithm 4. Let a discrete field structure K, a discrete K-algebra structure R,
two elements x1, x2 ∈ R and ι : K[X1, X2] → K[X1, X2] be given. We compute
f1, f2 ∈ K[X] as follows starting with f1:

1. If x2 = 0, we use Algorithm 3 with input K, R, x1 ∈ R and ι′ : K[X] →
K[X] defined by ι′(p) := ι(p(X1))(X, 0) and return the output as f1.

2. Otherwise, compute ι(X2) and define g as the polynomial which comes from
X2ι(X2)−1 ∈ K[X1, X2] by dropping each coefficient p ∈ K[X1] with p(x1) =
0 and let h ∈ K[X1] be the leading coefficient of g (and 1 if g = 0).
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3. Apply Algorithm 2 to the input K, ~h := (X1, ι(h)), ι, g
(1)
0 = Y1 and g

(2)
k2−1, . . . ,

g
(2)
0 ∈ K[Y1, Y2] are the coefficients of g(Y1, X), except the leading coefficient,

multiplied with Y2. Let ι̃ : K[Y1, Y2] → K[Y1, Y2] be the output of this algo-
rithm.

4. If deg(h) = 0, (i.e. h = h0 for some h0 ∈ K), apply Algorithm 3 to K, R,
x1 ∈ R and ι′ : K[X]→ K[X] given by ι′(p) := ι̃(p(Y1))(X,h−10 ) and return
the output of this algorithm as f1.

5. Otherwise, check if 1− h(x1) = 0. If yes, return f1 := 1− h(X).

6. If no, compute ι̃(1−h(Y1)) =
∑N

i=0 aiY
i
2 with ai ∈ K[Y1] and aN 6= 0; define

q :=

N∑
i=0

ai(h(Y1))N−i ∈ K[Y1]

and return f1 := h(X)N − (1− h(X))q(X).

Change x1 and x2 and repeat the steps above to compute f2 ∈ K[X].

Lemma 6. In the situation of Algorithm 4 we assume that K is a field, R is
a K-algebra, ι is an algebraic inverse function on K[x1, x2]. Then f1(x1) =
f2(x2) = 0 and f1, f2 are non-constant.

The next algorithm shows how to compute the field L, which corresponds to the
field of fractions of K[x1] in K[~x] on the level of polynomials.

Algorithm 5. Let a discrete field structure K, a discrete K-algebra structure
R, n > 0 and ~x ∈ R be given. We define a field structure as follows:

L :=

{
f

g

∣∣∣∣f, g ∈ K[X], g(x1) 6= 0 ∨ 0 = 1

}
,

f1
g1

=
f2
g2

:⇔ f1(x1)g2(x1) = f2(x1)g1(x1),

f1
g1

+
f2
g2

:=

{
f1g2+f2g1

g1g2
if (g1g2)(x1) 6= 0

0
1 else,

0 :=
0

1
,

f1
g1

f2
g2

:=

{
f1f2
g1g2

if (g1g2)(x1) 6= 0
0
1 else,

1 :=
1

1
,

−f
g

:=
−f
g
,

(
f

g

)−1
:=

{
g
f if f(x1) 6= 0
0
1 else

For a given map ι : K[ ~X] → K[ ~X] we define a map ϕ : L → R by f
g 7→

f(x1)(ι(g))(x1), which turns R into an L-algebra structure. Furthermore, we
define a map ι̃ : L[X2, . . . , Xn]→ L[X2, . . . , Xn] as follows:

1. Given an input p ∈ L[X2, . . . , Xn], it has the presentation

p =
∑

i2,...,in

fi2...in
gi2...in

Xi2
2 · · ·Xin

n ,
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for finitely many fi2...in , gi2...in ∈ K[X].
2. Let a ∈ K[X] be the product of all these gi2...in , and for j2, . . . , jn let hj2...jn

be the product of all these gi2...in except gj2...jn .

3. Define f̃i2...in := fi2...inhi2...in and p̃ :=
∑

i2,...,in
f̃i2...in(X1)Xi2

2 · · ·Xin
n ; set

ι̃(p) := (a(X1)ι(p̃))

(
X

1
, X2, . . . , Xn

)
,

where we consider b ∈ K also as the element b
1 ∈ L.

Because we have to define the algorithm without the ring and field axioms, the
definitions of L and the operators are more complex than one might expect.

As already mentioned we cannot define L as
{

a
b | a, b ∈ K[x1], b 6= 0 ∨ 0 = 1

}
,

which is the field of fractions of K[x1] if this is an integral domain, because we
want to avoid terms like a ∈ K[x1], which are constructively delicate. In partic-
ular, there is in general no map which takes a ∈ K[x1] and returns f ∈ K[X]
with f(x1) = a without using the axiom of choice. But in the next algorithm we
operate on the level of polynomials.

Lemma 7. In the situation of Algorithm 5 we assume that K is a field, R is a
ring, ~x ∈ R and ι is an algebraic inverse function of K[~x]. Then L is indeed a
discrete field, ϕ turns R into a L-algebra and ι̃ is an algebraic inverse function
on L[x2, . . . , xn].

With this preparation we now formulate the final algorithm and an algorithm
version of Zariski’s lemma.

Algorithm 6. Let K be a discrete field structure, R be a discrete K-algebra
structure, ι : K[ ~X]→ K[ ~X] be a map and x1, . . . , xn ∈ R. We compute f1, . . . , fn ∈
K[X] by recursion over n as follows:

1. If n = 0, return the empty list. If n = 1, use Algorithm 3 with input K, R,
x1 and ι and return the output f1. If n = 2, use Algorithm 4 with input K;
R; x1, x2 ∈ R and ι, and return the output f1, f2.

2. Apply Algorithm 5 to K, R, n, ~x and ι and let the field structure L and the
map ι′ : L[X2, . . . , Xn]→ L[X2, . . . , Xn] be the output.

3. Apply recursion to L, the L-algebra structure R, ι′ and x2, . . . , xn ∈ R and
we get F̃2, . . . , F̃n ∈ L[X].

4. For each i we define Fi as F̃i divided by its leading coefficient and replacing
the leading coefficient by 1 (or Fi := 1 if F̃i = 0). In particular,

Fi = Xni +

ni−1∑
j=0

aij
bij

Xj

for some aij , bij ∈ K[X].

5. Let v :=
∏

(k,l) bkl ∈ K[X], b̃ij :=
∏

(k,l)6=(i,j) bkl, and ãij := b̃ijaij. Define

Gi :=

ni∑
j=0

ãij(Y1)Y2X
j ∈ K[Y1, Y2, X].
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6. Use Algorithm 2 with input K, ~h := (X1, ι(v)), ι, k1 := 1, g
(1)
0 := Y1 and

for i ∈ {2, . . . , n} take ki := ni and g
(i)
ni−1, . . . , g

(i)
0 are the non-leading coef-

ficients of Gi. Let ι̃ be the output.
7. Apply Algorithm 4 to the input K, R, x1, ι(v)(x1) ∈ R and ι̃, and define

f1 ∈ K[X] as the output.
8. For each i ∈ {2, . . . , n} exchange x1 with xi and repeat the processes starting

at Step 2 to get fi instead of f1. Then return f1, . . . , fn.

Theorem 2 (Algorithmic version of Zariski’s lemma). In the situation
of Algorithm 6 we assume that K is a field, R is a K-algebra, ~x ∈ R and ι is
an algebraic inverse function on K[~x]. Then f1(x1) = · · · = fn(xn) = 0 and
f1, . . . , fn are non-constant.

4 Summary and Outlook

For K[x1, . . . , xn] and an algebraic inverse function ι on K[~x] our algorithm
computes f1, . . . , fn with fi(xi) = 0 for all i as follows: The case n = 0 is trivial.
The case n = 1 is given in Lemma 5. The algorithm uses now recursion on n
and reduction to the case n = 2. The case n = 2 itself is considered in Lemma
6. In this lemma the main idea was to find a suitable element u such that
K[x1, u] ⊆ K[x1, x2] is an integral extension of K-algebras. By using Lemma 4
we have an algebraic inverse function on K[x1, u], where Lemma 4 uses Lemma
3. In the case n ≥ 3, we use Lemma 7 to produce a new field L over which the
original algebra is generated by one element less, such that we can use recursion
and get F2, . . . , Fn ∈ L[X] with Fi(xi) = 0 for all i. From these Fi’s we generate
v such that K[x1, v] ⊆ K[~x] is an integral extension of K-algebras. Using again
Lemma 4 we get an algebraic inverse function on K[x1, v] and therefore, again
by Lemma 6, we get f1 ∈ K[X] with f1(x1) = 0. One now repeats the algorithm
where x1 and xi are switched for all i ≥ 2 and get fi ∈ K[X] with fi(xi) = 0.

Using the theory given in [11, 12] one can probably formulate an algorithmic
version of Hilbert’s Nullstellensatz if the underlying field is countable. Another
direction in which this paper can be extended is an analysis of the complexity of
the algorithm. The algorithm of Section 3 as a whole is defined by recursion over
the number of generators. In the recursion step (i.e. Algorithm 6) the algorithm
with input x1, . . . , xn relies on the algorithm with input x1, . . . , xi−1, xi+1, . . . , xn
for each i ≤ n. Therefore, the runtime of this algorithm must be at least quadratic
in the number of generators.
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A Omitted proofs

Proof (Lemma 3). We define the K[~Y ]-module M := K[~Y ][ ~X]/〈G1, . . . , Gn〉
where Gi := Xki + g

(i)
ki−1X

ki−1 + · · ·+ g
(i)
0 for all i, and go through the steps of

Algorithm 1: by the definition of M and the process to get the gIJ ’s, we have∑
J∈INn

fIJ ~X
J =

∑
J∈I

gIJ(~Y ) ~XJ

in M or in other words∑
J∈INn

fIJ ~X
J −

∑
J∈I

gIJ(~Y ) ~XJ ∈ 〈G1, . . . , Gn〉

seen in K[~Y ][ ~X]. Note that ( ~XI)I∈I is a set of generators of M as K[~Y ]-
module, and multiplication with f corresponds to the matrix (gIJ)I,J∈I . Let
P be the characteristic polynomial as in the algorithm. By the theorem of
Cayley-Hamilton [4], P (f) = 0 in M , hence P (f) ∈ 〈G1, . . . , Gn〉 in K[~Y ][ ~X].
By (1), we have Gi(~y, ~x) = 0 for all i, and hence 0 = P (f)(~y, ~x) = (f(~x))k +
gk−1(~y)(f(~x))k−1 + · · ·+ g0(~y). Here we have used the definition of the gi in the
last step, and deg(P ) = k because k is the number of elements in I which is also
the cardinality of the generator (xI)I∈I . ut

Proof (Lemma 4). Let f ∈ K[~Y ] with f(~y) 6= 0 be given. Since ~h is a witness

that K[~y] ⊆ K[~x] is an extension of K-algebras, we have f(~h(~x)) = f(~y) 6= 0.
Let p be given as in Step 1. Then p(~x)f(~y) = 1 because ι is an algebraic inverse
function. By Lemma 3 we have

(p(~x))k + gk−1(~y)(p(~x))k−1 + · · ·+ g0(~y) = 0.

Multiplying this with (f(~y))k−1 and isolating p(~x), we get

p(~x) = (−gk−1 − gk−2f − · · · − g0fk−1)(~y) = ι̃(f)(~y).

ut

The proof of Lemma 5 follows directly by the definition of an algebraic inverse
function.

Proof (Lemma 6). It suffices to consider f1 since the statement with f2 is proved
analogously. We follow the algorithm step by step. If x2 = 0, we use Lemma 5.
That ι′ is an algebraic inverse function on K[x1] follows from

(ι(p(X1)))(x1, 0)p(x1) = (ι(p(X1))p(X1))(x1, x2) = 1

for all p ∈ K[X] with p(x1) 6= 0.
So, we continue with x2 6= 0. By definition, g(x1, x2) = x2ι(X2)(x1, x2)−1 =

0 and the constant coefficient (as polynomial in X2) of g is equal to −1.
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In the next step it is obvious that X1, ι(h) is a witness of K[x1, ι(h)(x1, x2)] ⊆
K[x1, x2] being an extension of K-algebras and that x1−g(1)0 (x1, ι(h)(x1, x2)) =

x1− x1 = 0. Furthermore, let g =
∑k2

i=0 giX
i
2 for some gi ∈ K[X1] with gk2 6= 0.

Then h = gk2 and

0 = ι(h)(x1, x2)g(x1, x2) = xk2
2 +

k2−1∑
i=0

gi(x1)ι(h)(x1, x2)xi2

= xk2
2 +

k2−1∑
i=0

g
(2)
i (x1, ι(h)(x1, x2))xi2.

So, ι̃ is an algebraic inverse function on K[x1, ι(h)(x1, x2)] by Lemma 4.
If deg(h) = 0, we have h = h0 and h0 6= 0 because h is a leading coefficient.

Therefore, it follows ι(h)(x1, x2) = h−10 , and we apply Lemma 5 to K[x1] =
K[x1, h

−1
0 ]. To apply this lemma it remains to show that ι′ is an algebraic inverse

function: if p ∈ K[X] with p(x1) 6= 0 then

(ι′(p))(x1)p(x1) = (ι̃(p(Y1)))(x1, h
−1
0 )p(x1) = (ι̃(p(Y1))p(Y1))(x1, h

−1
0 ) = 1.

Now we continue with deg(h) 6= 0, i.e. deg(h) > 0 because h 6= 0. If
h(x1) + 1 = 0, we have that f1 is non-constant since deg(h) > 0 and by the
case assumption f(x1) = 0.

So let h(x1) + 1 6= 0. Then

q(x1)(ι(h)(x1, x2))N = ι̃(1− h(Y1))(x1, ι(h)(x1, x2)).

Since ι and ι̃ are algebraic inverse functions and h 6= 0 and 1− h 6= 0, it follows

q(x1)(1− h(x1))) = h(x1).

So for f1 := (1−h(X))q(X)−h(X)N we have f1(x1) = 0 and f1 6= 0, similar to
the end of the proof of Zariski’s lemma. ut

Proof (Lemma 7). L is a discrete field because in the definition of L and its
operators we only use the operators of K.

By using the property of an algebraic inverse function, it is also straightfor-
ward to check that the map ϕ is a homomorphism.

It remains to show that ι̃ is an algebraic inverse function on L[x2, . . . , xn].
For this let p ∈ L[X2, . . . , Xn] with p(x2, . . . , xn) 6= 0 be given. We take the
representation of p, a, f̃i2...in and p̃ as defined in the algorithm, and calculate

p(x2 . . . , xn)a(x1) =
∑

i2,...,in

ϕ

(
f̃i2...in

1

)
xi22 · · ·xinn

=
∑

i2,...,in

f̃i2...in(x1)xi22 · · ·xinn = p̃(x1, . . . , xn).
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Obviously, a(x1) 6= 0 because it is a product of non-zero factors. Hence, if
p(x2, . . . , xn) 6= 0, it follows p̃(x1, . . . xn) 6= 0. Since additionally ι is an alge-
braic inverse function, we have

ι(p̃)(x1, . . . , xn) = (p̃(x1, . . . , xn))−1,

and therefore

(p(x2, . . . , xn))−1 = a(x1)(p̃(x1, . . . , xn))−1 = a(x1)(ι(p̃))(x1, . . . , xn)

= (a(X1)ι(p̃))

(
X

1
, x2, . . . , xn

)
.

ut

Proof (Algorithmic version of Zariski’s Lemma). We use induction on n and
consider the algorithm step by step. If n = 0, there is nothing to show. If n = 1,
the statement follows by Lemma 5. If n = 2, the statement follows by Lemma 6.

If n ≥ 3, it suffices to consider e = 1. We use Lemma 7 to get that L is a
field, R is an L-algebra and ι′ is an algebraic inverse function on L[x2, . . . , xn].

We have that F2(x2) = · · · = Fn(xn) = 0 by the induction hypothesis and
the fact that Fi is indeed F̃i divided by its leading coefficient since L is a field.

Furthermore, Fi = Gi(x1, v
−1, X) as polynomial in R[X] and therefore 0 =

Fi(xi) = Gi(x1, (v(x1))−1, xi). So, the non-leading coefficients of Gi (as polyno-
mials in X) witness that xi is integral over K[x1, ι(v)(x1)] for each i ∈ {2, . . . , n}.

Because of this, the requirements of Lemma 4 are fulfilled and hence ι̃ is an
algebraic inverse function on K[x1, ι(v)(x1)].

Therefore, we get f1(x1) = 0 and f1 is non-constant by Lemma 6. ut
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