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Abstract. The existence of ideal objects, such as maximal ideals in
nonzero rings, plays a crucial role in commutative algebra. These are
typically justified using Zorn’s lemma, and thus pose a challenge from
a computational point of view. Giving a constructive meaning to ideal
objects is a problem which dates back to Hilbert’s program, and today
is still a central theme in the area of dynamical algebra, which focuses
on the elimination of ideal objects via syntactic methods. In this paper,
we take an alternative approach based on Kreisel’s no counterexample
interpretation and sequential algorithms. We first give a computational
interpretation to an abstract maximality principle in the countable set-
ting via an intuitive, state based algorithm. We then carry out a concrete
case study, in which we give an algorithmic account of the result that in
any commutative ring, the intersection of all prime ideals is contained in
its nilradical.

Keywords: Proof theory · Program extraction · Commutative algebra
· No-counterexample interpretation.

1 Introduction

This paper is an application of proof theory in commutative algebra. To be more
precise, we use proof theoretic methods to give a computational interpretation
to a general maximality principle (Theorem 1), which in particular implies the
existence of maximal ideals in commutative rings (Krull’s lemma). In the context
of second order arithmetic, the latter statement is equivalent to arithmetical
comprehension [41, Chapter III.5], and thus Theorem 1 is a genuinely strong
principle, and highly non-trivial from a computational perspective.

The extraction of programs from proofs has a long and rich history, dating
back to Kreisel’s pioneering work on the ‘unwinding’ of proofs [17, 18]. In the
ensuing decades, the application of proof interpretations in particular has become
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a major topic in proof theory, and today encompasses both proof mining [12–
14], which focuses on obtaining quantitative information primarily from proofs in
areas of mathematical analysis, and the mechanized synthesis of programs from
proofs, which has found many concrete applications in discrete mathematics and
computer science [3, 4, 40].

Though as far back as the 1950s Kreisel already discusses the use of proof
theoretic techniques to extract quantitative information from proofs in abstract
algebra [19], specifically Hilbert’s 17th problem together with his Nullstellen-
satz, to date there are comparatively few formal applications of proof interpre-
tations in algebra, the computational analysis of which is done largely on a case
by case basis. This typically involves replacing semantic conservation theorems
with appropriate syntactic counterparts both sufficient for proofs of elementary
statements and provable by elementary means. This method has proved possible
in numerous different settings [5, 6, 21, 22, 34, 44], and in the context of com-
mutative algebra the so-called dynamical method is especially dominant [7, 20,
45, 46].4 In dynamical algebra one deals with a supposed ideal object (such as
a maximal ideal) only by means of concrete, finitary approximations (such as
finitely generated ideals, or rather the finite sets of generators), where the latter
provide partial but sufficiently complete information about the former.

Interestingly, the idea of replacing ideal objects with suitable finitary approx-
imations is already implicit in Kreisel’s unwinding program, and is captured by
his famous no-counterexample interpretation (n.c.i.). The n.c.i. plays an impor-
tant role in proof mining, where in particular it corresponds to the notion of
metastability [11, 15, 16], which has been made popular by Tao [43] and more
recently has featured in higher order computability theory [35].

In this article, we take a new approach to eliminating ideal objects in ab-
stract algebra, by solving an appropriate metastable reformulation of our general
maximality principle. We then use this solution to extract direct witnesses from
a variant of Krull’s lemma.

The novelty of our approach lies not just in our use of the n.c.i., but in
our description of its solution as a state based algorithm, inspired by recent
work of the first author [23, 24, 26–28] which focuses on the algorithmic meaning
of extracted programs. This form of presentation allows us to bridge the gap
between the rigorous extraction of programs from proofs as terms in some formal
calculus, and the more algorithmic style of dynamical algebra.

It also enables us to present our results in an entirely self-contained manner,
without needing to introduce any heavy proof theoretic machinery. Though be-
hind the scenes at least, aspects of our work are influenced by Gödel’s functional
interpretation [8] and Spector’s bar recursion [42], neither of these make an of-
ficial appearance, and we have endeavoured to make everything as accessible to
the non-specialist as possible.

Our first main contribution, given as Theorems 3 and 4, is a time sequential
algorithm (in the sense of Gurevich [9]), whose states evolve step by step until

4 The second author has contributed to a universal conservation criterion [31–33] that
includes many of the those cases [30, 36, 39].
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they terminate in some final state sj which represents a solution to the n.c.i.
of Theorem 1. Each step in this process represents an improvement to our con-
struction of an approximate ideal object, and so can also be viewed as a learning
procedure in the style of [1].

We then present a concrete application of our abstract result, in which we
analyse a classic maximality argument used to prove the well known fact that in
any commutative ring, if some element r is contained in intersection of all prime
ideals, then it must be nilpotent. We show that an instance of our sequential
algorithm can be used to directly compute an exponent e > 0 such that re = 0,
and thus our case study is another illustration of how the proof theoretic analysis
of a highly nonconstructive proof can yield direct, computational information.
We conclude by instantiating our algorithm in case of nonconstant coefficients
of invertible polynomials. This is a well known example which has been widely
studied from a computational perspective [25, 29, 37, 38], thus facilitating a fu-
ture analysis of our work with other approaches.

2 A general maximality argument

We begin by presenting our abstract maximality principle, which forms the main
subject of the paper. Let X be some set (which for now is arbitrary but later will
be countable), and denote by Pfin(X) the set of all finite subsets of X. Simple
lemmas are stated without proof.

Definition 1. Let ▷ be some subset of Pfin(X) × X. We treat ▷ as a binary
relation and say that the element x is generated by the finite set A whenever
A ▷ x. We extend ▷ to arbitrary (not necessarily finite) S ⊆ X by defining
S ▷∗ x whenever there exists some finite A ⊆ S such that A▷ x.

Definition 2. Given some S ⊆ X, define the sequence (Si)i∈N of sets by

S0 := S and Si+1 := {x |
∪
j≤i

Sj ▷∗ x}

and let ⟨S⟩ :=
∪

i∈N Si. We say that ⟨S⟩ is the closure of S w.r.t. ▷, since
whenever ⟨S⟩▷∗ x then x ∈ ⟨S⟩.

Definition 3. For any S ⊆ X and x ∈ X, S⊕x := ⟨S ∪ {x}⟩ denotes the closed
extension of S with x.

Lemma 1. Suppose that S ▷∗ x. Then S ⊕ x = ⟨S⟩.

Definition 4. Let Q(x) be some predicate on X. For S ⊆ X write Q(S) for
(∀x ∈ S)Q(x). Note in particular that Q(S) and S ⊇ T implies Q(T ).

Definition 5. We say that M ⊆ X is maximal w.r.t. ▷ and Q if

(i) M is closed w.r.t. ▷∗,
(ii) Q(M),
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(iii) ¬Q(M ⊕ x) for any x /∈M .

Theorem 1. Suppose that Q(⟨∅⟩). Then there exists some M ⊆ X which is
maximal w.r.t. ▷ and Q.

Proof. Define S := {S ⊆ X | S is closed w.r.t ▷∗ and Q(S)}. We show that S
is nonempty and chain complete w.r.t. set inclusion. Nonemptyness follows from
the fact that ⟨∅⟩ ∈ S, so it remains to prove chain completeness. Let γ be a chain
in S. Then Ŝ :=

∪
S∈γ S is clearly closed, and moreover, if x ∈ Ŝ then x ∈ S for

some S ∈ γ, and therefore Q(x). This establishes Ŝ ∈ S.
Thus by Zorn’s lemma, S has some maximal element M , which by definition

satisfies (i) and (ii). But for x /∈ M we have M ⊂ M ⊕ x and thus M ⊕ x /∈ S.
But since M ⊕ x is closed, it follows that ¬Q(M ⊕ x).

Corollary 1. Any commutative ring X with 0 ̸= 1 has a maximal ideal.

Proof. We follow the standard proof. Define ▷ by A▷x iff x = x1 ·a1+. . .+xk ·ak
for some a1, . . . , ak ∈ A and x1, . . . , xk ∈ X. Note that ∅▷ 0 by the convention
that an empty sum is equal to zero. In addition, define Q(x) :≡ (x ̸= 1). Then
S ⊆ X is closed iff it is an ideal, with Q(S) iff S is proper. Now ⟨∅⟩ = {0} (since
∅▷ 0) and if 0 ̸= 1 then Q({0}), thus by Theorem 1 there exists some maximal
structure M . To see that M is a maximal ideal, if there were some M ⊂ I ⊆ X
then we would have M ⊂ M ⊕ x ⊆ I for some x /∈ M , and by ¬Q(M ⊕ x) we
would have 1 ∈M ⊕ x and thus I = X.

3 A logical analysis of Theorem 1

From now on, we assume that X is countable and comes equipped with some
explicit enumeration {xn | n ∈ N}. Given some S ⊆ X, the initial segment of S
of length n is defined by [S](n) := S∩{xm | m < n}. Note that S =

∪
n∈N[S](n).

We define dom(S) ⊆ N by dom(S) := {n ∈ N | xn ∈ S}.

Theorem 2. Suppose that M ⊆ X satisfies

xn ∈M ⇔ Q([M ](n)⊕ xn) (1)

for all n ∈ N. If Q(⟨∅⟩) then M is maximal w.r.t. ▷ and Q.

Proof. LetMn := ⟨[M ](n)⟩. We first observe that Q(Mn) for all n ∈ N, which fol-
lows by induction: For n = 0 we haveM0 = ⟨∅⟩ and so Q(M0) is true by assump-
tion. Now supposing that Q(Mn) holds for some n ∈ N there are two possibilities:
If Q([M ](n)⊕xn) then xn ∈M and hence Mn+1 = ⟨[M ](n) ∪ {xn}⟩ = [M ](n)⊕
xn, and if ¬Q([M ](n) ⊕ xn) then xn /∈ M and hence Mn+1 = ⟨[M ](n)⟩ = Mn.
Either way we have Q(Mn+1).

We now establish each of the maximality conditions in turn. For closure,
suppose that M ▷∗ xn but xn /∈ M , and so by definition ¬Q([M ](n) ⊕ xn).
Since M ▷∗ xn we have [M ](k) ▷∗ xn for some k ∈ N. First, let k ≤ n. Then
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[M ](k) ⊆ [M ](n) and thus [M ](n)▷∗ xn, which implies that xn ∈Mn and thus
by Lemma 1

[M ](n)⊕ xn = ⟨[M ](n)⟩ =Mn.

Since Q(Mn) this contradicts ¬Q([M ](n)⊕xn). But if n < k then [M ](n)⊕xn ⊆
[M ](k)⊕xn and thus ¬Q([M ](n)⊕xn) implies ¬Q([M ](k)⊕xn). But [M ](k)▷∗xn
and thus by Lemma 1 again, [M ](k)⊕ xn =Mk, contradicting Q(Mk).

That Q(M) holds is straightforward: For if xn ∈M then xn ∈ [M ](n+ 1) ⊆
Mn+1 and thus Q(xn) follows from Q(Mn+1). Finally, to show that ¬Q(M⊕xn)
for xn /∈M , note that xn /∈M implies ¬Q([M ](n)⊕xn), and since [M ](n)⊕xn ⊆
M ⊕ xn the result follows.

The purpose of the above theorem was to give a more syntactic formulation
of Theorem 1 in the countable setting: If Q(⟨∅⟩) then the existence of a some
maximal M ⊆ X is implied by the existence of some M satisfying (1). In order
to proceed, we will now take a closer look at the structure of (1) and make some
restrictions on the logical complexity of certain parameters.

Lemma 2. Suppose that the relation A ▷ x can be encoded as a Σ0
1-formula.

Then the membership relation x ∈ ⟨A⟩ can also be encoded as a Σ0
1 -formula.

Remark 1. The reader may assume that we are working in some reasonable base
theory, and that formulas can be expressed in the language of Peano arithmetic:
Thus a Σ0

1 -formula is a formula of the form (∃y)P (y) where P (y) is primitive
recursive.

Proof. We only sketch the proof, since explicit encodings will be given in the
case studies that follow. We have x ∈ ⟨A⟩ iff there exists some finite derivation
tree for x whose leaves are elements of A and whose nodes represent instances of
▷. Given that ▷ can be encoded as a Σ0

1 -formula, it is clear that the existence
of a derivation trees can in turn be represented as Σ0

1 -formula via a suitable
encoding.

Lemma 3. Suppose that Q(x) is a Π0
1 -formula and that A ▷ x can be encoded

as a Σ0
1-formula. Then Q(⟨A⟩) is a Π0

1 -formula i.e. Q(⟨A⟩) ⇔ (∀p)RA(p) for
some decidable predicate RA(p) on Pfin(A)× N.

Proof. We can write Q(x) ⇔ (∀e)Q0(x, e) for some decidable Q0(x, e), and by
Lemma 2, x ∈ ⟨A⟩ ⇔ (∃t)GA(x, t) for some decidable GA(x, t). Then

Q(⟨A⟩) ⇔ (∀m)(xm ∈ ⟨A⟩ ⇒ Q(xm))

⇔ (∀m)((∃t)GA(xm, t) ⇒ (∀e)Q0(xm, e))

⇔ (∀m, t, e)(GA(xm, t) ⇒ Q0(xm, e))

and the latter formula can be encoded as (∀p)RA(p) for suitable RA(p) and using
some pairing function for the tuple m, t, e.

Lemma 4. Under the conditions of Lemma 3, (1) holds iff for all n ∈ N:

xn ∈M ⇔ (∀p)R[M ](n)∪{xn}(p) (2)
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Proof. By Lemma 3 setting A = [M ](n) ∪ {xn}, so that ⟨A⟩ = [M ](n)⊕ xn.

Written out in full, the existence of some M satisfying (2) becomes

(∃M)(∀n)((xn ∈M ⇒ (∀p)R[M ](n)∪{xn}(p))∧(xn /∈M ⇒ (∃q)R[M ](n)∪{xn}(q)))

and so written out in Skolem normal form, this becomes

(∃M,f)(∀n, p)(xn ∈M ⇒ R[M ](n)∪{xn}(p) ∧ xn /∈M ⇒ R[M ](n)∪{xn}(f(n))).
(3)

This motivates our final version of maximality, which is now in a form where we
can directly apply the no-counterexample interpretation.

Definition 6. An explicit maximal object w.r.t. ▷ and Q is a set M ⊆ X
together with a function f : dom(X\M) → N such that

– xn ∈M ⇒ R[M ](n)∪{xn}(p)
– xn /∈M ⇒ ¬R[M ](n)∪{xn}(f(n))

for all n, p ∈ N.

The idea here is that the function f provides concrete evidence for why xn is
excluded from the maximal structure M : in other words, it encodes an element
xm together with some tree t and e such that xm ∈ [M ](n)⊕ xn with respect to
t but Q(xm) fails relative to e.

4 An approximating algorithm for maximal objects

In general, it is impossible to effectively compute a set M together with an
f satisfying Definition 6. However, we demonstrate how an approximate, or
metastable, formulation of maximality in the spirit of Kreisel’s no-counterexample
interpretation, can be directly witnessed via an intuitive stateful procedure.

For a detailed and modern account of the n.c.i., the reader is encouraged to
consult e.g. [10, 13]. The rough idea is the following: Given some prenex formula
of the form A :≡ (∃x ∈ X)(∀y ∈ Y )P0(x, y), a functional Φ : (X → Y ) → X is
said to witness the n.c.i. of A if it witnesses (∀ω : X → Y )(∃x)P0(x, ω(x)) i.e.
(∀ω)P0(Φω, ω(Φω)). This definition generalises in the obvious way to prenex for-
mulas of arbitrary complexity. In this section, we give an algorithmic description
of such an Φ for A being the statement that an explicit maximal object exists,
as in Definition 6.

Definition 7. Let (ω, ϕ) be functionals which take as input M and f and each
return as output a natural number. An approximate explicit maximal object w.r.t
▷, Q and (ω, ϕ) is a set M ⊆ X together with a function f such that

– xn ∈M ⇒ R[M ](n)∪{xn}(p)
– xn /∈M ⇒ ¬R[M ](n)∪{xn}(f(n))

but now only for n ≤ ω(M,f) and p = ϕ(M,f).
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Note that Definition 7 is slightly stronger than the n.c.i. of (3), since it works
for all n ≤ ω(M,f) and not just n = ω(M,f).

Approximate maximal objects are useful because when a proof of a pure
existential statement relies on the existence of some maximalM , we are typically
able to find functionals (ω, ϕ) which calibrate exactly how this maximal object is
used, and thereby construct a witness to the existential statement in terms of an
approximate maximal object relative to (ω, ϕ). For a more detailed discussion of
this phenomenon in the context of sequential algorithms the reader is directed
to [28, Section 4.5]. We will see a concrete example in Section 5.

4.1 The algorithm

We now present our algorithm, which computes approximate maximal objects
given some input functionals (ω, ϕ). Our algorithm will be described as an evolv-
ing sequence of states

s0 7→ s1 7→ · · · 7→ sk.

The basic idea is as follows: We start in some initial state s0 which contains
no information and gives rise to an ‘empty’ approximation. In each step of the
computation we query our mathematical environment to asses whether or not
our current approximation is good enough. If it is, the computation terminates
in that state. If not, we use the information gained from this query to improve
our approximation. The hope is that our algorithm always terminates on some
reasonable set of inputs. In this section we describe how the states evolve, and
in the next we deal with termination.

For us, states si are defined to be a functions of type N → {(∗)} + N i.e. si
is an array, whose nth entry si(n) is either a natural number or some default
value (∗). Any given state encodes a current approximation (M [si], f [si]) to an
explicit maximal object by defining the set M [si] ⊆ X as

M [si] := {xn ∈ N | si(n) = (∗)}

and the function f [si] : dom(X\M [si]) → N by

f [si](n) := si(n) ∈ N

where si(n) ∈ N follows from the assumption that n /∈M [si]. Fixing some input
functionals (ω, ϕ), we imagine for convenience that these now act directly on
states, and write ω(si) as shorthand for ω(M [si], f [si]).

We now need to explain how our state evolves. As an initial state, we set

s0(m) := (∗)

and so M [s0] = X and f [s0] has an empty domain. Now, supposing that we are
in the ith state, we define

(ni, pi) := (ω, ϕ)(si).

and carry out the following steps:
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– Search from 0 up to ni until some 0 ≤ n ≤ ni is found such that each of the
following hold

• xn ∈M [si],
• ¬R[M [si]](n)∪{xn}(pi)

– If no such n is found, the algorithm terminates in state si.

– Otherwise, define

si+1(m) :=


si(m) if m < n

pi if m = n

(∗) if m > n

and so in particular

M [si+1] = [M [si]](n) ∪ {xk ∈ N | k > n}

and xn /∈M [si+1].

Lemma 5. For all states si ∈ N and n ∈ N we have

xn /∈M [si] ⇒ ¬R[M [si]](n)∪{xn}(f [si](n)).

Proof. Induction on i. For i = 0 the statement is trivially true, sinceM [s0] = X.
So suppose the statement is true for some i, and that xn /∈ M [si+1]. Since
M [si+1] = [M [si]](n

′) ∪ {xk ∈ N | k > n′} for some n′ ≤ ni there are
two possibilities. Either n < n′ and xn /∈ M [si] and so the result follow by
the induction hypothesis since f [si+1](n) = si+1(n) = si(n) = f [si](n) and
[M [si+1]](n) = [M [si]](n). Or n = n′ and so f [si+1(n)] = pi which is defined
to satisfy ¬R[M [si]](n)∪{xn}(pi), and thus the result follows since [M [si+1]](n) =
[M [si]](n).

Theorem 3. Suppose that the algorithm terminates in state sj. Then sj forms
an approximate explicit maximal object w.r.t. ▷, Q and (ω, ϕ).

Proof. If the algorithm terminates, then by definition it holds that for all n ≤
nj = ω(sj), if xn ∈ M [sj ] then R[M [sj ]](n)∪{xn}(pj) where pj = ϕ(sj). But if
xn /∈M [sj ] then ¬R[M [sj ]](n)∪{xn}(f [sj ](n)) by Lemma 5, and so we’re done.

4.2 Termination

It remains, then, to show that our algorithm actually terminates on some rea-
sonable set of parameters! Here, we make an additional standard assumption,
namely that the functionals (ω, ϕ) are continuous.

Definition 8. We say that (ω, ϕ) are continuous if for all states s : N → {∗}+N
(which encode M,f) there exists some natural number L such that for any other
input state s′, if [s](L) = [s′](L) then

(ω, ϕ)(s) = (ω, ϕ)(s′).
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Note that whenever (ω, ϕ) are instantiated by computable functionals, they
will automatically be continuous, so restricting ourselves to the continuous set-
ting is entirely reasonable.

Theorem 4. Whenever the algorithm runs on continuous parameters (ω, ϕ), it
terminates after a finite number of steps.

Proof. Suppose that the algorithm does not terminate and thus results in an
infinite run {si}i∈N. We first show that for each n ∈ N, the value of si(n) can
only change finitely many times as i→ ∞. More precisely, we define a sequence
j0 ≤ j1 ≤ j2 ≤ . . . satisfying

(∀i ≥ jn)([si](n) = [sjn ](n)). (4)

The (jn)n∈N are defined inductively as follows: We let j0 := 0, and if jn has been
defined, either there exists some j ≥ jn such that xn /∈M [sj ], in which case we
define jn+1 = j, or xn ∈M [sj ] for all j ≥ jn and we set jn+1 := jn. To see that
this construction satisfies (4) we use induction on n. The base case is trivial, so
let’s fix some n. By the induction hypothesis and the fact that jn+1 ≥ jn we
have [si](n) = [sjn+1 ](n) for all i ≥ jn+1, and so we only need to check point
n. Now, in the case xn ∈ M [si] for all i ≥ jn = jn+1 we’re done since this
means that si(n) = (∗) for all i ≥ jn+1. In the other case, if xn /∈ M [sjn+1 ]
then sjn+1(n) = p ∈ N and observing the manner in which the states evolves at
each step, the only way this can change is if xm is removed from to si for some
i ≥ jn+1 and m < n. But this contradicts the induction hypothesis.

The second part of the proof is where we make use of continuity. Define s∞
to be the limit of the [sjn ](n), and let L be a point of continuity for (ω, ϕ) on
this input. Define

j := jN for N := max{L, ω(s∞) + 1}

Then in particular, since [s∞](L) = [sj ](L) we must have

nj := ω(sj) = ω(s∞) < N.

But since the algorithm does not terminate, there is some 0 ≤ n ≤ nj with
xn ∈ M [sj ] but xn /∈ M [sj+1]. But by definition of j = jN , since n < N then
xn ∈M [sj ] implies that xn ∈M [si] for all i ≥ j, a contradiction.

5 Case study: The nilradical as the intersection of all
prime ideals

We now use our algorithm to carry out a computational analysis of the following
well known fact [2, Proposition 1.8], which is a frequently used form of Krull’s
lemma. Recall that a ring element r is nilpotent if re = 0 for some integer e > 0.

Theorem 5. Let X be a countable commutative ring. Suppose that r lies in the
intersection of all prime ideals of X. Then r is nilpotent.



10 Powell et al.

We first show how the standard proof follows from our general maximality prin-
ciple Theorem1. Now our countable set X comes equipped with a ring structure,
which will be used to instantiate our parameters ▷ and Q.

Proof. Define ▷ as in Corollary 1, but now let Q(x) := (∀e)(e > 0 ⇒ x ̸= re).
Then S ⊆ X is closed w.r.t ▷ and satisfies Q(S) iff it is an ideal which does not
contain re for any e > 0. Suppose for contradiction that r is not nilpotent, which
would mean that Q({0}) and thus Q(⟨∅⟩) hold. By Theorem 1 there is some M
which is maximal w.r.t. ▷ and Q, and in this case M ⊕ x = ⟨M ∪ {x}⟩ is just
the ideal generated by M and x.

Take x, y /∈ M . Then ¬Q(M ⊕ x) and hence there exists some e1 > 0 such
that re1 ∈ M ⊕ x. Similarly, there exists some e2 > 0 with re2 ∈ M ⊕ y. But
then re1+e2 ∈M ⊕xy and thus xy /∈M . This would mean that M is prime, but
then Q(M) contradicts the assumption that r ∈M .

Lemma 6. For ▷ and Q defined as in the proof of Theorem 5, we have

Q(⟨A⟩) ⇔ (∀b ∈ X∗, e)(|b| = k ∧ e > 0 ⇒ a1 · b1 + . . .+ ak · bk ̸= re︸ ︷︷ ︸
RA(b,e)

)

where A := {a1, . . . , ak}, X∗ as usual denotes the set of lists over X and |b| is
the length of b.

Our aim will be to address the following computational challenge, given any
fixed X and r,

– Input. Evidence that r lies in the intersection of all prime ideals
– Output. An exponent e > 0 such that re = 0

The first question is what we take to be evidence that r lies in all prime ideals.
Note that this assumption is logically equivalent to the statement

(∀S ⊆ X)(S is not a prime ideal ∨ r ∈ S),

so for a computational interpretation of the above it would be reasonable to ask
for a procedure which takes some S ⊆ X as input, and either confirms that r ∈ S
or demonstrates that S is not a prime ideal.

Let’s now fix some enumeration of X, where we assume for convenience that
x0 = 0X , x1 = 1X and x2 = r. This assumption is not essential, and is there
merely to simplify some of the bureaucratic details which follow. From now on
we assume that we have some function

ψ : P(X) → {0, 1, 2}+ ({3, 4, 5} × N3)

which for any S ⊆ X satisfies

– ψ(S) = 0 ⇒ 0X /∈ S
– ψ(S) = 1 ⇒ 1X ∈ S
– ψ(S) = 2 ⇒ r ∈ S
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– ψ(S) = (3, i, j, k) ⇒ (xi + xj = xk) ∧ (xi, xj ∈ S) ∧ (xk /∈ S)
– ψ(S) = (4, i, j, k) ⇒ (xi · xj = xk) ∧ (xi ∈ S) ∧ (xk /∈ S)
– ψ(S) = (5, i, j, k) ⇒ (xi · xj = xk) ∧ (xi, xj /∈ S) ∧ (xk ∈ S)

The functional ψ witnesses the statement that r ∈ S or S is not a prime ideal.

Lemma 7. Suppose that M ⊆ X and f satisfy

xn /∈M ⇒ ¬R[M ](n)∪{xn}(f1(n), f2(n)) (5)

where RA(b, e) is as in Lemma 6 and if f(n) = ⟨b, e⟩ then f1(n) = b and f2(n) =
e. Whenever ψ(M) ̸= 0 there exists some nonempty A = {a1, . . . , al} ⊆ M
together with a sequence [b1, . . . , bl] of elements of X and e > 0 such that

a1 · b1 + . . .+ al · bl = re.

Moreover, e,A and b are computable in ψ, M and f .

Remark 2. Note that here ⟨b, e⟩ denotes the encoding of the pair b, e as a single
natural number, so that the type of f matches that of Section 4.

Proof. This is a fairly routine case analysis. Since ψ(M) ̸= 0 there are five
remaining possibilities:

– ψ(M) = 1, i.e. x1 = 1X ∈ M and so we set e := 1, A := {x1} and b := [x2]
(recall that x2 = r).

– ψ(M) = 2, i.e. x2 = r ∈M and so e := 1, A := {x2} and b := [x1] work.

– ψ(M) = (3, i, j, k). Since xk /∈M , by (5) for b′ = f1(k) we have

xα1 · b′1 + . . .+ xαp · b′p + xk · b′p+1 = rf2(k)

for {xα1 , . . . , xαp} = [M ](k). But then

xα1 · b′1 + . . .+ xαp · b′p + (xi + xj) · b′p+1 = rf2(k)

and so e := f2(k), together with A := {xα1 , . . . , xαp , xi, xj} ⊆ M and b :=
[b′1, . . . , b

′
p, b

′
p+1, b

′
p+1] work.

– ψ(M) = (4, i, j, k). Entirely analogously, but this time we have

xα1 · b′1 + . . .+ xαp · b′p + xi · (xj · b′p+1) = rf2(k)

and so e := f2(k), A := {xα1 , . . . , xαp , xi} and b := [b′1, . . . , b
′
p, xj ·b′p+1] work.

– ψ(M) = (5, i, j, k). For b′ = f1(i) and b
′′ = f1(j) we have xα1 · b′1+ . . .+xαp ·

b′p + xi · b′p+1 = rf2(i) and xβ1 · b′′1 + . . .+ xβq · b′′q + xj · b′′q+1 = rf2(j) where
{xα1 , . . . , xαp} = [M ](i) and {xβ1 , . . . , xβq} = [M ](j), and therefore

(xα1 · b′1 + . . .+ xαp · b′p) · rf2(j) + xi · b′p+1 · (xβ1 · b′′1 + . . .+ xβq · b′′q )

+ xi · xj · b′p+1 · b′′q+1 = rf2(i)+f2(j)

and so e := f1(i) + f2(j), A := {xα1 , . . . , xαp , xβ1 , . . . , xβq , xi · xj} and the
corresponding b from the above equation work.
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Lemma 8. Suppose that M and f satisfy (5) as in Lemma 7 and that ψ(M) ̸=
0. Then there exists some n ∈ N, sequence b and e > 0 such that

– xn ∈M ,
– ¬R[M ](n)∪{xn}(b, e)

and moreover, n, b and e are computable in ψ, M and f .

Proof. By Lemma 7 there exist, computable in ψ, M and f , a nonempty A =
{a1, . . . , al} ⊆ M together with b = [b1, . . . , bl] and e > 0 satisfying a1 · b1 +
. . . + al · bl = re. In particular, we can find some n ∈ N which is the maximal
with xn ∈ A ⊆ M , and thus A ⊆ [M ](n) ∪ {xn}. But by expanding b to some
sequence b′ with zeroes added wherever needed, we have

xα1 · b′1 + . . .+ xαp · b′p + xn · b′p+1 = re

where {xα1 , . . . , xαp} = [M ](n), and thus ¬R[M ](n)∪{xn}(b
′, e) holds.

Theorem 6. Given an input functional ψ which for any S witnesses that r ∈ S
or S is not a prime ideal, define the functionals ω, ϕ by

(ω, ϕ)(M,f) :=

{
n, ⟨b, e⟩ if ψ(M) ̸= 0, where n, b and e satisfy Lemma 8

0, ⟨[], 0⟩ otherwise

Suppose that the algorithm {si}i∈N described in Section 4.1 is run on (ω, ϕ), and
for RA(b, e) as defined in Lemma 6. Then the algorithm terminates in some final
state sj satisfying

sj(0)2 > 0 ∧ rsj(0)2 = 0X .

Proof. First of all, we note that (ω, ϕ) are computable, and so in particular must
be continuous in the sense of Definition 8. Therefore the algorithm terminates
in some final state sj . By Lemma 5 we have

xn /∈M [sj ] ⇒ ¬R[M [sj ]](n)∪{xn}(f1[sj ](n), f2[sj ](n)). (6)

We claim that ψ(M [sj ]) = 0. If this were not the case, then by Lemma 8 and the
definition of (ω, ϕ) we would have xnj ∈M [sj ] and ¬R[M [sj ]](nj)∪{xnj

}(bj , ej) for

(nj , ⟨bj , ej⟩) = (ω, ϕ)sj

and so by definition the algorithm cannot be in a final state. This proves the
claim. But ψ(M [sj ]) = 0 implies that x0 = 0X /∈M [sj ], and therefore by (6) we
have ¬R{x0}(b, e) where ⟨b, e⟩ = f [sj ](0) = sj(0), which is just

|b| = 1 ∧ e > 0 ∧ x0 · b0 = re.

But since x0 · b0 = 0X · b0 = 0 we have re = 0 i.e. rsj(0)2 = 0X .
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5.1 Informal description of the algorithm

The basic idea behind the algorithm in this section is the following.

– Each state si encodes some M [si] ⊆ X, where xn /∈ M [si] only if we have
found evidence that [M [si]](n)∪ {xn} generates re for some e > 0, in which
case this evidence is encoded as si(n) ∈ N.

– We start off at s0 with the full set M [s0] = X.

– At state si we interact with our functional ψ, which provides us with evidence
that either M [si] is not a prime ideal, or r ∈M [si].

– If this evidence takes the form of anything other than 0X /∈ S, then we
are able to use this to find some xn ∈ M and evidence that [M ](n) ∪ {xn}
generates re for some e > 0. We exclude xn from M [si] but add all xk for
all k > n (since now the evidence that [M [si]](k) ∪ {xk} generates re

′
could

be falsified by the removal of xn).

Eventually, using a continuity argument as in Theorem 4, the algorithm termi-
nates in some state sj . But the only way this can be is if ψ(M [sj ]) = 0, which
indicates that 0X /∈ M [sj ]. Thus {0X} generates re for some e > 0 encoded in
the state.

5.2 Example: Nilpotent coefficients of invertible polynomials

We conclude by outlining a simple and very concrete application [2, pp. 10–11]
of Theorem 5, and sketching how our algorithm would be implemented in this
case. Fixing our countable commutative ring X, let f =

∑n
i=0 aiTi be a unit in

the polynomial ring X[T ]. Then each ai for i > 0 is nilpotent.

To prove this, by Theorem 5 it suffices to show that ai ∈ P for all prime
ideals P of X. Let g ∈ X[T ] be such that fg = 1, and let P be some arbitrary
prime ideal. Then we also have fg = 1 in (X/P )[T ], but since P is prime, X/P
is an integral domain, and thus 0 = deg(fg) = deg(f) + deg(g). This implies
that deg(f) = 0 in (X/P )[T ] and thus ai ∈ P for all i > 0.

In order to obtain a concrete algorithm, which for any ai for i > 0, produces
some e > 0 such that re = 0, we need to analyse the above argument to produce
a specific functional ψ which for any S ⊆ X, witnesses the statement that either
ai ∈ S or S is not a prime ideal. Fixing i > 0 and S, we define ψ(S) via the
following algorithm:

– Check in turn whether any of 0 /∈ S, 1 ∈ S or ai ∈ S are true. In the first case,
return ψ(S) = 0, and in the others, ψ(S) = 1 and ψ(S) = 2 respectively.

– Otherwise, let g =
∑m

j=0 bjT
j ∈ X[T ] be such that

1 = fg =
n+m∑
k=0

ckT
k
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for ck =
∑k

j=0 ajbk−j . Then in particular, for i > 0 we have 0 = ci =∑i−1
j=0 ajbi−j + aib0 and so (using that a0b0 = c0 = 1):

ai = −a0
i−1∑
j=0

ajbi−j . (7)

There are now two subcases to consider.

• If all of b1, . . . , bi ∈ S, then because ai /∈ S, an analysis of the r.h.s. of
(7) allows us to find, in a finite number of steps, either some xu, xv ∈ S
and xw /∈ S such that xw = xu + xv, in which case we return ψ(S) =
(3, u, v, w), or some xu ∈ S, xv and xw /∈ S such that xw = xuxv, in
which case we return ψ(S) = (4, u, v, w).

• Otherwise we have bj /∈ S for some 1 ≤ j ≤ i. Take 1 ≤ k ≤ n and
1 ≤ l ≤ m to be the maximal such that ak, bl /∈ S (note that because
ai /∈ S then this maximal ak also exists) and consider

0 = ck+l = akbl +
∑

p+q=k+l∧(p>k∨q>l)

apbq.

Then, splitting into two further subcases: Either akbl ∈ S, in which case
we return ψ(S) = (5, u, v, w) for xu = ak, xv = bl and xw = akbl, or

−
∑

apbq = akbl /∈ S

and since for each summand apbq either ap ∈ S or bq ∈ S, an analysis
analogous to the previous case returns ψ(S) = (3, u, v, w) or (4, u, v, w)
for suitable u, v, w.

Therefore, running our algorithm for ψ as defined above results in a sequential
algorithm which, by Theorem 6 terminates in some final state sj with f [sj ] =
⟨b, e⟩ for e > 0 and aei = 0.

Example 1. In the very simple case where X = Z4 and f = a0 + a1T = 1 + 2T ,
the corresponding run our algorithm for a1 = 2 would be as follows;

– M [s0] = Z4, and since 1 ∈ Z4 we are in the first main case of the definition
of ψ above, and we have ψ(Z4) = 1. Therefore we remove 1 from Z4, citing
1 · 2 = 21 as evidence.

– M [s1] = Z4\{1}, and since a1 = 2 ∈ Z4\{1} we are again in the first main
case. Therefore we set ψ(Z4\{1}) = 2 and remove 2 with evidence 2 · 1 = 21.

– M [s2] = Z4\{1, 2}. We now fall into the second main case. Picking g =
b0 + b1T = 1 + 2T as our inverse for f , since in Z4:

(1 + 2T )(1 + 2T ) = 1,

we have b1 = 2 /∈ Z4\{1, 2}. This puts us in the second subcase, where we
observe that a1 = b1 = 2 are the maximal coefficients with a1, b1 /∈ Z4\{1, 2}.
Then 0 = c2 = a1 · b1 ∈ Z4\{1, 2}, and thus ψ(Z4\{1, 2}) = (5, 2, 2, 0), and
so we remove 0 with evidence 0 = 22.
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– Finally, M [s3] = Z4\{0} (since we now re-add both 1 and 2 to the approxi-
mation) and ψ(Z4\{0}) = 0, and since we have already stored the evidence
that 0 = 22, the algorithm terminates with e = 2.
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