Harmonic Theory on Riemann Surfaces

Enya Hsiao

May 25, 2020

Harmonic Differential Forms

Definition

Let X be a compact Riemann surface. The harmonic m-forms

$$
\operatorname{Harm}^{m}(X):=\operatorname{ker}\left[\Delta: H^{0}\left(X, \mathscr{E}^{m}\right) \rightarrow H^{0}\left(X, \mathscr{E}^{m}\right)\right], \quad 0 \leq m \leq 2
$$

is the kernel of the Laplace operator $\Delta:=d \circ \delta+\delta \circ d$, where

$$
\delta: \mathscr{E}^{j+1} \rightarrow \mathscr{E}^{j}:=(-1) \cdot(* d *)
$$

is the formal adjoint of d with respect to the Hermitian scalar product

$$
(-,-):=H^{0}\left(X, \mathscr{E}^{m}\right) \times H^{0}\left(X, \mathscr{E}^{m}\right) \rightarrow \mathbb{C}, \quad(\alpha, \beta) \mapsto \int_{X} \alpha \wedge * \beta
$$

- We are interested in the case $m=1$.

Main Results

We will prove the following results for compact Riemann surface X :
Theorem 1 (de Rham-Hodge)

$$
H^{1}(X, \mathbb{C}) \cong R h^{1}(X) \cong \operatorname{Harm}^{1}(X)
$$

Theorem 2 (de Rham-Hodge-Dolbeault decomposition)

$$
H^{1}(X, \mathbb{C})=\bigoplus_{p+q=1} H^{q}\left(X, \Omega^{p}\right)
$$

As a immediate corollary to Theorem 2 by Serre duality,

$$
b_{1}(X)=\operatorname{dim} H^{1}(X, \mathbb{C})=\operatorname{dim} H^{1}(X, \mathscr{O})+\operatorname{dim} H^{0}\left(X, \Omega^{1}\right)=2 g(X)
$$

The *-operator

Definition

Let X be a complex manifold with Hermitian metric h. For each $x \in X$, the $*$-operator is a \mathbb{C}-antilinear isomorphism

$$
*: A^{p, q} \rightarrow A^{n-p, n-q}, \quad \beta \mapsto * \beta,
$$

defined via the characteristic equation

$$
\alpha \wedge * \beta=<\alpha, \beta>_{h} \operatorname{dvol}_{g} \quad \forall \alpha \in A^{p, q}
$$

where $g=\operatorname{Re} h$ is the induced Riemannian metric on the underlying real tangent bundle $T_{\mathbb{R}} X_{\text {smooth }}$.

- The $*$-operators on cotangent spaces glue to a \mathbb{C}-antilinear *-operator of sheaves

$$
*: \mathscr{E}^{p, q} \rightarrow \mathscr{E}^{n-p, n-q} .
$$

Computations: Types $(1,0)$ and $(0,1)$

Lemma

Let X a Riemann surface. For $\eta(x)=\eta_{1}(x)+\eta_{2}(x) \in A^{1,0} \oplus A^{0,1}=A^{1}$,

$$
*\left(\eta_{1}(x)+\eta_{2}(x)\right)=i \cdot\left(\bar{\eta}_{1}(x)-\bar{\eta}_{2}(x)\right) .
$$

In particular, the $*$-operator on $A^{1,0}$ and $A^{0,1}$ is independent of the metric h.

Proof: For Riemann surfaces, the normalized volume form dvol ${ }_{g}$ has local expression

$$
\operatorname{dvol}_{g}=\frac{d x \wedge d y}{\|d x \wedge d y\|_{g}}=i \cdot \frac{d z \wedge d \bar{z}}{\|d z \wedge d \bar{z}\|_{h}}, \quad\|\omega\|_{h}=\sqrt{<\omega, \omega>_{h}} .
$$

By the characteristic equation

$$
d z \wedge * d z=<d z, d z>_{h} \cdot i \frac{d z \wedge d \bar{z}}{\|d z \wedge d \bar{z}\|_{h}}=i d z \wedge d \bar{z}
$$

Hence $*: A^{1,0} \rightarrow A^{0,1}, * d z=i \cdot d \bar{z}$. Similarly, $* d \bar{z}=-i \cdot d z$.

$H^{0}\left(X, \mathscr{E}^{p, q}\right):$ a unitary vector space

Theorem

On a compact Riemann surface X :
(i) The following conjugate linear map for $0 \leq p, q \leq 1$ is a well-defined Hermitian scalar product.

$$
(-,-): H^{0}\left(X, \mathscr{E}^{p, q}\right) \times H^{0}\left(X, \mathscr{E}^{p, q}\right) \rightarrow \mathbb{C}, \quad(\alpha, \beta) \mapsto \int_{X} \alpha \wedge * \beta
$$

(ii) $\operatorname{Harm}^{1}(X)=H^{0}\left(X, \Omega^{1}\right) \oplus H^{0}\left(X, \bar{\Omega}^{1}\right)$.
(iii) $H^{0}\left(X, \mathscr{E}^{1}\right)$ decomposes as orthogonal direct sum

$$
(*) \quad H^{0}\left(X, \mathscr{E}^{1}\right)=\operatorname{Harm}^{1}(X) \stackrel{\perp}{\oplus} d H^{0}(X, \mathscr{E}) \stackrel{\perp}{\oplus} \delta H^{0}\left(X, \mathscr{E}^{2}\right)
$$

Proof of (ii): For any 1-form $\eta \in H^{0}\left(X, \mathscr{E}^{1}\right)$,

$$
\Delta \eta=0 \Longleftrightarrow d \eta=0, \delta \eta=0 \Longleftrightarrow d^{\prime} \eta=d^{\prime \prime} \eta=0 \Longleftrightarrow(i i)
$$

$\operatorname{Harm}^{1}(X)=H^{0}\left(X, \Omega^{1}\right) \oplus H^{0}\left(X, \bar{\Omega}^{1}\right)$

First equivalence:

$$
0=(\Delta \eta, \eta)=((\delta \circ d+d \circ \delta) \eta, \eta)=(d \eta, d \eta)+(\delta \eta, \delta \eta)
$$

Second equivalence: Split η into its components

$$
\eta=\eta_{1}+\eta_{2} \in H^{0}\left(X, \mathscr{E}^{1,0}\right) \oplus H^{0}\left(X, \mathscr{E}^{0,1}\right)
$$

By our previous computation of the $*$-operator:

$$
\delta \eta=0 \Longleftrightarrow d * \eta=d\left(i \bar{\eta}_{1}-i \bar{\eta}_{2}\right)=i \cdot\left(d^{\prime} \bar{\eta}_{1}-d^{\prime \prime} \bar{\eta}_{2}\right)=0 .
$$

Conjugation of the right hand side gives the equivalences

$$
\begin{aligned}
d \eta=0, \delta \eta=0 & \Longleftrightarrow d^{\prime \prime} \eta_{1}+d^{\prime} \eta_{2}=0, d^{\prime \prime} \eta_{1}-d^{\prime} \eta_{2}=0 \\
& \Longleftrightarrow d^{\prime} \eta=d^{\prime} \eta_{1}=0, d^{\prime \prime} \eta=d^{\prime \prime} \eta_{2}=0 .
\end{aligned}
$$

Hodge decomposition of 1 -forms

Proof of (iii): (i) Claim:

$$
H^{0}\left(X, \mathscr{E}^{0,1}\right)=d^{\prime \prime} H^{0}(X, \mathscr{E}) \oplus H^{0}\left(X, \bar{\Omega}^{1}\right)
$$

By an application of Stokes' Theorem

$$
d^{\prime \prime} H^{0}(X, \mathscr{E}) \cap H^{0}\left(X, \bar{\Omega}^{1}\right)=0
$$

Meanwhile Dolbeault's Theorem

$$
H^{0}\left(X, \Omega^{1}\right)=\frac{H^{0}\left(X, \mathscr{E}^{0,1}\right)}{i m\left[H^{0}(X, \mathscr{E}) \xrightarrow{d^{\prime \prime}} H^{0}\left(X, \mathscr{E}^{0,1}\right)\right]}
$$

imply the dimension formula

$$
\operatorname{dim} H^{0}\left(X, \bar{\Omega}^{1}\right)=\operatorname{dim} H^{0}\left(X, \Omega^{1}\right)=\operatorname{dim} \frac{H^{0}\left(X, \mathscr{E}^{0,1}\right)}{d^{\prime \prime} H^{0}(X, \mathscr{E})}
$$

i.e.

$$
\operatorname{dim} H^{0}\left(X, \bar{\Omega}^{1}\right)+\operatorname{dim} d^{\prime \prime} H^{0}(X, \mathscr{E})=\operatorname{dim} H^{0}\left(X, \mathscr{E}^{0,1}\right)
$$

which concludes the claim.

Hodge decomposition of 1 -forms

(ii) Now taking the complex conjugate of part (i),

$$
H^{0}\left(X, \mathscr{E}^{0,1}\right)=d^{\prime \prime} H^{0}(X, \mathscr{E}) \oplus H^{0}\left(X, \bar{\Omega}^{1}\right)
$$

and the decomposition of smooth 1-forms into its components,

$$
\begin{aligned}
H^{0}\left(X, \mathscr{E}^{1}\right) & =H^{0}\left(X, \mathscr{E}^{1,0}\right) \oplus H^{0}\left(X, \mathscr{E}^{0,1}\right) \\
& =d^{\prime} H^{0}(X, \mathscr{E}) \oplus d^{\prime \prime} H^{0}(X, \mathscr{E}) \oplus H^{0}\left(X, \Omega^{1}\right) \oplus H^{0}\left(X, \bar{\Omega}^{1}\right)
\end{aligned}
$$

The claim then follows from

$$
\operatorname{Harm}^{1}(X)=H^{0}\left(X, \Omega^{1}\right) \oplus H^{0}\left(X, \bar{\Omega}^{1}\right)
$$

and the isomorphism

$$
d \mathscr{E}(X) \oplus \delta \mathscr{E}^{2}(X) \cong d \mathscr{E}(X) \oplus * d \mathscr{E}(X) \rightarrow d^{\prime} \mathscr{E}(X) \oplus d^{\prime \prime} \mathscr{E}(X)
$$

defined by

$$
(d f, * d g)=\left(d^{\prime} f+d^{\prime \prime} f, i\left(d^{\prime \prime} \bar{g}-d^{\prime} \bar{g}\right)\right) \mapsto\left(d^{\prime}(f-i \bar{g}), d^{\prime \prime}(f+i \bar{g})\right)
$$

De Rham-Hodge Theorem

Theorem 1

On a compact Riemann surface X,

$$
H^{1}(X, \mathbb{C}) \cong R h^{1}(X) \cong \operatorname{Harm}^{1}(X)
$$

Proof: (i) We first show that

$$
\operatorname{ker}\left[H^{0}\left(X, \mathscr{E}^{1}\right) \xrightarrow{d} H^{0}\left(X, \mathscr{E}^{2}\right)\right]=d H^{0}(X, \mathscr{E}) \oplus \operatorname{Harm}^{1}(X)
$$

- One inclusion is clear, from $d \circ d=0$ and $\operatorname{ker} \Delta \subset \operatorname{ker} d$.
- For the opposite inclusion, we show

$$
\operatorname{ker}\left[H^{0}\left(X, \mathscr{E}^{1}\right) \xrightarrow{d} H^{0}\left(X, \mathscr{E}^{2}\right)\right] \perp \delta H^{0}\left(X, \mathscr{E}^{2}\right)
$$

Consider $\eta \in H^{0}\left(X, \mathscr{E}^{1}\right)$ with $d \eta=0$. For any $\xi \in H^{0}\left(X, \mathscr{E}^{2}\right)$,

$$
(\eta, \delta \xi)=(d \eta, \xi)=0
$$

De Rham-Hodge Theorem

Then by the Hodge decomposition

$$
H^{0}\left(X, \mathscr{E}^{1}\right) \stackrel{*}{=} \operatorname{Harm}^{1}(X) \stackrel{\perp}{\oplus} d H^{0}(X, \mathscr{E}) \stackrel{\perp}{\oplus} \delta H^{0}\left(X, \mathscr{E}^{2}\right)
$$

we have the result

$$
\operatorname{ker}\left[H^{0}\left(X, \mathscr{E}^{1}\right) \xrightarrow{d} H^{0}\left(X, \mathscr{E}^{2}\right)\right]=d H^{0}(X, \mathscr{E}) \oplus \operatorname{Harm}^{1}(X)
$$

(ii) Now the de Rham Theorem states

$$
H^{1}(X, \mathbb{C}) \cong R h^{1}(X)=\frac{\operatorname{ker}\left[H^{0}\left(X, \mathscr{E}^{1}\right) \xrightarrow{d} H^{0}\left(X, \mathscr{E}^{2}\right)\right]}{i m\left[H^{0}(X, \mathscr{E}) \xrightarrow{d} H^{0}\left(X, \mathscr{E}^{1}\right)\right]}
$$

By part (i), the right hand side is

$$
\frac{d H^{0}(X, \mathscr{E}) \oplus \operatorname{Harm}^{1}(X)}{\operatorname{im}\left[H^{0}(X, \mathscr{E}) \xrightarrow{d} H^{0}(X, \mathscr{E} 1)\right]}=\operatorname{Harm}^{1}(X)
$$

(p, q)-Harmonic forms

Definition

The harmonic p, q-forms

$$
\operatorname{Harm}^{p, q}(X):=\operatorname{ker}\left[\square: H^{0}\left(X, \mathscr{E}^{p, q}\right) \rightarrow H^{0}\left(X, \mathscr{E}^{p, q}\right)\right], \quad 0 \leq p . q \leq 1
$$

is the kernel of the Laplace-Beltrami operator $\square:=d^{\prime \prime} \circ \delta^{\prime \prime}+\delta^{\prime \prime} \circ d^{\prime \prime}$, where

$$
\delta^{\prime \prime}: \mathscr{E}^{p, q+1} \rightarrow \mathscr{E}^{p, q}:=(-1) \cdot\left(* d^{\prime \prime} *\right)
$$

is the formal adjoint of $d^{\prime \prime}$ with respect to $(-,-)$ on $H^{0}\left(X, \mathscr{E}^{p, q}\right)$.

Theorem (Proportionality of Δ and \square)

On a compact Riemann surface X, the Laplace and Laplace-Beltrami operators satisfy: For $\eta=\eta_{1}+\eta_{2} \in \mathscr{E}^{1,0}(X) \oplus \mathscr{E}^{0,1}(X)$,

$$
\Delta \eta=2 \cdot \square \eta_{1}+2 \cdot \square \eta_{2}
$$

Relating Δ and \square on Riemann Surfaces

Proof: Direct computation.

Decomposition of Harmonic forms

Corollary

On a compact Riemann surface X,

$$
\operatorname{Harm}^{m}(X)=\bigoplus_{p+q=m} \operatorname{Harm}^{p, q}(X), \quad m=0,1,2
$$

Proof: The canonical map by projection into (p, q)-components

$$
\operatorname{Harm}^{m}(X) \rightarrow \bigoplus_{p+q=m} \operatorname{Harm}^{p, q}(X), \eta \mapsto \sum_{p+q=m} \eta^{p, q}
$$

is well defined, since $\Delta \eta=0$ implies $\square \eta=0$.
Injectivity is clear, while surjectivity follows since $\eta^{p, q}$ is an m-form and

$$
\square \eta^{p, q} \Rightarrow \Delta \eta^{p, q}=0
$$

De Rham-Dolbeault-Hodge Decomposition

Theorem 2

On a compact Riemann surface X,

$$
H^{1}(X, \mathbb{C})=\bigoplus_{p+q=1} H^{q}\left(X, \Omega^{p}\right)
$$

Proof: From Theorem 1 and the decomposition of harmonic forms

$$
H^{1}(X, \mathbb{C})=\operatorname{Harm}^{1}(X)=\operatorname{Harm}^{1,0}(X) \oplus \operatorname{Harm}^{0,1}(X)
$$

Recall the decomposition of 1-forms

$$
H^{0}\left(X, \mathscr{E}^{1}\right)=\operatorname{Harm}^{1}(X) \oplus d^{\prime \prime} H^{0}(X, \mathscr{E}) \oplus \delta^{\prime \prime} H^{0}\left(X, \mathscr{E}^{2}\right)
$$

where we have employed the isomorphism

$$
\left.\begin{array}{rl}
d^{\prime} H^{0}(X, \mathscr{E}) & \sim
\end{array} \delta^{\prime \prime} H^{0}\left(X, \mathscr{E}^{2}\right)\right)
$$

De Rham-Dolbeault-Hodge Decomposition

Separating the $(1,0)$ and $(0,1)$ forms

$$
\begin{gathered}
H^{0}\left(X, \mathscr{E}^{1,0}\right)=\operatorname{Harm}^{1,0}(X) \oplus \delta^{\prime \prime} H^{0}(X, \mathscr{E}) \\
H^{0}\left(X, \mathscr{E}^{0,1}\right)=\operatorname{Harm}^{0,1}(X) \oplus \delta^{\prime \prime} H^{0}\left(X, \mathscr{E}^{2}\right)
\end{gathered}
$$

By Dolbeault's Theorem

$$
H^{1}(X, \mathscr{O}) \cong \frac{H^{0}\left(X, \mathscr{E}^{0,1}\right)}{i m\left[H^{0}(X, \mathscr{E}) \xrightarrow{d^{\prime \prime}} H^{0}(X, \mathscr{E} 0,1)\right]}=\operatorname{Harm}^{0,1}(X)
$$

On the other hand, Dolbeault's Theorem show

$$
\begin{aligned}
H^{0}\left(X, \Omega^{1}\right) & \cong \operatorname{ker}\left[H^{0}\left(X, \mathscr{E}^{1,0}\right) \xrightarrow{d^{\prime \prime}} H^{0}\left(X, \mathscr{E}^{2}\right)\right] \\
& =\operatorname{ker}\left[H^{0}\left(X, \mathscr{E}^{1,0}\right) \xrightarrow{\square} H^{0}\left(X, \mathscr{E}^{2}\right)\right]=\operatorname{Harm}^{1,0}(X) .
\end{aligned}
$$

We therefore have our claim

$$
H^{1}(X, \mathbb{C})=\operatorname{Harm}^{1,0}(X) \oplus \operatorname{Harm}^{0,1}(X)=H^{0}\left(X, \Omega^{1}\right) \oplus H^{1}(X, \mathscr{O})
$$

Generalization to higher dimension

- Remark 1: The de Rham-Hodge Theorem generalizes to higher dimension for all smooth manifolds.
- Remark 2: In contrast, the de Rham-Hodge-Dolbeault decomposition generalizes to higher dimensions only for Kähler manifolds. (Crux: Kähler identities.)
- On compact Kähler manifolds X the Betti numbers and Hodge numbers are finite:

