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Harmonic Differential Forms

Definition

Let X be a compact Riemann surface. The harmonic m-forms
Harm™(X) := ker[A : H(X,6™) — H°(X,6™)], 0<m <2
is the kernel of the Laplace operator A := d o § + 0 o d, where
§: & 5 &= (=1) - (xd*)

is the formal adjoint of d with respect to the Hermitian scalar product

(—,—) = H%X,6™) x H'(X,6™) = C, (o, B) »—>/ a A *f.
X

@ We are interested in the case m = 1.
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Main Results

We will prove the following results for compact Riemann surface X:

Theorem 1 (de Rham-Hodge)

HY(X,C) = RhY(X) =2 Harm'(X).

Theorem 2 (de Rham-Hodge-Dolbeault decomposition)

H'(X,C)=  HYX, ).
ptg=1

As a immediate corollary to Theorem 2 by Serre duality,

b(X) = dimH'(X,C) = dim H (X, 0) + dim H°(X, Q') = 2¢(X).
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The *-operator

Definition

Let X be a complex manifold with Hermitian metric h. For each
x € X, the x-operator is a C-antilinear isomorphism

x: AP — ANVTPTL B x5,
defined via the characteristic equation
a\xf =< a,B >} dvoly Va € APY,

where g = Reh is the induced Riemannian metric on the underlying
real tangent bundle T Xsmooth-

o The x-operators on cotangent spaces glue to a C-antilinear
x-operator of sheaves

N )
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Computations: Types (1,0) and (0, 1)

Lemma

Let X a Riemann surface. For n(z) = n1(z) + n2(z) € AY0 @ A% = A,

*(m(x) +ma(2)) = i - (M (2) — 7o (2))-

In particular, the *-operator on A9 and A%! is independent of the
metric h.

Proof: For Riemann surfaces, the normalized volume form dvol, has

local expression
dx N d dz Ndz
dvoly = —— 2% i _EREE e = VS W@ S,

= EXE ,
|ldz A dyl|g |ldz A dz][n

By the characteristic equation

dz Ndz
dz N *xdz =< dz,d i = idz N dZ.
2 Axdz =< dz,dz >p szZ/\d?Hh idz N\ dz
Hence * : A0 — A%l «dz =i -dZ. Similarly, *dZ = —i - dz. O
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HY(X,&P9): a unitary vector space

On a compact Riemann surface X:
(i) The following conjugate linear map for 0 < p,g < 1lis a
well-defined Hermitian scalar product.

(=, =) : HO(X, &P9) x HO(X, EP9) — C, (a,ﬂ)»—>/ a A #B
X

(il) Harm!(X) = HO(X,QY) @ HO(X, Q).
(iii) H°(X, &) decomposes as orthogonal direct sum

1 1
(*)  HYX,&Y = Harm'(X) @ dH°(X, &) @ §HY(X, &2).

Proof of (ii): For any 1-form n € H°(X,&1),

An=0<=dn=0,n=0<=dn=d"n=0< (i).
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Harm!(X) = H(X, QY @ H()(X,ﬁl)

First equivalence:
0=(Ann)=((0od+dod)n,n) = (dn,dn)+ (én, on)
Second equivalence: Split n into its components
n=m -+ € H(X,60) @ HO(X, &%),
By our previous computation of the x-operator:
on =0 <= d*xn=d(i — i) =i (d7; —d"7,) = 0.
Conjugation of the right hand side gives the equivalences

dn=0,m=0<=d"m +dn=0,d"nm —dny, =0
= dn=dm=0,dn=dn =0.
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Hodge decomposition of 1-forms

Proof of (iii): (i) Claim:
HOX, &%) = d"HY(X, &) @ HO(X, Q).
By an application of Stokes” Theorem
d'H(X,&) N HY(X, Q') = 0.
Meanwhile Dolbeault’s Theorem
HO(X, &%)
im[HO(X, &) L5 HO(X, £01)]

imply the dimension formula

HO (X, Q') =

— HO(X, &0
im HO (X, O = dim HY(X. Q') = dim —C )
dim H(X,Q) =dim H (X,Q") = dim T HOX.E)'

i.e. )
dim H*(X, Q) + dimd"H°(X, &) = dim H*(X, &%Y),

which concludes the claim.
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Hodge decomposition of 1-forms

(ii) Now taking the complex conjugate of part (i),
HO(X, 6% = d"HY(X, &) & HO(X,Q'),
and the decomposition of smooth 1-forms into its components,
H(X, &Y = H(X, 60 @ HO(X, £%1)
= dHYX,&) & d"HO(X, &) & HO(X, QY & HO(X, Q).
The claim then follows from
Harm'(X) = HO(X, Q") & HO(X, Q")
and the isomorphism
dE(X) ® 663 (X) 2 dE(X) @ +xd&(X) = dE(X) @ d'E(X)
defined by
(df, +dg) = (d'f + d"f,i(d"g — d'g)) > (d(f — ig), d"(f + 7).
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De Rham-Hodge Theorem

On a compact Riemann surface X,

HY(X,C) = RhY(X) =2 Harm'(X).

Proof: (i) We first show that

ker[HY(X, &%) % HO(X, &2)) = dHY(X, &) @ Harm*(X).

@ One inclusion is clear, from dod = 0 and ker A C kerd.
e For the opposite inclusion, we show

ker[HO(X,&Y) % HO(X, &2)] L 6HO(X, &2).
Consider n € HY(X, &) with dn = 0. For any ¢ € H(X, &?),
(n,0€) = (dn,§) = 0.
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De Rham-Hodge Theorem

Then by the Hodge decomposition

H(X,&Y) = Harm'(X) & dH(X, &) s SHY(X,&?),
we have the result
ker[HO(X,&Y) % HO(X, &2)] = dHY(X, &) @ Harm*(X).
(ii) Now the de Rham Theorem states
H(X.C) =~ Rrl(x) = FerlHOX, gl)di HO(X, 6%)]
im[HO(X,&) = HO(X,&1)]
By part (i), the right hand side is
dH°(X,&) & Harm'(X)
im[HO(X, &) & HO(X, &)

= Harm*(X).
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(p, ¢)—Harmonic forms

Definition

The harmonic p, g-forms
HarmP4(X) := ker[D : HO(X,6P%) — H(X,&P9)], 0<pgqg<1

is the kernel of the Laplace-Beltrami operator (0 :=d” 0 §" + 6" od”,
where

§" . EPITL 5 g4 = (—1) - (xd" %)
is the formal adjoint of d” with respect to (—, —) on H°(X,&P).

Theorem (Proportionality of A and [J)

On a compact Riemann surface X, the Laplace and Laplace-Beltrami
operators satisfy: For n =n; + 2 € £19(X) @ £%1(X),

An=2-UOn +2-Ono.
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Relating A and [J on Riemann Surfaces

Proof: Direct computation.

HO(X, 61— 5o(x, £2)
5 A 5
0 d 0 1
HY(X,&) HY(X, &%)
d//
HOX, 60 HO(xX, 610 — L pocx, 62
5// |:| |:| 5//
0 dU 0 0,1 0 1,0
HO(X, &) HO(X,601)  HO(X, £10)
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Decomposition of Harmonic forms

On a compact Riemann surface X,

Harm™(X) = @ Harm?P4(X), m=0,1,2.
ptg=m

Proof: The canonical map by projection into (p, ¢)-components
Harm™(X) — @ HarmP4(X), n— Z nP4
p+g=m p+g=m
is well defined, since An = 0 implies Ln = 0.

Injectivity is clear, while surjectivity follows since nP¢ is an m-form
and
|:| /rlpvq = A/rlpvq e 0.

Enya Hsiao Riemann Surfaces May 25, 2020 14 /17



De Rham-Dolbeault-Hodge Decomposition

On a compact Riemann surface X,

H'(X,C)=  HUX, ).

pt+q=1

Proof: From Theorem 1 and the decomposition of harmonic forms
HY(X,C) = Harm'(X) = Harm"(X) ® Harm®' (X).
Recall the decomposition of 1-forms
H(X,&") = Harm*(X) @ d"H°(X, &) @ 8" HO(X, £%).
where we have employed the isomorphism
dHY(X,&) = §"H(X, &)
i-dfr—8"(f dvoly)
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De Rham-Dolbeault-Hodge Decomposition

Separating the (1,0) and (0, 1) forms
HY(X, &) = Harm'"Y(X) @ 6"HY(X, &)
HY(X,&%) = Harm®Y(X) @ 6"HO(X, &2).
By Dolbeault’s Theorem
HO(X,&01)
im[HO(X, &) L5 HO(X, £01)]
On the other hand, Dolbeault’s Theorem show

HY(X,0) =

= Harm®(X).

HO(X, QY = ker[HO(X, &) 25 HO(X, £2)]
= ker[H*(X, &) 2 HO(X, 62)] = Harm 0 (X).
We therefore have our claim

HY(X,C) = Harm'(X) ® Harm® (X) = H'(X, QY @ H'(X, 0).
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Generalization to higher dimension

@ Remark 1: The de Rham-Hodge Theorem generalizes to higher
dimension for all smooth manifolds.

@ Remark 2: In contrast, the de Rham-Hodge-Dolbeault
decomposition generalizes to higher dimensions only for Kéahler
manifolds. (Crux: Kéhler identities.)

@ On compact Kahler manifolds X the Betti numbers and Hodge
numbers are finite:

b™ = dim H™(X, C) , kP := dim HY(X, Q) < 0o
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