DEPARTMENT OF MATHEMATICS LMU MÜNCHEN WINTER TERM 2021/22 STEIN MANIFOLDS JOACHIM WEHLER

Problems 01

1. Give a counterexample which shows: A function of two real variables with continuous partial derivatives of first order does not necessarily have partial derivatives of arbitrary order.

2. Give a counterexample which shows: Not each function of one real variable, which has derivatives of arbitrary order, expands into a convergent power series.

3. Show for a domain $G \subset \mathbb{C}^n$ and its complex vector space of holomorphic functions the equivalence:

$$\dim_{\mathbb{C}}\mathscr{O}(G) < \infty \iff \dim_{\mathbb{C}}\mathscr{O}(G) = 1 \iff n = 0$$

4. For an open set $U \subset \mathbb{C}^n$ denote by $\mathscr{E}(U)$ the ring of smooth functions on U, i.e. functions with partial derivatives of arbitrary order. Choose an exhaustion $(U_v)_{v \in \mathbb{N}}$ of U by relatively compact open subsets.

i) For each $v, k \in \mathbb{N}$ define the seminorm

$$p_{\mathbf{v},k}:\mathscr{E}(U)\to\mathbb{R}$$

as

$$p_{\mathbf{v},k}(f) := \sup \left\{ \left| \frac{D^{|j|} f}{\partial z_1^{j_1} \dots \partial z_n^{j_n}}(z) \right| : j = (j_1, \dots j_n) \text{ with } |j| \le k \text{ and } z \in U_{\mathbf{v}} \right\}$$

Show: The family

$$(p_{\mathbf{v},k})_{\mathbf{v},k\in\mathbb{N}}$$

defines a Fréchet topology on the complex vector space $\mathscr{E}(U)$.

ii) Show: The inclusion $\mathscr{O}(U) \subset \mathscr{E}(U)$ is an inclusion of Fréchet spaces.

Discussion: Thursday, 28.10.2021, 12.15 pm.

5. i) Prove Hartogs' "Kugelsatz" in its form for polydiscs: Show for two concentric polydiscs

 $\Delta_1 \subset \subset \Delta_2 \subset \mathbb{C}^n, \ n \geq 2:$

Each holomorphic function

 $f \in \mathscr{O}(\Delta_2 \setminus \overline{\Delta}_1)$

extends uniquely to a holomorphic function $\tilde{f} \in \mathscr{O}(\Delta_2)$.

ii) Consider an open set $U \subset \mathbb{C}^n$, $n \ge 2$, a point $a \in U$, and a holomorphic function

 $f \in \mathscr{O}(U \setminus \{a\}).$

The point *a* is named an *isolated singularity* of *f* if *f* does not extend to a holomorphic function $\tilde{f} \in \mathcal{O}(U)$.

Show: No holomorphic function $f \in \mathcal{O}(U \setminus \{a\})$ has an isolated singularity in *a*.

iii) Consider an open set $U \subset \mathbb{C}^n$, $n \geq 2$.

Show: No holomorphic function $f \in \mathcal{O}(U)$ has an isolated zero $a \in U$.

6. Show: Each Fréchet space is metrizable with the distance d(f,g) introduced in the lecture.

7. For an open set $U \subset \mathbb{C}^n$ show: The topology of compact convergence on the vector space $\mathscr{C}(U)$ is Hausdorff.

Hint. You may use the following fact: For each $f \in \mathscr{C}(U)$ with $f \neq 0$ exists p_v with $p_v(f) \neq 0$.

8. Consider an open set $U \subset \mathbb{C}^n$. A subset $A \subset U$ is an *analytic subset of* U if for each point $x \in U$ exist an open neighbourhood $V \subset U$ of x and finitely many holomorphic functions $f_1, ..., f_k \in \mathcal{O}(V)$ satisfying

$$A \cap V = \{ z \in V : f_1(z) = \dots = f_k(z) = 0 \}$$

For a domain $G \subset \mathbb{C}^n$ and an analytic subset $A \subset G$ show:

If a point $a \in A$ has an open neighbourhood $V \subset G$ with $V \subset A$ then

A = G.

Discussion: Thursday, 4.11.2021, 12.15 pm.

DEPARTMENT OF MATHEMATICS LMU MÜNCHEN WINTER TERM 2021/22 STEIN MANIFOLDS JOACHIM WEHLER

Problems 03

9. Consider an open set $U \subset \mathbb{C}^n$, an analytic subset $A \subset U$ and a point $x \in A$. Then A has in x a *Remmert-Stein codimension* $\geq r$, expressed as

$$codim_x A \ge r$$
,

if there exists a *r*-dimensional plane $E \subset \mathbb{C}^n$ passing through *x* such that the point $x \in A$ is an isolated point in $A \cap E$. One defines

$$codim_x A = r$$
 and $dim_x A := n - r$

if the pair (A, x) satisfies

 $codim_x A \ge r$ but not $codim_x A \ge r+1$.

For a domain $G \subset \mathbb{C}^n$ and an analytic subset $A \subset G$, $A \neq G$, show for all points $x \in A$:

$$codim_x A \ge 1$$

10. Consider an open set $U \subset \mathbb{C}^n$ and an analytic set $A \subset U$.

Show: i) The presheaf

$$V \mapsto \mathscr{I}_A(V) := \{ f \in \mathscr{O}_U(V) : f | A \cap V = 0 \}, V \subset U \text{ open},$$

defines after sheafification a sheaf \mathscr{I}_A of rings on U.

ii) The sheaf $\mathscr{I}_A \subset \mathscr{O}_U$ is a subsheaf of ideals (*Ideal sheaf of A*).

iii) For each $k \in \mathbb{N}^*$ the sheaf

$$\mathscr{I}_A^k$$
 (*k*-times product)

is a subsheaf of ideals of $\mathcal{O}(U)$. And the restriction satisfies for each open subset $W \subset (U \setminus A)$

$$\mathscr{I}_A^k|W = \mathscr{O}_U|W$$

11. i) Show: The singleton

$$A := \{0 \in \mathbb{C}\}$$

is an analytic set in \mathbb{C} .

ii) Denote by

$$R:=\mathbb{C}\{z\}$$

the ring of convergent power series in one complex variable and by

$$\mathfrak{m} := < z > \subset R$$

the ideal generated by $z \in R$. Show:

The ideal $\mathfrak{m} \subset R$ is the unique maximal ideal of *R*.

12. Consider the analytic set A from Problem 11. Describe the ideal sheaf

 $\mathscr{I}_A \subset \mathscr{O}_{\mathbb{C}}$ and the quotient sheaves $\mathscr{O}_{\mathbb{C}}/\mathscr{I}_A^k, \ k \in \mathbb{N}^*.$

Discussion: Thursday, 11.11.2021, 12.15 pm.

DEPARTMENT OF MATHEMATICS LMU MÜNCHEN WINTER TERM 2021/22

STEIN MANIFOLDS JOACHIM WEHLER

Problems 04

13. Consider a presheaf of Abelian groups \mathscr{F} on a topological space *X*. For the presheaf $\widehat{\mathscr{F}}$ show:

i) $\hat{\mathscr{F}}$ is a sheaf.

ii) For each $x \in X$ the induced morphism on the level of stalks

$$\mathscr{F}_x \to \hat{\mathscr{F}}_x$$

is an isomorphism.

14. Consider a morphism of sheaves on a topological space X

$$f:\mathscr{F}\to\mathscr{G}.$$

i) Show for each open $U \subset X$: If for each $x \in U$ the induced map on stalks

$$f_x:\mathscr{F}_x\to\mathscr{G}_x$$

is injective, then the map of sections

$$f_U:\mathscr{F}(U)\to\mathscr{G}(U)$$

is injective.

ii) Construct an example with an open $U \subset X$ and f_x surjective for all $x \in U$, but

$$f_U:\mathscr{F}(U)\to\mathscr{G}(U)$$

not surjective.

15. Derive as a consequence of Weierstrass' product theorem from complex analysis of one variable

$$\mathscr{M}(\mathbb{C}) = Q(\mathscr{O}(\mathbb{C}))$$
 (quotient field).

16. For $r \in \mathbb{R}^*_+$ denote by

$$\Delta(r) := \{ z \in \mathbb{C} : |z| < r \}$$

the 1-dimensional disc with radius *r*, and for $k \in \mathbb{N}$ by

$$\Delta^k(r) := \Delta(r) \times \dots \times \Delta(r) \subset \mathbb{C}^k$$

the *k*-dimensional polydisc with each component of its polyradius = *r*. Consider an open set $U \subset \mathbb{C}^n$ and an analytic set $A \subset U$ with

$$codim_a A \geq 1$$

for all $a \in A$.

i) Show that w.l.o.g the geometric situation around a given point $a \in A$ is as follows, see Figure 0.1: There exists $r \in \mathbb{R}^*_+$ with

$$a=0\in\Delta^n(r)\subset U$$

•

•

$$A \cap \Delta^{n}(r) = \{ z \in \Delta^{n}(r) : f_{1}(z) = \dots = f_{m}(z) = 0 \}$$

for suitable $f_1, ..., f_m \in \mathscr{O}(\Delta^n(r))$

• The projection

$$p: \Delta^n(r) \to \Delta^{n-1}(r), \ z = (z_1, ..., z_n) \mapsto z' := (z_1, ..., z_{n-1}),$$

satisfies

$$p^{-1}(0) \cap A = \{a\}$$

• For given $0 < \rho < r$ exists $0 < \varepsilon < r$ such that

$$R := \left\{ z = (z', z_n) : z' \in \Delta^{n-1}(\varepsilon), |z_n| = \rho \right\}$$

satisfies

$$R \subset U \setminus A$$

For each z' ∈ Δⁿ⁻¹(ε) the 1-dimensional fibre p⁻¹(z') intersects A in a discrete set.

ii) For a bounded holomorphic function

$$f \in \mathscr{O}(\Delta^n(r) \setminus A)$$

show for each $z = (z', z_n) \in \Delta^{n-1}(\varepsilon) \times \Delta(\rho)$:

$$\tilde{f}(z) := \frac{1}{2\pi i} \cdot \int_{|\zeta|=\rho} \frac{f(z',\zeta)}{\zeta - z_n} \, d\zeta$$

is well-defined. The resulting function \tilde{f} is holomorphic on $\Delta^{n-1}(\varepsilon) \times \Delta(\rho)$.

iii) Show:

 $\overline{U\setminus A}=U,$

and each holomorphic function $f \in \mathcal{O}(U \setminus A)$, which is bounded in the neighbourhood of each point $a \in A$, extends uniquely to a holomorphic function on U (*Riemann's first theorem on removable singularities*).

Fig. 0.1 Analytic set A in a neighbourhood of a

Discussion: Thursday, 18.11.2021, 12.15 pm.

DEPARTMENT OF MATHEMATICS LMU MÜNCHEN WINTER TERM 2021/22 STEIN MANIFOLDS JOACHIM WEHLER

Problems 05

17. For a topological space X and a presheaf \mathscr{F} of Abelian groups on X show the equivalence of the following properties:

- The presheaf \mathscr{F} is a sheaf.
- For each open U ⊂ X and each open covering U = (U_i)_{i∈I} of U the following sequence of morphisms of Abelian groups is exact:

$$0 \to \mathscr{F}(U) \xrightarrow{\alpha} \prod_{i \in I} \mathscr{F}(U_i) \xrightarrow{\beta} \prod_{j,k \in I} \mathscr{F}(U_{jk})$$

with

$$\alpha(\phi) := (\phi|U_i)_i \text{ and } \beta((\phi_i)_i) := (\phi_j|U_{jk} - \phi_k|U_{jk})_{j,k}, U_{jk} := U_j \cap U_k.$$

18. A presheaf \mathscr{F} on a topological space *X* satisfies the identity theorem if for each domain $G \subset X$ holds: Two sections $f, g \in \mathscr{F}(G)$ are equal if there exists a point $x \in G$ with equal germs

$$f_x = g_x \in \mathscr{F}_x$$

Show: On a complex manifold *X* both sheaves \mathcal{O}_X and \mathcal{M}_X satisfy the identity theorem.

19. For a presheaf \mathscr{F} of Abelian groups on a topological space *X* define a topological space $|\mathscr{F}|$, the *étale space* of \mathscr{F} , as follows:

• Consider the disjoint union of stalks

$$|\mathscr{F}| := \bigcup_{x \in X} \mathscr{F}_x$$

• For each open set $U \subset X$ and for each $f \in \mathscr{F}(U)$ define the set of germs

$$[U, f] := \{ f_x \in \mathscr{F}_x : x \in U \} \subset |\mathscr{F}|.$$

Show: i) The set \mathscr{B} of all sets

$$[U, f], U \subset X$$
 open,

is the base of a topology on $|\mathcal{F}|$.

ii) The projection

$$p: |\mathscr{F}| \to X, f_x \in \mathscr{F}_x \mapsto x \in X,$$

is a local homeomorphism.

Hint: Show that *p* is continuous and open with bijective restrictions $p|U: [U, f] \rightarrow U$.

20. Consider a topological space X and a presheaf \mathscr{F} on X. A continuous map

$$s: U \to |\mathscr{F}|$$
 with $p \circ s = id_U$

on an open set $U \subset X$ is named a *section* on U against p. Show:

i) The family

$$\mathscr{F}^{sh}(U) := \{s : U \to |\mathscr{F}| : s \text{ section}\}, \ U \subset X \text{open},$$

with the canonical restriction of maps is a sheaf.

ii) Construct an isomorphism of sheaves on X

$$\mathscr{F}^{sh} \xrightarrow{\simeq} \hat{\mathscr{F}}$$

Discussion: Thursday, 25.11.2021, 12.15 pm.

DEPARTMENT OF MATHEMATICS LMU MÜNCHEN WINTER TERM 2021/22 STEIN MANIFOLDS JOACHIM WEHLER

Problems 06

21. Consider the exact sequence of presheaf morphisms

$$0 \to \mathscr{F} \xrightarrow{\alpha} \mathscr{G} \xrightarrow{\beta} \mathscr{H} \to 0$$

on a topological space X. For an open covering \mathcal{U} of X show the exactness of the following segment of the induced sequence

$$H^q(\mathscr{U},\mathscr{F}) \xrightarrow{lpha_q} H^q(\mathscr{U},\mathscr{G}) \xrightarrow{eta_q} H^q(\mathscr{U},\mathscr{H}), \ q \in \mathbb{N}.$$

22. Consider a complex manifold X and on X the exact sequence of sheaf morphisms

$$0 \to \mathscr{O} \xrightarrow{J} \mathscr{M} \to \mathscr{D} \to 0$$

with the canonical injection *j* and the sheaf (*divisor sheaf*)

$$\mathscr{D} := coker \left[\mathscr{O} \xrightarrow{j} \mathscr{M} \right]$$

Show: i) Each additive Cousin distribution c on X defines a section

$$div(c) \in \mathscr{D}(X).$$

ii) An additive Cousin distribution c on X has a solution iff

$$\delta_0^*(div(c)) = 0 \in H^1(X, \mathscr{O})$$

.

23. Consider the open set $X := \mathbb{C}^2 \setminus \{(0,0)\} \subset \mathbb{C}^2$ and the analytic set

$$A:=\mathbb{C}^*\times\{0\}\subset X.$$

Show: The canonical exact sequence of sheaves on X

$$0 \to \mathscr{I}_A \to \mathscr{O}_X \to \mathscr{O}_A \to 0$$

induces a sequence of global sections

$$0 \to \mathscr{I}_A(X) \to \mathscr{O}_X(X) \to \mathscr{O}_A(X) \to 0$$

which is not exact.

24. Consider a continuous map $f : X \to Y$ between topological spaces. Show:

i) The direct image functor

$$f_*: \underline{Sh}_X \to \underline{Sh}_Y$$

between the categories of sheaves on Abelian groups is left-exact.

ii) The direct image functor is not right-exact.

Hint: Consider $A \subset X$ from Problem 23, the sequence $\mathscr{O}_X \to \mathscr{O}_A \to 0$ and

$$f: X \to \mathbb{C}, (z_1, z_2) \mapsto z_2.$$

Discussion: Thursday, 2.12.2021, 12.15 pm.

DEPARTMENT OF MATHEMATICS LMU MÜNCHEN WINTER TERM 2021/22 STEIN MANIFOLDS JOACHIM WEHLER

Problems 07

25. Let *X* be a topological space.

i) Show: A sheaf \mathscr{F} on X restricts for each subset open $U \subset X$ to a sheaf $\mathscr{F}|U$ on U by defining for each $V \subset U$ open

$$(\mathcal{F}|U)(V):=\mathcal{F}(V)$$

and taking the relevant restrictions from \mathcal{F} .

ii) For each pair of sheaves \mathscr{F}, \mathscr{G} on X show: The presheaf

$$\mathscr{H}om(\mathscr{F},\mathscr{G})(U) := Hom(\mathscr{F}|U,\mathscr{G}|U), U \subset X$$
 open,

with the canonical restrictions is a sheaf. Here $Hom(\mathscr{F}|U,\mathscr{G}|U)$ denotes the Abelian group of sheaf morphisms

$$\mathscr{F}|U \to \mathscr{G}|U$$

between the restricted sheaves.

26. Consider a hypersurface *X* in the polydisc $\Delta \subset \mathbb{C}^n$, i.e. an analytic submanifold $X \subset \Delta$ with *dim* X = n - 1.

i) Show: Each point $a \in \Delta$ has an open neighbourhood $U_a \subset \Delta$ and a holomorphic function $f_a \in \mathcal{O}(U_a)$ with

$$X \cap U_a = \{ z \in U_a : f_a(z) = 0 \}$$

ii) Show: There exists a single holomorphic function $f \in \mathscr{O}(\Delta)$ with

$$X = \{z \in \Delta : f(z) = 0\}$$

27. For a sheaf of rings \mathscr{R} on a topological space *X* show: For each open set $U \subset X$ and each section $u \in \mathscr{R}(U)$ holds:

$$u \in \mathscr{R}(U)$$
 unit $\iff u_x \in \mathscr{R}_x$ unit for all $x \in U$

28. i) Consider a Hausdorff space X and a presheaf \mathscr{F} on X which satisfies the identity theorem, see Problem 18. Show: The étale space $|\mathscr{F}|$ is a Hausdorff space.

ii) Construct a Hausdorff space X and a sheaf \mathscr{F} on X with a non-Hausdorff étale space $|\mathscr{F}|$.

Discussion: Thursday, 9.12.2021, 12.15 pm.

14

DEPARTMENT OF MATHEMATICS LMU MÜNCHEN WINTER TERM 2021/22 STEIN MANIFOLDS JOACHIM WEHLER

Problems 08

29. Consider a topological space *X*, a closed subspace $A \subset X$ with injection

$$i: A \to X,$$

and a sheaf \mathscr{F} on A. The direct image $i_*\mathscr{F}$ is a sheaf on X, named the *extension* of \mathscr{F} to X. Show for the stalks of $i_*\mathscr{F}$:

$$(i_*\mathscr{F})_x = \begin{cases} \mathscr{F}_x & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$$

30. Consider a topological space *X*, an open set $U \subset X$ with injection

$$i: U \to X$$
,

and a sheaf \mathscr{F} on U. Denote by $i_{!}\mathscr{F}$ the sheafification of the presheaf on X

$$V \mapsto \begin{cases} \mathscr{F}(V) & \text{if } V \subset U \\ 0 & \text{otherwise} \end{cases}$$

for open $V \subset X$. The sheaf $i_! \mathscr{F}$ is named the *extension of* \mathscr{F} to *X*. Show: For each $x \in X$ the stalk of $i_! \mathscr{F}$ satisfies

,

$$i_!\mathscr{F})_x = \begin{cases} \mathscr{F}_x & \text{if } x \in U \\ 0 & \text{otherwise} \end{cases},$$

and the restriction satisfies

$$(i_!\mathscr{F})|U=\mathscr{F}$$

31. Consider a complex manifold *X* and a free \mathcal{O} -module \mathcal{H} of finite rank, i.e $\mathcal{H} \simeq \mathcal{O}^k$ for a suitable $k \in \mathbb{N}$. Let $\mathcal{F}, \mathcal{G} \subset \mathcal{H}$ be two coherent submodules.

i) Show: The \mathcal{O} -module

$$\mathcal{F} + \mathcal{G}$$

is coherent. Here

$$(\mathscr{F} + \mathscr{G})(U) := (\mathscr{F}(U) + \mathscr{G}(U)) \subset \mathscr{H}(U), U \subset X$$
 open.

ii) Show: The \mathcal{O} -module

 $\mathcal{F}\cap \mathcal{G}$

is coherent. Here

$$(\mathscr{F} \cap \mathscr{G})(U) := (\mathscr{F}(U) \cap \mathscr{G}(U)) \subset \mathscr{H}(U), U \subset X$$
 open.

32. Consider a complex manifold *X* and two \mathcal{O} -modules \mathcal{F}, \mathcal{G} on *X*. Show:

i) The sheaf $\mathscr{H}om_{\mathscr{O}}(\mathscr{F},\mathscr{G})$, see Problem 25, is an \mathscr{O} -module sheaf.

ii) For each $x \in X$ exists a canonical map between \mathcal{O}_x -modules

$$\phi: (\mathscr{H}om_{\mathscr{O}}(\mathscr{F},\mathscr{G}))_{x} \to Hom_{\mathscr{O}_{x}}(\mathscr{F}_{x},\mathscr{G}_{x}).$$

iii) If \mathscr{F} is coherent then the canonical map ϕ from part ii) is an isomorphism.

Discussion: Thursday, 16.12.2021, 12.15 pm.

DEPARTMENT OF MATHEMATICS LMU MÜNCHEN WINTER TERM 2021/22 STEIN MANIFOLDS JOACHIM WEHLER

Problems 09

These problems may serve to recall the lecture until now and to become more familiar with the relation between the results.

33. The top ten:

- Choose your "top ten" from the "List of results" in the lecture notes.
- Draw a directed graph to visualize the logical structure underlying these top ten: Each result is a vertex, each logical conclusion is a directed edge of the graph.

34. Provide some examples from the lecture which illustrate the following two principles of problem solving:

- Shrinking: Obtaining a local solution after shrinking the domain of definition.
- *Extending*: Combining local solutions to obtain a global solution.

Discussion: Thursday, 13.1.2022, 12.15 pm.

35. Consider a topological space *X* and a subspace $Z \subset X$ with injection $j : Z \hookrightarrow X$. For a sheaf \mathscr{F} on *X* with étale space

$$p:|\mathscr{F}|\to X$$

define for each open $V \subset Z$

$$\mathscr{F}(V) = \{s : V \to |\mathscr{F}| : s \text{ section against } p\}$$

i) Show: The presheaf

$$V \mapsto \mathscr{F}(V), V \subset Z \text{ open },$$

is a sheaf on Z. The sheaf is named $\mathscr{F}|Z$, the *restriction of* \mathscr{F} to Z.

ii) Consider an open $U \subset X$ with injection $j: U \hookrightarrow X$ and set $A := X \setminus U$ with injection $i: A \hookrightarrow X$. For each sheaf \mathscr{F} on X show:

On X exists a short exact sequence of sheaves

$$0 \to j_!(\mathscr{F}|U) \to \mathscr{F} \to i_*(\mathscr{F}|A) \to 0$$

36. Consider a complex manifold *X* with structure sheaf \mathcal{O} . Show:

i) For two coherent \mathscr{O} -modules \mathscr{F}, \mathscr{G} also the tensor product

$$\mathcal{F}\otimes_{\mathcal{O}}\mathcal{G}$$

is a coherent \mathcal{O} -module.

ii) For two coherent ideal sheaves $\mathscr{I}_1,\ \mathscr{I}_2\subset \mathscr{O}$ also the product

$$\mathscr{I}_1 \cdot \mathscr{I}_2 \subset \mathscr{O}$$

is a coherent ideal sheaf.

37. For two coherent \mathcal{O} -modules \mathcal{F} , \mathcal{G} on a complex manifold *X* with structure sheaf \mathcal{O} show: The \mathcal{O} -module

$$\mathscr{H}\mathit{om}_{\mathscr{O}}(\mathscr{F},\mathscr{G})$$

is coherent.

38. Give a direct proof that the Hartogs figure from Fig. 1.3 (Lecture notes) is not holomorphically convex.

Discussion: Thursday, 20.1.2022, 12.15 pm.

DEPARTMENT OF MATHEMATICS LMU MÜNCHEN WINTER TERM 2021/22

Problems 11

39. Consider a complex manifold *X* and an open, relatively-holomorphically convex subset $Y \subset X$.

Show: For each pair (K, U) with compact $K \subset Y$ and open $U \subset Y$ satisfying

$$\hat{K}_{X,Y} \subset U$$

exists an analytic polyhedron *P*, defined in an open subset of *Y* by finitely many holomorphic functions from $\mathcal{O}(X)$, which satisfies

$$\hat{K} \subset P \subset \subset U$$

40. Let *X* be a complex manifold which is

i) holomorphically separable and

ii) locally uniformizable.

Show: If there exist finitely many global holomorphic functions $f_1, ..., f_k \in \mathcal{O}(X)$ such that the set

$$\{x \in X : |f_j(x)| \le 1 \text{ for all } j = 1, ..., k\}$$

is compact, then the open set

$$D := \{x \in X : |f_i(x)| < 1 \text{ for all } j = 1, ..., k\}$$

is a Stein manifold.

41. Consider a Stein manifold *X*, a holomorphic function $f \in \mathcal{O}(X)$, and denote by

$$V(f) := \{x \in X : f(x) = 0\} \subset X$$

the zero set of f.

Show: The complex manifold $X \setminus V(f)$, the complement of a hypersurface in X, is a Stein manifold.

42. Show: Each analytic polyhedron in a complex manifold X is relatively-holomorphically convex with respect to X.

Discussion: Thursday, 27.1.2022, 12.15 pm.

DEPARTMENT OF MATHEMATICS LMU MÜNCHEN WINTER TERM 2021/22

Problems 12

43. For two Stein manifolds X_1 , X_2 show: Also the product $X_1 \times X_2$ is a Stein manifold.

44. Let *X* be a complex manifold and $Y \subset X$ an analytic submanifold of *X*. Show:

i) If *X* is holomorphically spreadable then also *Y*.

ii) If X is holomorphically convex then also Y.

iii) If X is a Stein manifold then also Y.

Hint: You may use without proof a remark from the lecture notes.

45. Consider a complex manifold *X* with structure sheaf \mathcal{O} and a coherent \mathcal{O} -module \mathscr{F} on *X*. Show for each point $x \in X$: There exists an open neighbourhood $U \subset X$ of *x* such that for each \mathcal{O}_x -submodule $F \subset \mathscr{F}_x$ the $\mathcal{O}(U)$ -submodule

$$F_U := \{s \in H^0(U, \mathscr{F}) : s_x \in F\} \subset H^0(U, \mathscr{F})$$

is closed with respect to the canonical Fréchet topology.

Hint: You may assume $U = \Delta$ a polydisc. The argument for the particular case $\mathscr{F} = \mathscr{O}$ is part of a proof from the lecture. You may reduce the general case by showing that the complement $H^0(\Delta, \mathscr{F}) \setminus F_{\Delta}$ is open.

46. Consider a Stein manifold *X* with structure sheaf \mathcal{O} and a coherent \mathcal{O} -module \mathcal{F} on *X*. For a given point $x \in X$ denote by

$$F \subset \mathscr{F}_x$$

the \mathcal{O}_x -submodule generated by the germs of all sections from $H^0(X, \mathscr{F})$.

i) Show: For each finite system

$$f_{1,x}, ..., f_{x,k} \in \mathscr{F}_x, \ j = 1, ..., k,$$

of generators of the \mathcal{O}_x -module \mathcal{F}_x exists a relatively-holomorphically convex neighbourhood $U \subset X$ of x and representatives

$$f_1, \dots, f_k \in H^0(U, \mathscr{F})$$

of the system of generators.

ii) Show: The submodule

$$F_U := \{ f \in H^0(U, \mathscr{F}) : f_x \in F \} \subset H^0(U, \mathscr{F})$$

is dense with respect to the canonical Fréchet topology.

iii) Show: The submodule $F_U \subset H^0(U, \mathscr{F})$ from part ii) is closed with respect to the canonical Fréchet structure. Conclude

$$F_U = H^0(U, \mathscr{F}).$$

iv) Conclude Theorem A for X without referring to Theorem B.

Discussion: Thursday, 3.2.2022, 12.15 pm.

45 .

W.l.o.g. there exists a polydisc $\Delta \subset \mathbb{C}^n$ with $x = 0 \in \Delta$ and an epimorphism of sections

$$H^0(\Delta, \mathscr{O}^p) \xrightarrow{\pi} H^0(\Delta, \mathscr{F}) \to 0$$

Set

$$F_{\Delta} := \{ f \in \mathscr{F}(\Delta) : f_0 \in F \}$$

i) Define the inverse image of germs

$$G:=\pi^{-1}(F)\subset \mathscr{O}_x^p$$

and

$$G_{\Delta} := \{g \in H^0(\Delta, \mathscr{O}^p) : g_0 \in G\}$$

Due to the proof of Proposition 5.17 the submodule

$$G_{\Delta} \subset H^0(\Delta, \mathscr{O}^p)$$

is closed, and its complement

$$H^0(\Delta, \mathscr{O}^p) \setminus G_\Delta$$

is open.

ii) The surjective linear map between Fréchet spaces

$$H^0(\Delta, \mathscr{O}^p) \xrightarrow{\pi} H^0(\Delta, \mathscr{F}) \to 0$$

is open. Because

$$H^0(\Delta, \mathscr{O}^p) \setminus G_\Delta \subset H^0(\Delta, \mathscr{O}^p)$$

is open due to part i), also the image

$$\pi(H^0(\Delta, \mathscr{O}^p) \setminus G_\Delta) \subset H^0(\Delta, \mathscr{F})$$

is open.

iii) Due to

$$G = \pi^{-1}(F) \subset \mathscr{O}_0^p,$$

for each section $s \in H^0(\Delta, \mathcal{O}^p)$ holds

$$s_0 \notin G \implies \pi(s)_0 = \pi(s_0) \notin F$$

As a consequence, the complement

Selected Solutions

$$\pi(H^{0}(\Delta, \mathscr{O}^{p}) \setminus G_{\Delta}) = \pi(H^{0}(\Delta, \mathscr{O}^{p}) \setminus \{\pi(s) \in H^{0}(\Delta, \mathscr{O}^{p} : \pi(s)_{0} \notin F\} =$$
$$= H^{0}(\Delta, \mathscr{F}) \setminus \{f \in H^{0}(\Delta, \mathscr{F}) : f_{0} \notin F\} = \{f \in H^{0}(\Delta, \mathscr{F}) : f_{0} \in F\} =$$
$$F_{\Delta} \subset H^{0}(\Delta, \mathscr{F})$$

is closed.

46 .

i) Analytic polyhedra in *X* form a neighbourhood base of *x*. There exists a common polyhedron *U* with $x \in U$ where representatives of the generators are defined.

ii) Follows from the density of the restriction

$$H^0(X,\mathscr{F}) \to H^0(U,\mathscr{F})$$

because $U \subset X$ is relatively-homolorphic convex.

iii) Due to Problem 45

 $F_U \subset H^0(U, \mathscr{F})$

is closed. Together with part ii) follows $F_U = H^0(U, \mathscr{F})$,

iv) Part i) and iii) imply Theorem A.