Projective Embeddings of Tori as Elliptic Curves

Paula Pilatus

12.05.2020

Paula Pilatus

Recall:

- Consider a lattice Λ . $T = \mathbb{C}/\Lambda$ is a compact Riemannian surface of genus 1.
- Additionally, it is an Abelian group $(\mathbb{C},+)/(\Lambda,+).$
- Every torus is biholomorphic equivalent to a torus with the normalized lattice $\Lambda_{\tau} := \mathbb{Z} \cdot 1 + \mathbb{Z} \cdot \tau, \ \tau \in \mathbb{H}$. (cf. Wehler 2019, sect 2.2)

• The Weierstrass \wp -function for Λ is the even elliptic function defined by

$$\wp(z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right).$$

The poles of \wp are the elements of Λ and are of order 2.

• \wp satisfies the differential equation

$$\wp'^2 = 4 \cdot \wp^3 - g_2 \cdot \wp - g_3,$$

with the lattice constants

$$g_2 := 60 \cdot \sum_{\omega \in \Lambda \setminus \{0\}} \frac{1}{\omega^4}, \quad g_3 := 140 \cdot \sum_{\omega \in \Lambda \setminus \{0\}} \frac{1}{\omega^6}.$$

Very ampleness criterion

Consider a compact Riemann surface X. For an invertible sheaf \mathcal{L} on X are equivalent:

- The sheaf \mathcal{L} is very ample;
- For the point divisors $P,Q \in Div(X)$ of two arbitrary, not necessarily distinct points $p,q \in X$ holds

$$\dim H^0\left(X, \mathcal{L}_{-(P+Q)}\right) = \dim H^0(X, \mathcal{L}) - 2.$$

We saw: If g(X) = 1, let $p \in X$, $P \in Div(T)$ the corresponding point divisor. Then \mathcal{O}_{3P} is very ample.

Theorem

Consider a torus $T = \mathbb{C}/\Lambda$ and its Weierstrass \wp -function. Denote by $Z \in \text{Div}(T)$ the point divisor corresponding to $0 \in T$. Set

 $D := 3Z \in \operatorname{Div}(T).$

For the invertible sheaf $\mathcal{L} := \mathcal{O}_D$, the three sections

$$s_0 := 1, \quad s_1 := \wp, \quad s_2 := \wp'$$

are a basis of $H^0(T, \mathcal{L})$, defining the holomorphic embedding

$$\Phi_{\mathcal{L}}: T \to \mathbb{P}^2, \quad p \mapsto \begin{cases} \left(1 : \wp(p) : \wp'(p)\right) & p \neq 0\\ (0 : 0 : 1) & p = 0 \end{cases}$$

Proof:

 $\Phi_{\mathcal{L}}$ is holomorphic in a neighborhood of $0 \in T$:

Choose a chart z of T around 0 in a neighborhood U of 0. Then in $U \setminus \{0\}$:

$$\Phi_{\mathcal{L}} = \left(1:\wp:\wp'\right) = \left(z^3:z^3\cdot\wp:z^3\cdot\wp'\right)$$

which extends holomorphically to the singularity, setting

$$\Phi_{\mathcal{L}}(0) := (0:0:1) \in \mathbb{P}^2.$$

Recall:

$$\wp'^2 = 4 \cdot \wp^3 - g_2 \cdot \wp - g_3,$$

Weierstrass polynomial:

$$F(x,y) := y^2 - (4x^3 - g_2 \cdot x - g_3).$$

homogenization $(X = \frac{X_1}{X_0}, Y = \frac{X_2}{X_0})$:

 $F_{\text{hom}}\left(X_{0}, X_{1}, X_{2}\right) = X_{2}^{2}X_{0} - \left(4X_{1}^{3} - g_{2} \cdot X_{1}X_{0}^{2} - g_{3} \cdot X_{0}^{3}\right) \in \mathbb{C}\left[X_{0}, X_{1}, X_{2}\right]$

 $\rightsquigarrow \Phi_{\mathcal{L}}$ maps into the zero set of F_{hom} in \mathbb{P}^2

Proposition

The curve defined by the Weierstrass polynomial

$$F(x,y) := y^2 - \left(4x^3 - Ax - B\right) \in \mathbb{C}[x,y]$$

is non-singular iff

$$\Delta_F = A^3 - 27B^2 \neq 0$$

Proof: $(x_0, y_0) \in \mathbb{C}^2$ is a singular point of the curve iff

$$0 = y_0^2 - \left(4x_0^3 - Ax_0 - B\right), \frac{\partial F}{\partial y}(x_0, y_0) = 2y_0 = 0, \frac{\partial F}{\partial x}(x_0, y_0) = -12x_0^2 + A$$

introduce

$$f(x) := 4x^3 - Ax + B \in \mathbb{C}[x]$$

$$\rightsquigarrow f(x_0) = 0 \text{ and } f'(x_0) = 0$$

 \implies f has a double zero (at x_0). This is equivalent to (cf. Knapp, Elliptic curves, ch. 3, Cor 3.4, Princeton University Press, 1992)

$$A^3 - 27B^2 = 0$$

Proposition

The discriminant form

$$\Delta:\mathbb{H}\to\mathbb{C}$$
 with $\Delta(\tau):=g_2^3(\tau)-27g_3^2(\tau)$

with

$$g_2(\tau) := 60 \cdot \sum_{(m,n) \in \mathbb{Z}^2 \setminus \{0\}} \frac{1}{(m\tau + n)^4}, \ g_3(\tau) := 140 \cdot \sum_{(m,n) \in \mathbb{Z}^2 \setminus \{0\}} \frac{1}{(m\tau + n)^6}$$

has no zeros.

Proof: see Wehler 2019, sect. 4.1

Lemma

The point ${\cal O}:=(0:0:1)$ in the projective curve E defined by the homogenization of

$$F(x,y) := y^2 - \left(4x^3 - Ax - B\right) \in \mathbb{C}[x,y]$$

is non-singular.

Proof: Consider standard coordinates of \mathbb{P}^2 around O:

$$\phi_2: U_2 \to \mathbb{C}^2, \quad (z_0: z_1: z_2) \mapsto (u, v) := \left(\frac{z_0}{z_2}, \frac{z_1}{z_2}\right)$$

introduce

$$f(u, v) := u - (4 \cdot v^3 - A \cdot u^2 v - B \cdot u^3)$$

Then

$$\phi_2(E \cap U_2) = \{(u, v) \in \mathbb{C}^2 | f(u, v) = 0\}$$

check explicitly: $\nabla f(0,0) = (1,0) \neq 0$

Corollary

For any $\tau \in \mathbb{H}$ the projective curve defined by the homogenization of the Weierstrass polynomial

$$F(x,y) = y^2 - (4x^3 - g_2(\tau) \cdot x - g_3(\tau))$$

is non-singular.

Definition

An elliptic curve is a non-singular curve $X \subset \mathbb{P}^n$ of genus g(X) = 1.

Corollary

Consider a torus $T = \mathbb{C}/\Lambda$ with normalized lattice $\Lambda = \mathbb{Z} \cdot 1 + \mathbb{Z} \cdot \tau, \tau \in \mathbb{H}$, and lattice constants $g_2, g_3 \in \mathbb{C}$. The image of the embedding $\Phi_{\mathcal{L}}: T \to \mathbb{P}^2$ is the elliptic curve $E \subset \mathbb{P}^2$ with Weierstrass polynomial

$$F(x,y) = y^2 - (4x^3 - g_2 \cdot x - g_3).$$

Proof: $\Phi_{\mathcal{L}}: T \to E$ is surjective: Let $(1:x:y) \in E$. Since $\wp: T \to \mathbb{P}^1$ is non-constant, holomorphic $\implies \exists z \in T \text{ s.t. } \wp(z) = x \implies \wp(-z) = x$ From

$$y^2 = 4x^3 - g_2 \cdot x - g_3 = 4\wp(z)^3 - g_2 \cdot \wp(z) - g_3 = \wp'(z)^2$$

 \implies either:

$$y = \wp'(z) \implies \phi_{\mathcal{L}}(z) = (1:x:y)$$

or:

$$y = -\wp'(z) = \wp'(-z) \implies \phi_{\mathcal{L}}(-z) = (1:x:y)$$

The group structure of elliptic curves

- Bezout's theorem: number of intersection points of two algebraic curves in P² counted by multiplicity equals product of degrees of the curves (cf. Hartshorne 1977, ch.1, sect.7)
- $\Phi_{\mathcal{L}}$ is a group homomorphism (cf. Wehler 2019, sect. 3)

- Converse statement: (cf. Wehler 2019, sect. 4.2) Every elliptic curve is biholomorphic equivalent to a torus
- More refined definition of elliptic curves: (cf. Hartshorne 1977, ch.4, sect.4)
 - projective curve E is **defined** over a subfield $k \subset \mathbb{C}$ (write E/k) if coefficients of defining polynomials are in k
 - for $k \subset K \subset \mathbb{C}$ the K-valued points are $(z_0 : ... : z_n) \in E$ s.t. $z_j \in K \ \forall j$
 - an elliptic curve is a pair (E/k, O), where E/k is a non-singular projective curve of genus 1, $O \in E$ a k-valued point