Projective Embeddings of Tori as Elliptic Curves

Paula Pilatus

12.05.2020

Recall:

- Consider a lattice $\Lambda . T=\mathbb{C} / \Lambda$ is a compact Riemannian surface of genus 1.
- Additionally, it is an Abelian group $(\mathbb{C},+) /(\Lambda,+)$.
- Every torus is biholomorphic equivalent to a torus with the normalized lattice $\Lambda_{\tau}:=\mathbb{Z} \cdot 1+\mathbb{Z} \cdot \tau, \tau \in \mathbb{H}$. (cf. Wehler 2019, sect 2.2)
- The Weierstrass \wp-function for Λ is the even elliptic function defined by

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda \backslash\{0\}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

The poles of \wp are the elements of Λ and are of order 2 .

- \wp satisfies the differential equation

$$
\wp^{\prime 2}=4 \cdot \wp^{3}-g_{2} \cdot \wp-g_{3}
$$

with the lattice constants

$$
g_{2}:=60 \cdot \sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{\omega^{4}}, \quad g_{3}:=140 \cdot \sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{\omega^{6}} .
$$

Very ampleness criterion

Consider a compact Riemann surface X. For an invertible sheaf \mathcal{L} on X are equivalent:

- The sheaf \mathcal{L} is very ample;
- For the point divisors $P, Q \in \operatorname{Div}(X)$ of two arbitrary, not necessarily distinct points $p, q \in X$ holds

$$
\operatorname{dim} H^{0}\left(X, \mathcal{L}_{-(P+Q)}\right)=\operatorname{dim} H^{0}(X, \mathcal{L})-2
$$

We saw: If $g(X)=1$, let $p \in X, P \in \operatorname{Div}(T)$ the corresponding point divisor. Then $\mathcal{O}_{3 P}$ is very ample.

Projective embedding of a torus

Theorem

Consider a torus $T=\mathbb{C} / \Lambda$ and its Weierstrass \wp-function. Denote by $Z \in \operatorname{Div}(T)$ the point divisor corresponding to $0 \in T$. Set

$$
D:=3 Z \in \operatorname{Div}(T)
$$

For the invertible sheaf $\mathcal{L}:=\mathcal{O}_{D}$, the three sections

$$
s_{0}:=1, \quad s_{1}:=\wp, \quad s_{2}:=\wp^{\prime}
$$

are a basis of $H^{0}(T, \mathcal{L})$, defining the holomorphic embedding

$$
\Phi_{\mathcal{L}}: T \rightarrow \mathbb{P}^{2}, \quad p \mapsto\left\{\begin{aligned}
\left(1: \wp(p): \wp^{\prime}(p)\right) & p \neq 0 \\
(0: 0: 1) & p=0
\end{aligned}\right.
$$

Proof:

$\Phi_{\mathcal{L}}$ is holomorphic in a neighborhood of $0 \in T$:

Choose a chart z of T around 0 in a neighborhood U of 0 . Then in $U \backslash\{0\}$:

$$
\Phi_{\mathcal{L}}=\left(1: \wp: \wp^{\prime}\right)=\left(z^{3}: z^{3} \cdot \wp: z^{3} \cdot \wp^{\prime}\right)
$$

which extends holomorphically to the singularity, setting

$$
\Phi_{\mathcal{L}}(0):=(0: 0: 1) \in \mathbb{P}^{2} .
$$

Recall:

$$
\wp^{\prime 2}=4 \cdot \wp^{3}-g_{2} \cdot \wp-g_{3}
$$

Weierstrass polynomial:

$$
F(x, y):=y^{2}-\left(4 x^{3}-g_{2} \cdot x-g_{3}\right) .
$$

homogenization $\left(X=\frac{X_{1}}{X_{0}}, Y=\frac{X_{2}}{X_{0}}\right)$:
$F_{\text {hom }}\left(X_{0}, X_{1}, X_{2}\right)=X_{2}^{2} X_{0}-\left(4 X_{1}^{3}-g_{2} \cdot X_{1} X_{0}^{2}-g_{3} \cdot X_{0}^{3}\right) \in \mathbb{C}\left[X_{0}, X_{1}, X_{2}\right]$
$\rightsquigarrow \Phi_{\mathcal{L}}$ maps into the zero set of $F_{\text {hom }}$ in \mathbb{P}^{2}

Proposition

The curve defined by the Weierstrass polynomial

$$
F(x, y):=y^{2}-\left(4 x^{3}-A x-B\right) \in \mathbb{C}[x, y]
$$

is non-singular iff

$$
\Delta_{F}=A^{3}-27 B^{2} \neq 0
$$

Proof: $\left(x_{0}, y_{0}\right) \in \mathbb{C}^{2}$ is a singular point of the curve iff $0=y_{0}^{2}-\left(4 x_{0}^{3}-A x_{0}-B\right), \frac{\partial F}{\partial y}\left(x_{0}, y_{0}\right)=2 y_{0}=0, \frac{\partial F}{\partial x}\left(x_{0}, y_{0}\right)=-12 x_{0}^{2}+A$ introduce

$$
\begin{aligned}
& f(x):=4 x^{3}-A x+B \in \mathbb{C}[x] \\
& \rightsquigarrow f\left(x_{0}\right)=0 \text { and } f^{\prime}\left(x_{0}\right)=0
\end{aligned}
$$

$\Longrightarrow f$ has a double zero (at x_{0}). This is equivalent to (cf. Knapp, Elliptic curves, ch. 3, Cor 3.4, Princeton University Press, 1992)

$$
A^{3}-27 B^{2}=0
$$

Proposition

The discriminant form

$$
\Delta: \mathbb{H} \rightarrow \mathbb{C} \text { with } \Delta(\tau):=g_{2}^{3}(\tau)-27 g_{3}^{2}(\tau)
$$

with
$g_{2}(\tau):=60 \cdot \sum_{(m, n) \in \mathbb{Z}^{2} \backslash\{0\}} \frac{1}{(m \tau+n)^{4}}, g_{3}(\tau):=140 \cdot \sum_{(m, n) \in \mathbb{Z}^{2} \backslash\{0\}} \frac{1}{(m \tau+n)^{6}}$
has no zeros.
Proof: see Wehler 2019, sect. 4.1

Lemma

The point $O:=(0: 0: 1)$ in the projective curve E defined by the homogenization of

$$
F(x, y):=y^{2}-\left(4 x^{3}-A x-B\right) \in \mathbb{C}[x, y]
$$

is non-singular.
Proof: Consider standard coordinates of \mathbb{P}^{2} around O :

$$
\phi_{2}: U_{2} \rightarrow \mathbb{C}^{2}, \quad\left(z_{0}: z_{1}: z_{2}\right) \mapsto(u, v):=\left(\frac{z_{0}}{z_{2}}, \frac{z_{1}}{z_{2}}\right)
$$

introduce

$$
f(u, v):=u-\left(4 \cdot v^{3}-A \cdot u^{2} v-B \cdot u^{3}\right)
$$

Then

$$
\phi_{2}\left(E \cap U_{2}\right)=\left\{(u, v) \in \mathbb{C}^{2} \mid f(u, v)=0\right\}
$$

check explicitly: $\nabla f(0,0)=(1,0) \neq 0$

Corollary

For any $\tau \in \mathbb{H}$ the projective curve defined by the homogenization of the Weierstrass polynomial

$$
F(x, y)=y^{2}-\left(4 x^{3}-g_{2}(\tau) \cdot x-g_{3}(\tau)\right)
$$

is non-singular.

Definition

An elliptic curve is a non-singular curve $X \subset \mathbb{P}^{n}$ of genus $g(X)=1$.

Corollary

Consider a torus $T=\mathbb{C} / \Lambda$ with normalized lattice $\Lambda=\mathbb{Z} \cdot 1+\mathbb{Z} \cdot \tau, \tau \in \mathbb{H}$, and lattice constants $g_{2}, g_{3} \in \mathbb{C}$. The image of the embedding $\Phi_{\mathcal{L}}: T \rightarrow \mathbb{P}^{2}$ is the elliptic curve $E \subset \mathbb{P}^{2}$ with Weierstrass polynomial

$$
F(x, y)=y^{2}-\left(4 x^{3}-g_{2} \cdot x-g_{3}\right) .
$$

Proof: $\Phi_{\mathcal{L}}: T \rightarrow E$ is surjective:
Let $(1: x: y) \in E$. Since $\wp: T \rightarrow \mathbb{P}^{1}$ is non-constant, holomorphic
$\Longrightarrow \exists z \in T$ s.t. $\wp(z)=x \Longrightarrow \wp(-z)=x$
From

$$
y^{2}=4 x^{3}-g_{2} \cdot x-g_{3}=4 \wp(z)^{3}-g_{2} \cdot \wp(z)-g_{3}=\wp^{\prime}(z)^{2}
$$

\Longrightarrow either:

$$
y=\wp^{\prime}(z) \Longrightarrow \phi_{\mathcal{L}}(z)=(1: x: y)
$$

or:

$$
y=-\wp^{\prime}(z)=\wp^{\prime}(-z) \Longrightarrow \phi_{\mathcal{L}}(-z)=(1: x: y)
$$

The group structure of elliptic curves

- Bezout's theorem: number of intersection points of two algebraic curves in \mathbb{P}^{2} counted by multiplicity equals product of degrees of the curves
(cf. Hartshorne 1977, ch.1, sect.7)
- $\Phi_{\mathcal{L}}$ is a group homomorphism (cf. Wehler 2019, sect. 3)

Further comments and outlook

- Converse statement: (cf. Wehler 2019, sect. 4.2) Every elliptic curve is biholomorphic equivalent to a torus
- More refined definition of elliptic curves: (cf. Hartshorne 1977, ch.4, sect.4)
- projective curve E is defined over a subfield $k \subset \mathbb{C}($ write $E / k)$ if coefficients of defining polynomials are in k
- for $k \subset K \subset \mathbb{C}$ the K-valued points are $\left(z_{0}: \ldots: z_{n}\right) \in E$ s.t. $z_{j} \in K \forall j$
- an elliptic curve is a pair $(E / k, O)$, where E / k is a non-singular projective curve of genus $1, O \in E$ a k-valued point

