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Chapter 1
Topological groups

Before dealing with Lie groups, which are groups carrying an analytic structure, we
investigate the more general case of topological groups.

1.1 Topology of topological groups

Definition 1.1 (Topological group). A topological group is a group (G,*) equipped
with a topology such that both

• the group multiplication m : G×G→ G,(x,y) 7→ m(x,y) := x∗ y,

• and the inversion σ : G→ G,x 7→ x−1,

are continuous maps.

Note. Instead of x∗ y we shall often write x · y or even xy.

In the following we will often require that the topology is a Hausdorff topology or
even locally compact. Both properties are necessary requirements for a topological
group to acquire the additional structure of a Lie group.

Lemma 1.2 (Canonical homeomophisms). For a topological group G the follow-
ing maps are homeomorphisms:

• Left-translation: For fixed g ∈ G

Lg : G→ G,x 7→ g · x.

• Right-translation: For fixed g ∈ G

Rg : G→ G,x 7→ x ·g.

3



4 1 Topological groups

• Inner automorphism: For fixed g ∈ G

φg : G→ G,x 7→ g · x ·g−1.

Proof. i) For fixed g ∈ G the inclusion

j : G−→ G×G,x 7→ (g,x)

is continuous by definition of the product topology. As a consequence the composi-
tion

Lg = [G
j−→ G×G m−→ G]

is continuous. The inverse map is Lg−1 .

iii) For fixed g ∈ G the inner automorphism Φg is a composition of homeomor-
phisms:

φg = Lg ◦Rg−1 .

Lemma 1.3 (Neighbourhood basis of a topological group). Consider a topologi-
cal group G and U a neighbourhood basis of the neutral element e ∈ G, i.e. U is
a set of neighbourhoods of e such that any neighbourhood of e contains an element
of U .

Then:

1. For all U ∈U exist V ∈U such that V ·V ⊂U.

2. For all U ∈U exist V ∈U such that V−1 ⊂U.

3. For all g ∈ G and for all U ∈U exists V ∈U such that V ⊂ φg(U).

Proof. 1) Because the multiplication m : G×G→ G is continuous the
pre-image m−1(U) is a neighbourhood of (e,e) ∈ G×G and contains a product
neighbourhood V ×V ⊂ m−1(U) with V ∈U .

2) Because taking the inverse σ : G→ G is continuous the inverse image σ−1(U)
is a neighbourhood of e ∈ G, hence contains an element V ∈U . Then

V ⊂ σ
−1(U) =⇒ V−1 ⊂U.

3) Because the inner automorphism φg is a homeomorphism the set φg(U) is a
neighbourhood of e ∈ G, hence contains an element V ∈U , q.e.d.

In the opposite direction, i.e. to provide a group with the structure of a topolog-
ical group, it is sufficient to consider the neutral element. To generate a topological
group, a neighbourhood basis of e has to satisfy the following properties:



1.1 Topology of topological groups 5

Lemma 1.4 (Defining a topological group by a neighbourhood basis). Consider
a group G and a non-empty set U of subsets of G with the following properties:

• U ∈U =⇒ e ∈U.

• U1,U2 ∈U =⇒ (∃U3 ∈U : U3 ⊂U1∩U2).

• U satisfies the three properties of Lemma 1.3.

Then a unique topology T of G exists, such that (G,T ) is a topological group
and U a neighbourhood basis of the neutral element e ∈ G.

Proof. For an arbitrary subset U ∈ G we define

U ∈T ⇐⇒ ∀ x ∈U ∃ V ∈U : x ·V ⊂U.

i) Apparently /0,G ∈T .

ii) Consider two sets U1,U2 ∈T and a point

x ∈U :=U1∩U2.

By assumption, for j = 1,2 sets Vj ∈U exist with x ·Vj ⊂U j. And by assumption
a set V ∈U exists with V ⊂V1∩V2, i.e.

x ·V ⊂U.

As a consequence U ∈T .

iii) Consider a family (Ui)i∈I of sets Ui ∈T and a point

x ∈U :=
⋃
i∈I

Ui.

We choose an index i0 ∈ I and a set V ∈U with x ·V ⊂Ui0 . Then also x ·V ⊂U
which proves U ∈T .

Part i) - iii) shows that T is a topology with U as neighbourhood basis of the
neutral element and neighbourhood bases of all other elements determined by U .
In general, the topology of a topological space is uniquely determined by
neighbourhood bases of all points of the space.

In a second step, we now prove that (G,T ) is a topological group.

iv) In order to prove the continuity of the multiplication m : G×G→G we consider
an element g ∈ G and a neighbourhood U of g. Assume an arbitrary but fixed pair

(g1,g2) ∈ G×G with m(g1,g2) = g.
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By definition of T there exist a set V ∈U with g ·V ⊂U and a set W ∈U
with W ·W ⊂V . Eventually, a set B ∈U exists with

B⊂ g2 ·W ·g−1
2 .

As a consequence,

m(g1 ·B,g2 ·W ) = g1 ·B ·g2 ·W ⊂ g1 ·g2 ·W ·W ⊂ g1 ·g2 ·V = g ·V ⊂U

which implies
g1 ·B×g2 ·W ⊂ m−1(U)

with the neighbourhood
g1 ·B×g2 ·W

of (g1,g2). As a consequence, any point

(g1,g2) ∈ m−1(g)

has a neighbourhood contained in m−1(U). Therefore m−1(U) is open in the
product topology of G×G.

v) In order to prove the continuity of σ : G→ G we consider an element g ∈ G and
an open neighbourhood U of g. There exist sets V ∈U with g ·V ⊂U and W ∈U
with

W−1 ⊂ g ·V ·g−1.

We obtain
σ(g−1 ·W ) =W−1 ·g⊂ g ·V ⊂U.

As a consequence
g−1 ·W ⊂ σ

−1(U)

and σ−1(U) is a neighbourhood of the inverse image

σ
−1(g) = g−1 ∈ g−1 ·W.

q.e.d.

Proposition 1.5 (Subgroups and quotients). Consider a topological group G and
a subgroup H ⊂ G. Topologize H with the subspace topology and the quotient
set G/H with the quotient topology. Then:

1. The subgroup H ⊂ G is a topological group.

2. The canonical projection π : G→ G/H is an open map.

3. The quotient space G/H is Hausdorff iff H ⊂ G is closed.



1.1 Topology of topological groups 7

4. If H ⊂ G is a normal subgroup, then G/H is a topological group.

Proof. The quotient topology is the finest topology on G/H such that π : G→G/H
is continuous, i.e. a subset V ⊂ G/H is open iff π−1(U)⊂ G is open.

i) Consider the following commutative diagram with j : H ↪−→ G the injection:

H×H H

G×G G

mH

j× j j

mG

Continuity of the map mG ◦ ( j× j) implies the continuity of the map j ◦mH . There-
fore mH is continuous due to the definition of the subspace topology on H. Analo-
gously, the commutative diagram

H H

G G

σH

j j
σG

implies the continuity of the inversion σH .

ii) Consider an open set U ⊂ G. Then

π
−1(π(U)) = {x ∈ G : ∃ g ∈U with xH = gH}=

= {x ∈ G : ∃ g ∈U with x ∈ gH}=
⋃

h∈H

U ·h =
⋃

h∈H

Rh(U).

Each set Rh(U) is open because Rg is a homeomorphism. As a union of open sub-
sets the set π−1(π(U)) ⊂ G is open. By definition of the quotient topology the
set π(U)⊂ G/H is open.

iii) Assume that G/H is a Hausdorff space. Then the singleton {π(e)} ⊂G/H is
closed and as a consequence also the set H = π−1(π(e))⊂ G.

For the opposite direction assume that H ⊂ G is closed. The quotient G/H is a
Hausdorff space iff the diagonal

∆ ⊂ (G/H×G/H)

is a closed subset. For (x,y) ∈ G×G
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(π(x),π(y)) ∈ ∆ ⇐⇒ xH = yH ⇐⇒ y−1x ∈ H ⇐⇒ ψ(x,y) ∈ H

with the continuous map

ψ : G×G→ G,(x,y) 7→ y−1x.

Because H ⊂ G is closed also ψ−1(H)⊂ G×G is closed. The representation

(π×π)((G×G)\ψ
−1(H)) = (G/H×G/H)\∆

and the openness of π×π according to part ii) imply that the set

(G×G)\ψ
−1(H)⊂ G×G

is open. Therefore the diagonal ∆ ⊂ (G/H×G/H) is a closed subset.

iv) We consider the commutative diagram

G×G G

G/H×G/H G/H

mG

π×π π

mG/H

From
π ◦mG = mG/H ◦ (π×π)

and from the quotient topology on G/H ×G/H follows the continuity of mG/H ,
q.e.d.

Corollary 1.6 (Hausdorff criterion). A topological group G is a Hausdorff space
iff the singleton {e} ⊂ G is closed.

Example 1.7 (Topological groups).

1. Any normed K-vector space (V,+) is a topological group.

2. The unit sphere
S1 = {z ∈ C : |z|= 1}=U(1)

equipped with the subspace topology S1 ⊂ C is a topological group with respect
to multiplication. We have the homeomorphy

S1 ' {z ∈ R2 : ‖z‖= 1}.
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3. The torus T n := (S1)n = S1× ...× S1, equipped with the product topology is a
topological group.

4. Consider the subgroup Zn ⊂ (Rn,+) equipped with the subspace topology, i.e.
the discrete topology. Then an isomorphism of topological groups exists

Rn/Zn '−→ T n.

Proof. The map

f : Rn→ T n,(x1, ...,xn) 7→ (e2πi·x1 , ...,e2πi·xn),

is a surjective morphism of topological groups. Due to the homomorphism the-
orem and the definition of the quotient topology f induces a bijective morphism
of topological groups

f : Rn/Zn→ T n

such that the following diagram commutes

Rn T n

Rn/Zn

f

π f

Compactness of Rn/Zn implies that f is a homeomorphism.

5. The multiplicative group

GL(n,K) := {A ∈M(n×n,K) : det A 6= 0}

equipped with the subspace topology of M(n× n,K) ' Kn2
is a topological

group. In particular, (K∗, ·) is a topological group.

6. Provide Z ⊂ (C,+) with the subspace topology. Then an isomorphism of topo-
logical groups exists

C/Z '−→ C∗.

Proof. Consider the holomorphic map

f : C→ C∗,z 7→ e2πi·z.

The map f is surjective. Moreover, f is continuous and as a holomorphic map
also open. It induces the commutative diagram
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C C∗

C/Z

f

π f

The map f is continuous, hence a bijective morphism of topological groups. For
any open subset U ⊂ C/Z the image

f (U) = f (π−1(U))⊂ C∗

is open because f is an open map.

Lemma 1.8 (Connectedness). Consider a topological group G and a subgroup H.
If H and G/H are connected, then also G is connected.

Proof. Assume the existence of two non-empty open subsets U,V ⊂ G with

G =U ∪V.

We claim U ∩V 6= /0: If π : G→ G/H denotes the canonical projection then

G/H = π(U)∪π(V ).

Because π is an open map according to Proposition 1.5 and because G/H is con-
nected we have

π(U)∩π(V ) 6= /0,

i.e. two elements u ∈U and v ∈V exist with π(u) = π(v) or

u ·H = v ·H.

Then v ∈ u ·H and

u ∈ u ·H ∩U 6= /0 and v ∈ u ·H ∩V 6= /0.

Connectedness of H and also of u ·H and the representation

u ·H = (u ·H)∩ (U ∪V ) = (u ·H ∩U)∪ (u ·H ∩V )

imply
(u ·H ∩U)∩ (u ·H ∩V ) 6= /0,

in particular U ∩V 6= /0, q.e.d.
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Proposition 1.9 (Component of the neutral element is normal subgroup). For
any topological group G the connected component Ge⊂G of the neutral element e ∈ G
is a normal subgroup.

Proof. The product of connected topological spaces is connected. Also the continu-
ous image of a connected space is connected. As a consequence, the multiplication
satisfies

m(Ge×Ge)⊂ Ge.

Similarly, the inversion satisfies

σ(Ge)⊂ Ge.

As a consequence, Ge ⊂ G is a subgroup.

According to Lemma 1.2: For each element g ∈ G the group φg(Ge) is a con-
nected subgroup of G. As a consequence

φg(Ge)⊂ Ge,

which proves normality of Ge, q.e.d.

Proposition 1.10 (Open subgroups are also closed). Consider a topological group G.
Any open subgroup H ⊂ G is also closed.

Proof. The group G decomposes in cosets with respect to H

G = H∪̇
⋃

g/∈H

gH.

For each element g ∈ H the left-multiplicartion Lg : G→ G is a homeomorphism
according to Lemma 1.2. Openness of H implies that also gH ⊂G is open. Then the
union of open sets ⋃

g/∈H

gH ⊂ G

is open. Therefore its complement H ⊂ G is closed, q.e.d.

Proposition 1.11 (Finite products of small elements). Consider a connected topo-
logical group G and an arbitrary neighbourhood V ⊂ G of the neutral element e ∈ G.
Then for any element x ∈ G finitely many elements x1, ...,xn ∈V exist with

x = x1 · ... · xn.
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Proof. Define the set

H := {x ∈ G : ∃ n ∈ N, ∃ x1, ...,nn ∈V ∩V−1 with x = x1 · ... · xn}.

Apparently H ⊂ G is a subgroup. It contains the neighbourhood V ∩V−1 of e ∈ G.
Therefore H ⊂ G is open. According to Proposition 1.10 H is also closed. The
decomposition G = H∪̇(G \H) and the connectedness of G imply G \H = /0,
i.e. G = H, q.e.d.

The content of Proposition 1.11 can be stated as follows: For a topological group
G any neighbourhood of e ∈ G generates the component of the neutral element of
G.

1.2 Continuous group operation

Continuous groups often appear as symmetry groups of a topological space. This
issue is formalized by the concept of a group operation.

Definition 1.12 (Group operation and homogeneous space). Consider a topolog-
ical group G with neutral element e ∈ G and a topological space X .

1. A continous left G-operation on X is a continuous map

φ : G×X → X ,(g,x) 7→ g.x,

which satisfies the following properties:

• For all x ∈ X : e.x = x.

• For all g,h ∈ G and x ∈ X : g.(h.x) = (g ·h).x.

The pair (G,X) is named a continous left G-space.

2. Consider a left G-space (G,X).

• The orbit map of a point x ∈ X is the continous map

φx : G→ X ,g 7→ g.x.

Its image φx(G)⊂ X is the orbit of x.

• The orbit space of (G,X) is the quotient space X/G of X with respect to the
equivalence relation

x∼ y ⇐⇒ y ∈ φx(G).
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• The group G operates transitive on X if the orbit space X/G is a singleton.

• The isotropy group of a point x ∈ X is defined as

Gx := {g ∈ G : g.x = x}.

If Gx = {e} for all x ∈ X the group operation is free.

3. A continuous left G-space (G,X) is homogeneous iff both of the following con-
ditions are satisfied:

• The group operation is transitive.

• A point x ∈ X exists such that the canonical map

G/Gx→ X ,g.Gx 7→ g.x,

is a homeomorphism.

Concerning the notation in Definition 1.12 one should pay attention to the dis-
tinction between the dot above the line “·”, denoting the group multiplication, and
the dot on the line “.”, denoting the group action. We will omit the adjective “con-
tinuous” if the topological context of the concepts is clear.

If G operates on X then for each fixed g ∈ G the left operation

X → X ,x 7→ g.x

is the homeomorphism Lg with inverse the homeomorphism L−1
g .

Analogously to a left G-operation one defines the concept of a continuous right
G-operation on X

X×G→ X ,(x,g) 7→ x.g.

For a transitive group action the whole space X is a single orbit. In this case G/Gx0 , x0 ∈ G
maps bijectively onto X . If this map is a homeomorphism then the G-space is ho-
mogenous and X is completely determined by the group operation. In the following
we will derive a criterion, which assures that a G-space is homogeneous. Recall that
a locally compact space is by definition a Hausdorff space.

Lemma 1.13 (Baire’s theorem). Consider a non-empty locally compact space X.
If a sequence of closed subsets Aν ⊂ X ,ν ∈ N, exist with

X =
⋃

ν∈N
Aν

then the interior A◦ν0
6= /0 for at least one index ν0 ∈N, i.e. not all sets Aν have empty

interior.
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For a proof see [8, Chap. XI, 10].

Definition 1.14 (σ -compactness). A locally compact topological space X is σ -compact
if X is the countable union of compact subspaces.

Note that σ -compactnes is a global property.

Remark 1.15 (σ -compactness). The condition of σ -compactness is equivalent to the
property that X has a countable exhaustion

X =
⋃
i∈N

Ui

by relatively compact open subsets Ui ⊂⊂Ui+1, i ∈ N, see [8, Chap. XI, 7].

Theorem 1.16 (Homogeneous space). Any G-space (G,X) with a σ -compact topo-
logical group G and a locally compact space X is homogeneous.

Proof. Consider a point x ∈ X . Its orbit map

ψ : G→ X ,g 7→ g.x,

induces a unique continuous and bijective map ψ in the following commutative
diagram

G X

G/Gx

ψ

π ψ

We claim that the map ψ is also open. For the proof consider an open subset S⊂ G/Gx.
Then

ψ(S) = ψ(π−1(S)).

Therefore it suffices to show that the map ψ is open. Even more restrictive, it suffices
to show: For any neighbourhood U of e in G the set

ψ(U) =U.x

is a neighbourhood of x in X .

The latter statement follows from Baire’s category theorem: The theorem ex-
cludes that X is covered by a countable family of closed sets, all of them having
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empty interior. In the present context the closed sets will be even compact sets.
They originate as translates of a fixed compact neighbourhood W of x. Due to local
compacteness of G arbitrary small compact neighbourhoods W of e exist:

According to Lemma 1.3 a neighbourhood V of e in G exists with

V ·V ⊂U.

Due to the local compactness of G a compact neighbourhood W of e exists with

W ⊂V ∩V−1.

It satisfies
W−1 ·W ⊂U.

Each compact subset K ⊂ G has a finite covering

K ⊂
n⋃

ν=1

gν ·W

with a finite index n∈N and elements g1, ...,gn ∈G. By the assumption about σ -compactness
the group G is the union of countably many compact subsets. Therefore a sequence (sν)ν∈N
of elements sν ∈ G exists with

G =
⋃

ν∈N
sν ·W.

As a consequence

X = G.x⊂
⋃

ν∈N
(sν ·W ).x =

⋃
ν∈N

sν .(W.x).

Compactness of W and continuity of the orbit map φx : G→ X imply the compact-
ness of W.x ⊂ X . In addition, any element sν ∈ G,ν ∈ N, operates as a homeomor-
phism on X . Therefore each set

sν .(W.x)⊂ X

is compact, in particular closed. According to Lemma 1.13 the local compactness
of X implies the existence of at least one index ν0 ∈ N exists auch that

sν0 .(W.x)

has non-empty interior. As a consequence, an element w ∈W exists with

sν0 .(w.x) ∈ (sν0 .(W.x))◦.

Therefore
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w.x ∈ s−1
ν0
.(sν0 .(W.x))◦ = ((s−1

ν0
· sν0).(W.x))◦ = (W.x)◦

or
x ∈ w−1.(W.x)◦ = ((w−1 ·W ).x)◦ ⊂ (U.x)◦

which implies that U.x is a neighbourhood of x, q.e.d.

Example 1.17 (Topological groups and group operations).

1. Orthogonal group: The orthogonal group

O(n,R) := {A ∈ GL(n,R) : A ·A> = 1}

is the zero set of continuous functions, and therefore a closed subgroup of GL(n,R).
The columns of an orthogonal matrix form an orthonormal basis of Rn. There-
fore all columns are bounded and O(n,R) is a compact topological group. Also
its closed subgroup

SO(n,R) := {A ∈ O(n,R) : det A = 1}

is a compact topological group.

i) On the (n−1)-dimensional sphere

Sn−1 := {x ∈ Rn : ‖x‖= 1} ⊂ Rn

there is a canonical left O(n,R)-operation:

O(n,R)×Sn−1→ Sn−1,(A,x) 7→ Ax.

ii) The operation is transitive: Denote by (e j) j=1,...,n the canonical basis of Rn

and consider an arbitrary but fixed point a ∈ Sn−1. In order to determine a
matrix A ∈ O(n,R) with

Ae1 = a

we extend the vector a to an orthonormal base

(a = a1,a2, ...,an)

of Rn - e.g., by using the Gram-Schmidt algorithm. Define

A :=

a1 . . . an
| . . . |
| . . . |

 ∈ O(n,R).

For n≥ 2 also the induced operation
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SO(n,R)×Sn−1→ Sn−1

is transitive: If Ae1 = a with A ∈ O(n,R) then multiplying the last column of A
by (det A)−1 provides a matrix A′ ∈ SO(n,R) with A′e1 = a.

iii) For the isotropy groups of the point e1 ∈ Sn−1 we obtain

A ∈ O(n,R)e1 ⇐⇒ Ae1 = e1 ⇐⇒ A :=


1 0 . . . 0
0
... A′

0


with A′ ∈ O(n−1,R). Therefore

O(n,R)e1 ' O(n−1,R).

And analogously for n≥ 2

SO(n,R)e1 ' SO(n−1,R).

Applying Theorem 1.16, the sphere Sn−1 can be described both as homogeneous O(n,R)-space
and for n≥ 2 also as homogeneous SO(n,R)-space:

O(n,R)/O(n−1,R) '−→ Sn−1

and for n≥ 2
SO(n,R)/SO(n−1,R) '−→ Sn−1.

2. Unitary group: The unitary group

U(n) := {A ∈ GL(n,C) : A ·A∗ = 1}, A∗ := A>,

is the zero set of continuous functions, and therefore a closed subgroup of GL(n,C).
The columns of a unitary matrix are unit vectors. Therefore U(n) is a compact
topological group. Also its subgroup

SU(n) := {A ∈U(n) : det A = 1}

is a compact topological group.

i) We identify Cn and R2n by the canonical map

Cn '−→ R2n,(z1, ...,zn) = (x1 + iy1, ...,xn + iyn) 7→ (x1,y1, ...,xn,yn).

Here x j := Re(z j),y j := Im(z j), j = 1, ...,n. Then
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S2n−1 = {z ∈ Cn : ‖z‖2 =
n

∑
j=1
|z j|2 = 1}.

Replacing the canonical Euclidean scalar product on R2n by its Hermitian coun-
terpart on Cn allows to mimic for the unitary groups the results just obtained for
the orthogonal groups.

We have a canonical left U(n)-operation on S2n−1

U(n)×S2n−1→ S2n−1,(A,z) 7→ Az,

and for n≥ 2 by restriction a canonical left SU(n)-operation on S2n−1.

ii) Both operations are transitive. The proof is analogous to 1, part iii). If Ae1 = a
with A ∈ U(n) then multiplying the last column of A by (det A)−1 provides a
matrix A′ ∈ SU(n) with A′e1 = a.

iii) The isotropy groups of e1 are respectively

U(n)e1 'U(n−1) and SU(n)e1 ' SU(n−1).

As a consequence we obtain a description of the spheres as homogenous spaces

U(n)/U(n−1)' S2n−1

and for n≥ 2
SU(n)/SU(n−1)' S2n−1.

3. Morphisms: Consider a morphism f : G→ G′ of topological groups, i.e. a con-
tinous group homomorphism. Then (G,G’) is a G-space with respect to the left
G-operation

φ : G×G′→ G′,(g,g′) 7→ f (g) ·g′.

• The orbit map of the point e ∈ G′ is

φe = f : G→ G′,e 7→ g.e = f (g) · e = f (g).

• The G-operation is transitive iff f is surjective.

• The isotropy group of the neutral element e ∈ G′ is

Ge = {g ∈ G : f (g) · e = e}= {g ∈ G : f (g) = e}= ker f .

The homomorphism theorem provides a canonical morphism of topological
groups

G/ker f → G′.
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4. Operation on cosets: Consider a topological group G and a subgroup H ⊂ G.
Then a transitive left G-operation on the topological space G/H of cosets exists

G× (G/H)→ (G/H),(g1,g2H) 7→ (g1g2)H.

The isotropy group at H = eH is GeH = H. The canonical map

G/GeH → G/H,gGeH 7→ gH,

is a homeomorphism. In particular, G/H is a homogenous G-space with respect
to the G-left operation.

Lemma 1.18 (Connectedness of selected classical groups).

1. For all n≥ 1 the following topological groups are connected:

SO(n,R),U(n),SU(n).

2. For all n≥ 1 the following topological groups are not connected:

O(n,R),GL(n,R).

3. For all n≥ 1 the topological groups

SL(n,R), GL+(n,R) := {A ∈ GL(n,R) : det A > 0}, SL(n,C), and GL(n,C)

are connected.

Proof. 1) We prove the claim by induction on n ∈ N employing the representations
from Example 1.17

SO(n,R)/SO(n−1,R)' Sn−1,n≥ 2

U(n)/U(n−1)' SU(n)/SU(n−1)' S2n−1,n≥ 2.

For n= 1 we have the singletons SO(1,R) = SU(1) = {id} and U(1) = S1. These
sets are connected.

For the induction step n−1 7→ n,n≥ 2, the claim follows from the representation
above and Lemma 1.8.

2) If O(n,R) were connected then also its image under the continuous map

det : O(n,R)→{±1}

were connected, a contradiction. Analogously follows the non-connectedness of GL(n,R).

3) We prove the claim by induction on n ∈ N. The case n = 1 is obvious.
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For the induction step n−1 7→ n,n≥ 2, we denote by Gn any of the groups in
question. On the connected topological space X :=Kn \{0}we have the Gn-operation

Gn×X → X ,(A,z) 7→ Az.

The operation is transitive: Choose an arbitrary but fixed element a ∈ X and extend
it to a basis

(a = a1,a2, ...,an)

of Kn. Define the matrix

A :=

a1 . . . an
| . . . |
| . . . |

 ∈ GL(n,K)

and A′ ∈Gn as the matrix obtained by multiplying the last column of A by (det A)−1.
Then A′ ∈ Gn and A′e1 = a.

For the isotropy group of e1 holds

A ∈ (Gn)e1
⇐⇒ Ae1 = e1 ⇐⇒ A :=


1 α2 . . . αn
0
... B
0

 ∈ Gn

and det B = det A, i.e. B ∈ Gn−1. As a consequence we have the homeomorphy

(Gn)e1
' Gn−1×Kn−1.

First, the induction assumption implies the connectedness of the isotropy group (Gn)e1
.

Secondly, because the group Gn⊂Kn2
is locally compact and σ -compact, Theorem 1.16

implies the homeomorphy
Gn/(Gn)e1

' X .

Eventually, Lemma 1.8 proves the connectedness of Gn, q.e.d.

1.3 Covering projections and homotopy groups

The present section recalls some results from algebraic topology. These results refer

• to covering spaces,
• to the fundamental group,
• and to higher homotopy groups.
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General references are [36] and [19]. The results will be used in Chapter 2 to de-
termine the fundamental groups of several classical groups. In particular we shall
determine those groups which are simply connected.

Definition 1.19 (Covering). A covering projection is a continuous map

p : X → B

between two topological spaces such that each point b ∈ B has an open neighbour-
hood V ⊂B which is evenly covered, i.e. the inverse image splits into a set of disjoint
open subsets Ui ⊂ X

p−1(V ) =
⋃̇

i∈I
Ui,

and each restriction
p|Ui : Ui→V, i ∈ I,

is a homeomorphism.

The space X is called the covering space and the space B the base of the covering
projection.

Attached to each covering projection is a group of deck transformations.

Definition 1.20 (Deck transformation). Consider a covering projection p : X → B.

1. A deck transformation of p is a homeomorphism

f : X → X

such that the following diagram commutes

X X

B

f

p p

i.e. f permutes the points of each fibre.

2. With respect to composition the deck transformations of a covering projection p
form a group, the deck transformation group Deck(p).

The deck transformation group operates in a canonical way on the total space X :

Deck(p)×X → X ,( f ,x) 7→ f (x).
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Covering projections are important due to several reasons:

• Covering projections have the homotopy lifting property: Whether a map f : Z→ B
into the base of a covering projection

p : X → B

lifts to a map into the covering space X only depends on the homotopy class of f .

• Covering projections facilitate the computation of the fundamental group of a
topological space.

Proposition 1.21 (Homotop lifting property). Consider a covering projection

p : E→ B.

If a continous map f : Z→ B into the base lifts to a map f̃ : Z→ E into the covering
space then also any homotopy F of f lifts uniquely to a homotopy of f̃ . Or expressing
the homotopy lifting property in a formal way:

Assume the existence of

• a continuous map f̃ : Z→ E

• and a continuous map F : Z× I→ B with F(−,0) = p◦ f̃ .

Then a unique continuous map F̃ : Z× I→ E exists such that the following dia-
gram commutes:

Z×{0} E

Z× I B

f̃

p

F

F̃

The diagram from Proposition 1.21 has the following interpretation: The restric-
tion

f := F(−,0) : Z→ B

is a continuous map with the lift f̃ : Z→ E, i.e. p◦ f̃ = f . The map

F : Z× I→ B

is a homotopy of f . The homotopy lifting property ensures that the homotopy lifts
to a continuous map

F̃ : Z× I→ E.
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In particular, any map
(F−, t) : Z→ B, t ∈ I,

being homotopic to f , lifts to

F̃(−, t) : Z→ E.

The particular case of the singleton Z = {∗} shows that a covering projection has
the unique path lifting property: Any path in B lifts to a unique path in E with fixed
starting point. But in general, the lift α̃ of a closed path α in B is no longer closed
in E.

Moreover, the lifting criterion from Proposition 1.23 states: Whether a map

f : Z→ B

into the base B of a covering projection p : X → B lifts to a map into its covering
space X only depends on the induced maps of the fundamental groups.

Definition 1.22 (Fundamental group). Consider a connected topological space X.

i) After choosing an arbitrary but fixed distinguished point x0 ∈ X the fundamen-
tal group π1(X ,x0) of X with respect to the basepoint x0 is the set of homotopy
classes of continuous maps

α : [0,1]→ X with α(0) = α(1) = x0

with the catenation

(α1 ∗α2)(t) :=

{
α1(2t) if 0≤ t ≤ 1/2
α2(2t−1) if 1/2≤ t ≤ 1

as group multiplication.

ii) The topological space X is simply-connected if π1(X ,x0) = 0.

Apparently the paths in question can also be considered as continuous maps

S1→ X .

One checks that the catenation defines a group structure on the set of homotopy
classes. In addition, for path-connected X the fundamental group - as an abstract
group - does not depend on the choice of the basepoint. In this case one often
writes π1(X ,∗) or even π1(X).

A morphism
f : (X ,x0)→ (Y,y0)
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of pointed connected topological spaces, i.e. satisfying f (x0) = y0, induces a group
homorphism of fundamental groups

π1( f ) : π1(X ,x0)→ π1(Y,y0), [α] 7→ [ f ◦α].

In case of a covering projection f the induced map π1( f ) is injective. The fundamen-
tal group is a covariant functor from the homotopy category of pointed connected
topological spaces to the category of groups.

We recall that for a locally path-connected topological space X the two properties
connectedness and path-connectedness are equivalent.

Proposition 1.23 (Lifting criterion). Consider a covering projection p : E→B and
a continuous map f : X → B with X path-connected and locally path-connected.
Then the following properties are equivalent:

1. The map f has a lift to E, i.e. a continuous map

f̃ : X → E

exists such that the following diagram commutes

E

X B

pf̃

f

2. The induced map of the fundamental groups

π1( f ) : π1(X ,∗)→ π1(B,∗)

satisfies
π1( f )(π1(X ,∗))⊂ π1(p)(π1(E,∗)).

In particular, any continous map f : X → B from a simply-connected topological
space X lifts to a continous map f̃ into the covering space E.

Definition 1.24 (Universal covering projection). Consider a topological space B.
A universal covering projection of B is a covering projection p : E → B with the
following universal property:

For any covering projection f : X → B a continuous map p̃ : E → X exists such
that the following diagram commutes
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E

X

B

p̃

p

f

And after fixing base points the map p̃ is uniquely determined.

A universal covering exists if B satisfies certain properties with respect to its
paths. A topological space X is semilocally 1-connected if any point x ∈ X has a
neighbourhood U in X such that any closed path in U is contractible in X to a point.
This property as well as local path-connectedness is satisfied for any Lie group.

Proposition 1.25 (Simply connectedness and universal covering). Consider a
topological space B which is path-connected, locally path-connected and semilocally 1-connected.
Then:

1. The space B has a unique universal covering projection

p : E→ B.

2. For a given covering projection f : X → B we have the equivalence:

• f is the universal covering projection of B.

• π1(X ,∗) = 0.

Proposition 1.26 (Deck transformation group of the universal covering projec-
tion). Consider the universal covering projection

p : E→ B

of the path-connected, locally path-connected and semilocally 1-connected topolog-
ical space B. Choose a base point b0 ∈ B and a pre-image b̃ ∈ p−1(b0).

i) Then a group homomorphism exists

Γ : π1(B,b0)→ Deck(p), [α] 7→ Γ ([α]),

with Γ ([α]) the uniquely determined deck transformation which satisfies

Γ ([α])(b̃) = α̃(1) ∈ p−1(b0)

with respect to the lift α̃ of α .
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ii) The group homomorphism Γ is an isomorphism:

Γ : π1(B,b0)
'−→ Deck(p)

Corollary 1.27 (Fundamental group of S1). The map

p : R→ S1, t 7→ e2πi·t ,

is a covering projection with deck transformation group the group of translations

Deck(p) = {R→ R, t 7→ t +n : n ∈ Z} ' Z.

In particular π1(S1)' Z.

The fundamental group π1(X ,∗) is the first in a series of homotopy groups of a
connected topological space: For any n ∈ N∗ the n-th homotopy group πn(X ,∗) of a
connected topological space X is the set of homotopy classes of continuous maps

f : (Sn,∗)→ (X ,∗)

equipped with a suitable group multiplication. In addition, one has for n = 0 the
pointed set π0(X ,∗) of homotopy classes of continuous maps

f : S0 = {±1}→ X

with f (1) = ∗. Apparently, π0(X ,∗) is the set of path-components of X . Its distin-
guished element is the path-component of the base point ∗.

In order to compute the fundamental group of several classical groups we recall
a result about the homotopy group of spheres.

Proposition 1.28 (Lower homotopy groups of spheres).

The homotopy groups of the spheres satisfy

πi(Sn) = 0

for the lower indices 0≤ i < n.

For a simple proof presented as an excercise cf. [21, I.8, Ex. 3].

Definition 1.29 (Real projective space). The multiplicative topological group R∗
defines a continuous right operation on the topological space Rn+1 \{0}

Rn+1 \{0}×R∗→ Rn+1 \{0},(x,λ ) 7→ x ·λ .

The orbit space, equipped with the quotient topology,
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Pn(R) := (Rn+1 \{0})/R∗

is the real projective space Pn(R).

The orbit space Pn(R) equals the set of lines in Rn+1 passing through the
origin 0 ∈ Rn+1. Apparently, Pn(R) is also the orbit space of the operation

Sn×Z2→ Sn,(x,±1) 7→ x · (±1).

The canoncial projection

pn : Sn→ Pn(R)' Sn/Z2

is a covering projection with deck transformation group Deck(pn)' Z2.

Lemma 1.30 (Fundamental group of the real projective spaces). For n ≥ 2 the
real projective spaces are connected with fundamental group

π1(Pn(R))' Z2.

Proof. Connectedness follows from the fact that Pn(R) is the continuous image of
the connected space Sn. For n ≥ 2 the sphere Sn is simply connected according to
Proposition 1.28, and Proposition 1.26 implies

π1(Pn(R))' Deck(pn)' Z2,q.e.d.

Proposition 1.31 (Rotation group and real projective space). The topological
group SO(3,R) and the real projective space P3(R) are homeomorphic

SO(3,R)' P3(R).

Proof. i) SO(3,R) as a set of rotations: Consider a unit vector v ∈ R3 and denote
by Rv,θ the right-handed rotation of R3 around the axis v by the angle θ in the
plane orthogonal to v. Choose an orthonormal basis (u1,u2) of the orthogonal plane
such that the family (u1,u2,v) is a right-handed orthonormal system. By possibly
changing v to −v and simultaneously interchanging u1 and u2 one ensures 0≤ θ ≤
π . For any rotation by an angle θ distinct from 0 and from π the attached rotation
matrix Rv,θ ∈ SO(3,R) with 0 < θ < π is uniquely determined.

Conversely, we start with a matrix A ∈ SO(3,R). To find the corresponding rota-
tion axis we seek an eigenvalue λ = 1 of A: The characteristic polynomial pchar(T ) ∈ C[T ]
of A has real coefficients. Therefore its eigenvalues are either real or appear in pairs
of complex conjugates. The orthogonality of A implies |λ | = 1 for any eigenvalue.
The product of all eigenvalues satisfies

λ1 ·λ2 ·λ3 = det A = 1.
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As a consequence, either all three eigenvalues are real, or one eigenvalue is real and
the two other are complex conjugate. In both cases, at least one eigenvalue λ = 1
exists. We choose a unit vector v as corresponding eigenvector v. Due to the or-
thogonality of A ∈ SO(3,R) the matrix A maps the orthogonal plane of v to itself.
The restriction of A to this plane is a rotation Rv,θ by an angle θ ∈ [0,π] around the
axis v.

ii) 3-dimensional rotations are elements of B3: Denote by

B3(π) := {u ∈ R3 : ‖u‖ ≤ π}

the solid ball with radius π in R3. Due to the preliminary considerations we obtain
a surjective map

Φ : B3(π)→ SO(3,R),u 7→

{
Rû,‖u‖ u 6= 0, û := u/‖u‖
1 u = 0

The restriction to the interior

Φ |B3(π)◦ : B3(π)◦→ SO(3,R)

is injective. On the boundary of B3(π) the map Φ identifies antipodal points:
If u ∈ ∂B3(π) then

Φ(u) = Φ(−u).

As a consequence, the rotations from SO(3,R) correspond bijectively to the union of
all interior points of B3(π) with all pairs of antipodal points from the boundary ∂B3(π).

iii) The ball (B3/∼) as projective space P3(R): Here and in the rest of the proof
the symbol ∼ denotes the equivalence relation which on the boundary identifies
antipodal points. Consider the canonical projection

p3 : S3→ P3(R)' S3/Z2.

If we restrict the projection to the closed upper hemisphere

D3 ⊂ S3 ⊂ R4

and identify antipodal points on the boundary ∂D3 then p3 induces a homeomor-
phism

(D3/∼) '−→ P3(R).

Because

• D3 is homeomorphic to the ball B3(1)
• and the homeomorphism is compatible with the equivalence relation ∼

we obtain

SO(3,R)' (B3(π)/∼)' (B3(1)/∼)' (D3/∼)' P3(R), q.e.d.
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Definition 1.32 (Continuous fibre bundle). Consider a topological space F . A con-
tinuous map p : E→ B between two topological spaces is named continuous fibre
bundle with typical fibre F , using the notation

F ↪−→ E
p−→ B,

if each point b ∈ B has an open neighbourhood U together with a homeomorphism

φ : p−1(U)
'−→U×F

such that the following diagram commutes

p−1(U) U×F

U

φ

p prU

In particular, any covering projection p : E → B of a connectd space B is a fibre
bundle with fibre F = p−1(b0) for an arbitrary point b0 ∈ B. We shall see more
examples in Chapter 2.

The fundamental tool for the computation of homotopy groups is the long exact
homotopy sequence of fibre bundles.

Theorem 1.33 (Homotopy sequence of fibre bundles). Consider a continuous fi-
bre bundle

F ↪−→ E
p−→ B.

Then a long exact sequence of groups (n≥ 1) and pointed sets (n = 0) exists:

...→ π2(B,∗)→ π1(F,∗)→ π1(E,∗)→ π1(B,∗)→ π0(F,∗)→ π0(E,∗)→ π0(B,∗)





Chapter 2
Basic concepts from Lie group theory

In this chapter the base field is either K= R or K= C.

2.1 Analytic manifolds

The following definition generalizes the concept of an analytic function of one vari-
able defined on an open subset U ⊂K of the base field.

Definition 2.1 (Analytic map of several variables). Consider an open subset U ⊂Kn.

1. A function
f : U →K

is K-analytic if any point z∈U has an open neightbourhood V ⊂U such that f |V
develops into a convergent power series around z, i.e. for all w ∈V

f (w)= ∑
ν∈Nn

cν ·(w−z)ν = ∑
ν=(ν1,...,νn)∈Nn

cν ·(w1−z1)
ν1 ·, ..., ·(wn−zn)

νn ,cν ∈K.

2. A map
f = ( f1, ..., fm) : U →Km

is K-analytic if each component function

fi : U →K, i = 1, ...,m,

is K-analytic.

A synonym for C-analytic map is holomorphic map.

Definition 2.2 (Analytic structure and analytic manifold). Consider a topological
space X .

31
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1. A K-analytic atlas for X is a family

A = (φi : Ui→Vi)i∈I

of homeomorphisms, named charts, onto open subsets Vi ⊂ Kni , with Ui ⊂ X
open and X =

⋃
i∈I Ui, such that all chart transformations

φi ◦φ j
−1|φ j(Ui∩U j)→ φi(Ui∩U j)⊂Kni

are K-analytic maps. The component functions of a chart φ = (φ1, ...,φn) are
named coordinate functions.

2. Two K-analytic atlases A1 and A2 are compatible, if their union A1 ∪A2 is
also a K-analytic atlas. A K-analytic structure on the topological space X is an
equivalence class of K-analytic atlases with respect to the compatibility relation.

3. A topological space X together with a K-analytic structure is named a K-analytic
manifold. If x ∈ X and φ : U → V is a chart with x ∈U and V ⊂ Kn open, then
the number n ∈ N is the dimension of X at x, denoted dimxX = n.

In case K= C the manifold is named a complex manifold.

A chart around a point x ∈ X is a chart

φ : U →V ⊂Kn

with x ∈U and φ(x) = 0 ∈Kn.

We do no require that an analytic manifold is a Hausdorff space. But an analytic
group structure, as it will be defined in Definition 2.16, implies that the underlying
topological space is a Hausdorff space.

Definition 2.3 (Analytic functions and analytic maps between manifolds). Con-
sider a K-analytic manifold.

1. A map
f : V →Km,V ⊂ X open,

is analytic if for any chart φ : U →Kn of X the composition

f ◦φ
−1 : φ(V ∩U)→Km

is an analytic map in the sense of Definition 2.1.
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2. If Y is a second K-analytic manifold then a continuous map

f : X → Y

is analytic if for any chart
ψ : W →Km

of Y the composition
ψ ◦ f : f−1(W )→ Km

is an analytic map.

Note: Requiring continuity of f in the second part of the definition is necessary
to conclude that f−1(W )⊂ X is open.

Again, if K= C then analytic maps are named holomorphic.

Definition 2.4 (Germ of an analytic function). Consider a K-analytic manifold X
and a point x ∈ X . Two analytic functions

fi : Ui→K, i = 1,2,

defined in open neighbourhoods Ui ⊂ X of x are equivalent with respect to x if an
open neighbourhood V ⊂U1∩U2 of x exists with

f1|V = f2|V.

The set of equivalence classes equipped with the induced ring-structure is denoted
by OX ,x and named the ring of germs of analytic functions at x ∈ X or the local ring
of X at x.

Remark 2.5 (Local ring). . In the case of the complex 1-dimensional analytic mani-
fold X = C and the origin 0 ∈ C we have

OC,0 = C< z >

the ring of convergent power series in one complex variable with expansion point
the origin. Apparently, for any other expansion point z0 ∈C we have the isomorphy

OC,z0 = C< z− z0 >' C< z > .

More general: The local ring of any K-analytic manifold X at a point x ∈ X
with dimxX = n is isomorphic to K < z1, ...,zn >, the ring of convergent power se-
ries in n variables. Each of these power series has a positive convergence radius. But
its value depends on the power series.
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Definition 2.6 (Tangent space of derivations). Consider a K-analytic manifold X
and a point x ∈ X .

1. The tangent space of X at x is the K-vector space

TxX = Der(OX ,x,K)

of K-linear derivations of OX ,x into the base field K, i.e. of K-linear maps

D : OX ,x→K

satisfying the product rule

D( f ·g) = D( f ) ·g(x)+ f (x) ·D(g), f ,g ∈ OX ,x.

2. Consider an analytic map F : X → Y with an analytic manifold Y . The tangent
map of F at a point x ∈ X with y := F(x) is the induced K-linear map

TxF : TxX → TyY,D 7→ Tx f (D),

with (Tx(D))( f ) := D( f ◦F), f ∈ OY,y.

Note: The product rule implies

D(1) = D(1 ·1) = D(1)+D(1),

hence D(1) = 0 and by K-linearity D(a) = 0 for all a ∈K.

A derivation D ∈ TX ,x is defined on the germs of analytic functions. Because
the definition uses representatives of the germ we will often write D( f ) instead
of D([ f ]) for a germ [ f ] ∈ OX ,x.

Proposition 2.7 (Algebraic characterisation of TxX). Consider a K-analytic manifold
and a point x ∈ X and assume dimxX = n. Denote by

m := {[ f ] ∈ OX ,x : f (x) = 0}

the maximal ideal in OX ,x of all germs vanishing at x.

1. Restriction defines a K-linear map

TxX = Der(OX ,x,K)→ HomK(m/m2,K)

which is an isomorphism of vector spaces.
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2. Each chart φ of X around x defines a K-linear isomorphism

Φ : OX ,x
'−→K< z1, ...,zn >, [ f ] 7→ f ◦φ

−1,

onto the K-algebra of convergent power series with expansion point φ(0) = 0.
The restriction of Φ on m induces a K-linear isomorphism of vector spaces

m/m2 '−→ spanK < z1, ...,zn >'Kn.

In particular dim TxX = n.

3. For i = 1, ...,n define the i-th derivational derivative at x with respect to the
chart φ around x as

Di :=
∂

∂φi
: OX ,x→K, [ f ] 7→ Di([ f ]) :=

∂ ( f ◦φ−1)

∂ zi
(0),

with z = (z1, ...,zn) the coordinates on Φ(U)⊂Kn.

The derivational derivatives (Di)i=1,...,n are a basis of the tangent space TxX.

Proof. The ideal m⊂OX ,x is maximal because the quotient

OX ,x/m
'−→K, f 7→ f (0),

is a field. The ideal comprises all non-units, i.e. invertible elements of OX ,x. There-
fore m is the unique maximal ideal of OX ,x and OX ,x is a local ring.

ad 1) As a K-vector space the local ring decomposes as

OX ,x
'−→K⊕m, f 7→ ( f (0), f − f (0)).

• With respect to this decomposition any derivation D∈Der(OX ,x,K) satisfies D|K= 0.
Due to the product rule also

D|m2 = 0,

i.e. D induces a linear map D such that the following diagram commutes

m K

m/m2

D|m

π D

Here π denotes the canonical projection.
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• For the opposite direction consider a K-linear map

δ : m/m2→K.

Extend the linear map
d := δ ◦π : m→K

to a linear map
D : OX ,x 'K⊕m→K,(a,m) 7→ d(m).

We claim
D( f ·g) = D( f ) ·g(0)+ f (0) ·D(g)

for all f ,g ∈ OX ,x. The proof has to consider the following cases:

– f ,g ∈K are constant functions: Then both sides of the equation vanish.

– f ,g ∈m: Again both sides of the equation vanish.

– f ∈K and g ∈m: Then the left-hand side

D( f ·g) = f ·D(g)

by linearity. While the right-hand side

D( f ) ·g(0)+ f (0) ·D(g) = 0 ·g(0)+ f (0) ·D(g) = f ·D(g)

because D|K= 0.

ad 3) The directional derivatives Di, i = 1, ...,n, are derivations. They are linearly
independent: If φ = (φ1, ...,φn) then

Di(φ j) = δi j.

Hence (Di)i=1,...,n is a basis of TxX .

The tangent map at the point x of an analytiv map F is the Jacobi-matrix of F
with respect to charts around x and F(x).

The local properties of an analytic map at a given point express themselves in
corresponding properties of the tangent map.

• A local isomorphism maps a sufficiently small open neighbourhood isomorphi-
cally onto a neighbourhood of the image point,

• an immersion maps a sufficiently small neighbourhood isomorphically onto a
coordinate slice of the image point,

• and a submersion splits a sufficiently small neighbourhood of a point in the do-
main of definition as a product and projects the product onto a neighbourhood of
the image point.
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Definition 2.8 introduces these concepts in a formal way, while Proposition 2.9 re-
lates them to the rank of the tangent map.

Definition 2.8 (Local isomorphism, immersion, submersion). Consider an ana-
lytic map

f : X → Y

between two K-analytic manifolds and a point x ∈ X . The map f is named

• local isomorphism at x if open neighbourhoods

U of x in X ,V of f (x) in Y

exist such that the injections

jU : U ↪−→ X , jV : V ↪−→ Y

extend to the commutative diagram

X Y

U V

f

jU
'

f |U

jV

• immersion at x if open neighbourhoods

U of x in X ,V of f (x) in Y,W of 0 in Km

exist such that the injections

jU : U ↪−→ X , jV : V ↪−→ Y,

and the embedding onto a coordinate slice

j = [U '−→U×{0} ↪−→U×W ]

extend to a commutative diagram
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X Y

U V

U×W

f

f |U
j

jU jV

'

• submersion at x if open neighbourhoods

U of x in X ,V of f (x) in Y,W of 0 in Km

exist such that the injections

jU : U ↪−→ X , jV : V ↪−→ Y,

and the projection
prV : V ×W →V

extend to a commutative diagram

X Y

U V

V ×W

f

f |U
'

jU jV

prV

• respectively local isomorphism, immersion, submersion if the corresponding lo-
cal property holds for each point x ∈ X .

Proposition 2.9 (Local isomorphism, immersion, submersion). Consider an an-
alytic map

f : X → Y

between two K-analytic manifolds, a point x ∈ X with y := f (x), and the tangent
map

Tx f : TxX → TyY.

At x the map f is respectively
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• a local isomorphism iff the tangent map Tx f is bijective.

• an immersion iff the tangent map Tx f is injective.

• and a submersion iff the tangent map Tx f is surjective.

The proof uses the Inverse Mapping Theorem, see [33, Part II, Chap. III.9 and
III.10].

The composition of two immersions is an immersion. The composition of two
submersions is a submersion.

Proposition 2.10 (Criteria for analyticity of maps). Consider analytic manifolds X ,Y,Z
and an analytic map f : X → Y .

1. Assume f to be an immersion. For a continous map g : Z→ X then:

g analytic ⇐⇒ f ◦g analytic.

Z X

Y

g

f ◦g f

2. Assume f to be a submersion. For a continous map g : Y → Z then:

g analytic ⇐⇒ g◦ f analytic.

X

Y Z

g◦ ff
g

Proof. 1) Assume that the composition f ◦g is analytic. The question is local in Z.
We choose open sets

U ⊂ X ,V ⊂ Y,W ⊂Kn

such that the restriction f |V is an embedding. We set U ′ := g−1(U) and denote
by g′ := g|U ′ the restriction. Due to the definition of an immersion we obtain a
commutative diagram:
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Z X Y

U ′ := g−1(U) U V

U×W

g f

g′ f |V

j h '

By assumption the map h ◦ j ◦ g′ is analytic. As a consequence j ◦ g′ is analytic,
which implies that

g′ = prU ◦ j ◦g′

is analytic with prU : U×W →U .

2) Assume that the composition g◦ f is analytic. The question is local in X . We
choose open sets

U ⊂ X ,V ⊂ Y,W ⊂Kn

such that the restriction f |U is a projection. Due to the definition of a submersion
the following diagram commutes:

X Y Z

U V

V ×W

f g

f |U
g′ := g|V

' h prV

By assumption the map g′ ◦ prV ◦ h is analytic. As a consequence the map g′ ◦ prV
is analytic, which implies

g′ = g′ ◦ prV ◦ i

analytic with
i : V →V ×W, i(x) = (x,∗),q.e.d.

Corollary 2.11 (Uniqueness of analytic structure defined by immersions and
submersions).

1. Consider an analytic manifold Y , a topological space X, and a continous map
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j : X → Y.

Then at most one analytic structure A exists on X such that

j : (X ,A )→ Y

is an immersion.

2. Consider an analytic manifold X, a topological space Y , and a surjective contin-
uous map

f : X → Y.

Then at most one analytic structure A exists on Y such that

f : X → (Y,A )

is a submersion.

Proof. ad 1) Assume two analytic structures (X ,A1) and(X ,A2) which both satisfy
the above condition. The composition

(X ,A1)
id−→ (X ,A2)

f−→ Y

is analytic because (X ,A1) satisfies the above condition. And because (X ,A2) sat-
isfies the above condition Proposition 2.10 implies that the map

(X ,A1)
id−→ (X ,A2)

is analytic. Analogously one proves that the map

(X ,A2)
id−→ (X ,A1)

is analytic.

ad 2) Analogously, q.e.d.

Proposition 2.12 (Immersion and coordinate slice). Consider an analytic mani-
fold Y and a topological space X together with a continous map

f : X → Y.

Then the following properties are equivalent:

1. Immersion: The topological space X has an analytic structure such that f : X → Y
is an immersion.
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2. Zero set of cooordinate functions: For each point x ∈ X a neighbourhood U ⊂ X
of x and a chart of Y

φ = (φ1, ...,φn) : V →W ⊂Kn

in a neighbourhood V ⊂ Y of f (x) exist, such that f (U)⊂V and

f |U : U → f (U)

is a homeomorphism and

f (U) = {y ∈V : φm+1(y) = ...= φn(y) = 0}

for a suitable integer 0≤ m≤ n.

Fig. 2.1 Immersion

Proof. 1) =⇒ 2) Assume that f is an immersion at a point x ∈ X . According to
Proposion 2.9 a commutative diagram with the properties from Definition 2.8 exists:
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X Y

U V

U×W

f

f |U

j

jU jV

'

with
j : U →U×W,x 7→ (x,∗).

Apparently
f (U)' j(U) =U×{0}

is the zero set of coordinate functions of a chart of Y defined on V = U ×W . The
bijective continuous map

j : U → j(U)

is open: For any open subset U ′ ⊂U holds

j(U ′) =U ′×{0}= (U ′×W )∩ j(U)

proving that j(U ′) is an open subset of j(U). Hence j is a homeomorphism onto its
image and the same holds for f |U .

2) =⇒ 1): Consider a point x ∈ X . We define a chart for X

ψ : U →Km

around x ∈U . By assumption a chart of Y exists

φ = (φ1, ...,φm,φm+1, ...,φn) : V →Kn

around f (x) ∈V with

f (U) = {y ∈V : φm+1(y) = ...= φn(y) = 0}.

The set
V0 := prKm(φ(V )∩ (Km×{0}))⊂Km

is open. The composition of the two homeomorphisms

ψ := [U
f |U−−→ f (U)

(φ1,...,φm)−−−−−−→V0]

is a homeomorphism. We provide U ⊂ X with the analytic structure such that
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ψ : U →V0

becomes an analytic isomorphism. The embedding

j : V0 'V0×{0} ↪→V

is an immersion. Therefore also the composition

f |U = j ◦ψ : U −→V

has injective tangent map, i.e. is an immersion.

We obtain an open covering U = (Ui)i∈I of X and for each i ∈ I an analytic
structure Ai on Ui such that

f |Ui : (Ui,Ai)→ f (Ui)

is an immersion. For each intersection Ui j :=Ui∩U j both compositions

(Ui j,Ai|Ui j) ↪→ (Ui,Ai)−→ Y

and
(Ui j,A j|Ui j) ↪→ (U j,A j)−→ Y

are immersions. According to Corollary 2.11 both analytic structures on Ui j are
equal. Therefore the local analytic structures (Ai)i∈I induce a global analytic struc-
ture (X ,A ) such that f : (X ,A )→ Y is an immersion, q.e.d.

A submanifold of a manifold Y is locally the zero set of coordinate functions
of Y .

Definition 2.13 (Submanifold). Consider an analytic manifold Y . A submanifold X
of Y is a subset X ⊂ Y equipped with the subspace topology such that the injection

j : X ↪−→ Y

satisfies condition 2) (Zero set of cooordinate functions) from Proposition 2.12,
i.e. X is locally the zero set of coordinate functions of Y.

If X ⊂ Y is closed then X is named a closed submanifold of Y .

A submanifold is locally closed, but in general not closed. Any submanifold of
an analytic manifold is an analytic manifold itself. The specific case when taking the
empty set of cooordinate functions show that any open subset of X is a submanifold.

A main theorem from the local theory of analytic manifolds is the Rank Theorem.
It contains the Inverse Mapping Theorem as a particular case. We say in abbreviated
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form: An analytic map f : X → Y between two manifolds has constant rank p ∈ N
iff each x0 ∈ X has a neighbourhood U in X with rank Tx f = p for all x ∈U .

Theorem 2.14 (Rank Theorem). Consider an analytic map

f : X → Y

between two analytic manifolds. Assume a distinguished point x0 ∈ X such that the
restriction

f |W : W → Y

has constant rank p on a neighbourhood W ⊂ X of x0.

Then exist neighbourhoods U ⊂W of x0, V ⊂ Y of f (x0), and a p-dimensional
submanifold B of V such that the restriction of f decomposes as

f |U = [U s−→ B
i

↪−→V ]

with

• a submersion s : U � B
• and an immersion i : B ↪−→V.

If f has constant rank on X then each fibre

Xy := f−1(y)⊂ X ,y ∈ Y,

is a submanifold. At a point x ∈ Xy its tangent space is the subspace of vertical
tangent vectors

TxXy = ker [Tx f : TxX → TyY ].

For the proof see [33, Part II, Chap. III.10].

The conclusion of the Rank Theorem is local in x ∈ X . Therefore V as well as
the submanifold B⊂V may depend on x, even if x varies in a fixed fibre.

The following theorem of Godement deals with the subtle task to provide the set
of equivalence classes of an analytic equivalence relation with a suitable analytic
structure.

Theorem 2.15 (Godement’s theorem about analytic equivalence relations). Con-
sider an analytic manifold X, an equivalence relation R ⊂ X ×X, and the set of
equivalence classes Y := X/R with the canonical projection

p : X → Y.

Then are equivalent:
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1. On Y exists an analytic structure such that p : X → Y becomes a submersion.

2. The equivalence relation R ⊂ X ×X is a submanifold and pr2|R : R→ X is a
submersion.

If these conditions are satisfied then:

R⊂ X×X closed ⇐⇒ Y is a Hausdor f f space.

In particular, the equivalence relation R is symmetric. Therefore the second pro-
jection pr2 : R→ X is a submersion iff the first projection pr1 : R→ X is a submer-
sion.

For the proof see [33, Part II, Chap. III.12].

2.2 Lie groups

Definition 2.16 (Lie groups and morphisms).

1. A K-Lie group G is a group which is also a K-analytic manifold such that its
group multiplication

m : G×G→ G,(x,y) 7→ x · y := m(x,y),

is an analytic map. The neutral group element is denoted by e ∈ G.

2. A morphism of Lie groups
f : G→ H

is an analytic map which is also homomorphism of groups.

Note: We only require that the multiplication is analytic. Lemma 2.17 shows that
the analyticity of the inversion is a consequence of the Inverse Mapping Theorem.

Lemma 2.17 (Analyticity). Consider a Lie group G. Then each of the following
maps is analytic:

1. Inversion:
σ : G→ G,g 7→ g−1,

For each arbitrary but fixed element g ∈ G

2. Left translation
Lg : G→ G,h 7→ g ·h,
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3. Right translation
Rg : G→ G,h 7→ h ·g,

4. Inner automorphism
Ad g : G→ G,h 7→ g ·h ·g−1,

Proof. The proof of part 2) - 4) is obvious. In order to prive part 1) we consider the
analytic map

θ : G×G→ G×G,(x,y) 7→ (x,x · y).

Its tangent map
T(x,y)θ : T(x,y)(G×G)→ T(x,y)(G×G)

at the point (x,y) ∈ G×G has the matrix - the columns corresponding to the com-
ponents of θ -

T(x,y)θ =

1 T 1
(x,y)m

0 T 2
(x,y)m


with

T 1
(x,y)m = TxRy f or Ry : G→ G,x 7→ x · y

and
T 2
(x,y)m = TyLx f or Lx : G→ G,y 7→ x · y.

The map θ is bijective, it’s inverse is

θ
−1 : G×G→ G×G,(x,z) 7→ (x,x−1 · z).

Because the tangent map T(x,y)θ is an isomorphism the map θ−1 is analytic due to
Proposition 2.9. As a consequence, the composition

σ = [G
j−→ G×G θ−1

−−→ G×G
pr2−−→ G]

with
j(x) := (x,e)

is analytic.

Definition 2.18 (Lie subgroup). Consider a Lie group G. A subset H ⊂G is named
a Lie subgroup if H is both,

• in the algebraic sense a subgroup of the group G and
• in the sense of analysis a submanifold of the manifold G

In these notes we use the term Lie subgroup in the same sense as Bourbaki,
cf. [4, Chap. III, §1.3]. Some other textbooks, e.g. [9, Def. 1.10.1], use the term with
a different meaning. We will not use the term analytic subgroup because this term is



48 2 Basic concepts from Lie group theory

used with different meanings in the literature. Later on we will introduce a second
type of subgroup, called integral subgroup by Bourbaki.

Having defined the concepts of a Lie group morphism and of a Lie subgroup we
are confronted with the following questions:

1. Is a Lie subgroup always a Lie group?
2. Is the kernel of a morphism f of Lie groups a Lie subgroup of the domain of f ?
3. Is the image of a morphism f of Lie groups a Lie subgroup of the codomain of f ?
4. Is the quotient G/H of a Lie group G by a normal Lie subgroup H a Lie group?

Is the corresponding projection

π : G→ G/H

a morphism of Lie groups?
5. Which properties for an analytic morphism f follow from the algebraic restric-

tion to be a morphism of Lie groups?

We shall obtain the following answers:

1. The answer is affirmative: If a subset H ⊂G is a subobject with respect to all three
mathematical structures Analysis, Topology, and Algebra, then these properties
are compatible. They combine to the structure of a Lie group H such that the
injection H ↪−→G is a morphism of Lie groups, see Lemma 2.19. Moreover, a Lie
subgroup H ⊂ G is automatically closed in G, see Proposition 2.24.

On the contrary, even if a Lie group H is a subobject H ⊂ G in the sense of
algebra and in addition the inclusion H ↪−→G is a morphism of Lie groups, then H
is not necessarily a subobject neither in the sense of analysis nor in the sense of
topology. For a counter example see Example ??.

2. The answer is affirmative: See Corollary 2.22.

3. The answer is negative: See Example ??.

4. The answer is affirmative: See Proposition 2.24.

5. A surjective Lie group morphism f is an analytic fibre bundle with fibre the
kernel ker f , see Theorem 2.32.

Lemma 2.19 (Lie subgroups are Lie groups). Consider a Lie subgroup H of a Lie
group G. Then H is a Lie group itself.
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Proof. If j : H −→ G denotes the injection, then the following diagram commutes

H×H G×G

H G

j× j

mH

j
mG

The map mH is continous because for an open set U ⊂ G the set

m−1
H (H ∩U) = (H×H)∩m−1

G (U)

is open in H×H. From
j ◦mH = mG ◦ ( j× j)

follows the analyticity of j ◦mH . Proposition 2.10 implies that the map mH is ana-
lytic because j is an immersion, q.e.d.

Lemma 2.20 (Locally compactness and σ -compactness in Lie groups). Any Lie
group G is a Hausdorff space and even locally compact. Any connected component
of G is σ -compact.

Proof. The singleton {e} ⊂ G is closed because for any chart φ : U →Kn around e

e = φ
−1(0).

Corollary 1.6 implies that G is a Hausdorff space. Any Hausdorff manifold is locally
compact because a chart is a local homeomorphism onto an open subset of Kn.

Consider the connected component Ge of e∈G. Proposition 1.11 and Proposition 1.9
show the existence of a compact neighbourhood K of e in Ge with

Ge =
⋃

n∈N
Kn.

Here Kn = K · ... ·K ⊂Ge denotes the k-fold product with respect to the group multi-
plication. Each set Kn ⊂Ge is compact because the canonical map from the compact
Cartesian product Kn

Kn→ Kn

is continous and surjective. As a consequence Ge and any connected component
of G is σ -compact, q.e.d.

Proposition 2.21 (Lie group operation). Consider a Lie group G, an analytic
manifold X, and an analytic left G-operation

φ : G×X → X ,(g,x) 7→ g.x.
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Then for each point x ∈ X:

1. The orbit map
f := φx : G→ X ,g 7→ g.x,

has constant rank.

2. The isotropy group
Gx := {g ∈ G : g.x = x}

is a Lie subgroup of G.

Proof. 1) For arbitrary but fixed h ∈ G the commutative diagram of analytic maps

G X g g.x0

G X h ·g (h ·g).x0

f

Lho

f

=: ψo

induces the commutative diagram between tangent spaces with g := e

TeG Tx0X

ThG Th.x0X

Te f

o TeLh

Th f

o Txψ

.

In particular,
rk Te f = rk Th f .

2) The commutative diagram

Gx G

{x} X

f{x} f

.

represents the isotropy group as the fibre of an analytic map with constant rank.
Therefore Theorem 2.14 proves the claim, q.e.d.

As a corollary we obtain a statement about the kernel of a Lie group morphism.
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Corollary 2.22 (Lie group morphism). Consider a Lie group morphism

f : G→ H.

1. The morphism f has constant rank.

2. The subgroup ker f ⊂ G is a Lie subgroup of G.

Proof. ad 1) One considers the analytic operation

φ : G×H→ H,(g,h) 7→ f (g) ·h,

and applies Proposition 2.21 to the orbit map of the neutral element e ∈ H

G→ H,g→ f (g).

ad 2) ker f = Ge for the analytic operation φ from part 1), q.e.d.

Example 2.23 (Examples of Lie groups).

1. The additive group (Kn,+) of a finite-dimensional K-vector space is a K-Lie
group.

2. The linear group (GL(n,K), ·) is a Lie group: Being an open subset of the ana-
lytic manifold Kn2

it is an analytic manifold. The group multiplication and taking
the inverse are analytic maps with respect to the coordinates from Kn2

.

Lie subgroups of GL(n,K) are named matrix groups.

3. The special linear group

SL(n,K) := ker [GL(n,K)
det−→K∗]

is a Lie subgroup according to Corollary 2.22, in particular a matrix group.

4. Consider the Lie group GL(n,K) as a real Lie group and consider the R-analytic
operation

GL(n,K)×GL(n,K)→ GL(n,K),(A,B) 7→ A ·B ·A∗.

Here A∗ := A> denotes the Hermitian conjugate.

According to Proposition 2.21 the following isotropy groups of the neutral el-
ement e = 1 ∈ GL(n,K) are Lie subgroups of the real Lie group GL(n,K), in
particular real matrix groups.
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• K= R: O(n,R) = GL(n,R)e (Orthogonal group)

• K= C: U(n) = GL(n,C)e(Unitary group).

5. Consider a finite-dimensional associative K-algebra A with product

m : A×A→ A,(x,y) 7→ x · y.

Then its group of automorphisms

Aut(A) := {φ : A→ A|K− linear automorphism with φ(x · y) = φ(x) ·φ(y)}

is a K-Lie group with respect to the composition as multiplication

Aut(A)×Aut(A)→ Aut(A),(φ1,φ2) 7→ φ1 ◦φ2.

In order to prove this claim consider the Lie group

G := {φ : A→ A|K− linear automorphism} ' GL(n,K)

with n = dimKA. For φ ∈ G

φ ∈ Aut(G) ⇐⇒ m◦ (φ ×φ) = φ ◦m ⇐⇒ m = φ ◦m◦ (φ ×φ)−1

On the K-vector space Bil(A×A,A) of K-bilinear maps operates the group G
according to

G×Bil(A×A,A)→ Bil(A×A,A),(φ , f ) 7→ φ · f := φ ◦ f ◦ (φ ×φ)−1.

The isotropy group Gm = Aut(A) is a Lie subgroup of G'GL(n,K) according to
Proposition 2.21. Due to Lemma 2.19 the group Aut(A) is a matrix group, q.e.d.

The following Proposition deals with subgroups and quotients of a Lie group.
The issue is more challenging than the other issues of this section. We will use
Godement’s theorem.

Proposition 2.24 (Lie subgroups and quotients). Consider a Lie group G and a
Lie subgroup H ⊂ G. Then:

1. There exists an analytic structure on G/H such that the canonical projection

π : G→ G/H

is a submersion.

2. The subgroup H ⊂ G is closed and the quotient G/H is a Hausdorff space.
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3. If H ⊂ G is a normal subgroup then the quotient G/H is a Lie group and π is a
morphism of Lie groups.

Proof. 1. The map π induces the equivalence relation R⊂ G×G defined as

R := {(x,y) ∈ G×G : π(x) = π(y)}= {(x,y) ∈ G×G : y−1x ∈ H}.

We want to apply Godement’s Theorem 2.15. We have to verify two precondi-
tions:

• The analytic map
ψ : G×G→ G,(x,y)→ y−1x,

is a submersion: For an arbitrary but fixed element y0 ∈ G consider the injec-
tion

j : G→ G×G,x 7→ (x,y0),

and the following commutative diagram

G G×G

G

j

Ly−1
0
' ψ

The composition
ψ ◦ j = Ly−1

0

induces the composition of tangent maps

T(x,y0)ψ ◦Tx j = TxLy−1
0
.

The tangent map TxLy−1
0

is an isomorphism. Therefore T(x,y0)ψ is surjective
and ψ is a submersion according to Proposition 2.9. Also the restriction to H
according to the commutative diagram

R G×G

H G

ψH ψ

defines a submersion ψH and provides

R = ψ
−1(H)⊂ G×G
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with the structure of a submanifold.

• In addition, we have to check that the restriction

pr2|R : R→ G

is a submersion: The following diagram

G×H

R G

p prG

pr2|R

with the submersion pr1 and the well-defined analytic map

p : G×H→ R,(g,h) 7→ (gh,g)

commutes. Considering the induced tangent maps shows that also

pr2|R : R→ G

is a submersion.

Now Theorem 2.15 provides an analytic structure on

G/H ' G/R

such that the canonical map
π : G→ G/H

is a submersion.

2. Because G/H is a manifold the singleton {π(e)} ⊂ G/H is closed. Continuity
of π implies that

H = π
−1(π(e))⊂ G

is closed. Proposition 1.5 implies that G/H is a Hausdorff space.

3. Consider the commutative diagram with multiplication as horizontal maps

G×G G

G/H×G/H G/H

mG

π×π

mG/H

π
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Because H ⊂ G is a normal subgroup, the map mG/H is continuous according to
Proposition 1.5. Because π×π is a submersion and

mG/H ◦ (π×π) = π ◦mG

is analytic, also mG/H is analytic due to Proposition 2.10, q.e.d.

2.3 Analytic bundles

First we introduce the analytic version of a fibre bundle. It is obtained from the con-
tinuous version in Definition 1.32 by requiring in addition that all maps are analytic.

Definition 2.25 (Analytic bundle).

1. Consider an analytic manifold H. An analytic map p : X → Y between two ana-
lytic manifolds is named analytic fibre bundle with typical fibre H or analytic H-bundle,
using the notation

H ↪−→ X
p−→ Y,

if each point y ∈Y has an open neighbourhood U together with a bundle chart or
local trivialization, i.e. an analytic isomorphism

φ : p−1(U)
'−→U×H

such that the following diagram commutes

p−1(U) U×H

U

φ

p prU

2. Let H be a Lie group. A H-principal bundle

p : X → Y

is an analytic H-bundle
H ↪−→ X

p−→ Y

with the additional property: Y has an open covering U = (Ui)i∈I with bundle
charts
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φi : p−1(Ui)
'−→Ui×H, i ∈ I,

such that for each pair i, j ∈ I the corresponding transition map derives from the
group multiplication, i.e. a map

h ji : Ui∩U j→ H

exists such that the transition map has the form

φ j ◦ (φ−1
i |(Ui∩U j)×H) : (Ui∩U j)×H→ (Ui∩U j)×H

(y,h) 7→ (y,h ji(y) ·h).

Note that the transition map hi j operates on H by left-multplication with hi j(y).

In case of a principal bundle the maps hi j are analytic, because they are the com-
position

h ji = [Ui∩U j
α−→Ui∩U j×H

φ j◦φ−1
i−−−−→Ui∩U j×H

prH−−→ H]

with α(y) = (y,e) for all y ∈Ui∩U j.

Our next aim is to strengthen Proposition 2.24: We shall show that a surjective
Lie group morphism

f : G→ H

is a principal bundle with fibre the kernel of the morphism, see Theorem 2.32. In
order to derive this result we have to consider proper group operations.

Definition 2.26 (Proper map). A continuous map f : X → Y from a Hausdorff
space X into a locally compact space Y is proper if f−1(K) ⊂ X is compact for
any compact set K ⊂ Y .

Remark 2.27 (Proper map).

1. For a proper map f : X→Y also X is locally compact: Any x∈X has the compact
neighbourhood f−1(U) with U ⊂ Y a compact neighbourhood of f (x).

2. Any proper map f : X → Y is also closed, i.e. f (A) ⊂ Y is closed for any
closed A⊂ X :

Choose a covering (Ui)i ∈ I of Y by open sets with Ui⊂Y compact. Then ( f−1(Ui))i∈I
is a covering of X by open sets with

Ki := f−1(Ui)⊂ f−1(U)⊂ X

compact, being a closed subset of a compact set. Each restriction
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fi := f |Ki : Ki→Ui

is a proper map.

Hence for the closed set A⊂ X and for each i ∈ I:

A∩Ki ⊂ Ki

is compact, and

fi(A∩Ki) = f (A∩Ki) = f (A)∩Ui ⊂Ui

is compact, in particular closed.

Eventually we prove the general result: Consider a family (Ci)i∈I of subsets Ci ⊂ Y
such that the family of interiors (C◦i )i∈I is a covering of Y. Then a subset B ⊂ Y
is closed if for all i ∈ I the subset

(B∩Ci)⊂Ci

is closed.

For the proof consider the complements

{B∩Ci =Ci \ (B∩Ci), i ∈ I.

Therefore it suffices to consider the dual statement making the assumption that
each

(B∩Ci)⊂Ci, i ∈ I,

is open in Ci. Then each
B∩C◦i

is open in C◦i and therefore also open in Y . As a consequence

B =
⋃
i∈I

(B∩C◦i )

is open in Y .

Definition 2.28 (Proper group operation). Consider a topological group H and a
locally compact space X. A right H-operation

X×H→ X ,(x,h) 7→ x.h,

is proper iff the map

θ : X×H→ X×X ,(x,h) 7→ (x.h,x),
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is proper.

Intuitively speaking Definition 2.28 implies: If for a fixed point x ∈ X the
translates h.x converge on the orbit then also a subsequence of the corresponding
group elements h converges in H. Note that a H-operation with compact X and
compact H is always proper.

Theorem 2.29 (Orbit space of a proper analytic operation). Consider a Lie
group H, an analytic manifold X, and an analytic right H-operation

Φ : X×H→ X

which is free and proper. Denote by X/H its orbit space, i.e. the set of equivalence
classes of the equivalence relation R⊂ X×X induced by Φ:

x1 ∼ x2 ⇐⇒ ∃ h : x1.h = x2.

Then an analytic structure exists on X/H such that the canonical map

p : X → X/H

is a H-principal bundle.

Note: Because Definition 2.25 requires that the transition maps of a principal bundle
operate from the left, we have to consider in Theorem 2.29 a right operation of H.
Then the two multiplications do not interfere with each other.

Proof. i) Injective immersion: We show that the map

θ := (Φ , prX ) : X×H→ X×X ,(x,h) 7→ (x.h,x),

is an injective immersion: First, the map is injective because the group operation Φ

is free. Secondly, we consider an arbitrary but fixed point x ∈ X×H. Denote by

f := Φx : H→ X ,h 7→ x.h,

the orbit map of x ∈ X . The tangent map of θ at (x,h) ∈ X×H is the block matrix

T(x,h)θ =

T 1
(x,h)θ T 2

(x,h)θ

1 0


with the upper rows the tangent map of the first component of θ , which is the orbit
map f . Therefore T 2

(x,h)θ = Th f . The lower rows of T(x,h)θ are the tangent map of
the second component of θ which is the projection prX : X×H→ X .
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Because the operation is free the map f is injective. It has constant rank according
to Proposition 2.21. Therefore f is an immersion due to Theorem 2.14 and T 2

(x,h)θ

is injective implying
rank T 2

(x,h) = dim H.

As a consequence, T(x,h)θ has maximal rank:

rank T(x,h)θ = rank 1+ rank T 2
(x,h) = dim X +dim H

which impllies that T(x,h) is injective. As a consequence θ is an immersion due to
Proposition 2.9.

ii) Applying Godement’s Theorem: Consider the commutative diagram

X×H X×X

R

X

θ

θ̃ jR

pr1 pr2

with the injection
jR : R ↪−→ X×X ,

providing R⊂ X×X with the subspace topology, and the restriction

θ̃ : X×H→ R, θ̃(x,h) := θ(x,h) = (x.h,x).

Next we verify that both assumptions of Godements Theorem 2.15 are satisfied.

• First consider the upper triangle: The map θ is continuous and proper. Therefore
the same holds for the restriction θ̃ which is also bijective by definition. Hence θ̃

is a homeomorphism according to Remark 2.27. We provide R with the analytic
structure transferred from X ×H via θ̃ . Then θ̃ is an analytic isomorphism. The
composition

jR = θ ◦ θ̃
−1 : R→ X×X

is an immersion due to part i), i.e.

R⊂ X×X

is a submanifold.
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• Secondly, consider the lower triangle: The map

pr2|R = pr2 ◦ jR = pr2 ◦θ ◦ θ̃
−1 = pr1 ◦ θ̃

−1 : R→ X

is a submersion.

According to Theorem 2.15 an analytic structure on X/R = X/H exists such that

p : X → X/R

is a submersion.

iii) Bundle charts: In order to show that p is an analytic H-bundle we construct
an atlas of bundle charts for p: Consider an arbitrary but fixed point y ∈ X/H.
Because p is a submersion an open subset U ⊂ X/H and on U an analytic section
against p exist, i.e. an analytic map

s : U → p−1(U)

with p◦ s = idU .

Fig. 2.2 Section against p

We claim that the analytic map
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ψ : U×H→ p−1(U),(y,h) 7→ s(y).h,

has an inverse φ which is a chart: Define the map

φ : p−1(U)→U×H,x 7→ (p(x),h).

Here h ∈ H is the unique element with

x = s(p(x)).h

The element h is well-defined because the group operation is free. Both maps ψ

and φ are inverse to each other, because

(φ ◦ψ)(y,h) = φ(s(y).h) = (y,h)

(ψ ◦φ)(x) = ψ(p(x),h) = s(p(x).h) = x.

In order to prove that φ is analytic, we consider the composition of the two maps

(s× id)◦φ = [p−1(U)
φ−→U×H s×id−−→ p−1(U)×H]

and
θ |(p−1(U)×H) : p−1(U)×H −→ p−1(U)× p−1(U),

an injective immersion due to part i). In particular, p−1(U)×H can be considered
via the restriction of θ a submanifold of p−1(U)× p−1(U).

The composition of these maps

θ |(p−1(U)×H)◦ (s× id)◦φ

is analytic: It maps

x = s(p(x)).h 7→ (p(x),h) 7→ (s(p(x)),h) 7→ (s(p(x)).h,s(p(x))) = (x,s(p(x))).

As a consequence the map
(s× id)◦φ

is continuous and even analytic according to Poposition 2.10. Therefore also

φ = (p× id)◦ ((s× id)◦φ)

is analytic.

iv) Transition maps: We finally show that the analytic H-bundle p is a H-principal
bundle. We choose an open covering (Ui)i∈I of Y with analytic sections

si : Ui→ p−1(Ui)
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against p und define the charts φi alike to part iii). We have to check the form of the
transition maps

φ j ◦φ
−1
i : (Ui∩U j)×H→ (Ui∩U j)×H.

Consider an arbitrary, but fixed point y ∈Ui∩U j. If for an element hi ∈ H

(φ j ◦φ
−1
i )(y,hi) = (φ j ◦ψi)(y,hi) = φ j(si(y).hi) = φ j(s j(y).h j) = (y,h j)

then h j ∈ H is the unique element with

s j(y).h j = si(y).hi.

If for a second element h′i ∈ H

(φ j ◦φ
−1
i )(y,h′i) = (y,h′j)

then h′j ∈ H is the unique element with

s j(y).h′j = si(y).h′i.

From
h′i = hi · (h−1

i ·h
′
i)

follows

s j(y).h′j = si(y).h′i = (si(y).hi).(h−1
i ·h

′
i) = (s j(y).h j).(h−1

i ·h
′
i) = s j(y).(h j ·h−1

i ·h
′
i)

i.e.
h′j = h j ·h−1

i ·h
′
i or h′j ·h′−1

i = h j ·h−1
i .

As a consequence the definition

h ji(y) := h j ·h−1
i = h′j ·h′−1

i

does not depend on the choice of hi or of h′i. It satisfies

h ji(y) ·hi = h j.

Varying y ∈Ui∩U j defines a map

h ji : Ui∩U j→ H,y 7→ h ji(y),

with
(φ j ◦φ

−1
i )(y,h) = (y,h ji(y) ·h), q.e.d.

Remark 2.30 (Principal bundles and group operations). Consider a Lie group H.

1. Due to Theorem 2.29 a proper and free right H-operation
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φ : X×H→ X

induces a H-principal bundle

p : X → X/H.

2. Conversely: A H-principal bundle

p : X → Y

induces a right H-operation

φ : X×H→ X ,(x,g) 7→ x.g,

such that Y ' X/H and p : X → Y is the canonical projection:

Consider an arbitrary but fixed point x ∈ X and set y := p(x) ∈ Y . If

φi : p−1(Ui)→Ui×H

is a bundle chart of p and x ∈ p−1(Ui) with φi(x) = (y,hi) then define

x.g := φ
−1
i (y,hi ·g).

The operation is well-defined: If also

φ j : p−1(U j)→U j×H

is a bundle chart of p with x ∈ p−1(U j) then a map

h ji : Ui∩U j→ H

exists such that
φ j(x) = (y,h j) = (y,h ji(y) ·hi).

Therefore
h j ·g = (h ji(y) ·hi) ·g = h ji(y) · (hi ·g)

which implies
φ
−1
j (y,h j ·g) = φ

−1
i (y,hi ·g).

Apparently, the group operation φ is free and Y equals the orbit space X/H of
the group operation φ .

The group operation φ is also proper: The proof reduces to proving that for any
bundle chart

p−1(U)
∼−→U×H

the restricted operation
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p−1(U)×H→ p−1(U)× p−1(U),(x,g) 7→ (x.g,x),

is proper. Therefore we may assume that the principal bundle p is a product, i.e.

X = Y ×H

and
φ : (Y ×H)×H→ Y ×H,((y,h),g) 7→ (y,h ·g)

with

θ : (Y ×H)×H→ (Y ×H)× (Y ×H),((y,h),g) 7→ ((y,h ·g),(y,h)).

Up to permutation of two factors the latter map is the product

Y × (H×H)
j×θH−−−→ (Y ×Y )× (H×H)

of the proper map
j : Y → Y ×Y,y 7→ (y,y),

and the map
θH : H×H→ H×H,(h,g) 7→ (h ·g,h).

The map θH is proper because for a compact set K ⊂ H×H

(h,g) ∈ θ
−1
H (K) =⇒ h ∈ pr2(K),h ·g ∈ pr1(K).

Using g = h−1 · (h ·g) ∈ H we obtain

θ
−1
H (K)⊂ pr2(K)× (pr2(K)−1 · pr1(K)),

The latter set is the product of two compact subsets of H, hence itself a compact
set, and its subset θ

−1
H (K) is closed, hence also compact.

Note: Here pr2(K)−1 ⊂H denotes the inverse of the set pr2(K)⊂H with respect
to the group structure of H.

As an application of Theorem 2.29 we prove that each orbit of a transitive group
operation is a principal bundle with fibre the corresponding isotropy group.

Proposition 2.31 (Orbits as principal bundles). Consider a connected Lie group G
and a transitive analytic G-left operation on an analytic Hausdorff manifold X

φ : G×X → X .

Then for any point x ∈ X its orbit map

f := φx : G→ X ,g 7→ g.x,
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is a Gx-principal bundle with Gx the isotropy group of x ∈ X.

Proof. The isotropy group H :=Gx is a Lie subgroup of G according to Proposition 2.21.

i) Analytic homogenous space: We consider the commutative diagram

G X

G/H

f

p f

with the induced map f .

First we show that f : G/H → X is an analytic isomorphism: The connected
Lie group G is σ -compact according to Lemma 2.20. Therefore, the map f is a
homeomorphism according to Theorem 1.16.

We claim that f is even an analytic isomorphism: The map p is a submersion
according to Proposition 2.24. Therefore f is analytic according to Proposition 2.10.
The map p is open according to Proposition 1.5 which implies that also the analytic
map

f = f ◦ p

is open. The map f has constant rank according to Corollary 2.22. Being an open
map f is a submersion according to the Rank Theorem 2.14. Proposition 2.9 implies
that also f is a submersion. Being a bijective map f is also an immersion, i.e. a local
isomorphism and even an analytic isomorphism.

ii) Principal bundle: According to part i) we have to show that p is a H-principal
bundle: The map p derives as the canonical projection of the right H-operation

G×H→ G,(g,h) 7→ g ·h.

We prove that the corresponding map

θ : G×H→ G×G,(g,h) 7→ (g ·h,g),

is proper. For any subset K ⊂ G×G:

(g,h) ∈ θ
−1(K) ⇐⇒ θ(g,h) = (g.h,g) ∈ K.

Using the representation h = g−1 · (g ·h) we obtain

θ
−1(K)⊂ pr2(K)× ((pr2(K)−1 · pr1(K))∩H).
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If K is compact then both factors of the latter product are also compact. Hence θ−1(K)
is compact, being a closed subset of a compact set. Theorem 2.29 proves that π : G→ G/H
is a H-principal bundle, q.e.d.

Specializing Proposition 2.31 gives an important result about morphisms be-
tween Lie groups.

Theorem 2.32 (Surjective Lie group morphisms are principal bundles). Con-
sider a connected Lie group G. Any surjective morphism of Lie groups

f : G→ G′

is a H-principal bundle with H := ker f .

Proof. The map f is the orbit map φe of the neutral element e∈G′ of the left G-operation

φ : G×G′→ G′,(g,g′) 7→ f (g) ·g′.

The operation is transitive because f is surjective. The isotropy group is Ge = ker f .
Therefore Proposition 2.31 proves the claim, q.e.d.

As a further application of Theorem 2.29 we realize the projective spaces and
more general the Grassmannians as the base manifolds of analytic principal bundles.

Example 2.33 (Complex projective space and Grassmannians).

1. Projective space: The n-dimensional projective space Pn(K) is the orbit space of
the right operation of the Lie group H :=(K∗, ·) on the analytic manifold X :=Kn+1 \{0}

Φ : X×H→ X ,(x,λ ) 7→ x ·λ .

Apparently the operation is analytic and free. We prove that the operation is
proper, i.e. we have to show properness of the map

θ : X×H→ X×X ,(x,h) 7→ (x.h,x) :

For any two compact subsets Ki ⊂ X , i = 1,2, constants K,m > 0 exist such that

y ∈ K1 =⇒ ‖y‖ ≤ K and x ∈ K2 =⇒ m≤ ‖x‖.

The second estimation uses the fact that 0 /∈ X . The set θ−1(K1×K2)⊂ X×X is
closed. It is also bounded because

(x,λ ) ∈ θ
−1(K1×K2) =⇒ x ∈ K2,λ · x ∈ K1 =⇒ |λ |=

‖λ · x‖
‖x‖

≤
K
m
.
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We obtain
θ
−1(K1×K2)⊂ K2×BK/m(0).

As a consequence, Theorem 2.29 implies that the projective space Pn(K) is the
base manifold of a K∗-principal bundle

K∗ ↪−→Kn+1 \{0} p−→ Pn(K).

One uses the notation

(z0 : ... : zn) := [(z0, ...,zn)] (homogeneous coordinate)

for the equivalence classes of Pn(K) := (Kn+1 \{0})/K∗. A point

(z0 : ... : zn) ∈ Pn(K)

determines the values z0, ...,zn only up to a common factor λ ∈K∗.

2. Grassmann manifold: Generalizing the concept of projective spaces we consider
the Lie group

H := GL(k,K),

the manifold

X := Mk(N× k,K) := {A ∈M(N× k,K) : rank A = k},

and the analytic right operation

Φ : X×H→ X ,(A,B) 7→ A ·B.

Note: The matrix product A ·B is the reason for considering the operation of H
as a right-operation.

i) The operation is free: If A ·B = A then the linear maps corresponding to these
matrices

Kk fB−→Kk fA−→KN

satisfy
fA ◦ fB = fA.

Hence for any x∈Kk we have fA( fB(x))= fA(x). From the rank condition rank A = k
derives the injectivity of fA. Hence fB(x) = x. Therefore fB = id or

B = 1 ∈ GL(k,K).

Note: A different proof for the fact that the operation is free, can be obtained from
the pseudo-inverse or Moore-Penrose-inverse of A: The rank condition rank A = k
implies that the matrix A∗ ·A is invertible and

A+ := (A∗ ·A)−1 ·A∗
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is the pseudo-inverse of A, i.e. it satisfies

A+ ·A = 1.

Therefore multiplying both sides of A ·B = A by A+ from the left implies

B = A+ ·A ·B = A+ ·A = 1.

ii) The operation

θ : X×H→ X×X ,(A,B) 7→ (A ·B,A),

is proper: Consider a compact set K =K1×K2⊂X×X and a sequence (Aν ,Bν)ν∈N
of elements (Aν ,Bν) ∈ θ−1(K) such that

lim
ν→∞

Aν ·Bν =C ∈ K1 and lim
ν→∞

Aν = A ∈ K2.

We have to show the existence of a matrix B ∈ GL(k,K) such that

B = lim
ν→∞

Bν .

The endomorphism fA corresponding to the matrix A∈Mk(N×k,K) is injective.
Therefore a matrix A′ ∈M(k×N,K) exists with fA′ ◦ fA = id, i.e.

A′ ·A = 1 ∈ GL(k,K).

Because the determinant function is continous we may assume det(A′ ·Aν) 6= 0,
i.e.

A′ ·Aν ∈ GL(k,K)

for all ν ∈ N. We obtain

lim
ν→∞

Bν = lim
ν→∞

[(A′ ·Aν)
−1 · (A′ ·Aν) ·Bν ]

= lim
ν→∞

[(A′ ·Aν)
−1] ·A′ · lim

ν→∞
[Aν ·Bν ] = A′ ·C =: B ∈M(k× k,K).

From

A ·B = lim
ν→∞

Aν · lim
ν→∞

Bν = lim
ν→∞

(Aν ·Bν) =C ∈Mk(N× k,K)

follows rank C = k = rank B, i.e. B ∈ GL(k,K).

Theorem 2.29 implies that the orbit space X/H is the basis of a GL(k,K)-principal
bundle

GL(k,K) ↪−→Mk(N× k,K)
p−→ X/H.

iii) From a geometric point of view the orbit space X/H classifies all k-dimensional
subspaces of an N-dimensional vector space: The map
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Mk(N× k,K)→ G(k,N)(K),

a1 . . . ak
| . . . |
| . . . |

 7→ spanK < a1, ...,ak >,

maps the column vectors to their span and induces a bijective map from the
quotient manifold

X/H = Mk(N× k,K)/GL(k,K)

to the Grassmannian G(k,N)(K) of k-dimensional subspaces of KN . The partic-
ular case k = 1 is the projective space PN−1(K).

As a further application of Proposition 2.31 we compute the fundamental group
of the classical groups introduced in Example 1.17.

Corollary 2.34 (Fundamental group of selected classical groups). All of the fol-
lowing groups are connected. Their fundamental groups are:

1. SL(n,R), SO(n,R):

π1(SL(n,R)' π1(SO(n,R)) =

{
Z, n = 2
Z2, n≥ 3

2. U(n): For all n≥ 1
π1(U(n)) = Z.

3. SL(n,C), SU(n): For all n≥ 1

π1(SL(n,C))' π1(SU(n)) = {0}.

Proof. Connectedness has been shown in Lemma 1.18.

ad 1) i) First, the isomorphism of topological groups

SO(2,R) '−→ S1,

(
cos θ sin θ

−sin θ cos θ

)
7→ eiθ = cos θ + isin θ ,

induces the isomorphy
π1(SO(2,R))' π1(S1)' Z

according to Corollary 1.27.

ii) According to Example 1.17, part 1, and Proposition 2.31 we have an anaytic,
in particular continuous fibre bundle for n≥ 2

SO(n−1,R) ↪−→ SO(n,R)→ Sn−1.
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From its long exact homotopy sequence according to Theorem 1.33 we consider the
section

π2(Sn−1)→ π1(SO(n−1,R))→ π1(SO(n,R))→ π1(Sn−1)

For n ≥ 4 we have π2(Sn−1) = π1(Sn−1) = 0 due to Proposition 1.28 and as a con-
sequence

π1(SO(n−1,R))' π1(SO(n,R)).

iii) We are left to show
π1(SO(3,R)) = Z2.

This claim follows from the homeomorphy

SO(3,R)' P3(R),

see to Proposition 1.31, and the isomorphy

π1(P3(R))' Z2

according to Lemma 1.30.

iv) Consider a matrix A ∈ SL(n,R). In order to orthogonalize A one considers
the rows a1, ...,an of A as a basis of Rn and applies the Gram-Schmidt algorithm:
Defining v1 := a1 and

vi :=−

(
i−1

∑
k=1

< ai,vk > ·
vk

‖vk‖2

)
+ai, i = 2, ...,n,

one obtains a matrix

δ :=

 1 0
. . .

∗ 1

 ∈ GL(n,R)

such that the rows v1, ...,vn of the product

v := δ ·A

form an orthogonal basis. Multiplying from the left with a diagonal matrix with
entries the length of the basis vectors gives a matrix

D ∈D := {

λ1 0
. . .

∗ λn

 ∈ SL(n,R) : λi > 0, i = 1, ...,n}

such that
D ·A ∈ SO(n).
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One obtains the homeomorphy

SL(n,R)' R(n2−n)/2× (R∗)n−1×SO(n)' R((n2+n)/2)−1×SO(n).

Because the first factor is contractible we get

π1(SL(n,R))' π1(SO(n)).

ad 2) According to Proposition 2.31 and Example 1.17, part 2, we have for n≥ 2
the analytic, in particular fibre bundle

U(n−1) ↪−→U(n)→ S2n−1.

Its long exact homotopy sequence contains the section

π2(S2n−1)→ π1(U(n−1))→ π1(U(n))→ π1(S2n−1).

From Proposition 1.28 we obtain π2(S2n−1) = π1(S2n−1) = {0} for n≥ 2. Therefore

π1(U(n−1))' π1(U(n)).

And U(1)' S1 implies for all n≥ 1

π1(U(n))' π1(U(1))' Z.

ad 3) i) For n≥ 2 we use the fibre bundle representation from Example 1.17, part 2,

SU(n−1) ↪−→ SU(n)→ S2n−1

and the section of its long exact homotopy sequence

π2(S2n−1)→ π1(SU(n−1))→ π1(SU(n))→ π1(S2n−1)

with π2(S2n−1) = π1(S2n−1) = {0} due to Proposition 1.28. We obtain for n≥ 2

π1(SU(n−1))' π1(SU(n)).

Because SU(1) = {∗} we obtain for n≥ 1

π1(SU(n))' π1(SU(1)) = {0}.

ii) Analogously to part 1, iv) one obtains a homeomorphism
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SL(n,C)' {

λ1 0
. . .

∗ λn

 ∈ SL(n,C) : λi ∈ R∗+,0, i = 1, ...,n}×SU(n).

As a consequence SL(n,C)' Rn2−1×SU(n). We obtain

π1(SL(n,C))' π1(SU(n)), q.e.d.

Any analytic manifold, in particular any Lie group is locally path-connected and
semilocal 1-connected. Therefore the results from Section 1.3 concerning covering
spaces apply to Lie groups.

Proposition 2.35 (Characterization of the universal covering of Lie groups).
Consider a surjective morphims of Lie groups

p : G̃→ G

with G̃ connected and simply connected. Assume that the Lie subgroup

H := ker f ⊂ G̃

is discrete, i.e. it carries the discrete topology.

Then p is the universal covering projection of G and π1(G,e)' H.

Proof. According to Theorem 2.32 the map p is a H-principal bundle, in particular a
covering projection. According to Proposition 1.25 the map p is the universal cover-
ing projection of G. According to Theorem 1.33 the long exact homotopy sequence
of p contains the exact sequence

{e}= π1(G̃,e)→ π1(G,e)→ π0(H)' H→ π0(G̃) = {∗}

Theorem 2.36 (The universal covering of a Lie group is a Lie group). For any
connected Lie group G the universal covering projection exists as a morphism of
Lie groups

p : G̃→ G

with G̃ a unique connected and simply connected Lie group G. It satisfies

ker p' π1(G,e),

and ker p⊂ G̃ is a discrete subgroup.
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Proof. According to Proposition 1.25 in the topological context a unique universal
covering projection

p : G̃→ G

exists as a continuous map. We recall the relevant properties of p, see also [12, Kap. I, § 5].

i) As a set

G̃ = {(x, [α]) : x ∈ G,α : I→ G continous,α(0) = e,α(1) = x}.

Here I = [0,1]⊂ R and [α] is the homotopy class of the path α . One has

p : G̃→ G,(x, [α]) 7→ x.

The group multiplication in G̃ derives from the group multiplication in G:

mG̃ : G̃× G̃→ G̃,mG̃((x, [α]),(y, [β ])) := (x · y, [α ·β ]).

The map is independent from the choice of repesentatives. The group mutiplication
is associative. The neutral element is the pair (e, [αe]) with αe(t) ≡ e. The inverse
element is (x, [α])−1 = (x, [α−1]).

ii) Concerning the topology of G̃: For (x, [α])∈ G̃ and U an open, connected, and
simply connected neighbourhood of x in G define the set

[U, [α]] := {(y, [β ])∈ G̃ : y∈U,β =α ∗γ with a path γ : I→U,α(0) = x,α(1) = y}

Fig. 2.3 Universal covering space

The set of these sets [U, [α]] is a neighbourhood basis of (x, [α]) in G̃. Then G̃ is
simply connected.

iii) Analytic structure: Because p : G̃→ G is a local homeomorphism a unique
analytique structure ˜A exists on G̃ such that
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p : (G̃, ˜A )→ G

is a local analytic isomorphism. In addition

p(mG̃(g1,g2)) = mG(p(g1), p(g2)).

The commutativity of the diagram

G̃× G̃ G̃

G×G G

mG̃

p× p p

mG

proves that the multiplication mG̃ is analytic.

iv) Kernel of p: We have

ker p = p−1(e) = {(e, [α]) : [α] ∈ π1(G,e))} ' π1(G,e).

Because p is a covering projection the fibre p−1(e) is a discrete topological space,
q.e.d.

Definition 2.37 (Spin group). The universal covering spaces of the special orthog-
onal groups SO(n,R) are named spin groups Spin(n),n ∈ N∗.

Remark 2.38 (Spin groups). For n≥ 3 the universal covering projections of SO(n,R)
are real-analytic principal Z2-bundles

Z2 ↪−→ Spin(n)→ SO(n,R)

according to Proposition 2.34, Theorem 2.36, and Theorem 2.32. The low-dimensional
spin groups are:

Spin(1) = {e},Spin(2) = (R,+),Spin(3) = SU(2),

Spin(4) = SU(2)×SU(2),Spin(5) =U(2,H)

with H the division ring of quaternions.

The representation Spin(3) = SU(2) has been studied in detail in Example ??.



Chapter 3
The functor Lie from Lie groups to Lie algebras

The law of multiplication of a Lie group G is already determined in a neigbourhood
of the neutral element e ∈ G. Therefore one considers a chart φ of G around e
and translates the multiplication mG in a neighbourhood V of e to a formal group
structure: An analytic function F(X ,Y ) defined on the open subset φ(V )×φ(V ) of a
number space. From the second order terms of F derives a Lie bracket. It measures
the second order derivation of mG from being Abelian. The bracket provides the
tangent space with the structure of a Lie algebra (TeG, [−,−]F).

One checks that the construction does not depend on the choice of the chart φ .
Therefore one has attached to G a Lie algebra Lie G. This attachment is compatible
with morphisms of Lie groups. It defines a covariant functor Lie from the category
of Lie groups to the category of Lie algebras.

3.1 The Lie algebra of a Lie group

In the present section
K< Z >=K< Z1, ...,Zm >

denotes the K-algebra of convergent power series in m variables with expansion
point 0 ∈Km

f (X) = ∑
ν∈Nm

cν ·Zν = ∑
ν=(ν1,...,νm)∈Nm

cν ·Zν1
1 · ... ·Z

νm
m ,cν ∈K.

Moreover,
m< Z >:= { f ∈K< Z >: f (0) = 0}

denotes the maximal ideal of all convergent power series vanishing at 0 ∈Km.

For an n-dimensional K-Lie group G we want to mirror the group multiplication
of G by a corresponding multiplication on the set of n-tuples of convergent power
series from

75
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m< X >⊕n,

the direct sum of n copies of m<X >. This task can be achieved by choosing a chart
around the neutral element e∈G. We express the multiplication using this chart, but
show that the result does not depend on the choice of the chart.

Lemma 3.1 (Group multiplication in coordinates). Consider an n-dimensional
K-Lie group G with neutral element e ∈ G and choose a chart of G around e

φ : U →Kn,

and an open neighbourhood V of e with

V ·V ⊂U.

Then the group multiplication m : V ×V →U defines an element

F = (F1, ...,Fn)
> ∈K< X ,Y >⊕n

with respect to the variables

X = (X1, ...,Xn),Y = (Y1, ...,Yn),

such that each power series Fj ∈K<X ,Y >, j = 1, ...,n, converges on φ(V )×φ(V )
and the following diagram commutes:

V ×V U

φ(V )×φ(V ) φ(U)

m

φ ×φ '

F

φ '

The element F ∈K< X ,Y >⊕n has the following properties:

1. Zero order: F(0,0) = 0, i.e. F ∈m< X ,Y >⊕n.

2. First order: F(X ,0) = X ∈m< X >⊕n, F(0,Y ) = Y ∈m< Y >⊕n.

3. Associativity: F(F(X ,Y ),Z) = F(X ,F(Y,Z)) ∈m< X ,Y,Z >⊕n.

Proof. 1. Because e∈G is the neutral element we have m(e,e)= g which implies F(0,0) = 0:

F ∈m< X ,Y >⊕n .

2. More general, for all g ∈V

m(g,e) = m(e,g) = g
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implies F(X ,0) = X and F(0,Y ) = Y .

3. Due to part 1), for any two elements U,V ∈K< X >⊕n the composition

F(U(X),V (X))

is well defined. As a consequence, both sides of the claim are well-defined. The
law of associativity follows from the corresponding property of the group multi-
plication

m(m(g1,g2),g3) = m(g1,m(g2,g3))

for elements gi, i = 1,2,3, in a suitable open neighbourhood of e in G, q.e.d.

In the following we consider the tuple

F = (F1, ...,Fn) ∈m< X ,Y >⊕n

of convergent power series, which derives from the Lie group multiplication, as a
separate object, a formal group structure, and investigate its properties.

Definition 3.2 (Formal group). Using the notation X = (X1, ...,Xn),Y = (Y1, ...,Yn)
a formal group structure on m< X >⊕n is an element

F = (F1, ...,Fn)
> ∈m< X ,Y >⊕n

which satisfies:

• F(X ,0) = X ∈m< X >⊕n and F(0,Y ) = Y ∈m< Y >⊕n

• F(X ,F(Y,Z)) = F(F(X ,Y ),Z) ∈m< X ,Y,Z >⊕n.

The map defines a multiplication on m< X >⊕n

∗ : m< X >⊕n × m< X >⊕n→m< X >⊕n,U ∗V := F(U,V ).

Lemma 3.3 (Inversion in a formal group). Consider a formal group structure F ∈m< X ,Y >⊕n.

Any element U ∈m< X >⊕n has a unique element U− ∈m< Y >⊕n satisfying

U ∗U− =U− ∗U = 0 ∈m< X >⊕n .

The element U−1 is named the inverse of U.

Proof. The partial derivatives at (0,0) ∈Kn×Kn are

D1F(0,0) = D2F(0,0) = id.
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According to the Implicit Function Theorem unique elements Φ ,Ψ ∈ m < X >⊕n

exist with
0 = F(Φ(X),U(X)) = F(U(X),Ψ(X)).

Accordingly the element Φ ∈m<X >⊕n is a left-inverse of U and the element Ψ ∈m< X >⊕n

is a right-inverse of U .

Invoking in addition the two required properties of F we obtain

Φ(X) = F(Φ(X),0) = F(Φ(X),F(U(X),Ψ(X))) =

= F(F(Φ(X),U(X)),Ψ(X)) = F(0,Ψ(X)) =Ψ(X),

i.e. the left-inverse equals the right-inverse, q.e.d.

Proposition 3.4 (Jacobi identity of a formal group structure). A formal group
structure

F ∈m< X ,Y >⊕n

has the power series expansion

F(X ,Y ) = X +Y +B(X ,Y )+ ∑
α,β∈Nn,|α|+|β |≥3,|α|,|β |≥1

cαβ ·Xα ·Y β , cαβ ∈Kn.

Referring to the quadratic terms of F we define the alternating K-bilinear map

[−,−]F := B(X ,Y )−B(Y,X) : Kn×Kn→Kn.

Here we consider B(X ,Y ) and B(Y,X) with respect to the variables X and Y as
maps on Kn×Kn. Then:

1. Inverse: X− =−X +B(X ,X)+O(3) ∈m< X >⊕n

2. Conjugation: XY := Y− ∗X ∗Y = X +[X ,Y ]F +O(3) ∈m< X ,Y >⊕n

3. (X ,Y ) := X− ∗Y− ∗X ∗Y = [X ,Y ]F +O(3) ∈m< X ,Y >⊕n

4. Hall identity: (XY ,(Y,Z))∗ (Y Z ,(Z,X))∗ (ZX ,(X ,Y )) = 0 ∈m< X ,Y,Z >⊕n

5. Jacobi identity: [X , [Y,Z]F ]F +[Y, [Z,X ]F ]F +[Z, [X ,Y ]F ]F = 0∈m<X ,Y,Z >⊕n

Note: In order to indicate that the map

[−,−]F : Kn×Kn→Kn

depends on the two sets of variables X = (X1, ...,Xn) and Y = (Y1, ...,Yn) the map is
also denoted [X ,Y ]F . Its value at the point (x,y) ∈Kn×Kn is

[x,y]F := [X ,Y ]F(x,y) := B(X ,Y )(x,y)−B(Y,X)(x,y) = B(x,y)−B(y,x) ∈Kn.
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Proof. Due to the first property of a formal group structure all summands of F

cαβ ·XαY β

of order ≥ 2 satisfy
|α|, |β | ≥ 1.

To simplify the notation we omit the subscript F and set [−,−] := [−,−]F .

1. The ansatz
X− = Φ1(X)+Φ2(X)+O(3),deg Φi = i,

implies
0 = F(X ,X−) = X +X−+B(X ,X−)+O(3) =

= X +Φ1(X)+Φ2(X)+B(X ,Φ1(X))+O(3).

As a consequence

Φ1(X) =−X ,Φ2(X) =−B(X ,Φ1(X)) = B(X ,X).

2. By definition and using part 1)

XY := F(Y−,F(X ,Y )) = Y−+F(X ,Y )+B(Y−,F(X ,Y ))+O(3) =

(−Y +B(Y,Y ))+(X +Y +B(X ,Y ))+B(−Y,X +Y )+O(3) =

−Y +B(Y,Y )+X +Y +B(X ,Y )−B(Y,X)−B(Y,Y )+O(3) =

X +[X ,Y ]+O(3)

3. By definition and using the previous parts

(X ,Y ) := X− ∗Y− ∗X ∗Y = X− ∗ (Y− ∗X ∗Y ) = X− ∗XY = F(X−,XY ) =

=X−+XY +B(X−,XY )+O(3)= (−X+B(X ,X))+(X+[X ,Y ])+B(−X ,X)+O(3)=

= [X ,Y ]+O(3)

4. We compute

(XY ,(Y,Z)) := (XY )− ∗ (Y,Z)− ∗XY ∗ (Y,Z) =

(Y− ∗X− ∗Y )∗ (Z− ∗Y− ∗Z ∗Y )∗ (Y− ∗X ∗Y )∗ (Y− ∗Z− ∗Y ∗Z) =

= (Y− ∗X− ∗Y ∗Z− ∗Y−)∗ (Z ∗X ∗Z− ∗Y ∗Z)

Using cyclic permutation set

• U := Z ∗X ∗Z− ∗Y ∗Z,
• V := X ∗Y ∗X− ∗Z ∗X ,
• W := Y ∗Z ∗Y− ∗X ∗Y .
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Then

• (XY ,(Y,Z)) =W− ∗U ,
• (Y Z ,(Z,X)) =U− ∗V ,
• (ZX ,(X ,Y )) =V− ∗W .

As a consequence

(XY ,(Y,Z))∗ (Y Z ,(Z,X))∗ (ZX ,(X ,Y )) = 0.

5. First, we apply part 2) and part 3):

(XY ,(Y,Z)) = (X +O(2), [Y,Z]+O(3))

Then we apply part 3) a second time and use the bilinearity of [-,-]:

(X +O(2), [Y,Z]+O(3)) = [X +O(2), [Y,Z]+O(3)] = [X , [Y,Z]]+O(4).

We obtain
(XY ,(Y,Z)) = [X , [Y,Z]]+O(4)

and analogous terms by cyclic permutation.

Eventually, we apply part 4):

0 = (XY ,(Y,Z))∗ (Y Z ,(Z,X))∗ (ZX ,(X ,Y )) =

= ([X , [Y,Z]]+O(4))+([Y, [Z,X ]]+O(4))+([Z, [X ,Y ]]+O(4)) =

= [X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]]+O(4).

Here the first three terms have order = 3. As a consequence we obtain the Jacobi
identity, q.e.d.

We recall some basic definitions from K-Lie algebra theory:

1. A Lie algebra over the field K is a K-vector space L together with a K-bilinear
map

[−,−] : L×L→ L (Lie bracket)

such that

• [x,x] = 0 for all x ∈ L

• [x, [y,z]]+ [y, [z,x]]+ [z, [x,y]] = 0 for all x,y,z ∈ L (Jacobi identity).

2. A morphism of Lie algebras is a K-linear map f : L1 → L2 between two K-Lie
algebras with

f ([x1,x2]) = [( f (x1), f (x2))],x1,x2 ∈ L1.
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3. A Lie subalgebra of a Lie algebra L is a subspace M ⊂ L which is closed with
respect to the Lie bracket of L, i.e. for all m1,m2 ∈M also

[m1,m2] ∈M.

Theorem 3.5 (The Lie algebra of a formal group structure).

1. For a formal group structure

F(X ,Y ) ∈m< X ,Y >⊕n .

the K-bilinear map from Proposition 3.4

[−,−]F : Kn×Kn→Kn

defines a K-Lie algebra (Kn, [−,−]F).

2. Consider an n-dimensional Lie group G, choose a chart

φ = (φ1, ...,φn) : U →Kn

around e∈G, denote by F the corresponding formal group structure (Lemma 3.1),
and by

ψ : Kn ∼−→ TeG,(x1, ...,xn) 7→
n

∑
i=1

xi ·
∂

∂φi

the isomorphism onto the tangent space at e ∈G induced by φ (Proposition 2.7).

Then the bracket

[−,−] : TeG×TeG→ TeG,(u,v) 7→ [u,v] := ψ([ψ−1(u),ψ−1(v)]F),

provides the tangent space of G at e with a K-Lie algebra structure (TeG, [−,−]).

Proof. For the Jacobi identity see Proposition 3.4, part 5).

Definition 3.6 (Lie algebra of a Lie group). The Lie algebra of a Lie group G with
neutral element e ∈ G is the Lie algebra from Theorem 3.5

Lie G := (TeG, [−,−]).

Remark 3.7 (Lie algebra).

1. We will show in Lemma 3.9 that the Lie algebra structure on TeG does not depend
on the choice of the chart φ and its corresponding formal group structure F .
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2. Speaking in a descriptive way: The Lie bracket measures the second order deriva-
tion of the group multiplication from commutativity.

Lemma 3.8 (Low order approximations). A formal group structure

F ∈m< X ,Y >⊕n

satisfies the following approximations:

1. If U,V,U ′,V ′ ∈m< X >⊕n and U ′ =U +O(2),V ′ =V +O(2) then

B(U ′,V ′)−B(V ′,U ′) = B(U,V )−B(V,U)+O(3)

2. If U,V ∈m< X >⊕n then

F(U,V )−F(V,U) = B(U,V )−B(V,U)+O(3)

3. If U,U ′ ∈m< X >⊕n and U ′ =U +O(2) then

U ′(F(X ,Y ))−U ′(F(Y,X)) =U(F(X ,Y ))−U(F(Y,X))+O(3).

Proof. 1. The relation between respectively U and U ′ and between V and V ′ implies

B(U ′,V ′)−B(V ′,U ′) = B(U +O(2),V +O(2))−B(V +O(2),U +O(2)) =

= B(U,V )−B(V,U)+O(3).

2. Set
U =U1 +U2 +O(3),V =V1 +V2 +O(3),deg Ui = deg Vi = i.

Then
F(U,V ) =U1 +V1 +U2 +V2 +B(U1,V1)+O(3)

and
F(V,U) =V1 +U1 +V2 +U2 +B(V1,U1)+O(3).

Therefore using part i):

F(U,V )−F(V,U) = B(U1,V1)−B(V1,U1)+O(3) = B(U,V )−B(V,U)+O(3).

3. The expansion
U ′−U = ∑

|α|≥2
cα Xα

implies

U ′(F(X ,Y ))−U ′(F(Y,X))−U(F(X ,Y ))+U(F(Y,X)) =
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=U ′(F(X ,Y ))−U(F(X ,Y ))− (U ′(F(Y,X))−U(F(Y,X)))

= ∑
|α|≥2

cα · (F(X ,Y )α −F(Y,X)α)

We expand the summands using the binomial formula

F(X ,Y )α −F(Y,X)α = [F(Y,X)+(F(X ,Y )−F(Y,X))]α −F(Y,X)α =

= ( ∑
β≤α

(
α

β

)
F(Y,X)β · (F(X ,Y )−F(Y,X))α−β )−F(Y,X)α =

= ∑
β<α

(
α

β

)
F(Y,X)β · (F(X ,Y )−F(Y,X))α−β ).

Each summand is at least O(3) because(
α

β

)
F(Y,X)β · (F(X ,Y )−F(Y,X))α−β )

has the order - with the factor 2 due to part 2) -

|β |+2(|α|− |β |) =

= |β |+2(|α|− |β |) = 2|α|− |β |= |α|+(|α|− |β |)> |α| ≥ 2.

Here we have used the notation: If

α = (α1, ...,αn),β = (β1, ...,βn) ∈ Nn

then

|α| :=
n

∑
i=1

αi and α! :=
n

∏
i=1

αi! and
(

α

β

)
:=

α!
(α−β )! ·β !

, q.e.d.

Lemma 3.9 (Independence of the Lie algebra structure). Consider two Lie groups G
and G′ and a morphism f : G→ G′ of Lie groups.

Consider two charts φ : U→Kn and φ ′ : U ′→Kn′ around their neutral elements
with f−1(U ′)⊂U. Denote by

F ∈m< X ,Y >⊕n,F ′ ∈m< X ′,Y ′ >⊕n′

the induced formal group structures and by

[−,−](F) and [−,−](F ′)

the induced Lie brackets on respectively TeG and Te′G′.
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Then the tangent map

Te f : (TeG, [−,−](F))→ (Te′G
′, [−,−](F ′))

is a morphism of Lie algebras.

In particular, choosing G′=G and f = id shows: The Lie algebra structure Lie G
on the tangent space TeG is independent from the choice of the chart φ .

Proof. The claim is local in a neighbourhood of e ∈ G. Assume two charts of re-
spectively G and G′

φ : U →Kn and φ
′ : U ′→Kn′

which induce the analytic map

g := φ
′ ◦ f ◦φ

−1 ∈m< X >⊕n′

in the commutative diagram

U U ′

φ(U) φ ′(U ′)

f

φ ' φ ′ '
g

i) First we consider the linear part g1 of g. We obtain

[g1(X),g1(Y )]F ′ :=
B′(g1(X),g1(Y ))−B′(g1(Y ),g1(X)) = (Lemma 3.8, part 1)

B′(g(X),g(Y ))−B′(g(Y ),g(X))+O(3) = (Lemma 3.8, part 2)
F ′(g(X),g(Y ))−F ′(g(Y ),g(X))+O(3) = ( f is a homomorphism)

g(F(X ,Y )−g(F(Y,X))+O(3) = (Lemma 3.8, part 3)
g1(F(X ,Y ))−g1(F(Y,X))+O(3) = (g1 is linear)

g1(F(X ,Y )−F(Y,X))+O(3) = (Lemma 3.8, part 2)
g1(B(X ,Y )−B(Y,X))+O(3) =:

g1([X ,Y ]F)+O(3)

Both functions

B′(g1(X),g1(Y ))−B′(g1(Y ),g1(X)) and g1(B(X ,Y )−B(Y,X))

are quadratic. Therefore they are equal:

[g1(X),g1(Y )]F ′ = B′(g1(X),g1(Y ))−B′(g1(Y ),g1(X)) =
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= g1(B(X ,Y )−B(Y,X)) = g1([X ,Y ]F).

ii) Secondly, we transfer the result about the linear approximation of g1 from part i)
to the corresponding result about the tangent map Te f , using the commutative dia-
gram

Kn Kn′

TeG TeG′

g1

ψ ' ψ ′ '

Te f

For u,v ∈ TG we employ the definition of the Lie bracket on the tangent spaces
according to Theorem 3.5 and the result from part i). We obtain

Te f ([u,v](F)) = Te f ◦ψ([ψ−1(u),ψ−1(v)]F) =

= ψ
′ ◦g1([ψ

−1(u),ψ−1(v)]F) =

= ψ
′([g1(ψ

−1(u)),g1(ψ
−1(v))]F ′) =

= ψ
′([ψ ′−1(Te f (u)),ψ ′−1(Te f (v))]F ′) =

= [Te f (u),Te f (v)](F ′), q.e.d.

Definition 3.10 (The functor Lie).

1. Consider a morphism
f : G→ H

between two Lie groups. The induced morphism between their Lie algebras (see
Lemma 3.9) is denoted by

Lie f := Te f : Lie G→ Lie H.

2. Denote by LieGrpK the category of K-Lie groups and K-Lie group morphisms
and by LieAlgK the category of K-Lie algebras and K-Lie algebra morphisms.
Attaching

• to each Lie Group G its Lie algebra Lie G and
• to each morphism f : G→H of Lie groups its tangent map Lie f : Lie G→ Lie H

defines the covariant functor

Lie : LieGrpK→ LieAlgK
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Proposition 3.11 (The functor Lie is faithful). On the subcategory of connected
Lie groups the functor Lie is faithful, in particular two morphisms

f1, f2 : G→ H

between Lie groups with connected G agree, if

Lie f1 = Lie f2 : Lie G→ Lie H.

Proof. The formal group law F(X ,Y ) = X +Y +O(2) of H implies for the tangent
map of the multiplication

T(e,e)mH : TeH×TeH→ TeH,(x,y) 7→ x+ y.

As a consequence, mH(x,σ(x)) = e implies

Teid +Teσ = id +Teσ = 0,

i.e. taking the inverse
σH : H→ H,σ(x) := x−1,

has the tangent map
(Teσ)(x) =−x.

Consider the morphism of Lie groups

f := f1 ◦ f−1
2 : G→ H.

By assumption, it satisfies

Lie f = Lie f1−Lie f2 = 0.

Apparently, f has rank = 0 at e ∈ G. According to Corollary 2.22 the map f has
constant rank, i.e.

rank Tg f = 0

for all g∈G. Theorem 2.14 and the connectedness of G and imply that f is constant,
i.e. f1(g) = f2(g) for all g ∈ G, q.e.d.

3.2 Vector fields and local flows

Definition 3.12 (Derivations and vector fields). Consider a K-analytic manifold X .

1. For any open subset U ⊂ X denote by

OX (U) := { f : U →K : f analytic}
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the K-algebra of analytic functions on U . For an open subset V ⊂U the restric-
tion

ρ
U
V : OX (U)→ OX (V ), f 7→ f |V,

is well-defined.

For any x ∈V ⊂U the following diagram with the induced canonical maps to the
local ring OX ,x commutes

OX (U) OX (V )

OX ,x

ρU
V

πU
x πV

x

2. A derivation on OX (U) is a K-linear map

DU : OX (U)→ OX (U)

satisfying the product rule

DU ( f ·g) = DU ( f ) ·g+ f ·DU (g), f ,g ∈ OX (U).

3. An analytic vector field on X is a family D = (DU )U⊂X open of derivations

DU : OX (U)→ OX (U)

such that for each pair of open sets V ⊂U the following diagram commutes

OX (U) OX (U)

OX (V ) OX (V )

DU

ρU
V

DV

ρU
V

4. We denote by Θ(X) the K-vector space of analytic vector fields on X .

Note:

1. For an analytic vector field

D = (DU )U⊂X open



88 3 The functor Lie from Lie groups to Lie algebras

and two open subsets U,V ⊂ X both derivations DU and DV induce on the
intersection U ∩V the same derivation DU∩V according to the commutative
diagram

OX (U) OX (U)

OX (U ∩V ) OX (U ∩V )

OX (V ) OX (V )

DU

ρU
U∩V ρU

U∩V

DU∩V

ρV
U∩V

DV

ρV
U∩V

2. An analytic verctor field D ∈Θ(X) is a whole family D = (DU )U⊂X open, not
just the single derivation

DX : OX (X)→ OX (X).

Lemma 3.13 (Vector fields and tangent vectors).

1. Consider a K-analytic manifold X. For any point x ∈ X two K-linear maps exist

εx : Θ(X)→ DerK(OX ,x,OX ,x),D 7→ Dx,

and
ε(x) : Θ(X)→ TxX = DerK(OX ,x,K),D 7→ D(x),

satisfying for any open neighbourhood U of x the following commutative diagram

OX (U) OX (U)

OX ,x OX ,x

OX ,x/mx

DU

Dx

πU
x πU

x

π(x)
D(x)

Here
π(x) : OX ,x→ OX ,x/mx 'K, [ f ] 7→ f (x),

denotes the evaluation of germs of analytic functions at the point x ∈ X.
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2. Consider an analytic analytic vector field D∈Θ(X), an analytic function f ∈ O(U)
on an open subset U ⊂ X, and a point x ∈ X. Denote by fx ∈ OX ,x the germ of f
at x. Then

Dx( fx) = DU ( f )x ∈ OX ,x

and
D(x)( fx) = (DU ( f ))(x) ∈K.

In particular:

D = 0 ⇐⇒ DU = 0 f or all open U ⊂ X ⇐⇒ Dx = 0 f or all x ∈ X ⇐⇒

D(x) = 0 f or all x ∈ X .

Proof. 1. The main task is to show that the induced map Dx does not depend
on the choice of the neighbourhood of x. Therefore, for two neighbourhoods
U,V of x one uses the compatibility of DU and DV on OX (U ∩V ) according to
Definition 3.12, part 3.

2. The proof follows from part 1).

Lemma 3.14 (Lie algebra of vector fields). Consider a K-analytic manifold X.

1. If A,B ∈Θ(X) then also
[A,B] ∈Θ(X).

Here [A,B] denotes the family

[A,B] := ([AU ,BU ])U⊂X open

with the commutator

[AU ,BU ] := AU ◦BU −BU ◦AU : OX (U)→ OX (U), U ⊂ X open.

2. The pair (Θ(X), [−,−]) is a K-Lie algebra, the Lie algebra of analytic vector
fields on X.

Proof. ad 1) The commutator of two vector fields is a vector field again: For U ⊂ X
open, α := AU ,β := BU , and f ,g ∈ O(U):

[α,β ]( f ·g)=α(β ( f ·g))−β (α( f ·g))=α((β f )·g+ f ·β (g))−β ((α f )·g− f ·α(g))=

= (α(β f ))·g+β f ·αg+α f ·βg+ f ·(α(βg))−(β (α f ))·g−α f ·βg−β f ·αg− f ·(β (αg))=

(α(β f )−β (α f )) ·g+ f · (α(βg)−β (αg)) = ([α,β ]( f )) ·g+ f · ([α,β ](g))

ad 2) The Jacobi identity for vector fields follows by the same computation like the
proof of the Jacobi identity for the commutator of matrices, q.e.d.
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Note: In the following we will always consider Θ(X) as the Lie algebra with the
Lie bracket from Lemma 3.14.

Lemma 3.15 (Group operation on vector fields). Any Lie group G operates on the
Lie algebra Θ(G) of its analytic vector fields according to

G×Θ(G)→Θ(G),(g,D) 7→ g.D.

Here the analytic vector field

g.D := ((g.D)U )U⊂X open ∈Θ(G)

is defined on U ⊂ X by the derivation

(g.D)U : OG(U)→ OG(U)

induced from the commutative diagram

OG(U) OG(g−1 ·U)

OG(U) OG(g−1 ·U)

τg

'

τ−1
g

'

(g.D)U Dg−1·U

with
τg : OG(U)→ OG(g−1 ·U), f 7→ f ◦Lg,

and analogously τ−1
g = τg−1 .

The operation has the following properties:

1. For all g ∈ G
g : Θ(G)→Θ(G),D 7→ g.D,

is an isomorphism of Lie algebras.

2. For all g,x ∈ G and D ∈Θ(G) the evaluation to tangent vectors satisfies

(g.D)(x) = (Tg−1xLg)(D(g−1x)) ∈ TxG

i.e. the following diagram commutes
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Θ(G) Θ(G)

Tg−1xG TxG

ε(g−1 · x)

Tg−1xLg

ε(x)

Here the horizontal map

Θ(G)→Θ(G),D 7→ g.D,

results from the group operation.

Paraphrasing Lemma 3.15 in a descriptive way: The transformed vector field g.D,
when applied to a function f ∈O(G), evaluates at the point x ∈G to the same value
like the original vector field D applied to the left-translate of f evaluates at the
point g−1(x).

Definition 3.16 (Left-invariant vector fields). Consider a Lie group G. The vector
space

Θ(G)G := {A ∈Θ(G) : g.A = A f or all g ∈ G}

is named the vector space of left-invariant analytic vector fields on G.

Theorem 3.17 (Lie algebra of left-invariant vector fields). Consider a Lie group G
and denote by

L(G) :=Θ(G)G

the vector space of left-invariant vector fields on G.

1. Then

L(G) = {A ∈Θ(G) : A(g) = (TeLg)(A(e)) ∈ TgG f or all g ∈ G}

and L(G)⊂Θ(G) is a Lie subalgebra.

2. The evaluation of left-invariant vector fields to tangent vectors at e ∈ G

ε = ε(e) : L(G)→ Lie G = (TeG, [−,−]),A 7→ A(e),

is an isomorphism of Lie algebras.

Proof. During the proof we will apply several times the characterization of the
group operation as the equality of tangent vectors
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(γ.A)(x) = (Tγ−1xLγ)(A(γ−1x)) ∈ TxG,A ∈Θ(G),γ,x ∈ G,

from Lemma 3.15.

1) i) Lie subalgebra: Consider an arbitrary but fixed γ ∈G. In order to prove that

Θ(G)γ := {A ∈Θ(G) : γ.A = A} ⊂Θ(G)

is a Lie subalgebra, we consider two vector fields A,B∈Θ(G) with γ.A = A,γ.B = B.
From the definition by the commutative diagram in Lemma 3.15 follows

γ.[A,B] = [γ.A,γ.B] :

• The derivation (γ.[A,B])U originates from [A,B]g−1·U .

• The derivation [γ.A,γ.B]U derives from [Ag−1·U ,Bg−1·U ].

Because the Lie bracket of vector fields is defined by the Lie bracket of the corre-
sponding derivations, we have

[A,B]g−1·U = [Ag−1·U ,Bg−1·U ].

We obtain
γ.[A,B] = [γ.A,γ.B] = [A,B],

which proves that Θ(G)γ ⊂Θ(G) is a Lie subalgebra.

Therefore, the intersection of Lie subalgebras

L(G) =
⋂

γ∈G

Θ(G)γ ⊂Θ(G)

is a Lie subalgebra.

ii) Condition on tangent vectors: A vector field A ∈ L(G) satisfies γ.A = A for
all γ ∈ G. Therefore the formula for the tangent vectors specializes as

(TeLγ)(A(e)) = A(γ).

Concerning the opposite direction consider a vector field A ∈Θ(G) satisfying for
all γ ∈ G

(TeLγ)(A(e)) = A(γ).

Applying again Lemma 3.15, part 2) gives for all x ∈ X

(γ.A)(x) = (Tγ−1Lγ)(A(γ−1x)) = (Tγ−1Lγ)(TeLγ−1x)(A(e)) = (TeLx)(A(e)) = A(x)

or
(γ.A−A)(x) = 0.
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As a consequence γ.A−A = 0 or γ.A = A due to Lemma 3.13, i.e. A ∈ L(G).

2) i) Injectivity: The evaluation ε : L(G) → Lie(G) is injective: If A ∈ L(G)
and A(e) = 0 then also

A(g) = (TeLg)(A(e)) = 0

for all g ∈ G. Therefore A = 0 due to Lemma 3.13. In particular: L(G) is a finite-
dimensional Lie algebra.

ii) Transformation to coordinates: We choose a chart of G around e ∈ G

φ = (φ1, ...,φn) : U →Kn

and a neighbourhood V of e with V ·V ⊂U . We set W := φ(U) ⊂ Kn. The chart
induces

• the isomorphism of derivations

Der(OG(U),OG(U))→ Der(OKn(W ),OKn(W )),AU 7→ Ã := φ ◦AU ◦φ
−1,

according to the commutative diagram

OG(U) OG(U) f AU ( f )

OKn(W ) OKn(W ) f ◦φ−1 AU ( f )◦φ−1

AU

' '

Ã

• the isomorphism of vector spaces

ψ : Kn ∼−→ TeG,(a1, ...,an) 7→
n

∑
i=1

ai ·
∂

∂φi

∣∣∣∣∣
z=0

.

• and the formal group structure F according to the commutative diagram

V ×V U

φ(V )×φ(V ) W

mG

φ ×φ

F

φ

satisfying
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F(X ,Y ) = X +Y +BF(X ,Y )+ ∑
|α|+|β |≥3,|α|,|β |≥1

cαβ ·XαY β , deg BF = 2.

iii) Morphism of Lie algebras: Consider two invariant vector fields A,B ∈ L(G).
We have to show

[A,B](e) = [A(e),B(e)]F ∈ TeG,

or equivalently - using the definition [−,−]F from Proposition 3.4 -

ψ
−1([A,B](e)) = ψ

−1([A(e),B(e)]F) := [ψ−1(A(e)),ψ−1(B(e))]F :=

:= BF(ψ
−1(A(e)),ψ−1(B(e))−BF(ψ

−1(B(e)),ψ−1(A(e))) ∈Kn.

First we introduce on both sides of the latter equation the corresponding derivations
on OKn(W ):

The derivation AU induces

Ã =
n

∑
ν=1

gν ·
∂

∂ zν

∈Θ(W )

with row-vector

g = (g1, ...,gn) ∈ OKn(W )⊕n and g(0) = ψ
−1(A(e)) ∈Kn.

The derivation BU : OG(U)→ OG(U) induces

B̃ =
n

∑
ν=1

hν ·
∂

∂ zν

∈Θ(W )

with row-vector

h = (h1, ...,hn) ∈ OKn(W )⊕n and h(0) = ψ
−1(B(e)) ∈Kn.

• Right-hand side: We obtain

BF(ψ
−1(A(e)),ψ−1(B(e))−BF(ψ

−1(B(e)),ψ−1(A(e))) =

= BF(g(0),h(0))−BF((h(0),g(0)) ∈Kn.

• Left-hand side: Because second order terms cancel we obtain

[Ã, B̃] =

[
n

∑
µ=1

gµ

∂

∂xµ

,
n

∑
ν=1

hν

∂

∂xν

]
=

n

∑
ν=1

(
n

∑
µ=1

gµ

∂hν

∂xµ

−hµ

∂gν

∂xµ

)
∂

∂xµ

=

= (g ·∇h−h ·∇g) ·∇
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Here the Nabla operator ∇ is considered a column vector and the dots denote
matrix multiplication. As a consequence

ψ
−1([A,B](e)) = (g ·∇h−h ·∇g)(0) ∈Kn.

In order to compute
(g ·∇h−h ·∇g)(0)

we analyze the assumption that both vector fields A and B are left-invariant. The
corresponding condition

A(γ) = (TeLγ)(A(e)) f or any γ ∈V

implies: For all f ∈ OKn(W ) and all a := φ(γ) ∈W

(Ã( f ))(a) = Ã( f ◦ L̃a)(0)

with L̃a(x) := F(a,x). These equations impose a condition on the coefficients
of Ã = g ·∇:

(Ã( f ))(a) =
n

∑
ν=1

gν(0) ·
∂ f (F(a,x))

∂xν

∣∣∣∣∣
x=0

∈Kn,

or after replacing (a,x) by (x,y)

(Ã( f ))(x) =
n

∑
ν=1

gν(0) ·
∂ f (F(x,y))

∂yν

∣∣∣∣∣
y=0

∈Kn.

We specialize the last result to the particular case of the projections

f = pr j|φ(U) : φ(U)→K,(z1, ...,zn) 7→ z j, j = 1, ...,n,

and obtain

g j(x) = (Ã(pr j))(x) =
n

∑
ν=1

gν(0) ·
∂Fj(x,y)

∂yν

∣∣∣∣∣
y=0

∈Kn.

Each component function of F = (F1, ...,Fn) expands as

Fj(x,y) = x j + y j +BF, j(x,y)+O(3),

hence
∂Fj(x,y)

∂yν

∣∣∣∣∣
y=0

= δ jν +BF, j(x,eν)+O(2)

with eν ∈Kn the ν-th row vector of the canonical basis. We obtain



96 3 The functor Lie from Lie groups to Lie algebras

g j(x) =
n

∑
ν=1

gν(0) · (δ jν +BF, j(x,eν))+O(2) =

= g j(0)+BF, j(x,g(0))+O(2).

We conclude
∂g j

∂xµ

(0) = BF, j(eµ ,g(0)).

Analogously
∂h j

∂xµ

(0) = BF, j(eµ ,h(0)).

We obtain

(g ·∇h−h ·∇g)(0) = g(0) · (∇h)(0)−h(0) · (∇g)(0) =

= BF(g(0),h(0))−BF(h(0),g(0))

Hence the left-hand side equals the right-hand side which proves the claim: ε is a
morphism of Lie algebras.iv) Surjectivity: We have to extend a given tangent vector

w ∈ TeG at the point e to a left-invariant vector field A ∈Θ(G): Using the chart φ

we choose a vector field

α ∈Θ(U) with α(e) = w

and extend it to a vector field

α
′ := (0,α) ∈Θ(G×U).

We embed G as a retract into the product G×U , taking the multiplication m as
retraction: When defining

j : G→ G×U,x 7→ (x,e),

then
id = [G

j−→ G×U m−→ G].

Note: The retraction projects the point (g,u) ∈G×U to m(g,u) ∈G, but not neces-
sarily to its first component g ∈ G.

The retraction m splits the tangent space of Z at each point

z = (g,u) ∈ Z := G×U

as the direct sum of a horizontal and a vertical subspace according to

TzZ = im[Tg j : TgG '−→ T(g,e)Z ⊂ TzZ]⊕ ker[Tzm : TzZ→ Tm(z)G].
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Therefore the pointwise projection of the vector field α ′ ∈Θ(Z) onto its first sum-
mand is a vector field A ∈Θ(G). The equation

m◦ j = idG

implies for any point g ∈ G for the tangent maps

idTgG = [TgG
Tg j
−−→ T(g,e)

T(g,e)m−−−−→ TgG, A(g) 7→ pr1(α
′(g,e)) 7→ A(g)].

At any point g ∈ G the tangent vector is

A(g) = (T(g,e)m)(pr1(α
′(g,e))) = (T(g,e)m)(α ′(g,e)) ∈ TgG.

We obtain

A(g) = (T(g,e)m)(α ′(g,e)) = (T(g,e)m)(α(e)) = (T 2
(g,e)m)(α(e))

= (T 2
(g,e)m)(w) = (TeLg)(w),

in particular
A(e) = w.

Here T 2 denotes derivation with respect to the second component of (g,u) ∈G×U .

As a consequence

A ∈Θ(G)G = L(G) and ε(A) = w, q.e.d.

Thanks to Theorem 3.17 we have two equivalent ways to obtain the Lie algebra
of a Lie group G. The first employs a local method: The quadratic terms of the
formal group law provide the tangent space of G at the neutral element with the
structure of a Lie algebra Lie G. The second way starts with the global object of
analytic vector fields on G. The Lie algebra is then obtained as the subalgebra of
left-invariant vector fields L(G) with respect to the commutator of vector fields.

In the following we will identify the two Lie algebras Lie G and L(G), using for
both the notation Lie G.

Definition 3.18 (Integral curves and local flows). Consider a K-analytic manifold
X and an analytic vector field A ∈Θ(X).

1. An integral curve of A passing through the point x ∈ X is an analytic map

α : B→ X

with B⊂K a connected open neighbourhood of 0 ∈K, such that

• α(0) = x (Initial condition)



98 3 The functor Lie from Lie groups to Lie algebras

• and for all t ∈ B

...
α(t) = A(α(t)) ∈ Tα(t)X .(Differential equation).

The last equation on tangent vectors means

A(α(t)) = (Ttα)(
d

dτ
|τ=t) ∈ Tα(t)X .

2. A local flow of A is an analytic map

Φ : V → X

with an open subset V ⊂K×X with {0}×X ⊂V , such that for each x ∈ X

Φ(−,x) : {t ∈K : (t,x) ∈V}→ X

is an integral curve passing through x.

Speaking in a descriptive way: A local flow of A is a family of integral curves
of A such that for each point x ∈ X one member of the family passes through x.

A short notation to memorize the flow condition is
...

Φ = A(Φ) andΦ(0,−) = idX .

Remark 3.19 (Local flows and ordinary differential equations). Consider a K-analytic
manifold and an analytic vector field A ∈Θ(X).

1. If φ = (φ1, ...,φn) : U → Kn is a chart of X then A ∈Θ(X) has on U the repre-
sentation

AU =
n

∑
i=1

Ai ·
∂

∂φi
, Ai ∈ OX (U), i = 1, ...,n.

For an analytic map α : B → U defined on an open neighbourhood B ⊂ K
of 0 ∈K we have the equivalence:

• α is an integral curve of A on X
• The component functions

φ ◦α = (φ1 ◦α, ...,φn ◦α) : B→Kn

solve for all t ∈ B the system of first order ordinary differential equations

d
dt
(φi ◦α)(t) = Ai(α(t)) = (Ai ◦φ

−1)((φ ◦α)(t)).
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2. According to the theorem on the existence and uniqueness of solutions the
Picard-Lindelöf algorithm constructs for each x ∈ X a constant r(x) > 0 and an
unique integral curve of A

αx : B(x) := {t ∈K : |t|< r(x)}→ X

passing through x. Because the vector field is analytic, the constructed solution αx
is analytic too. Even more: The integral curve αx depends analytically on the ini-
tial condition x ∈ X , i.e. on an open subset V ⊂K×X with

{0}×X ⊂V

exists a local flow of A

Φ : V → X ,Φ(t,x) := αx(t).

Lemma 3.20 (Additivity of local flows). Consider a K-analytic manifold X and an
analytic vector field A ∈Θ(X) with a local flow

Φ : V → X , V ⊂K×X open.

Then for all points x∈X and for all parameters s, t ∈K with (s,x),Φ(t,Φ(s,x)),(t + s,x) ∈V

Φ(t,Φ(s,x)) = Φ(t + s,x).

Proof. Choose an arbitrary but fixed point (s,x) ∈ V and define on suitable neig-
bourhoods of 0 ∈K the two functions

α : V1→ X ,α(t) := φ(t,φ(s,x)) and β : V2→ X ,β (t) := φ(t + s,x).

Both functions satisfy the same initial condition

α(0) = φ(s,x) = β (0)

and the same differential equation

A(α(t)) = A(φ(t,φ(s,x)) =
...
φ(t,φ(s,x)) =

...
α(t)

and
A(β (t)) = A(φ(t + s,x)) =

...
φ(t + s,x) =

...

β (t).

The theorem on the uniqueness of the solution of a system of differential equations
with analytic coefficients implies α = β , q.e.d.
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3.3 One-parameter subgroups and the exponential map

Definition 3.21 (One-parameter subgroup). A 1-parameter subgroup of a K-Lie
group G is a morphism of Lie groups

f : (K,+)→ G.

In general, the integral curves of vector fields are defined only locally, i.e. in a
small neighbourhood of zero. We show: Under the additional assumption, that the
vector field is a left-invariant vector field on a Lie group, the integral curves are even
defined globally.

Theorem 3.22 (Integration of left-invariant vector fields to 1-parameter sub-
groups). Consider a K-Lie group G and a left-invariant analytic vector field

A ∈ Lie G =Θ(G)G.

1. There exists a unique 1-parameter subgroup of G

fA : (K,+)→ G

with
...
fA(0) = A(e).

2. The 1-parameter subgroup fA satisfies for all t ∈K
...
fA(t) = A( fA(t)),

i.e. fA is the global integral curve of A passing through e ∈ G.

Proof. 1. Due to Remark 3.19 the vector field A ∈ L(G) has a local flow

φ : V → G,{0}×G⊂V with V ⊂K×G open.

i) Left invariance of the flow: If (t,g) ∈V and (t,e) ∈V then

φ(t,g) = Lg(φ(t,e)) :

For each fixed g ∈ G exists an ε > 0 such that

|t|< ε =⇒ (t,e) ∈V and (t,g) ∈V.

Set
B(ε,0) := {t ∈K : |t|< ε}

and consider
α : B(ε,0)→ X ,α(t) := φ(t,g)
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and
β : B(ε,0)→ X ,β (t) := Lg(φ(t,e)).

Both functions satisfy the same intial condition

α(0) = g = β (0)

and the same differential equation:

...
α(t) = A(α(t))

and

...

β (t)= (Tφ(t,e)Lg)◦(Ttφ(−,e))(
d

dτ
)= (Tφ(t,e)Lg)(A(φ(t,e))=A(Lg(φ(t,e))=A(β (t))

Here we have applied Lemma 3.15 to the left invariant vector field A to obtain the
penultimate equality. The theorem on the uniqueness of the solution of a system
of differential equations with analytic coefficients implies α = β .

ii) Germ of the 1-parameter group: Choose ε > 0 such that

s, t ∈ B(ε,0) =⇒ φ(t + s,e),(t,φ(s,e),(s,φ(t,e) ∈V.

Then according to Lemma 3.20 for all (s, t) ∈ B(ε,0)

φ(t + s,e) = φ(t,φ(s,e)) and φ(s+ t,e) = φ(s,φ(t,e)).

Part i) with the choice g := Φ(s,e) implies

φ(t + s,e) = φ(s,e) ·φ(t,e) = φ(t,e) ·φ(s,e).

iii) Extension to a group morphism: Consider a fixed but arbitrary t ∈ K and
choose ε > 0 alike to part ii). For a suitable n ∈ N holds |t|/n < ε . Define

fA(t) := Φ(t/n,e)n ∈ G.

The value is well-defined: If also m ∈ N with |t|/m < ε then part ii) implies

φ(t/n,e)n = (φ(t/(n ·m)+ ...+ t/(n ·m),e))n = (φ(t/(n ·m),e)m)n =

= (φ(t/(n ·m),e)n)m = φ(t/m,e)m.

The map
fA : (K,+)→ G

is a group homomorphism: Assume s, t ∈K. For a suitable n ∈ N part ii) implies

fA(s+ t) = φ((s+ t)/n,e)n = (φ(s/n,e) ·φ(t/n,e))n =



102 3 The functor Lie from Lie groups to Lie algebras

= φ(s/n,e)n ·φ(t/n,e)n = fA(s) · fA(t).

The map fA is analytic in a neighbourhood of 0 ∈K. Being a group homorphism
it is analytic in a neighbourhoof of any point.

iv) Uniqueness: By construction
...
fA(0) = A(e). This condition determines the

morphism fA according to Proposition 3.11 because
...
fA(0) = Lie fA.

2. The following diagram commutes because fA is a group homomorphism accord-
ing to part iii)

K K u t +u

G G fA(u) fA(t) · fA(u)

Lt

fA

L fA(t)

fA

Therefore Theorem 3.17, part 1) applied to the left-invariant vector field A, the
condition

...
φ(0) = A(e), and the differential equation of the flow imply

A( fA(t)) = (TeL fA(t))(A(e)) = (TeL fA(t) ◦T0 fA)(
d

du
|u=0) =

= (Tt fA ◦TeLt)(
d

du
|u=0) = (Tt fA)(

d
du
|u=t) =

...
fA(t), q.e.d.

Definition 3.23 (The exponential map of a Lie group). Consider a K-Lie group
with neutral element e ∈ G. The exponential map of G is the map

exp : Lie G→ G,A 7→ exp(A) := fA(1).

Here fA denotes the uniquely determined 1-parameter group with

...
fA(0) = A(e)

from Theorem 3.22.

Lemma 3.24 (The exponential map as integration of left-invariant vector fields).
The exponential

exp : L(G)→ G

satisfies for all A ∈ Lie G and for all parameter values t ∈K
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exp(t ·A) = fA(t),

i.e. for any left-invariant vector field A the map

K→ G, t 7→ exp(t ·A),

is the integral curve of A passing through e ∈ G.

Proof. For arbitrary but fixed t ∈K the composition

g := [K j−→K fA−→ G], j(s) := t · s

is a 1-parameter group on G satisfying

g(0) = e

and

...
g(0) = (T0g)(

d
ds
|s=0) = (T0 fA)(t

d
ds
|s=0) = t · (T0 fA)(

d
ds
|s=0) = t ·A(e) = (t ·A)(e).

As a consequence
g = ft·A.

Moreover, on one hand, g(1) = exp(t ·A). On the other hand g(1) = fA(t) by defi-
nition. Therefore

exp(t ·A) = fA(t), q.e.d.

Theorem 3.25 (Analyticity of exp and tangent map). The exponential map of a
Lie group G

exp : Lie G→ G

is an analytic map. Its tangent map at 0 ∈ Lie G is

T0exp = id ∈ End(Lie G).

Proof. We have to show that the family of 1-parameter subgroups ( fA)A∈Lie G de-
pends analytically on the parameter A ∈ Lie G.

i) Universal vector field: The proof introduces a relative version of Theorem 3.22
on the existence of the flow of an invariant vector field.

We introduce the analytic manifold

X := Lie G×G,

the Cartesian product of the parameter space Lie G and the base manifold G. The
first projection
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pr1 : X → Lie G

considers X as a family of copies of G, parametrized by Lie G. On X the universal
vector field

U ∈Θ(Lie G×G)

is defined by the family of tangent vectors

U(A,g) := (0,A(g)) ∈ Lie G⊕TgG = T(A,g)(Lie G×G)

for all x = (A,g) ∈ X . Consider the local flow of U on an open subset V ⊂ K×X
with {0}×X ⊂V

ΦU = (Ψ ,Φ) : V → X = Lie G×G.

By definition, ΦU has for all x ∈ X the initial value

ΦU (0,x) = x ∈ X

and satisfies for all x ∈ X the differential equation

(
...

Ψ(t,x),
...

Φ(t,x)) =
...

ΦU (t,x) =U(ΦU (t,x)) =

=U((Ψ(t,x),Φ(t,x)) = (0,Ψ(t,x)(Φ(t,x))).

Here the last term Ψ(t,x)(Φ(t,x))) evaluates the vector field Ψ(t,x) ∈ Lie G at the
point Φ(t,x) ∈G. The differential equation splits into the two differential equations

•
...

Ψ(t,x) = 0, which implies the constant value

Ψ(t,x) =Ψ(0,x)

for all t ∈K with (t,x) ∈V ,

• and as a consequence

...
Φ(t,x) =Ψ(t,x)(Φ(t,x))) =Ψ(0,x)(Φ(t,x))),

i.e. with x = (A,g) ∈ Lie G×G therefore

...
Φ(t,A,g) = A(Φ(x,A,g)),

because ΦU (0,x) = x = (A,g) implies for the first component Ψ(0,x) = A.

For arbitrary but fixed A ∈ Lie G the integral curve of A passing through e ∈G is the
map

K→ G, t 7→Φ(t,A,e).

According to Theorem 3.22 the integral curve extends to the 1-parameter group

Φ(−,A,e) : K→ G,Φ(t,A,e) := fA(t).
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ii) Analyticity: We claim that the map

K×Lie G→ G, (t,A) 7→Φ(t,A,e)

is analytic. Because ΦU = (Ψ ,Φ) is a local flow of the universal vector field U , the
second component

Φ : V → G

is defined and analytic in a suitable neighbourhood of any arbitrary, but fixed

(0,x) = (0,A,e) ∈K×Lie G×G,

in particular Φ(−,−,e) is analytic in a neighbourhood of any arbitrary, but fixed (0,A) ∈K×Lie G.

Consider a fixed, but arbitrary point (t0,A0) ∈ K×Lie G. There exist relatively
compact open neighbourhoods

W1 ⊂⊂K

of t0 and
W2 ⊂⊂ Lie G

of A0 and a number n0 ∈ N such that: For all (t,A) ∈W1×W2 and all n≥ n0

(t/n,A,e) ∈V.

For (t,A) ∈W1×W2 and n≥ n0

fA(t) = fA(t/n)n = Φ(t/n,A,e)n

which proves analyticity with respect to (t,A) in a neighbourhood of (t0,A0). In
particular, the restriction

exp : Lie G→ G,A 7→ fA(1,A,e)

is analytic.

iii) Tangent map of the exponential: For arbitrary but fixed vector field A ∈ Lie G
consider the composition

α := [K j−→ Lie G
exp−−→ G] with j(t) := t ·A.

Then α(t) = exp(t ·A). According to Lemma 3.24 α(t) = fA(t). Therefore

A =
...
α(0)(

d
dt
) = ((T0 exp)◦ (T0 j))(

d
dt
) = (T0 exp)(A)

which proves T0 exp = id ∈ End(Lie G), q.e.d
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Corollary 3.26 (The exponential map is a local isomorphism). The exponential
map of a Lie group G

exp : Lie G→ G

is a local isomorphism.

Proof. The proof follows from Theorem 3.25 by applying Proposition 2.9.

Corollary 3.27 (The image of the exponential map generates the component of
the neutral element). The connected component Ge ⊂ G of e ∈ G is the group
generated by the subset exp(Lie G)⊂ G.

Proof. Because exp is a local isomorphism at 0 ∈ Lie G, the set exp(Lie G) is a
neighbourhood of e ∈ G. It generates Ge according to Proposition 1.11, q.e.d.

A topological group G has no small subgroups if a neighbourhood U of the neu-
tral element e∈G exists such that H := {e} is the only subgroup H ⊂G with H ⊂U .

Corollary 3.28 (Lie groups have no small subgroups). Any Lie group G has no
small subgroups.

Proof. Denote by L := Lie G the n-dimensional Lie algebra of G. According to
Corollary 3.26 a ball B := B(r,0)⊂Kn of radius r > 0 around 0 ∈Kn and a neigh-
bourhood U ⊂ G of e ∈ G exist such that the restriction

exp|B : B '−→U

is an analytic isomorphism. Set V := B(r/2,0). We claim that any subgroup H ⊂ G
with

H ⊂ exp(V )

reduces to H = {e}:

Consider an element h= exp(v1)∈H for a suitable element v1 ∈V . Because h2 ∈ H
an element v2 ∈V exists with

h2 = exp(v2).

We obtain
exp(v2) = exp(v1)

2 = exp(2v1).

We conclude
v2 = 2v1 ∈V.

It is important to conlude that the element v2 also belongs to V .

Iterating the argument with (h2)
n
= h2n, n = 2,3,4, provides a sequence of ele-

ments
vn = 2nv1 ∈V,n ∈ N∗.

Therefore v1 = 0 and h = e, q.e.d.
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Note: According to a theorem of Gleason and Montgomery-Zippin any locally
compact topological group without small subgroups can be provided with the struc-
ture of a real Lie group, see [29].

We recall some results about matrices from our lecture on Lie algebras.

Example 3.29 (Exponential of matrices). The map

e : M(n×n,K)→ GL(n,K),A 7→ eA :=
∞

∑
ν=0

Aν

ν!

is well-defined, because the complex power series

ez :=
∞

∑
ν=0

zν

ν!
∈ C< z >

has radius of convergence = ∞. The exponential map satisfies the following proper-
ties:

1. If A ∈M(n×n,K) then
e−A = (eA)−1.

2. If A, B ∈M(n×n,K) and [A,B] = 0 then

eA+B = eA · eB ∈ GL(n,K),

3. If A ∈M(n×n,K) and S ∈ GL(n,K) then

S · eA ·S−1 = eS·A·S−1

4. If λ ∈ C eigenvalue of A, then eλ ∈ C eigenvalue of eA.

5. For all A ∈M(n×n,K) holds det eA = etr A.

6. If A ∈M(n×n,K) and t ∈K then

d
dt
(et·A)|t=0 = A.

7. The Lie group GL(n,K) has the Lie algebra

Lie GL(n,K) = gl(n,K) := (M(n×n,K), [−,−]).

8. The e-function is the exponential map

exp : gl(n,K)→ GL(n,K)

of the Lie group GL(n,K).
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Proof. For the proof of part 1) - 5) see Proposition ??.

7) On a suitable open neighbourhood U of 1 ∈ GL(n,K) the map

φ : U →Kn2 'M(n×n,K),A 7→ A−1,

is a chart around the neutral element 1 ∈ GL(n,K).
There exists a neighbourhood V ⊂U of 1 ∈ GL(n,K) such that V ·V ⊂U . The

corresponding formal group structure

F ∈m< X ,Y )>⊕n2

with X = (Xi)1≤i≤n2 and Y = (Yi)1≤i≤n2 is defined by the following commutative
diagram

V ×V V (A,B) A ·B

φ(V )×φ(V ) φ(V ) (A−1,B−1) A ·B−1

m

φ ×φ ' φ '

F

Because
A ·B−1= (A−1)+(B−1)+(A−1) · (B−1)

we obtain
F(X ,Y ) = X +Y +B(X ,Y ), B(X ,Y ) := X ·Y,

and
[−,−]F := B(X ,Y )−B(Y,X) = X ·Y −Y ·X .

8) For each A ∈M(n×n,K) the map

f : K→ GL(n,K), t 7→ et·A,

is a 1-parameter subgroup of GL(n,K) with

d
dt
(et·A)|t=0 = A

and
f (0) = 1= e ∈ GL(n,K).

According to Theorem 3.25 the 1-parameter group is uniquely determined by these
properties, q.e.d.
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Proposition 3.30 (Exponential and tangent map commute). Consider a mor-
phism φ : G→ H of Lie groups. Then the following diagram commutes:

G H

Lie G Lie H

φ

expG

Lie φ

expH

Proof. Consider a vector field A ∈ Lie G and set B := Lie φ(A) ∈ Lie H. Denote by

fA : K→ G and fB : K→ H

the corresponding one-parameter groups. Both 1-parameter groups Φ ◦ fA and fB
habe the same derivation:

d
dt
(Φ ◦ fA)(0) = (Lie Φ)(

...
fA(0)) = (Lie Φ)(A) = B =

...
fB(0).

As a consequence, they are equal

Φ ◦ fA = fB,

which implies

expH(Lie (Φ(A)) = expH(B) = fB(1) = Φ( fA(1)) = Φ(expG A), q.e.d.

Corollary 3.31 (The Lie algebra of a subgroup). Consider an injective morphism

j : H→ G

of K-Lie groups. Then:

Lie H = {A ∈ Lie G : exp(t ·A) ∈ H f or all t ∈K}.

The corollary states: If the whole integral curve of a tangent vector A from G
belongs to the subgroup H then A itself is tangent to the subgroup H.

Proof. According to Proposition 3.11 the following diagram commutes
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H G

Lie H Lie G

j

exp

Lie j

exp

According to Corollary 2.22 the map j has constant rank. According to the rank
theorem, Theorem 2.14, the injectivity of j implies the injectivity of the tangent
map Lie j.

i) Apparently Lie H ⊂ {A ∈ Lie G : exp(t ·A) ∈ H f or all t ∈K}.

ii) In order to prove the opposite inclusion, we apply Corollary 3.26: There exists
an open neighbourhood V ⊂ Lie G of 0 ∈ Lie G and an open neighbourhood W ⊂ G
of e ∈ G such that

exp|V : V ∼−→W

is an isomorphism. The following diagram commutes and the vertical maps are iso-
morphism

exp(V ∩Lie H) W

V ∩Lie H V

j

exp

Lie j

exp

In particulat, the set exp(V ∩Lie H) is a neighbourhood of e in H.

Consider an arbitrary A ∈ Lie G with exp(s ·A) ∈H for all s ∈K. Then a param-
eter value t ∈K, t 6= 0, exists such that

t ·A ∈ exp(V ∩Lie H),

i.e. an element B ∈ Lie H exists with exp(B) = exp(t ·A). We obtain

B = t ·A

or
A = (1/t) ·B ∈ Lie H, q.e.d.

The subsequent Lemma 3.32 generalizes Corollary 2.22 including also the cor-
responding Lie algebras.
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Lemma 3.32 (The pre-image of Lie subgroups). Consider a morphism

f : G→ H

of Lie groups and a Lie-subgroup H ′ ⊂ H. Then the pre-image

G′ := f−1(H ′)

is a Lie subgroup of G with Lie algebra

Lie G′ = (Lie f )−1(Lie H ′).

Proof. According to Proposition 2.24 the quotient H/H ′ is an analytic Hausdorff
manifold and the canonical projection

π : H→ H/H ′

is a submersion. According to Theorem 2.14 the fibre H ′= π−1(eH ′) has the tangent
space at e ∈ H ′

Lie H ′ = TeH ′ = ker Teπ.

The analytic left-operation

G× (H/H ′)→ H/H ′,(g,hH ′) 7→ ( f (g) ·h)H ′

has the isotropy group at eH ′ ∈ H/H ′

GeH ′ = {g ∈ G : f (g) ∈ H ′}= f−1(H ′) = G′.

Being an isotropy group G′ ⊂ G is a Lie subgroup according to Proposition 2.21.

The composition
π ◦ f : G→ H/H ′

has constant rank. According to Theorem 2.14 the fibre

G′ = (π ◦ f )−1(eH ′)

has the tangent space at e ∈ G′

TeG′= ker (Te(π ◦ f ))= (Te f )−1(ker Teπ))= (Te f )−1(Lie H ′)= (Lie f )−1(Lie H ′), q.e.d.
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Chapter 4
The functional equation of the exponential map

4.1 The Baker-Campbell-Hausdorff formula

Any Lie algebra has a distinguished representation, namely a canonical morphism
to the Lie algebra of endomorphisms of L. We recall from Lie algebra theory:

The adjoint representation of a finite dimensional Lie algebra (L, [−,−]L) is the
Lie algebra morphism

ad : L→ gl(L) := (End(L), [−,−]),x 7→ ad x,

with
ad x : L→ L,y 7→ [x,y]L.

In close relation to the adjoint representation of Lie algebras any Lie group G has
a distinguished representation, namely a canonical morphism to the Lie group of
automorphisms of Lie G:

Definition 4.1 (Adjoint representation of a Lie group). The adjoint representa-
tion of a Lie group G is the map

Ad : G→ GL(Lie G),g 7→ Ad g := TeΦg.

Here
TeΦg : Lie G→ Lie G

is the tangent map at the neutral element e ∈ G of the inner automorphism

Φg : G→ G,h 7→ g ·h ·g−1,

which is an isomorphism of Lie groups.

115
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Proposition 4.2 (Tangent map of the adjoint representation). Consider a Lie
group G.

1. The adjoint representation of G

Ad : G→ GL(Lie G)

is a morphism of Lie groups.

2. The tangent map of the adjoint representation of G at the neutral element e ∈ G
is the adjoint representation of Lie G, i.e.

Lie(Ad) = ad : Lie G→ Lie G.

Proof. i) Group homomorphism: The map

Ad : G→ GL(Lie G)

is a group homomorphism: For g,h ∈ G

Ad(g1 ·g2) = Teφg1·g2 = Te(φg1 ◦φg2) = Teφg1 ◦Teφg2 = Ad g1 ◦Ad g2.

ii) Analyticity: We identify

GL(Lie G)' GL(n,K), n := dimKG.

Consider a chart τ : U → Kn around e ∈ G and denote by F its formal group law.
The commutative diagram

U GL(n,K)

φ(U)

Ad

τ ∼ Adτ

defines the coordinate representation Adτ of Ad. We have

Adτ : τ(U)→ GL(n,K), x 7→ linear part o f φg, g := τ
−1(x).

With respect to the chart τ the inner automorphism φg has the approximation from
Proposition 3.4, part ii)

XY X− = Y +[X ,Y ]F + ∑
|α|+|β |≥3

cα,β xα yβ .

It shows that Adτ(x) is the linear part of the map
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y 7→ y+[x,y]F + ∑
|α|+|β |≥3,|β |=1

cα,β xα yβ ,

with fixed x and variable y. The power series representation shows that this map and
therefore also its linear part depend analytically on x. Therefore Ad is analytic in a
neighbourhood of e ∈ G. Being a group homomorphism, Ad is analytic.

iii) Tangent map: The tangent map TeAd is the linear part of the map

Adτ : τ(U)→ GL(n,K).

Here Adτ is a map defined for the argument x. According to part ii) the linear part
of Adτ is the linear part of the map

τ(U)→ End(Kn),x 7→ Adτ(x)− id +O(2),

i.e. the linear part of Adτ is the map

ad : Kn→ End(Kn)

with
ad x : Kn 7→Kn, y 7→ [x,y]F , q.e.d.

Lemma 4.3 (Adjoint representation and exponential map). Consider a Lie group G.
Then:

1. The following diagram commutes

G GL(Lie G)

Lie G gl(Lie G)

Ad

exp

ad

e

,

i.e. for all x ∈ Lie G

Ad(exp x) = ead x ∈ GL(Lie G).

2. For all x,y ∈ Lie G:

exp x · exp y · (exp x)−1 = exp(ead x(y)) ∈ G.

Proof. 1. The commutativity of the diagram follows from Proposition 4.2, Propo-
sition 3.30, and Example 3.29.
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2. For any a ∈ G the following diagram commutes by definition of Ad a

G G

Lie G Lie G

φa

exp

Ad a

exp

Therefore for all y ∈ Lie G

φa(exp y) = exp((Ad a)y).

Notably for a := exp x, x ∈ Lie G, and according to the formula from part 1)

(exp x) (exp y) (exp x)−1 = exp(Ad(exp x)(y)) = exp(ead x(y)), q.e.d.

Proposition 4.4 (The functional equation in the Abelian case). Consider a Lie
group G and two elements A,B ∈ Lie G with [A,B] = 0. Then

exp(A+B) = exp(A) · exp(B).

Proof. We consider the corresponding one-parameter groups

fA : K→ G, t 7→ exp(t ·A) and fB : K→ G, t 7→ exp(t ·B).

i) Commutation of fA and fB: The assumption implies (ad A)(B) = 0. Hence

ead(sA)(tB) =
∞

∑
ν=0

(ad sA)ν(tB)
ν!

= tB.

Lemma 4.3 shows

fA(s)· fB(t)= exp(sA)·exp(tB)= exp(ead(sA)(tB))·exp(sA)= exp(tB)·exp(sA)= fB(t)· fA(s).

ii) 1-parameter group fA · fB: Due to part i)

( fA · fB)(t + s) := fA(t + s) · fB(t + s) = fA(t) · ( fA(s) · fB(t)) · fB(s) =

= fA(t) · ( fB(t) · fA(s)) · fB(s) =: ( fA · fB)(t) · ( fA · fB)(s)

Therefore also the product
fA · fB : K→ G

is a one-parameter group. The tangent map of the composition
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fA · fB = [K fA· fB−−−→ G×G m−→ G]

is
T0(m◦ ( fA, fB)) = T0 fA +T0 fB = A+B.

Hence fA · fB is the uniquely determined one-parameter group passing through e∈G
with tangent vector A+B, i.e.

fA · fB = fA+B.

In particular

exp(A) · exp(B) = ( fA · fB)(1) = fA+B(1) = exp(A+B), q.e.d.

To obtain the general functional equation of the exponential map, which also
holds for non-commuting vector fields, one needs some refined formulas for calcu-
lations with binomial coefficients:

Lemma 4.5 (Formulas with binomial coefficients).

1. Binomial coefficients:

(−1)l
(

n
l

)
=

l

∑
k=0

(−1)k
(

n+1
k

)
, 1≤ l ≤ n ∈ N.

2. Derivation of power series: For a convergent power series g ∈K< X ,Y > holds(
d
dt

)n

g(−t, t) =
n

∑
k=0

(
n
k

)
(−1)k ·gk,n−k(−t, t)

with

gk,n−k :=
∂ ng

∂xk∂yn−k.

3. Powers of ad: Consider a Lie group G and two invariant vector fields X ,Y ∈ Lie G =Θ(G)G.
Then for all n ∈ N:

(ad X)n(Y ) =
n

∑
k=0

(
n
k

)
(−1)k Xn−k Y Xk ∈ Lie G.

Proof. i) Induction on n.

ii) and iii) Induction on n with induction step n−1 7→ n using(
n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
.
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Lemma 4.6 (Taylor development along one integral curve). Consider an analytic
manifold Z, an analytic vector field X ∈Θ(Z), and an integral curve of X

α : B→ Z

defined on a connected neighourhood B of 0∈K and passing through a point z ∈ Z.

Then for any open neighbourhood U of z∈Z, and any analytic function f ∈ OZ(U)
holds the Taylor development in one variable t:

f (α(t)) =
∞

∑
n=0

< Xn, f > (z) ·
tn

n!
∈K< t > .

Here the notation
< Xn, f >:= Xn( f )

denotes the n-fold application of the vector field X - or more precisely its derivation XU -
to f .

Proof. We compute by induction on n ∈ N the coefficients of the Taylor series as(
d
dt

)n

( f ◦α)(t) =< Xn, f > (α(t)) :

The induction start n = 0 is obvious.

Induction step n−1 7→ n: First, the differential equation

X(α(t)) =
...
α(t)

implies

X( f )(α(t)) =
d
dt
( f ◦α)(t),

i.e. the directional derivation of f along the vector field X equals the time derivative
of f on the integral curve α of X .

Secondly, the induction assumption applied to the analytic function

X( f ) ∈ OZ(U)

shows:(
d
dt

)n

( f ◦α)(t) =
(

d
dt

)n−1
(

d
dt
( f ◦α)

)
(t) =< Xn−1,X( f )> (α(t)) =

=< Xn, f > (α(t)), q.e.d.
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Remark 4.7 (Exponentiation of a sum of vector fields). Consider an analytic mani-
fold Y , a number s ∈ N, and a set

Vs := {X j ∈Θ(Y ) : 1≤ j ≤ s}

of s vector fields. In general, these vector fields do no commute. Therefore the bi-
nomial theorem does not apply for the computation of powers like

(t1X1 + ...+ tsXs)
k, (t1, ..., ts) ∈Ks, k ∈ N.

We have to replace the binomial theorem by a more general formula:

(t1X1 + ...+ tsXs)
k = ∑

n=(n1,...,ns), |n|=k
X(n) · t1n1 · ... · tsns , |n| := n1 + ...+ns.

For each tuple of exponents

n = (n1, ...,ns) ∈ Ns with |n|= k

the vector field X(n) ∈ Θ(Y ) is the sum of all those products of k vector fields
from Vs, where the product contains each vector field X j, 1≤ j≤ s, as a factor n j-times.

The following proposition 4.8 generalizes Lemma 4.6 to the case of several vec-
tor fields.

Proposition 4.8 (Taylor formula along integral curves of a Lie group). Consider
a Lie group G, a finite set of left invariant vector fields X1, ...,Xs ∈ Lie G, and a
point z ∈ G.

Then: Then for any open neighbourhood U of z∈Z and any analytic function f ∈ OZ(U)
holds the Taylor development

f (z ·exp(t1X1+...+tsXs))= ∑
n=(n1,...,ns)∈Ns

<X(n), f > (z)·
t1n1 · ... · tsns

|n|!
∈K< t1, ..., ts >,

using the notation X(n) from Remark 4.7.

Proof. Consider a point t = (t1, ..., ts) ∈Ks, sufficiently small such that

F(t1, ..., ts) := f (z · exp(t1X1 + ...+ tsXs))

is well-defined. On the line passing through t and 0 ∈ Ks define the convergent
power series u(w) ∈K< w > as

u(w) := F(w · (t1, ..., tn)).
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On one hand, u(w) has the power series expansion which derives from the Taylor
series of F in s variables (t1, ..., ts)

u(w) = F(w · t) = ∑
k∈N

1
k! ∑

n=(n1,...,ns), |n|=k
(D1

n1 · ... ·Ds
nsF)(0) · (w · t)n =

= ∑
k∈N

wk

k! ∑
n=(n1,...,ns), |n|=k

(D1
n1 · ... ·Ds

ns F)(0) · tn

On the other hand, the map

w 7→ z · exp(w · (t1X1 + ...+ tsXs))

is the integral curve of the vector field

t1X1 + ...+ tsXs ∈ Lie (G)

passing through the point z. Lemma 4.6 implies for the Taylor series in one variable w

u(w) = f (α(w)) =
∞

∑
k=0

< (t1X1 + ...+ tsXs)
k, f > (z) ·

wk

k!
.

For each arbitrary, but fixed k ∈ N we equate the terms of order k with respect to w
from both represenstations of u(w), using the representation of X(n) ∈ Lie G from
Remark 4.7:

∑
n∈Ns,|n|=k

(D1
n1 · ... ·Ds

nsF)(0) · tn =< (t1X1 + ...+ tsXs)
k, f > (z) =

= ∑
n∈Ns,|n|=k

< X(n), f > (z) · tn.

Evaluating u(w) at the argument w = 1 gives

F(t) = u(1) =
∞

∑
k=0

1
k! ∑

n∈Ns,|n|=k
(D1

n1 · ... ·Ds
ns F)(0) · tn =

=
∞

∑
k=0

1
k! ∑

n∈Ns,|n|=k
< X(n), f > (z) · tn, q.e.d.

Lemma 4.9 (Some distinguished analytic functions).

1. The function

g : C→ C, g(z) :=
1− e−z

z
,
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is analytic and expands into the convergent power series

g(z) =
∞

∑
ν=0

(−1)ν

(ν +1)!
· zν

with radius of convergence = ∞. In particular g(0) = 1.

2. Denote by ∆(π,0)⊂C the complex disc with radius = π . The inverse function 1/g
is defined and analytic on ∆(π,0), and the analytic function

fBern : ∆(π,0)→ C,z 7→ f (z) :=
1

g(z)
−

z
2

is an even function satisfying fBern(0) = 1.

Proof. The only zero of the function 1− exp(−z) in the domain ∆(π,0) is the
point z = 0. The power series expansion of exp(−z) shows that z = 0 is a remov-
able singularity of the function

z
1− exp(−z)

and fBern(0) = 1. Therefore fBern is a holomorphic function. One checks by explicit
computation

fBern(z) = fBern(−z),

i.e. fBern is an even function, q.e.d.

Remark 4.10 (Generator of the Bernoulli numbers). It is well known, that the
function fBern(z) from Lemma 4.9 generates the Bernoulli numbers Bn, named in
honour of Jacob Bernoulli, see [24, Chap. 15, §1] and [31, Kap. 3. Euler]. These
numbers Bn vanish for all odd indices n≥ 3 and

fBern(z) = 1+
∞

∑
ν=1

B2ν

(2ν)!
· z2ν

with radius of convergence = π . The first Bernoulli numbers are

B1 =−1/2, B2 = 1/6, B4 =−1/30, B6 = 1/42, B8 =−1/30, B10 = 5/66.

The following Theorem 4.11 generalizes Theorem 3.25 which considers only the
constant term = 1 of the power series g from Lemma 4.9.
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Theorem 4.11 (Tangent of the exponential map). Consider a Lie group G. The
tangent map of the exponential map

exp : Lie G→ G

at a point X ∈ Lie G is

TX exp = TeLexp X ◦g(ad X) =: Lie G→ Texp X G.

Here we employ the power series g ∈ C< t > from Lemma 4.9.

Note: Theorem 4.11 claims the commutativity of the following diagram

Lie G = TX Lie G TexpX G

TeG = TX Lie G

TX exp

g(ad X) TeLexpX

under the usual identification

TX Lie G = Lie G = TeG.

Proof.

Definition 4.12 (Logarithm on a Lie group). Consider a Lie group G and a con-
nected open neighbourhood V of 0 ∈ Lie G, such that an open neighbourhood U
of e ∈ G exists with

exp|V : V ∼−→U

an analytic isomorphism, cf. Corollary 3.26. The inverse map

log := (exp|V )−1 : U ∼−→V

is analytic, it is named the logarithm of G on U .

One of the main steps to obtain the Baker-Campbell-Hausdorff formula is the
differential equation satisfied by the logarithm. For the rest of the section we
follow [37, Chap. 2.15].

Theorem 4.13 (Differential equation of logarithm). Consider a Lie group G and
two elements X ,Y ∈ Lie G. Then for suitable ε = ε(X ,Y ) > 0 the map, depending
on one variable,
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F : B(ε,0)→ Lie G, t 7→ log(exp(tX) · exp(tY )),

solves the system of ordinary first order differential equations

...
F(t) =< fBern(ad F(t)),X +Y >+(1/2)< ad F(t),Y −X >

with the initial condition F(0) = 0 ∈ Lie G.

Here the notation
< fBern(ad F(t)),X +Y >

means the result from applying the endomorphism

fBern(ad F(t)) ∈ End(Lie G)

to the argument X +Y ∈ Lie G. Because the complex power series fBern has the
radius of convergence π , the endomorphism fBern(ad F(t)) is well-defined for
small t ∈K.

We will use the differential equation of F to derive a recursion relation for the
coefficents in the Taylor series of F , cf. Lemma 4.14.

Proof. For suitable ε > 0 consider the analytic map

Z : B(ε,0)×B(ε,0)→ Lie G,(u,v) 7→ log(exp(uX) · exp(vY )).

It satisfies for (u,v) ∈ B(ε,0)×B(ε,0) the equation

exp Z(u,v) = exp(uX) · exp(vY ).

i) Partial differentiation with respect to v: For any fixed u ∈ B(ε,0) the right-hand
side of the latter equation is the composition

B(ε,0)
j−→ Lie G

exp−−→ G
Lexp uX−−−−→ G, j(v) := v ·Y.

It has the partial differentiation with respect to v:

∂

∂v
(exp(uX) · exp(vY )) = (Texp vY Lexp uX ◦TvY exp)(Y ).

Theorem 4.11 implies

∂

∂v
(exp(uX) · exp(vY )) = (Texp vY Lexp uX ◦TeLexp vY ◦g(ad(vY )))(Y ).

And similar for the partial derivation of the left-hand side of the equation above:

∂

∂v
exp(Z(u,v) = (TeLexp Z(u,v) ◦g(ad(Z(u,v))))(

∂Z
∂v

(u,v)).
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Equating the right-hand side with the left-hand side gives

(Texp vY Lexp uX ◦TeLexp vY ◦g(ad(vY )))(Y )= (TeLexp Z(u,v)◦g(ad(Z(u,v))))(
∂Z
∂v

(u,v)).

The map
Texp vY Lexp uX ◦TeLexp vY = TeLexp(uX)·exp(vY )

is an isomorphism. Therefore

g(ad(vY ))(Y ) = g(ad(Z(u,v))(
∂Z
∂v

(u,v)).

Using on the left-hand side
g(ad(vY )(Y ) = Y

implies

Y =< g(ad Z),
∂Z
∂v

>: B(ε,0)×B(ε,0)→ Lie G.

In order to solve for
∂Z
∂v

we use the relation

g−1(z) = fBern(z)+ z/2

from Lemma 4.9. It gives

g(ad Z)−1 = fBern(ad Z)+(1/2) ·ad Z

i.e.
∂Z
∂v

=< fBern(ad Z)+(1/2) ·ad T,Y > .

ii) Partial differentiation with respect to u: Replacing (u,v) by (−u,−v) in the equa-
tion above gives

exp(−Z(u,v)) = exp(−vY ) · exp(−uX).

For any fixed v∈B(ε,0) partial differentiation with respect to u of the latter equation
gives for its left-hand side in an analogous fashion

−X =< g(ad(−Z)),−
∂Z
∂u

>

−
∂Z
∂u

=< fBern(ad(−Z)),−X >+(1/2)< ad Z,X >

∂Z
∂u

=< fBern(ad(−Z))− (1/2)< ad Z,X > .

iii) Differential equation: From F(t) = Z(t, t) and f (ad(−Z)) = fBern(ad Z) we
obtain - using that the function fBern is even -
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...
F(t)=

∂Z
∂u

(t, t)+
∂Z
∂v

(t, t)=< fBern(ad F(t),X+Y )>+(1/2)< ad F(t),Y−X >, q.e.d.

Lemma 4.14 (Recursion relation). Consider a Lie group G and its logarithm

log : U →V

on a suitable connected open neighbourhood U of e ∈ G, see Definition 4.12. Then
the coefficients

cn = cn(X ,Y ) ∈ Lie G,n ∈ N∗

of the power series

F(t) = log(exp(tX) · exp(tY )) =
∞

∑
n=1

cn · tn ∈ Lie G < t >

satisfy the recursion
c1 = X +Y

(n+1) · cn+1 =

=(1/2)[X−Y,cn]+ ∑
1≤p≤bn/2c

B2p

(2p)! ∑
ν=(ν1,...,ν2p),|ν |=n

[cν1 , [...[cν2p ,X+Y ]...], n≥ 1,c0 := 0.

The coefficients B2p are the Bernoulli numbers from Remark 4.10.

Proof. Due to Theorem 4.13 the map F satisfies the differential equation

...
F(t) =< fBern(ad F(t)),X +Y >+(1/2) · [F(t),Y −X ]

with the initial condition F(0) = 0. Here fBern is the generator of the Bernoulli
numbers from Lemma 4.9. We compare on both sides of the differential equation
the coefficients of the power series up to finite order: For arbitrary n ∈ N∗

• Left-hand side:

...
F(t) =

n+1

∑
ν=1

ν · tν−1 · cν +O(n+1) ∈ End(Lie G)

• Right-hand side:

ad F =
n

∑
ν=1

tν ·ad cν +O(n+1)

(ad F)2p = ∑
2p≤s≤n

ts · ∑
ν=(ν1,...,ν2p),|ν |=s

(ad cν1 · ... ·ad cν2p)+O(n+1)
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fBern(ad F) = id +
∞

∑
p=1

B2p

(2p)!
(ad F)2p =

= id+ ∑
1≤p≤bn/2c

B2p

(2p)! ∑
2p≤s≤n

ts · ∑
ν=(ν1,...,ν2p),|ν |=s

(ad cν1 · ... ·ad cν2p)+O(n+1)

Comparing on both sides the terms of order n gives

• n = 0:
c1 = X +Y

• n≥ 1:
(n+1) · cn+1 =

=
1
2
[X−Y,cn]+ ∑

1≤p≤bn/2c

B2p

(2p)! ∑
ν=(ν1,...,ν2p),|ν |=n

[cν1 , [cν2 , [..., , [cν2p ,X+Y ]...], q.e.d.

Each coefficient cn(X ,Y ) ∈ Lie G,n ∈ N∗ from Lemma 4.14 comprises terms
with n Lie brackets. The functions

(X ,Y ) 7→ cn(X ,Y ), n ∈ N,

are well-defined for any finite-dimensional Lie algebra L, independently from any
Lie group. They do not refer to a fixed Lie algebra.

Definition 4.15 (Hausdorff polynomials). Consider a Lie algebra L. For each n ∈ N∗
the map

Hn : L×L→ L,Hn(X ,Y ) := cn(X ,Y ),

with the element cn(X ,Y ) ∈ L from Lemma 4.14 is named the n-th Hausdorff poly-
nomial.

Remark 4.16 (Hausdorff polynomials).

In low order the Hausdorff polynomials are

H1(X ,Y ) = X +Y

H2(X ,Y ) = (1/2)[X ,Y ]

H3(X ,Y ) = (1/12)[[X ,Y ],Y ]− [[X ,Y ],X ])

H4(X ,Y ) =−(1/24)[Y, [X , [X ,Y ]]]
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Theorem 4.17 (Baker-Campbell-Hausdorff formula). Consider a Lie group G.
Then: For any norm ‖−‖ on the vector space Lie G a constant ε > 0 exists such
that the Hausdorff series

H : B(ε,0)×B(ε,0)→ Lie G,H(X ,Y ) :=
∞

∑
n=1

Hn(X ,Y ),

is absolute and compact convergent. In particular, the exponential map of G satisfies
the functional equation

exp(X) · exp(Y ) = exp (H(X ,Y ))

for all X ,Y ∈ B(ε,0).

Proof. i) Majorisation and coefficient relations: The power series fBern(z) is abso-
lute convergent. Therefore also

f̃ (z) := 1+
∞

∑
n=1

|B2n|
(2n)!

· zn

is a convergent power series. Therefore exists δ > 0 such that the differential equa-
tion

...
y = f̃ (y)+(1/2) · y

with initial condition y(0) = 0 has a unique solution

y : B(δ ,0)→K.

Note that δ does not depend on the Lie group G. Inserting the solution

y(z) =
∞

∑
n=1

γn · zn

into the differential equation provides the recursion formula for its coefficients:

• Index = 1:
γ1 = 1

• Index ≥ 2:

(n+1) · γn+1 = (1/2) · γn + ∑
1≤p≤bn/2c

|B2p|
(2p)! ∑

ν=(ν1,...,ν2p),|ν |=n
γν1 · ... · γν2p ,γ0 := 0.

Here bn/2c denotes the largest integer ≤ n/2. In particular, γn ≥ 0 for all n ∈ N.

ii) Estimation of Hausdorff polynomials: Set

M := max{‖[A,B]‖ ∈ R : A,B ∈ Lie G∩B(1,0)}.
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Then for all X ,Y ∈ Lie G

‖ [X ,Y ] ‖ ≤M · ‖X‖ · ‖Y‖.

Consider two arbitrary, but fixed X ,Y ∈ Lie G and set α := max{‖X‖,‖Y‖}. Then
the values of the Hausdorff polynomials

cn := Hn(X ,Y )

satisfy for all n ∈ N∗ the estimation:

‖cn‖ ≤Mn−1 · (2α)n · γn :

The estimation holds for n = 1 because

‖c1‖= ‖X +Y‖ ≤ 2α.

Induction step n 7→ n+1: The recursion formula from Lemma 4.14 for the values

cn = Hn(X ,Y ), n ∈ N,

of the Hausdorff polynomials implies

(n+1) · ‖cn+1‖ ≤

≤ (1/2)·2α ·M ·‖cn‖+2α · ∑
1≤p≤bn/2c

|B2p|
(2p)! ∑

ν=(ν1,...,ν2p),|ν |=n
M2p ·Mn−2p ·(2α)n ·γν1 ·...·γν2p

i.e.
(n+1) · ‖cn+1‖ ≤

Mn · (2α)n+1 · ((1/2) · γn + ∑
1≤p≤bn/2c

|B2p|
(2p)!

· γν1 · ... · γν2p) =

= Mn · (2α)n+1 · (n+1) · γn+1

with the last equation due to part i). Eventually

‖cn+1‖ ≤Mn · (2α)n+1 · γn+1.

iii) Domain of convergence: Set

ε := δ/(2M)> 0

with the universal constant δ > 0 from part i).

Then for all X ,Y ∈ Lie G∩B(ε,0) the Hausdorff series
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∞

∑
n=1

Hn(X ,Y )

converges absolute and uniform: For the proof note α < ε and apply part ii) to obtain

‖Hn(X ,Y )‖= ‖cn‖< Mn−1 · (2ε)n · γn ≤ (1/M) · γn ·δ n.

The convergence of
∞

∑
n=1

γn · zn

for |z|< δ , see part i), implies by majorisation the absolute and uniform convergence
of the Hausdorff series for (X ,Y ) ∈ B(ε,0)×B(ε,0).

iv) Functional equation: By definition of the Hausdorff polynomials for all X ,Y ∈ Lie G
holds the equality

F(t) := log(exp tX · exp tY ) =
∞

∑
n=1

Hn(tX , tY ) ∈ (Lie G)< t >

as equality of two convergent power series with coefficients from the normed vec-
tor space Lie G. We have just shown that the right-hand side converges for t = 1
and X ,Y ∈ B(ε,0). Therefore the functional equation

exp X · exp Y = exp(
∞

∑
n=1

Hn(X ,Y ))

holds for all X ,Y ∈ B(ε,0)⊂ Lie G, q.e.d.

Theorem 4.17 shows that the multiplication in a Lie group is determined by the
group-specific exponential map and the group-independent Hausdorff series.
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Outlook

5.1 Lie group - Lie algebra

Definition (Integral subgroup) An integral subgroup of a Lie group G is a con-
nected Lie group H, which is a subgroup (in the algebraic sense) of G, such that the
injection

H ↪→ G

is an immersion. See [4, III,§6,2].

Note: An integral subgroup H ⊂G is not necessary a Lie subgroup. A counterex-
ample is a line H with irrational slope on the real torus

G := T 2 = R2/Z2.

There is a close relationship between the algebraic properties of a Lie group G or
at least the connected component Ge ⊂ G of the neutral element and the algebraic
propertie of its Lie algebra Lie G. We list a series of examples:

Theorem (Dictionary Lie group - Lie algebra). Consider a Lie group G.

1. Adjoint representation: Lie(Ad) = ad, see Proposition 4.2.

2. Normal subgroup versus ideal: If G is connected and H ⊂G an integral subgroup,
then are equivalent:

• H ⊂ G is a normal subgroup.

• Lie H ⊂ Lie G is an ideal.

3. Center: The center of G is defined as

Z(G) := {g ∈ G : g ·h = h ·g f or all h ∈ G}.

133
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Then:

• The center Z(G)⊂ G is a Lie subgroup.

• For connected G the Lie algebra of the center is the center of Lie G, i.e.

Lie Z(G) = Z(Lie G) := {x ∈ Lie G : [x,Lie G] = 0}.

4. Commutativity: If G is connected, then are equivalent:

• G is Abelian

• Lie G is Abelian.

Note. In general, properties of the Lie algebra Lie G can be transferred only to
the connected component Ge ⊂ G of G. In [9, Chapter 1.9] a non-Abelian example

G = N(T ) = T ∪̇T ′ ⊂ SU(2)

is constructed with Ge = T is Abelian. As a consequence

Lie G = Lie T

is Abelian but G is not.

According to Ado’s theorem any Lie algebra embedds into a Lie algebra of ma-
trices. The analogue does not hold for Lie groups:

Proposition (Coverings of SL(n,R))

The total space of the universal covering projection of the matrix group SL(n,R)

p : G→ SL(n,R),n≥ 2,

is a Lie group G which is not a matrix group, i.e. G is not a closed subgroup
of GL(N,R) for any N ∈ N.

5.2 Two of Lie’s Theorems

The following Theorem 5.2 is also named Lie’s First Theorem .

Theorem (Lifting of a Lie algebra morphism)
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Consider two Lie groups G and H and a morphism between their Lie algebras

φ : Lie G→ Lie H.

If G is connected and simply connected then a unique morphism of Lie groups

Φ : G→ H

exists with Lie Φ = φ , i.e. the map

Lie : Hom(G,H)→ Hom(Lie G,Lie H),Φ 7→ Lie Φ ,

is bijective for G connected and simply connected.

Theorem (Lie’s third theorem)

Any K-Lie algebra is the Lie algebra of a uniquely determined connected and simply
connected K-analytic Lie group.

5.3 Analytic versus smooth, differentiable, and continuous

Theorem (Cartan’s theorem on closed subgroups)

Consider a real Lie group G. Any closed subgroup H ⊂ G is a real Lie subgroup.

In the real context a smooth or Ck-Lie group is respectively a smooth or Ck-manifold
with a group multiplication of the corresponding class. If k≥ 2 one can develop the
whole Lie group theory including the Baker-Campbell-Hausdorff formula in the
smooth or in the Ck-category. But the Lie algebra of a Lie group from this category
has to be obtained as the Lie algebra of left-invariant global vector fields, it cannot
be derived from the power series of a formal group law.

Using as a next step the Baker-Campbell-Hausdorff formula, one shows that the
smooth or Ck-structure is already real analytic: Any Lie group from the smooth
or Ck-category is a Lie group in the real-analytic category, see [9, Theor. 1.6.3].

The final step to integrate also the continous category had been listed as Hilbert’s
fifth problem in 1900. Its solution is due to Gleason, Montgomery, and Zippin
in 1952:

Theorem (Solution of the Fifth Hilbert Problem) Any locally compact topo-
logical group with no small subgroups has a unique structure of a real-analytic Lie
group.
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