
DEPARTMENT OF MATHEMATICS LIE ALGEBRAS
LMU MÜNCHEN
WINTER TERM 2022/23 Joachim Wehler

Problems 01 (Repetition)

1. Determine the radius of convergence of the following power series:

i)
∞

∑
ν=0

1
ν!

· zν

ii)
∞

∑
ν=0

zν

iii)
∞

∑
ν=1

(−1)ν+1

ν
· zν

iv)
∞

∑
ν=0

(−1)ν

(2ν)!
· z2ν

v)
∞

∑
ν=0

ν! · zν

vi) Which well-known functions do the power series i) - iv) represent?

2. Consider the field K = R or K= C. Prove that the Euclidean norm

∥x∥ :=

√
n

∑
i=1

|xi|2, x = (x1, ...,xn) ∈Kn,

is a norm on the vector space Kn, i.e. it satisfies

i)
∥x∥= 0 ⇐⇒ x = 0, x ∈Kn,

ii)
∥λ · x∥= |λ | · ∥x∥, λ ∈K, x ∈Kn,
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iii)
∥x+ y∥ ≤ ∥x∥+∥y∥, x,y ∈Kn (Triangle inequality).

3. Consider the field K = R or K= C. Show that for matrices A, B ∈ M(n×n,K)
the operator norm

∥A∥ := sup{∥Ax∥ : x ∈Kn and ∥x∥ ≤ 1}

is a norm on the vector space M(n×n,K), i.e. it satisfies

i)
∥A∥= 0 ⇐⇒ A = 0,

ii)
∥λ ·A∥= |λ | · ∥A∥, λ ∈K,

iii)
∥A+B∥ ≤ ∥A∥+∥B∥ (Triangle inequality).

In addition show

iv)
∥A ·B∥ ≤ ∥A∥ · ∥B∥,

v)
∥1∥= 1 with the unit matrix 1 ∈ M(n×n,K).

4. Consider the matrix

A :=

 3 4 3
−1 0 −1
1 2 3

 ∈ M(3×3,C).

i) Determine the characteristic polynomial of A.

ii) Determine the eigenvalues and eigenspaces of A.

iii) Is A diagonalizable?

————
Discussion: Tuesday, 25.10.2022, 12 p.m.
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Problems 02

5. The complex geometric series
∞

∑
ν=0

zν

has radius of convergence R = 1. Hence the series

∞

∑
ν=0

Aν ∈ M(n×n,C)

is well-defined for any matrix A ∈ M(n×n,C) with ∥A∥< 1.

Show: The matrix 1−A ∈ M(n×n,C) is invertible with

(1−A)−1 =
∞

∑
ν=0

Aν .

Hint: Imitate the proof of the analogous result for the complex geometric series.

6. The complex logarithmic series

log(1+ z) =
∞

∑
ν=1

(−1)ν+1

ν
· zν

has radius of convergence R = 1. Hence the series

log(1+A) :=
∞

∑
ν=1

(−1)ν+1 · Aν

ν
∈ M(n×n,C)

is well-defined for any matrix A ∈ M(n×n,C) with ∥A∥< 1. Consider an open
subset I ⊂ R and a differentiable function

B : I → M(n×n,C)

with ∥B(t)−1∥< 1 and [B′(t),B(t)] = 0 for all t ∈ I.

Show: For all t ∈ I the inverse B(t)−1 exists and
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d
dt

log B(t) = B(t)−1 ·B′(t) = B′(t) ·B(t)−1.

Hint: In order to compute B(t)−1 apply Problem 5 with A := 1−B(t).

7. Consider the endomorphism f ∈ End(C2) defined with respect to the canonical
basis by the matrix

A =

(
1 2
0 3

)
∈ M(2×2,C).

i) Show that

As :=
(

1 0
0 3

)
(semisimple)

and

An :=
(

0 2
0 0

)
(nil potent)

are not the matrices of the Jordan decomposition of f .

ii) Compute the matrices of the Jordan decomposition of f .

8. Provide the group
GL(n,K)⊂Kn2

with the induced topology from the Euclidean space.

Show: Each open subgroup
H ⊂ GL(n,K)

is also closed.

Hint: You may use that a subspace is closed iff its complement is open.

————
Discussion: Tuesday, 8.11.2022, 12 p.m.
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Problems 03

9. Determine a matrix A ∈ gl(2,C) with

exp A =

(
−1 b
0 −1

)
, b ∈ R∗.

10. Consider a finite-dimensional complex vector space V and an
endomorphism f ∈ End V . Show:

i) If f is diagonalizable then f is semisimple.

ii) If f is semisimple then f is diagonalizable.

Hint: You may use the decomposition V =
⊕

λ V λ ( f ) and prove:

pmin(T ) = ∏
λ

(T −λ ) =⇒ V λ ( f )⊂Vλ ( f ).

iii) The sum of two semisimple, commuting endomorphisms of V is semisimple.

11. Consider a finite-dimensional K-vector space V . Show:

The sum of two nilpotent, commuting endomorphisms of V is nilpotent.

12. Show that the subgroup of invertible matrices with rational entries

GL(2,Q)⊂ GL(2,C)

is not a matrix group.

————
Discussion: Tuesday, 15.11.2022, 12.15 p.m.
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Problems 04

13. For K ∈ {R,C} and k ∈ N∗ denote by

n(k,K) := {(ai j) ∈ M(k× k,K) : ai j = 0 for j ≤ i}

the Lie algebra of strictly upper triangular matrices and by

UP(k,K) := {1+A ∈ GL(k,K) : A ∈ n(k,K)}

the group of unipotent matrices. Show:

i) The Lie algebra satisfies

Lie UP(k,K) = n(k,K)

ii) The exponential map

exp : Lie UP(k,K)−→UP(k,K)

is surjective and injective.

14. For the Lie algebra L := gl(n,C) consider the adjoint representation

ad : L −→ End L, X 7→ adX ,

with
adX : L −→ L, (adX )(Y ) := [X ,Y ]

For ν ∈ N define the ν-th iteration

(adX )
ν : L −→ L, (adX )

ν(Y ) := [X , ...[X , [X ,Y ]]...]

with ν-times the argument X .

i) Show by induction

(adX )
N(Y ) =

N

∑
ν=0

(
N
ν

)
Xν ·Y · (−X)N−ν
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ii) Define

eadX : L −→ L, eadX (Y ) :=
∞

∑
N=0

(adX )
N(Y )

N!

Show
(eadX )(Y ) = eX ·Y · e−X

15. Consider a pair of two matrices X ,Y ∈ M(n×n,C) each of which commutes
with the commutator, i.e.

[X , [X ,Y ]] = [Y, [X ,Y ]] = 0.

i) Show the equivalence

exp tX · exp tY = exp

(
tX + tY +

t2

2
· [X ,Y ]

)
⇐⇒

exp tX · exp tY · exp

(
−

t2

2
· [X ,Y ]

)
= exp(t(X +Y ))

ii) Show that the two differentiable functions of the real parameter t

R−→ GL(n,C)

defined respectively as

exp(t(X +Y )) and exp tX · exp tY · exp

(
−

t2

2
· [X ,Y ]

)

satisfy the same linear ordinary differential equation with respect to t and the same
initial condition for t = 0.

Hint: You may apply the product rule and combine the three resulting summands
by using the functional equation of exp in the commutative case. Then in the first
summand the term X · exp tY can be tansformed by the formula from Problem 14
and then simplified.

iii) Prove the adapted functional equation

exp X · exp Y = exp

(
X +Y +

1
2
· [X ,Y ]

)
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16. Assume K ∈ {R,C} and denote by UP(3,K)⊂ GL(3,K) the subgroup of
unipotent matrices.

i) Show: The exponential map

exp : n(3,K)−→UP(3,K)

satisfies

exp(X) · exp(Y ) = exp

(
X +Y +

1
2
· [X ,Y ]

)
ii) Define a group structure on n(3,K) such that

exp : n(3,K)−→UP(3,K)

becomes an isomorphism of groups.

Hint: You may apply the results of Problem 13 and 15.

————
Discussion: Tuesday, 22.11.2022, 12 p.m.
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Problems 05

17. For a matrix group G with surjective exponential map

exp : Lie G −→ G

show: Each g ∈ G has for each n ∈ N∗ a n-th root n
√

g ∈ G, i.e. there exists

h ∈ G with hn = g.

18. For j = 1,2,3 compute explicitly the value of the 1-parameter subgroup
of SU(2) with infinitesimal generator i ·σ j ∈ su(2) with the Pauli matrix σ j.

19. Assume the following results:

• For each representation of su(2) on a finite dimensional complex vector space V

λ : su(2)−→ gl(V )

exists a unique morphism of matrix groups

Λ : SU(2)−→ GL(V )

such that the following diagram commutes

SU(2) GL(V )

su(2) gl(V )

Λ

λ

exp exp

• For each n ∈ N exists a representation

ρn : sl(2,C)−→ gl(Vn)

with an (n+1)-dimensional complex vector space
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Vn = spanC < e0, ...,en >

and the sl(2,C)-action: For j = 0, ...,n

h.e j = (n−2 j) ·e j, x.e j = (n− j+1) ·e j−1, y.e j = ( j+1) ·e j+1;en+1 := e−1 := 0

for the elements

h :=
(

1 0
0 −1

)
, x :=

(
0 1
0 0

)
, y =

(
0 0
1 0

)
∈ sl(2,C)

Define the restriction to su(2) as

λn := ρn|su(2) : su(2)−→ gl(Vn), n ∈ N.

Show the equivalence of the following two properties:

• The parameter n ∈ N is even.

• For the induced morphism of matrix groups

Λn : SU(2)−→ GL(Vn)

with tangent map λn exists a morphism of matrix groups

Λ n : SO(3,R)−→ GL(Vn)

such that the following diagram - with Φ the universal covering - commutes

SU(2) GL(Vn)

SO(3,R)

Λn

Φ Λ n

Note: The group morphisms Λn with odd n ∈ N are named the spinor
representations of SU(2).

20. Consider a Lie algebra L and an ideal I ⊂ L. Assume: The Lie algebra L/I is
nilpotent and for all x ∈ L the restricted endomorphism

(ad x)|I : I → I

is nilpotent. Show: The Lie algebra L is nilpotent.

————
Discussion: Tuesday, 29.11.2022, 12 p.m.
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Problems 06

21. Consider the following diagram with two short exact sequences of morphisms
of Lie algebras, and assume the existence of a morphism

f : L1 −→ L3

which makes the diagram commutative:

L1

0 L0 L2 0

L3

j1 π1

j2 π2

f

Show that f is an isomorphism of Lie algebras.

22. Consider a Lie algebra L. Show:

i) For two nilpotent ideals I,J ⊂ L also the sum I +Y ⊂ L is a nilpotent ideal.

ii) There exists a unique maximal nilpotent ideal in L (named the nilradical of L).

23. Consider a nilpotent K-Lie algebra L ̸= {0}. Show:

i) There exists a K-vector space decomposition

L = I ⊕K · x0

with an ideal I ⊂ L and a non-zero element x0 ∈ L.
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ii) The centralizer of I satisfies

CL(I) ̸= {0},

and there exists a maximal exponent n ∈ N with

CL(I)⊂CnL.

iii) There exists an outer derivation of L, i.e. a derivation

D : L −→ L

which does not have the form

D = ad u with u ∈ L.

Hint: You may use CL(I)\Cn+1L ̸= /0.

24. Determine explicitly an outer derivation of the Lie algebra n(3,K).

————
Discussion: Tuesday, 6.12.2022, 12 p.m.
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Problems 07

25. Determine the center Z(heis(n)) of the Heisenberg algebra.

26. For n ∈ N consider the vector space of square matrices

M := M(n×n,K),

and the symmetric bilinear trace form

β : M×M −→K, β (A,B) := trace (A ·B)

For each subspace V ⊂ M denote by

V⊥ := {A ∈ M : β (A,v) = 0 for all v ∈V}

the orthogonal space of V . Show:

i) The form β is non-degenerate, i.e. M⊥ = {0}.

ii) The canonical map to the dual space

jβ : M −→ M∗, A 7→ β (A,−),

is an isomorphism of K-vector spaces.

iii) For each vector subspace V ⊂ M holds

jβ (V
⊥) =V 0 := {λ ∈ M∗ : λ |V = 0}

and jβ induces an isomorphism

M/V⊥ ≃−→V ∗

27. For n ∈ N consider the group

AF(n,K) := {Kn −→Kn, v 7→ A ·v+b : A ∈ GL(n,K), b ∈Kn}
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of affine automorphisms of Kn.

i) Show: The group AF(n,K) is isomorphic to a matrix group G ⊂ GL(n+1,K). In
the following identify

AF(n,K) and G.

ii) Compute the Lie algebra

a f (n,K) := Lie AF(n,K)

iii) Show that a f (n,K) is a semidirect product

I ⋊θ M

with two K-Lie algebras I and M, and a suitable morphism of Lie algebras

θ : M −→ Der(I)

28. Consider the Lie algebra sl(2,K) and its standard basis (ei)i=1,2,3 with

e1 := h :=
(

1 0
0 −1

)
, e2 := x :=

(
0 1
0 0

)
, e3 := y :=

(
0 0
1 0

)
∈ sl(2,K)

i) With respect to the standard basis compute the matrices from M(2×2,K) of the
endomorphisms of sl(2,K)

ad h, ad x, ad y.

ii) Determine the Killing form of sl(2,K) with respect to the standard basis, i.e.
determine the matrix

Q = (κ(ei,e j))1≤i, j≤3

iii) Determine the rank and the eigenvalues of Q.

————
Discussion: Tuesday, 13.12.2022, 12 p.m.
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Problems 08 (Repetition)

The present problem sheet contains questions related to some definitions,
propositions, theorems and problems from the lecture and the corresponding
exercises. Intentionally, the questions are not arranged in a logical order.

1. Which classes of Lie algebras do you know? Give the definition of each class.
2. Is any nilpotent Lie algebra also solvable?
3. What is the content of the Cartan criterion for solvability?
4. What does Lie’s theorem state, why does one need the complex numbers as base

field?
5. How is the Killing form defined? Give some applications of the Killing form.
6. Set

A =

(
λ b
0 λ

)
, λ ∈K.

Determine the minimal polynomial pmin(T ) of A and its characteristic
polynomial pchar(T ). How do they relate?

7. Give the definition of the trace form of a representation?
8. Set

B =

(
1 2
0 3

)
.

Why are the matrices

Bs =

(
1 0
0 3

)
and Bn =

(
0 2
0 0

)
not the summands of the Jordan decomposition of B?

9. What is the content of the Cartan criterion for semisimpleness?
10. State the Jacobi identity.
11. State the definition of a representation of a Lie algebra.
12. For which class of Lie algebras is the adjoint representation faithful?
13. State the definition and some properties of the exponential map of matrices.
14. Give an example of an infinite matrix series. For which matrices does the series

converge?
15. State the difference between the matrix product and the Lie bracket of Lie

algebras.
16. What are derivations, how do they relate to the adjoint representation?
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17. State the definition and name some properties of the Killing form.
18. How do pmin(T ) and pchar(T ) relate for general square matrices?
19. What about surjectivity of the exponential map?
20. State the definition and some properties of the Heisenberg Lie algebra.
21. State the main theorem about nilpotent Lie algebras.
22. Define the semidirect product of two Lie algebras. How does it relate to the

direct product?
23. How does a semisimple Lie algebra split?
24. Give the definition of the orthogonal space of an ideal in a semisimple Lie

algebra, and state its property.
25. State the definition of the Lie algebra of a matrix group.
26. How is the adjoint representation defined?
27. State the main theorem about solvable Lie algebras.
28. Name some of the classical matrix groups and derive their Lie algebras.
29. State the definition of a 1-parameter group.
30. State the definition of a connected topological space.
31. Describe the universal covering projection of SO(3,R).
32. How does the dynamic Lie algebra of quantum mechanics relate to the

Heisenberg algebra?
33. State the general form of nilpotent matrix Lie algebras?
34. State the definition of the fundamental group of a connected topological space.
35. State Weyl’s theorem on complete reducibility.
36. Describe the universal covering projection of the identity component of the

Lorentz group.
37. How does respectively nilpotency and solvability behave in short exact

sequences of Lie algebra morphisms?
38. Characterize semisimpleness of a Lie algebra by its radical.
39. When does a short exact sequence of Lie algebra morphisms split? What does

splitting imply?
40. Name some applications of the Jordan decomposition in Lie algebra theory.
41. State some types of induced representations. Prove that they are representations.
42. Give some examples from classical matrix groups which are simply connected

and others which are not simply connnected.

————
Discussion: Tuesday, 10.1.2023, 12 p.m.
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Problems 09

29. For the Lie algebra
L := sl(n,C), n ∈ N,

show: The subalgebra of diagonal matrices

d(n,C)∩L

is a maximal toral subalgebra of L.

30. Consider a simple complex Lie algebra L and two bilinear symmetric forms

β , γ : L×L −→ C

which are non-degenerate and satisfy for x,y,z ∈ L the “associativity”

β ([x,y],z) = β (x, [y,z]), γ([x,y],z) = γ(x, [y,z]).

Show: There exists a scalar µ ∈ C∗ satisfying

β = µ · γ

31. For
L := sl(2,C)

consider the Kiling form κ and the trace form

tr : L×L −→ C, tr(x,y) := trace(x◦ y).

Determine µ ∈ C∗ with
κ = µ · tr

32. i) For an Abelian Lie algebra I show: Each endomorphism of the vector space I
is a derivation of the Lie Algebra I, i.e.
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gl(I) = Der(I).

ii) Consider a Lie algebra S and an Abelian Lie algebra I. Due to part i) each
representation

ρ : S → gl(I)

satisfies ρ(S)⊂ Der(I). Therefore the semidirect product

L := I ⋊ρ S

is a well-defined Lie algebra, fitting into the exact sequence of Lie algebras

0 → I
j−→ L π−→ S −→ 0.

Denote by
s : S −→ L

a section against π . Assume S semisimple, and the representation ρ : S → gl(I)
non-zero and irreducible. Show:

a) Derived algebra: L = [L,L]

b) Center: Z(L) = {0}.

c) No factorizing as direct product: There does not exist a pair (L1,L2) of Lie
algebras with L1 semisimple and L2 solvable, such that

L ≃ L1 ×L2.

In particular, L is not semisimple.

Hint: ad a) Consider I ⊂ L, S ⊂ L and verify ρ(S)(I) = I. Conclude [I,S]L = I.
Show [S,S]L = S. ad b) From (i,s) ∈ Z(L) conclude s = 0.

————
Discussion: Tuesday, 17.1.2023, 12 p.m.
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Problems 10

We set L := sl(2,C) for all problems on the present problem sheet.

33. Consider two L-modules U and W . Show:

If u ∈U is a weight vector of weight λu and w ∈W a weight vector of weight λw,
then the tensor product

u⊗w ∈U ⊗CW

is a weight vector of weight λu +λw.

34. Consider the injection of Lie algebras

j : L ↪−→ sl(3,C), A 7→ j(A) :=
(

A 0
0 0

)
,

considered as a block matrix.

i) Show: With respect to the representation

ρ : L −→ gl(sl(3,C)), z 7→ ad j(z),

the L-module sl(3,C) is reducible.

ii) Why is the L-module sl(3,C) from part i) completely reducible? Determine the
isomorphism classes of the irreducible L-modules from the splitting of sl(3,C).

35. Denote by V (λ ) the irreducible L-module with highest weight λ .

Determine the irreducible components of the L-module

V (4)⊗CV (7)

19



36. For arbitrary p,q ∈ Z+ determine the weights of the L-module

V (p)⊗CV (q)

and the dimension of their weight spaces.

————
Discussion: Tuesday, 24.1.2023, 12 p.m.
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Problems 11

37. i) Show the isomorphy of complex Lie algebras

so(4,C)≃ so(3,C)⊕ so(3,C)

ii) Determine the root sets of so(3,C) and of so(4,C), the root space
decomposition of so(4,C), and explicit generators of each root space of so(4,C).

iii) Determine the rank and a base of the root systems of so(3,C) and so(4,C).

Hint: ad i) Define a suitable injective map so(3,C)⊕ so(3,C)−→ so(4,C).
ad ii) Use suitable generators of so(3,C).

For the following Problems 38 and 39 set L := sl(3,C).

38. i) Choose a maximal toral subalgebra T ⊂ L and determine explicitly a vector
space basis (h j) j∈I of T .

ii) Determine the root set Φ of L with respect to T and a base ∆ of the root
system R = (R2,Φ).

iii) Compute the root space decomposition of L: For each positive root α ∈ Φ+

determine root vectors
xα ∈ Lα , yα ∈ L−α

such that the subalgebra of L

Lα := spanC < xα , yα , hα := [xα ,yα ]>

is isomorphic to
sl(2,C).
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39. Denote by Φ the root set of L with respect to a maximal toral
subalgebra T ⊂ L, and by

V := spanRΦ

the real vector space spanned by the roots α ∈ Φ .

i) Determine the rank of the root system R := (V,Φ) of L.

ii) Determine the Cartan matrix of R.

40. Compute the Weyl group of the root system of so(4,C) and of the root system
of sl(3,C)

————
Discussion: Tuesday, 31.1.2023, 12 p.m.
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Problems 12 (Repetition)

The present problem sheet contains questions related to some definitions,
propositions, theorems and problems from the lecture and the corresponding
exercises. Intentionally, the questions are not arranged in a logical order.

41. 1. Name a maximal toral subalgebra of sl(2,C) and more general of sl(n,C).
2. What is a Cartan integer?
3. Describe the irreducible finite-dimensional sl(2,C)-modules.
4. Describe the structure of the Lie algebra sl(2,C).
5. Which role plays the Lie algebra so(3,C) in physics?
6. How to obtain all complex representations of the matrix group SO(3,R)?
7. What is a base of a root system? Why is the concept important?
8. What is a primitive element, and why is the concept important?
9. In which respect differ the Coxeter graph and the Dynkin diagram of a root

system?
10. How do the Lie algebras su(n) and sl(n,C) relate to each other?
11. Is the base of a root system uniquely determined?
12. What are ladder operators?
13. Define the concept of a root system. Why are root systems important?
14. Define the Lie algebra of the angular momentum and its commutator relations.
15. Which conditions on two bases of a root system ensure that they define

isomorphic root systems?
16. How do the Lie algebras sl(2,C) and so(3,C) relate to each other?
17. How to obtain all representations of the matrix group SU(n)?
18. Write down the Cartan matrices of bases of sl(2,C) and so(4,C). Explain their

form.
19. Which concept is the Weyl group of a root system, and why is the concept

important?
20. Determine the weight spaces of an irreducible

finite-dimensional sl(2,C)-module and their dimensions.
21. Which Cartan integers are possible for the root system of a semisimple complex

Lie algebra?

————
Discussion: Tuesday, 7.2.2023, 12 p.m.
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