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1. Consider the canonical map

π : C2 \{0} −→ P1, (z0,z1) 7→ (z0 : z1).

i) Show that π is open.

ii) Conclude that the topological space P1 is second countable.

2. Without using the corresponding result from the lecture show by explicit
calculation

O(P1) = C

i.e. all holomorphic functions on P1 are constant.

Hint. For a holomorphic function f ∈ O(P1) consider the Taylor expansions
of f ◦φ

−1
j , j = 0,1, with respect to the standard atlas of P1.

3. Use the result O(X) = C for a compact Riemann surface X to conclude
Liouville’s theorem: Every bounded entire function is constant.

4. Assume n≥ 1 and consider a polynomial

f (z) = zn +a1 · zn−1 + ...+an−1 · z+an ∈ C[z].

i) Represent f as a non-constant holomorphic map

P1 −→ P1.

ii) Use a result from the lecture to show that f has a zero.

————
Discussion: Problem session on Monday, 21.10.2019, no submission



2

DEPARTMENT OF MATHEMATICS RIEMANN SURFACES
LMU MÜNCHEN
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5. i) Show: Any fractional linear transformation

f (z) :=
az+b
cz+d

with a matrix

A =

(
a b
c d

)
∈ GL(2,C)

is a meromorphic function on C and extends uniquely to a holomorphic map

f : P1 −→ P1.

ii) Determine the value f (∞) of the holomorphic map from part i).

iii) For which matrices A ∈ GL(2,C) holds f = idP1?

6. Show: The group Aut(C) of holomorphic automorphisms of the complex plane
is the group of all affine-linear maps

C−→ C, z 7→ a · z+b, a ∈ C∗, b ∈ C.

Hint: You may show first that any holomorphic automorphism f satisfies

lim
z→∞
| f (z)|= ∞.

Then conclude that f is a polynomial.

7. Consider an arbitrary Riemann surface X . For each open set U ⊂ X set

B(U) := { f : U −→ C| f holomorphic and bounded}.

For the presheaf B defined as

B(U), U ⊂ X open,
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with the canonical restrictions show:

The presheaf B satisfies the first sheaf axiom, but not the second.

8. Let X be topological space and F a presheaf of Abelian groups on X . Prove the
equivalence of the following two conditions:

i) The presheaf F is a sheaf.

ii) For each open U ⊂ X and for each open covering (Ui)i∈I of U the following
sequence of Abelian groups is exact:

0−→F (U)
α−→∏

i∈I
F (Ui)

β−→ ∏
i, j∈I

F (Ui∩U j),

i.e. α is injective and im α = ker β . Here

α( f ) := ( fi)i with fi := f |Ui

and
β (( fi)i) := ( fi j)i j with fi j := ( f j− fi)|Ui∩U j.

————
Discussion: Monday, 28.10.2019
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5 . i) A fractional linear map

f (z) =
a · z+b
c · z+d

,

(
a b
c d

)
∈ GL(2,C),

is a meromorphic function on C. Accordingly it extends to a holomorphic map

f : C−→ P1.

We have

lim
z→∞

f (z) =
a+(b/z)
c+(d/z)

=

{
a/c c 6= 0
∞ c = 0

Hence the function further extends to a holomorphic map

f : P1 −→ P1

ii) According to part i)

f (∞) =

{
a/c c 6= 0
∞ c = 0

iii) Claim:

f = idP1 ⇐⇒ A =

(
a 0
0 a

)
, a ∈ C∗.

Apparently,
az+0
0+a

= z. Assume for all z ∈ C

f (z) =
az+b
cz+d

= z

Then

• f (0) = b/d = 0 =⇒ b = 0

• f (∞) = ∞ =⇒ c = 0

• f (1) = 1 =⇒ a = d and a 6= 0.
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6 . i) We claim: Any biholomorphic map

f : C−→ C

satisfies
lim
z→∞
| f (z)|= ∞.

We give two different proofs.

• Open neighbourhoods of ∞ are the complements of compact subsets. Assume
an open neighbourhood of the form

V := C\DR(0).

For any R > 0 the inverse image

f−1(DR(0))⊂ C

is compact because the inverse map f−1 is continuous. Hence

f−1(DR(0))⊂ DR1(0)

for suitable R1 > 0. Hence

f (C\DR1(0))⊂ C\DR(0), i.e. f (U)⊂V,

with
U := C\DR1(0)

an open neighbourhood of ∞, which proves the claim.

• (Idea: J. Kruse) We first exclude that the isolated singularity ∞ is an essential
singularity of f : Otherwise the Casorati-Weierstrass theorem implies for a
neighbourhood of ∞

V := C\K

with compact
K ⊂ C, K 6= /0,

that
f (V )⊂ C

is dense. After choosing an open neighbourhood U ⊂ C of 0 with

U ∩V = /0

openess of f implies:
/0 6= f (U)⊂ C

is open. Hence
f (U)∩ f (V ) 6= /0
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which contradicts f being bijective. Secondly, Liouville’s therorem implies that
the function f is not bounded, because f is not constant. As a consequence, the
isolated singularity is a pole, which proves the claim.

ii) f is a linear polynomial: The substitution w := 1/z implies

g : C∗ −→ C, g(w) := f (1/w) = f (z),

satisfies
lim
w→0

g(w) = ∞.

Hence w = 0 is a pole of g, hence for suitable k ∈ N

g(w) =
∞

∑
n=−k

cn · zn.

As a consequence

f (z) =
∞

∑
n=−k

cn · z−n.

Holomorphy of f implies cn = 0 for all n≥ 1:

f (z) =
k

∑
n=0

cn · zn

is a polynomial of degree at most = k. Biholomorphy of f implies degree = 1.
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9. Consider two tripel (z1,z2,z3) and (w1,w2,w3), each with pairwise distinct
points from P1. Then exists a unique fractional linear transformation f satisfying
for j = 1,2,3

f (z j) = w j.

Hint: First show that one may restrict to (w1,w2,w3) = (0,1,∞).

10. The group Aut(P1) of holomorphic automorphisms of P1 or Möbius
transformations is isomorphic to the group

SL(2,C)/{±id}

under the isomorphism

SL(2,C)/{±id} '−→ Aut(P1)

induced from

SL(2,C)−→ Aut(P1),

(
a b
c d

)
7→

a · z+b
c · z+d

.

11. Let X be a topological space.

i) Consider a sheaf F of Abelian groups on X , an open set U ⊂ X and a
section f ∈F (U). Show the equivalence:

f = 0 ∈F (U) ⇐⇒ π
U
x ( f ) = 0 ∈Fx for all x ∈U.

ii) For two sheaf morphisms

F1
f−→F and F

g−→F2

show: If for an open set U ⊂ X and for all x ∈U the morphisms of stalks satisfy

0 = [gx ◦ fx : F1,x −→F2,x]

then the morphisms on the level of sections satisfy
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0 = [gU ◦ fU : F1(U)−→F2(U)].

12. i) For a topological space (X ,T ) and a family B of open subsets of X prove
the equivalence of the following two properties:

• The family B is a basis for T , i.e. each open set U ⊂ X is the union of
elements from B.

• For each open set U ⊂ X and each point x ∈U exists an element B from B with

x ∈ B⊂U.

ii) Let X be a set and B a family of subsets of X with the following property:

• For each pair B1,B2 ∈B and for each x ∈ B1∩B2 exists an element B from B
with

x ∈ B⊂ B1∩B2.

Show: The family
B∪{ /0}∪{X}

is a basis for a topology on X .

————
Discussion: Monday, 4.11.2019
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9 . i) W.l.o.g. we assume
(w1,w2,w3) = (0,1,∞).

Depending on the choice of (z1,z2,z3) we consider the following fractional linear
transformation

• z1,z2,z3 6= ∞:

f (z) :=
z− z1

z− z3
·

z2− z3

z2− z1

• z1 = ∞:

f (z) :=
z2− z3

z− z3

• z2 = ∞:

f (z) :=
z− z1

z− z3

• z3 = ∞:

f (z) :=
z− z1

z2− z1
.

In each case
( f (z1), f (z2), f (z3)) = (0,1,∞).

ii) To prove the uniqueness of f it suffices to show: The only fractional
transformation f with three pairwise distinct fixed points is the identity. If for z 6= ∞

f (z) =
a · z+b
c · z+d

= z

then
c · z2 +(d−a) · z−b = 0.

The quadratic equation has

• two solutions iff c 6= 0

• exactly one solution iff c = 0 and a 6= d
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• infinitely many solutions iff c = 0 and a = d and b = 0

• no solution iff c = 0 and a = d and b 6= 0. Then f = idP1 .

If for z = ∞

f (∞) = ∞

then

f (∞) =
a
c
= ∞

which implies c = 0 and

f (z) =
a
d
· z+

b
d
, d 6= 0.

Hence in any case, f has only one further fixed point besides ∞. As a consequence,
any fractional linear transformation f 6= id has at most two fixed points, q.e.d.
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13. On the Riemann surface P1 let O0 be the sheaf of holomorphic functions which
vanish at z = 0 ∈ P1, i.e. for each open set U ⊂ P1

O0(U) :=

{
{ f ∈ O(U) : f (0) = 0} 0 ∈U

O(U) 0 /∈U

Analogously let O∞ be the sheaf of holomorphic functions on P1 which vanish
at z = ∞ ∈ P1. Set

F := O0⊕O∞

and consider the sheaf morphism

ad : F −→ O

which is defined by the addition of functions

adU : F (U)−→ O(U), ( f1, f2) 7→ f1 + f2, U ⊂ P1 open,

Show: For each x ∈ P1 the induced morphism of stalks

adx : Fx −→ Ox

is surjective, but for some U ⊂ X the morphism of groups of sections

adU : F (U)−→ O(U)

is not surjective.

14. Let X be a topological space. For a morphism

f : F −→ G

between two sheaves of Abelian groups on X show:

F (U)
fU−→G (U) bijective for all open U ⊂X ⇐⇒ Fx

fx−→Gx bijective for all x∈X .
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15. Show: For each pair (k1,k2) ∈ Z2 the twisted sheaves on P1

O(k1)⊗O O(k2) and O(k1 + k2)

are isomorphic, i.e. there exists a sheaf morphism

f : O(k1)⊗O O(k2)−→ O(k1 + k2)

such that the induced morphisms fx on the stalks are isomorphisms for all x ∈ P1.

16. Let X be a Riemann surface and L an invertible sheaf on X .

i) Show: The dual sheaf
L ∨ = H omO(L ,O)

is invertible.

Hint. You may prove first H omO(O,O)' O .

ii) For X = P1 and k ∈ Z construct a canonical sheaf morphism

O(−k)−→H omO(O(k),O).

Show:
H omO(O(k),O)' O(−k).

————
Discussion: Monday, 11.11.2019
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13 . For x ∈ P1 the induced morphism on stalks is

adx : F −→ R

with
R' C{z}

and

F '


m⊕R x = 0
R⊕R x ∈ C∗

R⊕m x = ∞

with
m= { f ∈ R : f (0) = 0}.

Apparently the addition adx is surjective.

One has
F (P1) = O0(P1)⊕O∞(P1) = {0}⊕{0}= {0},

but
O(P1) = C.

Hence adP1 is not surjective.

16 .

• Commutative algebra: Consider a commutative ring R with 1. Then the
canonical multiplication map

µR : R−→ HomR(R,R), a 7→ µR(a) := [R−→ R, b 7→ a ·b]

is an isomorphism of R-modules: Elements φ ∈ HomR(R,R) are determined by
their value φ(1).

• O-module sheaves: Let X be a Riemann surface and F , G two O-module
sheaves on X . The O-module structure defines by multiplication a sheaf
morphism
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µ : O −→H omO(F ,G ).

For each x ∈ X we consider its induced morphism of stalks

µx : Ox −→ (H omO(G ,G ))x

It is induced by the following commutative diagrams, which exist for open
neighbourhoods U ⊂ X of x,

O(U) HomO|U (F |U,G |U)

Ox (H omO(G ,G ))x

µU

πU
x πU

x

µx

• H om and stalks: On the level of stalks we define for each x ∈ X a morphism

α : (H omO(F ,G ))x −→ HomOx(Fx,Gx)

such that the following diagram commutes:

HomO|U (F |U,G |U)

(H omO(F ,G ))x HomOx(Fx,Gx)

πU
x β

α

To define α represent a given element

φx ∈ (H omO(F ,G ))x

in an open neighbourhood U of x by a sheaf morphism

φU : F |U −→ G |U.

The latter induces a morphism of stalks

β (φU ) := (φU )x : Fx −→ Gx.

Define
α(φx) := β (φU ).

One checks that the definition does not depend on the choice of the
representative.
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• Hom and direct limit commute for the structure sheaf : We specialize the result
of the previous part to the structure sheaf

F := G := O

and show that
α : (H omO(O,O))x −→ HomOx(Ox,Ox)

is an isomorphism of stalks.

We claim: Any O|U-linear sheaf morphism

ψ : O|U −→ O|U, U ⊂ X open neighbourhood of x,

is the multiplication by the holomorphic function

f := ψU (1) ∈ O(U).

For the proof note that for any connected open V ⊂U the following diagram
commutes:

O(V ) O(V )

Ox Ox

ψV

ψx

πV
x πV

x

If g ∈ O(V ) and
h := ψV (g) ∈ O(V )

then
hx = ψx(gx) = ψx(gx ·1x) = gx ·ψx(1x) = gx · fx ∈ Ox

The equality implies
h = f |V ·g

due to the identity theorem and proves the claim.

The identification of each O|U-linear morphism

ψ : O|U −→ O|U

with the multiplication by

f := ψU (1) ∈ O(U)

shows that the Ox-linear map

α : (H omO(O,O))x −→ HomOx(Ox,Ox)
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is an isomorphism.

• Isomorphism of the multiplication morphism: With R := Ox the composition

µR = [R
µx−→ (H omO(O,O))x

α−→ HomR(R,R)]

is an isomorphism due to part 1) and part 3). As a consequence also

Ox
µx−→ (H omO(O,O))x

is an isomorphism. Exercise 14 implies that the multiplication morphism

µ : O −→H omO(O,O)

is an isomorphism.

• Dual of twisted sheaves: The multiplication morphism

µ : O(−k)−→H omO(O(k),O)

is defined on the level of sections: For open U ⊂ P1 each
element s ∈ O(−k)(U) defines by multiplication a morphism

O(k)|U −→ O|U

Because the transformation g−k
01 of the local functions of sections in O(−k) and

the transformation gk1
01 of the local functions of sections in O(k) multiply to

g−k
01 ·g

k
01 = 1.

The morphism above induces an isomorphism on the level of stalks, because in
a neighbourhood where the invertible sheaves restrict to the structure sheaf

O
'−→H omO(O,O)

Hence the morphism µ is an isomorphism of invertible sheaves on P1.
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17. Consider a map p : X −→ Y between topological spaces. Show the equivalence:

p local homeomorphism ⇐⇒ p unbranched covering projection.

18. i) Show: The exponential map

exp : C−→ C∗

is an unbounded, unbranched covering projection.

ii) Conclude: Each holomorphic function

f : G−→ C∗

with a simply-connected domain G⊂ C has a holomorphic logarithm, i.e. a
holomorphic function

F : G−→ C

with
exp(F) = f .

19. Consider a presheaf F on a locally-connected Hausdorff space X which
satisfies the identity theorem. Show: The étale space |F | is a Hausdorff space.

Hint: For two germs fx 6= gy you may consider separately the cases x 6= y and x = y.

20. Let X ⊂ C be open and x ∈ X a given point. The sheaf F on

Y := X \{x}

of locally constant integer-valued functions induces a presheaf F X on X with

F X (U) =

{
F (U) x /∈U
0 x ∈U
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for connected open U ⊂ X , and restrictions derived from the restrictions of F .
Show:

i) The presheaf F X is a sheaf on X .

ii) The stalks at x satisfy

(H om(F X ,F X ))x 6= {0} and Hom(F X
x ,F X

x ) = 0.

————
Discussion: Monday, 18.11.2019
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20 i) For connected open U ⊂ X and an open covering U = (Ui)i∈I of open sets,
each compatible family ( fi)i∈I of sections fi ∈F X (Ui), i ∈ I, defines a locally
constant function f on U , hence a constant f ∈ Z.

If x ∈U then x ∈Ui for at least one i ∈ I and we have fi = 0. Hence f = 0.

ii) On one hand, we have

F X
x = 0 and Hom(F X

x ,F X
x ) = 0

because F X (U) = 0 for each connected neighborhood U ⊂ X of x.

On the other hand
(H om(F X ,F X ))x 6= 0

because for any open neighbourhood U ⊂ X of x the restriction

F X |U 6= 0.

Hence the identity morphisms

id : F X |U −→F X |U, U ⊂ X open neighbourhood of x,

define an element
0 6= id ∈ (H om(F X ,F X ))x 6= 0.

Note: As a consequence, the canonical morphism

(H om(F X ,F X ))x −→ Hom(F X
x ,F X

x )

is not injective.
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21. Consider a compact Riemann surface X and finitely many points p1, ..., pn ∈ X .
Set

X ′ := X \{p1, ..., pn}

and consider a non-constant holomorphic function

f : X ′ −→ C.

Show: The image of f comes arbitrary close to every c ∈ C, i.e.

f (X ′) = C.

22. Consider an unbranched covering projection

p : (Y,y0)−→ (X ,x0)

of topological Hausdorff spaces and a continous map

f : (Z,z0)−→ (X ,x0)

with Z a connected topological space. Assume the existence of two continuous
maps

f̃ j, j = 1,2,

which render commutative the following diagram

(Y,y0)

(Z,z0) (X ,x0)
f

f̃ j p

Show: f̃1 = f̃2.

23. Consider a holomorphic map

f : T1 −→ T2
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between two complex tori

Tj := C/Λ j, j = 1,2, with canonical projections π j : C−→ Tj

and assume f (0) = 0.

i) Show: There exists a unique holomorphic map

F : C−→ C

with F(0) = 0 and such that the following diagram commutes

(C,0) (C,0)

(T1,0) (T2,0)

F

π1 π2

f

ii) Show: There exists a unique α ∈ C satisfying

α ·Λ1 ⊂Λ2

and for all z ∈ C
F(z) = α · z.

24. Consider a Riemann surface X , a point x ∈ X and a holomorphic germ fa ∈ Oa.
Show: Two maximal global analytic continuations of fa

(p, f ,b) and (p′, f ′,b′)

are biholomorphically equivalent, i.e. there exists a biholomorphic map

F : (Y ′,b′)−→ (Y,b)

such that the following diagram commutes

(Y ′,b′) (Y,b)

(X ,a)

F

p′ p

and f ′ = F∗( f ).
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————
Discussion: Monday, 25.11.2019
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25. Consider a holomorphic unbounded, unbranched covering projection

p : Y −→ X

between two Riemann surfaces and a holomorphic function f ∈OY (Y ). For a given
point b ∈ Y set

a := p(b) ∈ X and fa := p∗( fb) ∈ OX ,a.

For the tuple
(p, f ,b)

show the equivalence:

• The tuple (p, f ,b) is a maximal global analytic continuation of fa ∈ OX ,a

• For any two distinct points b1, b2 ∈ Ya

p∗( fb1) 6= p∗( fb2).

26. Consider a Riemann surface X . Show: The definition of the exterior derivations

d, d′, d′′ : E j
X −→ E j+1

X , j = 0,1,

does not depend on the choice of charts of X .

27. For a complex torus T show: Each holomorphic map

f : P1 −→ T

is constant.

28. Let

R := { f : U −→ C|U ⊂ C open neighbourhood of 0, f smooth}
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be the ring of smooth functions in a neighbourhood of zero,

m⊂ R

its maximal ideal, and
T 1R :=m/m2

the cotangent space of R. A derivation of R is a C-linear map

D : R−→ C

which satisfies the product rule

D( f1 · f2) = D f1 · f2(0)+ f1(0) ·D f2, f1, f2 ∈ R.

Denote the complex vector space of derivations of R by

Der(R,C)

Show:

i) Each derivation D ∈ Der(R,C) restricts to the zero map

D|C= 0

on the subspace C⊂ R of constant functions.

ii) Each derivation
D ∈ Der(R,C)

induces a C-linear map
φD : T 1R−→ C

such that the following diagram commutes

R C

T 1R

D

φDd

Here d denotes the differential, defined as

d f := f − f (0) mod m2.

iii) The map

φ : Der(R,C)−→ HomC(T 1R, C), D 7→ φD,

is an isomorphism of complex vector spaces.
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Note. The vector space Der(R,C) is named the tangent space of R.

Hint ad iii): You may first prove that the differential d satisfies the product rule.

————
Discussion: Monday, 2.12.2019
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25 . i) The maximal global analytic continuation fa ∈ OX ,a is uniquely determined.
It has been constructed by using Z ⊂ |O|. The points of Z correspond bijectively to
those germs of OX ,a which originate from fa ∈ OX ,a by analytic continuation along
a path in X .

By definition of the holomorphic function f on Z for b1 ∈ Za the germ
of fb1 ∈ OZ,b1 maps via p∗ to the germ from the stalk OX ,a which equals b1 ∈ Z
(tautological definition). Hence

b1 6= b2 =⇒ p∗( fb1) 6= p∗( fb2).

ii) Assume
b1 6= b2 =⇒ p∗( fb1) 6= p∗( fb2).

Consider the maximal analytic continuation (q,g,c) of fa ∈ OX ,a with

q : (Z,c)−→ (X ,a).

We define
F : Z −→ Y

as follows: A point ζ ∈ Z is a germ fx ∈ OX ,x which originates from fa by analytic
continuation along a path α in X from a to x := q(ζ ). Because

p : Y −→ X

is an unbounded, unbranched covering projection and I is connected and simply
connected, the path α lifts to a unique path α̃ in Y such that the following diagram
commutes:

(Y,b)

(I,0) (X ,a)
α

α̃ p

Here b ∈ Y is the unique point from the fibre Ya with



Selected Solutions 07 27

p∗( fb) = fa ∈ OX ,a.

Set
F(ζ ) := α̃(1) ∈ Y.

Then (p, f ,b) induces the maximal global analytic continuation via F , and hence
any global continuation of fa.

28 . i) The product rule

D(1) = D(1 ·1) = D1 ·1+1 ·D1 = 2 ·D(1)

implies D(1) = 0 and by C-linearity D|C= 0.

ii) The product rule implies
D|m2 = 0.

Therefore D induces a unique C-linear map φD which renders commutative the
given diagram.

iii) One checks that the map

φ : Der(R,C)−→ HomC(T 1R,C)

is C-linear. We define

ψ : HomC(T 1R,C)−→ Der(R,C), χ 7→ D := χ ◦d

Note that d : R−→ T 1 satisfies the product rule, because

d( f1 · f2) = f1 · f2− f1(0) · f2(0) mod m2 =

= f1 · f2− f1(0) · f2(0)− ( f1− f1(0))( f2− f2(0)) mod m2 =

= f1(0) f2 + f2(0) f1−2 · f1(0) · f2(0) mod m2 =

= f1(0)( f2− f2(0)) mod m2 + f2(0)( f1− f1(0)) mod m2 =

= f1(0) ·d f2 + f2(0) ·d f1.

As a consequence, also the composition

D := χ ◦d : R−→ C

is a derivation. One checks that φ and ψ are inverse maps, q.e.d.
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LMU MÜNCHEN
WINTER TERM 2019/20 Joachim Wehler

Problems 08

29. Consider the holomorphic differential form

ω =
dz
z
∈Ω

1(C∗).

i) Show: The form ω extends uniquely to a meromorphic differential form

ω̃ ∈M (P1).

Determine the residues of ω̃ at its singularities.

ii) Show: There exists a unique k ∈ Z such that ω̃ defines a global meromorphic
section of the twisted sheaf O(k). Define a sheaf isomorphism

Ω
1 −→ O(k).

Note. A global meromorphic section of O(k) is a pair of meromorphic functions

(s0,s1) ∈M 1(U0)×M 1(U1)

satisfying s0 = gk
01 · s1.

iii) Does there exist a non-zero holomorphic differential form on P1?

30. Consider a torus T = C/Λ with a complex atlas

A = (zi : Ui −→Vi)i∈I

such that for all i, j ∈ I the difference

zi− z j : Ui∩U j −→ C

is locally constant with values in Λ .

i) Show: The family (dzi)i∈I with dzi ∈Ω 1(Ui) is a global holomorphic form on T ,
named

dz ∈Ω
1(T ).
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ii) Show: There exists an isomorphism of sheaves on T

Ω
1 −→ O, ( fi dzi)i∈I 7→ ( fi)i∈I ,

iii) Show
Ω

1(T )' C

and conclude: For any meromorphic function f ∈M (T ) holds

0 = ∑
p∈T

res( f ; p).

31. Consider a holomorphic map

p : X −→ Y

between Riemann surfaces. By means of the sheaf morphism

p∗ : EY → p∗EX , f 7→ p∗ f := f ◦ p,

define for a chart z : U −→V of Y the pullbacks - using the same notations -

p∗ : E 1
Y (U)−→ (p∗E 1

X )(U), f ·dz+g ·dz 7→ p∗ f ·d(p∗z)+ p∗g ·d(p∗z)

and
p∗ : E 2

Y (U)−→ (p∗E 2
X )(U), f ·dz∧dz 7→ p∗ f ·d(p∗z)∧d(p∗z)

Show:

These local pullbacks glue to global pullbacks independent from the choice of
charts, i.e. to sheaf morphisms

p∗ : E 1
Y −→ p∗E 1

X and p∗ : E 2
Y −→ p∗E 2

X .

They respect holomorphy, i. e.

p∗(OY )⊂ p∗OX and p∗(Ω 1
Y )⊂ p∗Ω 1

X .

32. Consider

φ := exp : C−→ C∗ and η :=
dz
z
∈Ω

1
C∗(C∗).

Determine the pullback
φ
∗
η ∈Ω

1
C(C).

————
Discussion: Monday, 9.12.2019



30

DEPARTMENT OF MATHEMATICS RIEMANN SURFACES
LMU MÜNCHEN
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31 . E.g., consider

p∗ : E 1,0
Y (U)−→ (p∗E

1,0
X )(U) = E 1,0

X (p−1(U))

and two charts
z, w : Ui j −→ C

with w = ψ(z) holomorphic. We have

w = ψ(z) =⇒ dw = ψ
′ dz

hence
dw = ψ

′ dz

If
f dz = η = g dw

then
f dz = g ·ψ ′ dz or f = g ·ψ ′.

As a consequence, there are equivalences

p∗η well defined ⇐⇒ p∗ f d(p∗z)= p∗g d(p∗w) ⇐⇒ ( f ◦ p) d(z◦ p)= (g◦ p) d(w◦ p) ⇐⇒

( f ◦ p) d(z◦ p) = (g◦ p) · (ψ ′ ◦ p) ·d(z◦ p) ⇐⇒ f ◦ p = (g◦ p) · (ψ ′ ◦ p)

which is satisfied.
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33. Show: On a Riemann surface X the sequence of sheaf morphisms with j the
canonical injection

0−→ C j−→ O
d−→Ω

1 −→ 0

is exact.

34. Consider a non-constant holomorphic map

f : X −→ Y

between two Riemann surfaces. For two points b ∈ Y and a ∈ Xa denote by

k := v( f ; a) ∈ N∗

the multiplicity of f at a. For a holomorphic differential form

ω ∈Ω
1
Y (Y \b)

show: The pullback
f ∗ω ∈Ω

1
X (X \Xb)

satisfies
res( f ∗ω; a) = k · res(ω; b).

35. Let X be a Riemann surface. A differential form ω ∈ E 1
X (X) with

dω = 0

has a primitive F ∈ EX (X) if
dF = ω.

Show: For any differential form ω ∈ E 1
X (X) with dω = 0 exists a Riemann

surface Y and a holomorphic unbounded, unbranched covering projection

p : Y −→ X
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such that the pullback p∗ω ∈ E 1
Y (Y ) has a primitive.

Hint: Consider the sheaf F on X of local primitives of ω defined as

F (U) := { f ∈ EX (U) : d f = ω}

and its étale space p : |F | −→ X . The exact de Rahm sequence implies that p is an
unbounded, unbranched covering projection. The definition of F : Y −→ C is
tautological.

36. Show: On a topological space X the covariant functor “global sections”

Γ (X ,−) : Shea f
X
−→ Ab, Γ (X ,F ) := F (X),

is left-exact, i.e. for any short exact sequence of sheaves of Abelian groups on X

0−→F
α−→ G

β−→H −→ 0

the sequence of Abelian groups

0−→ Γ (X ,F )
Γ (α)−−−→ Γ (X ,G )

Γ (β )−−−→H (X)

is exact.

Here Shea f
X

denotes the category of sheaves of Abelian groups on X and Ab
denotes the category of Abelian groups.

————
Discussion: Monday, 16.12.2019
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33 . The question is local. Hence we may assume X = C and x = 0 ∈ C.

• Exactness at C: Injection
C ↪−→ Ox

• Exactness at Ox: Apparently
d ◦ j = 0.

Conversely: If
d f = 0

then the holomorphic germ f ∈ Ox is locally constant because

∂ f = ∂ f = 0.

• Exactness at Ω 1
x : Consider

ω = g ·dz ∈Ω
1
x .

If f ∈ Ox then

d f = d′ f =
∂ f
∂ z

dz = g dz ⇐⇒
∂ f
∂ z

= f ′ = g.

One obtains a primitive of g by formal integration of the taylor series: If

g(z) =
∞

∑
n=0

cn · zn

then define

f (z) :=
∞

∑
n=0

cn

n+1
· zn+1

34 . The claim is local with respect to b ∈ Y and a ∈ Xb. We may assume Y ⊂ C a
disk with b = 0, and X ⊂ C a disk with a = 0, and

f (z) = zk, k 6= 0.
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Consider a holomorphic form

ω(w) = h(w) dw ∈Ω
1(Y \{b})

With
w = f (z) = zk

by definition

( f ∗ω)(z) = ( f ∗h)(z) d( f ∗w) = (h◦ f )(z) ·d(zk) = h(zk) · k · zk−1dz.

The Laurent expansion

h(w) =
∞

∑
n=−∞

cn ·wn

implies

h(zk) =
∞

∑
n=−∞

cn · zkn

and

zk−1 ·h(zk) =
∞

∑
n=−∞

cn · zkn+(k−1).

From kn+(k−1) =−1 follows

k(n+1)−1 =−1 or n =−1

Hence
resw(h(w); 0) = c−1 = resz(zk−1 ·h(zk); 0)

and
k · res(ω; b) = k · resw(h(w); 0) = k · resz(zk−1 ·h(zk); 0) =

= resz(h(zk) · k · zk−1; 0) = res( f ∗ω; a).

36 . Cf. “Otto Forster: Lectures on Riemann Surfaces.” Lemma 15.8.
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37. i) For a vector space V and a semi-norm

p : V −→ R+

show:
p(0) = 0 and p(v)≥ 0 for all v ∈V.

ii) Consider a Fréchet space V with its topology defined by the sequence (pn)n∈N
of semi-norms. Show:

V Hausdorff ⇐⇒ For each v ∈V, v 6= 0, exists n ∈ N with pn(v) 6= 0.

38. Consider a disk
D = Dr(0)⊂ C, 0 < r < ∞,

and the space L2(D) of square-integrable holomorphic functions on D. For the
monomials

φn(z) := zn, n ∈ N,

compute the Hermitian products

< φn,φm >, n,m ∈ N.

39. For a simply connected Riemann surface X show

H1(X ,C) = 0.

40. For a simply connected Riemann surface X show

H1(X ,Z) = 0.

Hint: Use Exercise 39

————
Discussion: Monday, 13.1.2020
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41. Show:
H1(C∗,Z) = Z.

Hint: Apply Leray’s theorem to the covering U = (U1,U2) with

U1 := C∗ \R+ and U2 := C∗ \R−

42. Find a Riemann surface X , an open covering U of X and a sheaf F on X with

H1(U ,F ) 6= H1(X ,F ).

43. Denote by D⊂ C the unit disk and by D∗ := D\{0} the punched unit disk.

i) Show: The function
f : D∗ −→ C, f (z) := 1/z,

does not belong to L2(D∗,O).

ii) Show: The restriction map

L2(D,O)−→ L2(D∗,O)

is an isomorphism.

44. Consider a Riemann surface X .

i) For a pair of relatively compact open subsets

V ⊂⊂U ⊂ X

show: There are only finitely many connected components of U which intersect
with V .

ii) For two finite coverings of X
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V << U

show: The restriction
Z1(U ,C)−→ Z1(V ,C)

has finite-dimensional image.

iii) For compact X give a direct proof: There exist

• a finite family of charts for X

(φi : Ui −→ Di, Di ⊂ C disk )i∈I

with
U = (Ui)i∈I

a covering of X ,

• and an open covering V = (Vi)i∈I of X with

V << U

and φi(V )⊂ C a disk for all i ∈ I.

iv) Show: For compact X
dimC H1(X ,C)< ∞.

————
Discussion: Monday, 20.1.2020
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44 . i) Connected components of X are open and pairwise disjoint. The compact
set V is covered by all connected components of U . Hence V is already covered by
finitely many connected components of U .

ii) For a finite covering U = (Ui)i∈I of X there are only finitely many
pairs (i, j) ∈ I2. For each pair (i, j) ∈ I the intersection

Vi∩Vj ⊂⊂Ui∩U j

is contained in finitely many connected components of Ui∩U j due to part i). For
any cocycle

( fi j)i j ∈ Z1(U ,C)

the element fi j ∈ C(Ui∩U j) is constant on each connected component of Ui∩U j.
Hence the restriction

Z1(U ,C)−→ Z1(V ,C)

has finite-dimensional image.

iii) If X is compact, then we choose a finite open covering U = (Ui)i∈I of X, such
that for each i ∈ I the set Ui is homeomorphic to a disk Di ⊂ C. Any
shrinking W ⊂⊂U extends to a shrinking

V = (Vi)i∈I << U

such that for all i ∈ I the set Vi ⊂⊂Ui is homeomorphic to a disk which is relatively
compact in Di.

iv) Both coverings U and V from part iii) are Leray coverings of X for the
sheaf C. Hence the identity

H1(X ,C) = H1(U ,C)−→ H1(V ,C) = H1(X ,C)

factors over the restriction from part ii). As a consequence

dimC H1(X ,C)< ∞.
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45. Show: There is no meromorphic function on a torus with a single pole, and this
pole has order = 1.

46. For a compact Riemann surface X show:

i) The injection Z ↪−→ C induces an injection

H1(X ,Z) ↪−→ H1(X ,C)

ii) The Z-module H1(X ,Z) is a free Z-module of finite rank.

Hint. Similarly to Exercise 44 show first that H1(X ,Z) is a finitely
generated Z-module.

47. For a Riemann surface X show:

i) Any open covering U of X has a locally-finite, countable refinement

W = (Wi)i∈Z < U

and a subordinate integer-valued partition of unity, i.e. a family

(φi : X −→ Z)i∈Z

with φi|X \Vi = 0 for all i ∈ Z and

∑
i∈Z

φi = 1

ii) The divisor sheaf D on X satisfies

H1(X ,D) = 0.
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48. Show for the divisor class group of the projective space

Cl(P1)' Z

————
Discussion: Monday, 27.1.2020



Selected Solutions 12 41

DEPARTMENT OF MATHEMATICS RIEMANN SURFACES
LMU MÜNCHEN
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46 . i) The injectivity follows from the proof of Exercise 40: If an integer valued
cocycle splits in H1(X ,C) then it splits already in H1(X ,Z).

ii) Similarly to exercise 44, part i) and ii) for two finite coverings

V << U

of X the image of the restriction

Z1(U ,Z)−→ Z1(V ,Z)

is a free Z-module of finite rank. Due to compactness of X we may assume the
existence of two finite coverings of X

V << U

with simply connected covering sets. Hence both coverings are Leray coverings
with respect to the sheaf Z. As a consequence the identity

H1(X ,Z) = H1(U ,Z)−→ H1(V ,Z) = H1(X ,Z)

factorizes over the restriction

Z1(U ,Z)−→ Z1(V ,Z)

and the image of the restriction

H1(U ,Z)−→ H1(V ,Z)

is finitely generated. Hence
H1(X ,Z)

is a finitely-generated Z-module. The inclusion

H1(X ,Z)⊂ H1(X ,C)' Cn

excludes any torsion elements of H1(X ,Z). Therefore H1(X ,Z) is a free Z-module
of finite rank.
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49. Prove H1(P1,O∗)' Z.

Hint. You may use without proof H2(S2,Z)' Z.

50. For a twisted sheaf O(k), k ∈ Z, on P1 determine a divisor D ∈ Div(P1) with

OD ' O(k) and determine deg D.

51. Consider a Riemann surface X .

i) Show: For any divisor D ∈ Div(X) the O-module sheaf OD is invertible.

ii) For two divisors D1,D2 ∈ Div(X) show:

OD1 ⊗O OD2 ' OD1+D2 .

iii) For a divisor D ∈ Div(X) conclude:

(OD)
∨ 'O−D.

52. Consider a compact Riemann surface X .

i) Show
dim H0(X ,Ω 1) = g(X)

ii) Consider two non-zero forms η1, η2 ∈ H0(X ,M 1). Show:

div η1−div η2 ∈ Div(X)

is a principal divisor.

iii) Show: Any divisor
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K := div η ∈ Div(X)

with a non-zero form η ∈ H0(X ,M 1) satisfies

deg K = 2g(X)−2.

————
Discussion: Monday, 3.2.2019
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50 . If k ≥ 0 we consider the divisor D = k ·P with the point divisor P ∈ Div(P1)
belonging to the point

p = 0 = (1 : 0) ∈ P1.

Choose the holomorphic section s ∈ H0(X ,O(k)) which is defined with respect to
the standard covering by

s = (s0,s1) with s0 = (z1/z0)
k, s1 = 1.

We define a sheaf morphism
OD −→ O(k)

on a given open set U ⊂ P1

OD(U)−→ O(k)(U), f 7→ f · s|U.

Because f has a pole at p of order at most k and s has a zero at p of order k, the
function ( f · s|U) is holomorphic. On the intersetion U01 we have

f · s0 = f · (gk
01 · s1) = gk

01 · ( f · s1)

Hence the morphism is well-defined. The sheaf morphism is an isomorphism on
the stalks, hence an isomorphism of sheaves. We have deg D = k.

The case for k < 0 can be proved analogously, or considered a consequence of
Exercise 51.

51 . i) For a given divisor D ∈ Div(X) exist an open covering U = (Ui)i∈I and a
cochain ( fi)i∈I ∈C0(U ,M ∗) satisfying for all i ∈ I

D|Ui = di ( fi

For each i ∈ I the sheaf morphism

OD|Ui −→ O|D, g 7→ g · fi,

is well-defined and an isomorphism on stalks.
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ii) Multiplication defines a morphism of sheaves

OD1 ⊗O OD2 −→ OD1+D2 , induced from f1⊗ f2 7→ f1 · f2,

which is an isomorphism on stalks. Note that the left hand side OD1 ⊗O OD2 is a
sheafification.


