Orthogonal Intertwiners for Infinite Particle Systems On The Continuum

Stefan Wagner

April 26th, 2023

Particle system

= a Markov process describing the (stochastic) evolution of particles in a set E for each (deterministic) initial configuration

Two different notations

Assumption: total number of particles is preserved

1.

Labeled notation

Unlabeled notation

Markov process

values in **N**, the set of counting measures consisting of $\mu = \sum_{k=1}^{N} \delta_{x_k}$, $x_k \in E$. $\mu(A) =$ number of particles in a subset A

 $(P_t)_{t\geq 0}$ Markov semigroup acting on functions $F: \mathbf{N} \to \mathbb{R}$

family of Markov processes indexed via number of particles $N \in {\rm I\! N}$

values in E^N

family of Markov semigroups $(P_t^{[N]})_{t\geq 0}, N\in\mathbb{N}$ acting on functions $f_N:E^N\to\mathbb{R}$

Factorial measure intertwiner

Integral with respect to the *n*-th factorial measure. For $f_n: E^n \to \mathbb{R}$ put

$$J_n\left(f_n,\sum_{k=1}^N \delta_{x_k}
ight) := \sum_{\substack{i_1,\ldots,i_n=1 \ ext{pairwise different}}}^N f_n(x_{i_1},\ldots,x_{i_n})$$

Theorem 1 (Redig, Jansen, Floreani, W., '21)

finite particle system + number of particles is preserved. Then,

consistency
$$\iff$$
 $J_n \text{ intertwines } P_t^{[n]} \text{ and } P_t \text{ for all } t \text{ and } n, \text{ i.e.,}$
$$P_t J_n(f_n, \cdot)(\mu) = J_n\left(P_t^{[n]} f_n, \mu\right) \text{ for all } f_n : E^n \to \mathbb{R}, \mu \in \mathbf{N}$$

Theorem 1 recovers well-known self-dualities in terms of falling factorial polynomials for interacting particle systems on discrete sets (SIP, SEP, IRW)

Consistency

= "the action of removing a particle uniformly at random commutes with the dynamic"

Consistency

= "the action of removing a particle uniformly at random commutes with the dynamic"

Examples:

- independent particles
- symmetric inclusion process (SIP), symmetric exclusion process (SEP), independent random walkers (IRW)
- generalized SIP in the continuum / Moran process
- compatible systems, stochastic flows (Le Jan, Reimond)
 - correlated Brownian motions
 - coalescing Brownian motions
 - Howitt-Warren flow (sticky Brownian motions)

Intertwining relation

Example: Given an initial configuration μ : What is the expected number of particles in a set A at time t?

expected number of particles in a set A at time $t = P_t J_1 \mathbf{1}_A(\mu)$

Let each particle evolve the one-particle dynamics separately. Sum of the probabilities that the respective particle is in the set A at time $t = J_1 P_t^{[1]} \mathbf{1}_A(\mu)$

Intertwining relation

Infinite-dimensional orthogonal polynomials

Let ρ be a probability measure on **N**, i.e., the distribution of a point process

$$I_n(f_n,\,\cdot\,)$$
 := orthogonal projection of $J_n(f_n,\,\cdot\,)$ onto $\{J_k(u_k,\,\cdot\,),\,u_k:E^k o\mathbb{R},0\leq k\leq n-1\}^\perp$

in $L^2(\rho)$.

Keywords: infinite-dimensional orthogonal polynomials, (extended) Fock spaces, chaos decompositions, multiple stochastic integrals, non-Gaussian white noise analysis, Malliavin calculus

Theorem 2 (Redig, Jansen, Floreani, W., '21)

$$J_n$$
 intertwines $P_t^{[n]}$ and P_t for all t and n

$$+$$

$$\rho \text{ reversible}$$

$$\downarrow \downarrow$$

$$I_n \text{ intertwines } P_t^{[n]} \text{ and } P_t \text{ for all } t \text{ and } n$$

Together with Theorem 1:

finite number of particles $+ \rho$ reversible + consistency $\Rightarrow I_n$ intertwines $P_t^{[n]}$ and P_t

Applications:

- ➤ Theorem 2 recovers well-known self-dualities in terms of orthogonal polynomials for discrete particle systems (SIP, SEP, IRW)
- \triangleright independent particles (ρ distribution of the Poisson process)
- \triangleright generalized SIP (ρ distribution of the Pascal process)

Infinite particle systems?

- 1. Theorem 1 does not hold: The property of consistency does not establish any link between the dynamics of finite and infinite particles.
- 2. Reversible measures for the infinite dynamics are difficult to obtain.

Let ρ be the distribution of a Poisson or Pascal process

$$J_n$$
 intertwines $P_t^{[n]}$ and P_t for all t and n

for each n: n-th factorial moment measure of ρ is reversible for n unlabeled particles

$$\downarrow \downarrow$$

 I_n intertwines $P_t^{[n]}$ and P_t for all t and n + ρ reversible

Application to uniform sticky Brownian motions: infinite-dimensional Meixner polynomial of degree n intertwines the dynamics of infinite particles and the dynamics of n particles. As a consequence, the distribution of a Pascal process is reversible.

Thank you!

S. Floreani, S. Jansen, F. Redig, S.W.: *Duality and intertwining for consistent Markov processes* arXiv:2112.11885 [math.PR], 32 pp.