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Abstract

In constructive proofs of negated statements, case distinctions are
permitted. We apply this well-known and useful fact in the context
of convex analysis.

1 Introduction

Negated statements are often considered ‘non-constructive’. When proving a
negated statement ¬b (for example, ‘

√
2 is irrational’), we assume b and derive

a contradiction. Such a proof easily carries the label ‘proof by contradiction’
or ‘indirect proof’. However, the proof itself may well be constructive (for
example, ‘

√
2 is irrational’ holds constructively). In this note, we discuss

a related phenomenon. Suppose that our goal is to prove some negated
statement ¬b. So we assume b and aim at deriving a contradiction. Let a
be any statement. If we can show that, in presence of b, both a and ¬a lead
to a contradiction, we are done. This argument, which we call the (∗)-rule,
can be paraphrased as ‘when proving a negated statement, finitely many
case distinctions are allowed’. Working in the framework of Bishop-style
constructive mathematics [3], we list up a few applications of the (∗)-rule,
in the context of convex analysis. Establishing new results of analysis by
merely applying basic logic fits in well with the concept of Proof Theory as
Mathesis Universalis.

2 Automatic continuity of convex functions

Definition 1. Fix a, b ∈ R such that a < b. A function f : [a, b]→ R is

(I) convex if

∀s, t ∈ [a, b] ∀λ ∈ [0, 1] (f(λs+ (1− λ)t) ≤ λf(s) + (1− λ)f(t)) ,
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(II) sequentially continuous if tn → t implies f(tn) → f(t) for all t and
(tn) in [a, b],

(III) pointwise continuous at t if

∀ε > 0∃δ > 0 ∀s ∈ [a, b] (|t− s| ≤ δ ⇒ |f(t)− f(s)| ≤ ε) ,

(IV) pointwise continuous if it is pointwise continuous at each t ∈ [a, b],

(V) uniformly continuous if

∀ε > 0 ∃δ > 0∀s, t ∈ [a, b] (|t− s| ≤ δ ⇒ |f(t)− f(s)| ≤ ε) .

and

(VI) Lipschitz continuous if there exists γ ∈ R such that

|f(t)− f(s)| ≤ γ |t− s|

for all s, t ∈ X.

Note that (VI) ⇒ (V) ⇒ (IV) ⇒ (II). The following lemma can be found
in any textbook of convex analysis.

Lemma 1. Fix real numbers a, b, c with a < b < c. If f : [a, c] → R is
convex, then

f(b)− f(a)

b− a
≤ f(c)− f(a)

c− a
≤ f(c)− f(b)

c− b
.

Proof. Note that

b =
c− b
c− a

a+
b− a
c− a

c

and use the convexity of f .

Corollary 1. Fix real numbers a, b, c, d with a < b ≤ c < d. Let f : [a, d]→
R be convex. Then we have

f(b)− f(a)

b− a
≤ f(d)− f(c)

d− c
.

The following lemma is very easy to prove, but the proof depends heavily on
the (∗)-rule.

Lemma 2. For each f : [a, b]→ R, the following are equivalent:
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a) f is Lipschitz-continuous

b) ∃α, β ∈ R ∀s, t ∈ [a, b]
(
s < t⇒ α ≤ f(t)−f(s)

t−s ≤ β
)

Proof. Clearly, (a) implies (b). Assuming (b), set

γ := max (|β| , |α|) .

For fixed s, t ∈ [a, b], we can easily show

|f(t)− f(s)| ≤ γ |t− s|

by case distinction: s = t, s < t, s > t. This is permitted in presence of the
(∗)-rule, since

|f(t)− f(s)| ≤ γ |t− s|

is the negation of
|f(t)− f(s)| > γ |t− s| .

Proposition 1. Fix real numbers a, b, c, d with a < b ≤ c < d. Let f :
[a, d]→ R be convex. Then f : [b, c]→ R is Lipschitz-continuous.

Proof. Set α = f(b)−f(a)
b−a and β = f(d)−f(c)

d−c . For s < t in [b, c], Corollary 1
yields

α ≤ f(t)− f(s)

t− s
≤ β.

By Lemma 2, f : [b, c]→ R is Lipschitz-continuous.

Corollary 2.

(a) Every convex function f : [0, 1]→ R is pointwise continuous on (0, 1).

(b) Every convex function f : R→ R is pointwise continuous.

(c) Every function f : [0, 1] → R which is convex and pointwise continuous
at 0 and 1 is uniformly continuous.

Proof. The statements (a) and (b) are immediate consequences of Proposition
1. In order to show (c), let ε > 0 and pick δ ∈ (0, 1/2) such that

|x| ≤ δ ⇒ |f(0)− f(x)| ≤ ε/2 (1)

and
|1− x| ≤ δ ⇒ |f(1)− f(x)| ≤ ε/2
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for all x ∈ [0, 1]. Let a = δ/4 > 0 and b = 1− δ/4 < 1. By Proposition 1, f

is uniformly continuous on [a, b], thus there exists δ̃ > 0 such that

∀x, y ∈ [a, b]
(
|x− y| ≤ δ̃ ⇒ |f(x)− f(y)| ≤ ε

)
.

Let θ = min{δ̃, δ/4}. We prove that

∀x, y ∈ [0, 1] (|x− y| ≤ θ ⇒ |f(x)− f(y)| ≤ ε) .

Fix x, y ∈ [0, 1]. We either have x < 1 − δ or else δ < x. Without loss of
generality, we may assume the former.

Case 1: x < 3/4 · δ

Then y < δ and (1) yields |f(x)− f(y)| ≤ ε.

Case 2: x > 1/2 · δ

Then both x and y are in [a, b], thus |f(x)−f(y)| ≤ ε follows from the choice

of δ̃.

Proposition 2. Let f : [0, 1]→ R be convex. Equivalent are:

(a) limn→∞ f(1/n) = f(0) and limn→∞ f(1− 1/n) = f(1)

(b) f is sequentially continuous

(c) f is pointwise continuous

(d) f is uniformly continuous.

Proof. a) ⇒ d): By part (c) of Corollary 2, is is sufficient to show that f
is pointwise contnuous at 0 and 1. We show pointwise continuity at 0. Let
ε > 0 and pick n0 ∈ N \ {0} such that |f(1/n) − f(0)| < ε/2 for n ≥ n0.
Let δ = 1/n0 and suppose s ∈ [0, δ]. We prove |f(s) − f(0)| ≤ ε. As this
is the negation of |f(s) − f(0)| > ε we may apply the (∗)-rule and it thus
suffices to consider the following cases: s = 0, s = δ, 0 < s < δ. In the
first, the assertion is trivial, in the second it holds by choice of n0. In the
third case 0 < s < δ suppose s is rational. Compute n ≥ n0 such that
1/(n+ 1) < s ≤ 1/n. Then 1/(n+ 1) = λs where

1 > λ =
1

(n+ 1)s
≥ n0

n0 + 1
≥ 1

2
.
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By convexity and n ≥ n0

f(0)− ε/2 ≤ f(1/(n+ 1)) ≤ λf(s) + (1− λ)f(0)

and thus
f(s) ≥ f(0)− ε

2λ
≥ f(0)− ε.

Let µ = sn0 ∈ [a, b] such that s = µδ, then again by convexity and choice of
n0

f(s) ≤ µf(δ) + (1− µ)f(0) ≤ f(0) + µ
ε

2
≤ f(0) + ε.

Hence, |f(s)− f(0)| ≤ ε. By pointwise continuity of f on (0, 1) we conclude
that |f(s)− f(0)| ≤ ε for all s ∈ [0, δ].

3 Weak convexity of convex functions

We will use the following fact, see [3, Chapter 2, Proposition 4.6] for a proof.

Lemma 3. For every uniformly continuous function f : [a, b] → R the set
{f(s) | s ∈ [a, b]} has an infimum.

A function f : [a, b] → R is weakly convex if for all t ∈ [a, b] with f(t) > 0
there exists ε > 0 such that either

∀s ∈ [a, b] (s ≤ t ⇒ f(s) ≥ ε)

or else
∀s ∈ [a, b] (t ≤ s ⇒ f(s) ≥ ε) .

The notion of weak convexity was introduced in [2] in order to relate convex
functions to convex trees. See [1] for more on convex trees. In [2, Remark
3], we have shown that uniformly continuous, convex functions are weakly
convex. In view of Proposition 1, which is based on the (∗)-rule, we can do
without uniform continuity.

Proposition 3. Every convex function f : [a, b]→ R is weakly convex.

First, we show a restricted version of Proposition 3.

Proposition 4. Let f : [a, b] → R be a convex function. Fix t ∈ (a, b) and
assume that f(t) > 0. Then there exists ε > 0 such that either

∀s ∈ [a, b] (s ≤ t ⇒ f(s) ≥ ε)

or
∀s ∈ [a, b] (t ≤ s ⇒ f(s) ≥ ε) .
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Proof. Set

r = t+
1

2
(b− t) and η =

1

3
f(t).

Case 1: f(r) < f(t)

Then ∀s ∈ [a, b] (s ≤ t ⇒ f(s) ≥ f(t)).

Case 2: f(r) > 2η

Then
∀s ∈ [a, b] (r ≤ s ⇒ f(s) ≥ η) .

By Proposition 1 and Lemma 3, we can define

δ = inf {f(s) | t ≤ s ≤ r} .

Case 2.1: δ > 0

Then ∀s ∈ [a, b] (t ≤ s ⇒ f(s) ≥ min (η, δ)).

Case 2.2: δ < f(t)

Then ∀s ∈ [a, b] (s ≤ t ⇒ f(s) ≥ f(t)).

Proof of of Proposition 3. We may assume that a = 0 and b = 1. Fix t ∈
[0, 1] and assume that f(t) > 0. We either have 0 < t or else t < 1. Without
loss of generality, we may assume the latter. If f(1) < f(t), we can conclude
that

∀s ∈ [0, 1] (s ≤ t ⇒ f(s) ≥ f(t)) .

So assume that f(1) > 0. Without loss of generality, we may assume that

f(1) = 1 (otherwise, consider the function g(s) := f(s)
f(1)

). Fix n such that

3/n < f(t). If t > 0, apply Proposition 4. Now assume that t < 1/n.

Case 1: f(1/n) < 3/n. Then

∀s ∈ [0, 1] (s ≤ t ⇒ f(s) ≥ f(t)) .

Case 2: f(1/n) > 2/n. Then

∀s ∈ [0, 1] (s ≤ t ⇒ f(s) ≥ 1/n) .
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