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Abstract

In constructive proofs of negated statements, case distinctions are
permitted. We apply this well-known and useful fact in the context
of convex analysis.

1 Introduction

Negated statements are often considered ‘non-constructive’. When proving a
negated statement —b (for example, ‘“V2is irrational’), we assume b and derive
a contradiction. Such a proof easily carries the label ‘proof by contradiction’
or ‘indirect proof’. However, the proof itself may well be constructive (for
example, ‘v/2 is irrational’ holds constructively). In this note, we discuss
a related phenomenon. Suppose that our goal is to prove some negated
statement —b. So we assume b and aim at deriving a contradiction. Let a
be any statement. If we can show that, in presence of b, both a and —a lead
to a contradiction, we are done. This argument, which we call the (x)-rule,
can be paraphrased as ‘when proving a negated statement, finitely many
case distinctions are allowed’. Working in the framework of Bishop-style
constructive mathematics [3], we list up a few applications of the (x)-rule,
in the context of convex analysis. Establishing new results of analysis by
merely applying basic logic fits in well with the concept of Proof Theory as
Mathesis Universalis.

2 Automatic continuity of convex functions

Definition 1. Fiz a,b € R such that a <b. A function f : [a,b] — R is
(I) convex if
Vs, t € [a,b] YA € [0,1] (f(As+ (1 = N)t) < Af(s)+ (1= N)f(1)),
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(II) sequentially continuous if t,, — t implies f(t,) — f(t) for all t and
(tn) in |a,b],

(III) pointwise continuous at ¢ if

Ve > 030 >0Vs € [a,b] (|t —s| <0 = |f(t) — f(s)] <e),

(IV) pointwise continuous if it is pointwise continuous at each t € |a, b],

(V) uniformly continuous if

Ve > 030 > 0Vs,t € [a,b] (|t —s| <0 = |f(t) — f(s)] <e).

and

(VI) Lipschitz continuous if there exists v € R such that

[f(&) = f(s)| < vt = s
for all s,t € X.

Note that (VI) = (V) = (IV) = (II). The following lemma can be found
in any textbook of convex analysis.

Lemma 1. Fiz real numbers a,b,c with a < b < c¢. If f : [a,c] — R is
convezx, then

fb) = fla) _ fle) = fla) _ fle) = f(b)
b—a ~— c¢c—a — c¢—b
Proof. Note that
c—b b—a
b= a + c
c—a c—a
and use the convexity of f. ]

Corollary 1. Fiz real numbers a,b,c,d with a <b < c<d. Let f : [a,d] —
R be conver. Then we have

£0) — f(@) _ (d) — fe)
b—a — d—c

The following lemma is very easy to prove, but the proof depends heavily on
the (x)-rule.

Lemma 2. For each f : [a,b] — R, the following are equivalent:



a) [ is Lipschitz-continuous

wﬂmﬂeRw¢6m¢K3<#$a§ﬂwﬂ@<@

t—s —

Proof. Clearly, (a) implies (b). Assuming (b), set

7 = max (5], [a]).

For fixed s,t € [a, b], we can easily show

[f(t) = f(s)] < vt — s

by case distinction: s =t, s < t, s > t. This is permitted in presence of the
(*)-rule, since
[f(@) = f(s)] <[t —s|
is the negation of
[f(t) = f(s)| > [t —s].
m

Proposition 1. Fix real numbers a,b,c,d with a < b < ¢ < d. Let f :
[a,d] — R be conver. Then f :[b,c] — R is Lipschitz-continuous.

Proof. Set o = W and § = %. For s < t in [b,¢], Corollary

yields
VU C
t—s
By Lemma 2] f : [b,¢] — R is Lipschitz-continuous. ]

Corollary 2.
(a) Every convex function f :[0,1] — R is pointwise continuous on (0,1).
(b) Every convex function f:R — R is pointwise continuous.

(¢) Every function f :[0,1] — R which is convex and pointwise continuous
at 0 and 1 is uniformly continuous.

Proof. The statements (a) and (b) are immediate consequences of Proposition
In order to show (c), let ¢ > 0 and pick § € (0,1/2) such that

[z[ <6 = [f(0) = fla)l <¢/2 (1)

and

1-z[<0 = [|f(1)—-flz)]<e/2
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for all z € [0,1]. Let a =0/4 > 0 and b=1—§/4 < 1. By Proposition [t} f
is uniformly continuous on [a, b], thus there exists § > 0 such that

vaeyelat] (le—y <3 = |f@)— 1)l <e).
Let 6 = min{0,8/4}. We prove that

Vo,y € [0,1] (jr —y[ <0 = [f(z) = fly)l <e).

Fix z,y € [0,1]. We either have x < 1 — § or else 6 < x. Without loss of
generality, we may assume the former.

Case 1: © <3/4-¢

Then y < ¢ and (1)) yields |f(z) — f(y)| <e.
Case 2: ©>1/2-¢

Then both x and y are in [a, b], thus |f(z) — f(y)| < e follows from the choice
of 0.
[

Proposition 2. Let f:[0,1] = R be convezr. Equivalent are:
(a) lim, o f(1/n) = f(0) and lim, . f(1 —1/n) = f(1)
(b) f is sequentially continuous

(c) f is pointwise continuous

(d) f is uniformly continuous.

Proof. a) = d): By part (c) of Corollary [2] is is sufficient to show that f
is pointwise contnuous at 0 and 1. We show pointwise continuity at 0. Let
e > 0 and pick ny € N\ {0} such that |f(1/n) — f(0)] < €/2 for n > ny.
Let 6 = 1/ng and suppose s € [0,d]. We prove |f(s) — f(0)] < e. As this
is the negation of |f(s) — f(0)| > & we may apply the (x)-rule and it thus
suffices to consider the following cases: s = 0, s = 9, 0 < s < §. In the
first, the assertion is trivial, in the second it holds by choice of ng. In the
third case 0 < s < § suppose s is rational. Compute n > ng such that
1/(n+1)<s<1/n. Then 1/(n+ 1) = As where

T
o>

1
1> = > —.
(m+1)s “ng+1— 2
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By convexity and n > nyg

f0) =e/2 < f(1/(n+1)) < Af(s) + (1 = A)f(0)

and thus .
f(s) 2f<0>—52f(0)—g.

Let u = sng € [a, b] such that s = ud, then again by convexity and choice of
L

F(s) < pf(8) + (1 = W) (0) < J(0) + 5 < F(0) 4=

Hence, |f(s) — f(0)| < . By pointwise continuity of f on (0,1) we conclude
that |f(s) — f(0)] < e for all s € [0, 9]. O

3 Weak convexity of convex functions

We will use the following fact, see [3, Chapter 2, Proposition 4.6] for a proof.

Lemma 3. For every uniformly continuous function f : [a,b] — R the set
{f(s) | s € [a,b]} has an infimum.

A function f : [a,b] — R is weakly convez if for all ¢ € [a,b] with f(t) > 0
there exists € > 0 such that either

Vs € la,b] (s <t = f(s)>¢)

or else
Vse€fa,bl(t<s = f(s)>¢).

The notion of weak convexity was introduced in [2] in order to relate convex
functions to convex trees. See [I] for more on convex trees. In [2 Remark
3], we have shown that uniformly continuous, convex functions are weakly
convex. In view of Proposition [I| which is based on the (x)-rule, we can do
without uniform continuity:.

Proposition 3. Every convex function f : |a,b] — R is weakly convez.
First, we show a restricted version of Proposition 3

Proposition 4. Let f : [a,b] — R be a convex function. Fixt € (a,b) and
assume that f(t) > 0. Then there exists € > 0 such that either

Vs € a, b (s <t = f(s)>¢)

" Vsefa,bl(t<s = f(s)>¢).



Proof. Set
1 1
r:t—l-i(b—t) and n = gf(t).

Case 1: f(r) < f(t)
Then Vs € [a,b] (s <t = f(s) > f(t)).
Case 2: f(r) > 2n

Then
Vs € [a,b] (r<s = f(s)>n).
By Proposition [I] and Lemma [3] we can define
d=inf{f(s)|t<s<r}.

Case 2.1: 6 > 0
Then Vs € [a,b] (t <s = f(s) > min(n,0)).
Case 2.2: § < f(t)

Then Vs € [a,b] (s <t = f(s) > f(t)).
[

Proof of of Proposition[3 We may assume that « = 0 and b = 1. Fix ¢ €
[0, 1] and assume that f(t) > 0. We either have 0 < t or else t < 1. Without
loss of generality, we may assume the latter. If f(1) < f(¢), we can conclude
that

Vsel0,1](s<t = f(s)> f(t)).
So assume that f(1) > 0. Without loss of generality, we may assume that
f(1) = 1 (otherwise, consider the function g(s) := £2)). Fix n such that

f(1)
3/n < f(t). If t > 0, apply Proposition 4 Now assume that t < 1/n.

Case 1: f(1/n) < 3/n. Then

Vsel0,1](s<t = f(s)>f(t)).
Case 2: f(1/n) > 2/n. Then

Vse[0,1](s <t = f(s)>1/n).

]
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