Constructive proofs of negated statements

Josef Berger and Gregor Svindland

May 23, 2018

Abstract

In constructive proofs of negated statements, case distinctions are permitted. We apply this well-known and useful fact in the context of convex analysis.

1 Introduction

Negated statements are often considered 'non-constructive'. When proving a negated statement $\neg b$ (for example, ' $\sqrt{2}$ is irrational'), we assume b and derive a contradiction. Such a proof easily carries the label 'proof by contradiction' or 'indirect proof'. However, the proof itself may well be constructive (for example, ' $\sqrt{2}$ is irrational' holds constructively). In this note, we discuss a related phenomenon. Suppose that our goal is to prove some negated statement $\neg b$. So we assume b and aim at deriving a contradiction. Let a be any statement. If we can show that, in presence of b, both a and $\neg a$ lead to a contradiction, we are done. This argument, which we call the (*)-rule, can be paraphrased as 'when proving a negated statement, finitely many case distinctions are allowed'. Working in the framework of Bishop-style constructive mathematics [3], we list up a few applications of the (*)-rule, in the context of convex analysis. Establishing new results of analysis by merely applying basic logic fits in well with the concept of *Proof Theory as Mathesis Universalis*.

2 Automatic continuity of convex functions

Definition 1. Fix $a, b \in \mathbb{R}$ such that a < b. A function $f : [a, b] \to \mathbb{R}$ is

(I) convex if

$$\forall s, t \in [a, b] \ \forall \lambda \in [0, 1] \left(f(\lambda s + (1 - \lambda)t) \le \lambda f(s) + (1 - \lambda)f(t) \right),$$

- (II) sequentially continuous if $t_n \to t$ implies $f(t_n) \to f(t)$ for all t and (t_n) in [a, b],
- (III) pointwise continuous at t if

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall s \in [a, b] \, (|t - s| \le \delta \Rightarrow |f(t) - f(s)| \le \varepsilon) \,,$$

- (IV) pointwise continuous if it is pointwise continuous at each $t \in [a, b]$,
- (V) uniformly continuous if

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall s, t \in [a, b] \, (|t - s| \le \delta \Rightarrow |f(t) - f(s)| \le \varepsilon) \,.$$

and

(VI) Lipschitz continuous if there exists $\gamma \in \mathbb{R}$ such that

$$|f(t) - f(s)| \le \gamma |t - s|$$

for all $s, t \in X$.

Note that $(VI) \Rightarrow (V) \Rightarrow (IV) \Rightarrow (II)$. The following lemma can be found in any textbook of convex analysis.

Lemma 1. Fix real numbers a, b, c with a < b < c. If $f : [a, c] \to \mathbb{R}$ is convex, then

$$\frac{f(b) - f(a)}{b - a} \le \frac{f(c) - f(a)}{c - a} \le \frac{f(c) - f(b)}{c - b}.$$

Proof. Note that

$$b = \frac{c-b}{c-a}a + \frac{b-a}{c-a}c$$

and use the convexity of f.

Corollary 1. Fix real numbers a, b, c, d with $a < b \le c < d$. Let $f : [a, d] \to \mathbb{R}$ be convex. Then we have

$$\frac{f(b) - f(a)}{b - a} \le \frac{f(d) - f(c)}{d - c}.$$

The following lemma is very easy to prove, but the proof depends heavily on the (*)-rule.

Lemma 2. For each $f:[a,b] \to \mathbb{R}$, the following are equivalent:

a) f is Lipschitz-continuous

b)
$$\exists \alpha, \beta \in \mathbb{R} \, \forall s, t \in [a, b] \left(s < t \Rightarrow \alpha \le \frac{f(t) - f(s)}{t - s} \le \beta \right)$$

Proof. Clearly, (a) implies (b). Assuming (b), set

$$\gamma := \max(|\beta|, |\alpha|)$$
.

For fixed $s, t \in [a, b]$, we can easily show

$$|f(t) - f(s)| \le \gamma |t - s|$$

by case distinction: s = t, s < t, s > t. This is permitted in presence of the (*)-rule, since

$$|f(t) - f(s)| \le \gamma |t - s|$$

is the negation of

$$|f(t) - f(s)| > \gamma |t - s|.$$

Proposition 1. Fix real numbers a, b, c, d with $a < b \le c < d$. Let $f : [a, d] \to \mathbb{R}$ be convex. Then $f : [b, c] \to \mathbb{R}$ is Lipschitz-continuous.

Proof. Set $\alpha = \frac{f(b) - f(a)}{b - a}$ and $\beta = \frac{f(d) - f(c)}{d - c}$. For s < t in [b, c], Corollary 1 yields

$$\alpha \le \frac{f(t) - f(s)}{t - s} \le \beta.$$

By Lemma 2, $f:[b,c]\to\mathbb{R}$ is Lipschitz-continuous.

Corollary 2.

- (a) Every convex function $f:[0,1] \to \mathbb{R}$ is pointwise continuous on (0,1).
- (b) Every convex function $f: \mathbb{R} \to \mathbb{R}$ is pointwise continuous.
- (c) Every function $f:[0,1] \to \mathbb{R}$ which is convex and pointwise continuous at 0 and 1 is uniformly continuous.

Proof. The statements (a) and (b) are immediate consequences of Proposition 1. In order to show (c), let $\varepsilon > 0$ and pick $\delta \in (0, 1/2)$ such that

$$|x| \le \delta \quad \Rightarrow \quad |f(0) - f(x)| \le \varepsilon/2$$
 (1)

and

$$|1 - x| \le \delta \quad \Rightarrow \quad |f(1) - f(x)| \le \varepsilon/2$$

for all $x \in [0,1]$. Let $a = \delta/4 > 0$ and $b = 1 - \delta/4 < 1$. By Proposition 1, f is uniformly continuous on [a,b], thus there exists $\widetilde{\delta} > 0$ such that

$$\forall x, y \in [a, b] \left(|x - y| \le \widetilde{\delta} \implies |f(x) - f(y)| \le \varepsilon \right).$$

Let $\theta = \min\{\widetilde{\delta}, \delta/4\}$. We prove that

$$\forall x, y \in [0, 1] \ (|x - y| \le \theta \implies |f(x) - f(y)| \le \varepsilon).$$

Fix $x, y \in [0, 1]$. We either have $x < 1 - \delta$ or else $\delta < x$. Without loss of generality, we may assume the former.

Case 1: $x < 3/4 \cdot \delta$

Then $y < \delta$ and (1) yields $|f(x) - f(y)| \le \varepsilon$.

Case 2: $x > 1/2 \cdot \delta$

Then both x and y are in [a, b], thus $|f(x) - f(y)| \le \varepsilon$ follows from the choice of $\widetilde{\delta}$.

Proposition 2. Let $f:[0,1] \to \mathbb{R}$ be convex. Equivalent are:

- (a) $\lim_{n\to\infty} f(1/n) = f(0)$ and $\lim_{n\to\infty} f(1-1/n) = f(1)$
- (b) f is sequentially continuous
- (c) f is pointwise continuous
- (d) f is uniformly continuous.

Proof. a) \Rightarrow d): By part (c) of Corollary 2, is is sufficient to show that f is pointwise continuous at 0 and 1. We show pointwise continuity at 0. Let $\varepsilon > 0$ and pick $n_0 \in \mathbb{N} \setminus \{0\}$ such that $|f(1/n) - f(0)| < \varepsilon/2$ for $n \ge n_0$. Let $\delta = 1/n_0$ and suppose $s \in [0, \delta]$. We prove $|f(s) - f(0)| \le \varepsilon$. As this is the negation of $|f(s) - f(0)| > \varepsilon$ we may apply the (*)-rule and it thus suffices to consider the following cases: s = 0, $s = \delta$, $0 < s < \delta$. In the first, the assertion is trivial, in the second it holds by choice of n_0 . In the third case $0 < s < \delta$ suppose s is rational. Compute $n \ge n_0$ such that $1/(n+1) < s \le 1/n$. Then $1/(n+1) = \lambda s$ where

$$1 > \lambda = \frac{1}{(n+1)s} \ge \frac{n_0}{n_0 + 1} \ge \frac{1}{2}.$$

By convexity and $n \geq n_0$

$$f(0) - \varepsilon/2 \le f(1/(n+1)) \le \lambda f(s) + (1-\lambda)f(0)$$

and thus

$$f(s) \ge f(0) - \frac{\varepsilon}{2\lambda} \ge f(0) - \varepsilon.$$

Let $\mu = sn_0 \in [a, b]$ such that $s = \mu \delta$, then again by convexity and choice of n_0

$$f(s) \le \mu f(\delta) + (1 - \mu)f(0) \le f(0) + \mu \frac{\varepsilon}{2} \le f(0) + \varepsilon.$$

Hence, $|f(s) - f(0)| \le \varepsilon$. By pointwise continuity of f on (0,1) we conclude that $|f(s) - f(0)| \le \varepsilon$ for all $s \in [0, \delta]$.

3 Weak convexity of convex functions

We will use the following fact, see [3, Chapter 2, Proposition 4.6] for a proof.

Lemma 3. For every uniformly continuous function $f : [a, b] \to \mathbb{R}$ the set $\{f(s) \mid s \in [a, b]\}$ has an infimum.

A function $f:[a,b] \to \mathbb{R}$ is weakly convex if for all $t \in [a,b]$ with f(t) > 0 there exists $\varepsilon > 0$ such that either

$$\forall s \in [a, b] (s \le t \Rightarrow f(s) \ge \varepsilon)$$

or else

$$\forall s \in [a, b] (t \le s \implies f(s) \ge \varepsilon).$$

The notion of weak convexity was introduced in [2] in order to relate convex functions to convex trees. See [1] for more on convex trees. In [2, Remark 3], we have shown that uniformly continuous, convex functions are weakly convex. In view of Proposition 1, which is based on the (*)-rule, we can do without uniform continuity.

Proposition 3. Every convex function $f:[a,b] \to \mathbb{R}$ is weakly convex.

First, we show a restricted version of Proposition 3.

Proposition 4. Let $f:[a,b] \to \mathbb{R}$ be a convex function. Fix $t \in (a,b)$ and assume that f(t) > 0. Then there exists $\varepsilon > 0$ such that either

$$\forall s \in [a,b] \, (s \leq t \quad \Rightarrow \quad f(s) \geq \varepsilon)$$

or

$$\forall s \in [a, b] (t \le s \implies f(s) \ge \varepsilon).$$

Proof. Set

$$r = t + \frac{1}{2}(b - t)$$
 and $\eta = \frac{1}{3}f(t)$.

Case 1: f(r) < f(t)

Then $\forall s \in [a, b] (s \le t \implies f(s) \ge f(t)).$

Case 2: $f(r) > 2\eta$

Then

$$\forall s \in [a, b] (r \le s \implies f(s) \ge \eta)$$
.

By Proposition 1 and Lemma 3, we can define

$$\delta = \inf \left\{ f(s) \mid t \le s \le r \right\}.$$

Case 2.1: $\delta > 0$

Then $\forall s \in [a, b] (t \le s \implies f(s) \ge \min(\eta, \delta)).$

Case 2.2: $\delta < f(t)$

Then $\forall s \in [a, b] (s \le t \implies f(s) \ge f(t)).$

Proof of Proposition 3. We may assume that a = 0 and b = 1. Fix $t \in [0,1]$ and assume that f(t) > 0. We either have 0 < t or else t < 1. Without loss of generality, we may assume the latter. If f(1) < f(t), we can conclude that

$$\forall s \in [0,1] (s \le t \Rightarrow f(s) \ge f(t)).$$

So assume that f(1) > 0. Without loss of generality, we may assume that f(1) = 1 (otherwise, consider the function $g(s) := \frac{f(s)}{f(1)}$). Fix n such that 3/n < f(t). If t > 0, apply Proposition 4. Now assume that t < 1/n.

Case 1: f(1/n) < 3/n. Then

$$\forall s \in [0,1] (s \le t \Rightarrow f(s) \ge f(t)).$$

Case 2: f(1/n) > 2/n. Then

$$\forall s \in [0,1] (s \le t \Rightarrow f(s) \ge 1/n).$$

Acknowledgement. We thank the European Commission Research Executive Agency for supporting the research (MSCA-RISE-2016 - Research and Innovation Staff Exchange).

References

- [1] Josef Berger, Hajime Ishihara, Takayuki Kihara, and Takako Nemoto. The binary expansion and the intermediate value theorem in constructive reverse mathematics. *Arch. Math. Logic*, 2018. https://doi.org/10.1007/s00153-018-0627-2.
- [2] Josef Berger and Gregor Svindland. Constructive convex programming. In *Proof and Computation*. World Scientific, 2018. https://doi.org/10.1142/11005.
- [3] Errett Bishop and Douglas Bridges. Constructive Analysis. Springer-Verlag, 1985.