Übungen zur Analysis II, Hausaufgabenblatt 12

F. Merkl, J. Berger, Y. Bregman, G. Svindland

Aufgabe 1. Gegeben seien die Wege

$$e_1: [0,1] \to \mathbb{R}^2, x \mapsto (x,x)^t;$$

 $e_2: [0,1] \to \mathbb{R}^2, x \mapsto (x^2,x)^t.$

Berechnen Sie die Wegintegrale $\int_{e_i} \omega$ und $\int_{e_i} \widetilde{\omega}$, für $i \in \{1, 2\}$ wobei ω und $\widetilde{\omega}$ die auf Übungsblatt 11 definierten Differentialformen sind.

Aufgabe 2. Sei $\Phi:[a,b]\to U$ ein geschlossener (d.h. $\Phi(a)=\Phi(b)$), glatter Weg in eine offene Menge $U\subseteq\mathbb{R}^n$. Zeigen Sie, dass für alle $\omega,\widetilde{\omega}\in Z^1(U)$ mit $\omega-\widetilde{\omega}\in B^1(U)$ gilt:

$$\int_{\Phi} \omega = \int_{\Phi} \widetilde{\omega}.$$

Folgern Sie daraus, dass die Abbildung

$$I: H^1(U) \to \mathbb{R}, \ [\omega] \mapsto \int_{\Phi} \omega$$

wohldefiniert ist.

Aufgabe 3. Zeigen Sie, dass es keinen glatten Diffeomorphismus $\Phi : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2$ gibt.

Aufgabe 4.* Sei $U \subseteq \mathbb{R}^2$ offen und seien $\Phi_0, \Phi_1 : [a, b] \to U$ glatte, geschlossene Wege in U mit $\Phi_0(a) = \Phi_1(a) = \Phi_0(b) = \Phi_1(b) = z$ für ein $z \in U$. Weiter sei $\Psi : [0, 1] \times [a, b] \to U$ eine glatte Homotopie von Φ_0 nach Φ_1 mit

$$\Psi(t,a) = \Psi(t,b) = z$$

für alle $t \in [0, 1]$. Zeigen Sie, dass für alle $\omega \in Z^1(U)$ gilt:

$$\int_{\Phi_0} \omega = \int_{\Phi_1} \omega.$$

Hinweis: Zeigen Sie zunächst, dass $\Psi^*\omega$ exakt ist.

Aufgabe 5*. Sei e der positiv orientierte Einheitskreis im \mathbb{R}^2 . Zeigen Sie, dass die Abbildung

$$I: H^1(\mathbb{R}^2 \setminus \{0\}) \to \mathbb{R}, \ [\omega] \mapsto \int_e \omega$$

ein Isomorphismus ist.

Hinweis: Für den Nachweis der Injektivität von I ist Aufgabe 1 des aktuellen Übungsblattes sehr hilfreich.

Abgabetermin: spätestens bis Dienstag, den 05.07.05, um 11:00