

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN



Fall term 2022

Prof. D. Kotschick Dr. J. Stelzig

## Selected Topics in Complex Geometry

Sheet 11

**Exercise 1.** (A rational cohomology torus which is not a torus) Let  $\rho : C \to E_1$  be a (ramified) double cover of Riemann surfaces where C has genus  $\geq 2$  and  $E_1$  is an elliptic curve. Let  $\tau$  be the corresponding involution on C. Let  $E'_2 \to E_2$  be a degree 2 unramified double cover of elliptic curves (e.g. the quotient of multiplication by 2) and let  $\sigma$  be the corresponding involution on  $E'_2$ . Define  $S := C \times E'_2(\tau \times \sigma)$ . Show

- 1. S is a smooth complex surface.
- 2.  $\sigma$  acts trivially on the cohomology of  $E'_2$ .
- 3. The rational cohomology ring of S is isomorphic to that of  $E_1 \times E_2$ .
- 4. There is a map  $S \to E_1 \times E_2$  and this can be identified with the Albanese map.
- 5. S is not a torus.

**Exercise 2.** (An Albanese torus for general complex manifolds) Let X be a compact complex manifold. Find a complex torus Alb(X) and a holomorphic map  $\alpha_X : X \to Alb(X)$  s.t. every analytic map from X to a complex torus T factors uniquely through  $\alpha_X$ . (Hint: Consider the space of closed holomorphic one-forms).

**Exercise 3.** Show that on any compact complex manifold of dimension n, if a holomorphic n-form  $\omega$  is  $\partial$ -exact  $\omega = \partial \eta$ , it is zero. Deduce that on compact complex surfaces, every holomorphic one-form is closed.

Hand-in: Via Email or in person to Jonas Stelzig until We, 12.06., 14:00.