

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Fall term 2022

Prof. D. Kotschick Dr. J. Stelzig

Selected Topics in Complex Geometry

Sheet 05

Exercise 1. Show in two ways that the product of two projective manifolds is again projective:

- 1. using the Kodaira embedding theorem,
- 2. by means of an explicit embedding of $\mathbb{C}P^n \times \mathbb{C}P^m \to \mathbb{C}P^N$.

Exercise 2. Let $F := F_m^n \subseteq \mathbb{C}\mathbb{P}^n$ be the Fermat hypersurface, i.e. the zero locus of $z_0^m + \ldots + z_n^m$. Show that F_m^n is a complex manifold and compute the dimensions $H^0(F, K_F^{\otimes k})$ for all k.

Exercise 3. Show that any vector bundle E on a projective manifold X admits a surjection $(L^{\otimes k})^{\oplus l} \to E$ with L an ample line bundle and some k < 0 < l. (Consider sheaves of homomorphisms and mimick the argument in the proof of Kodaira-embedding)

Exercise 4. Show that a compact complex torus V/Γ is projective if and only if there exists an alternating bilinear form

$$\omega:V\times V\to \mathbb{R}$$

such that

- 1. $\omega(iv, iw) = \omega(v, w)$ for all $v, w \in V$,
- 2. $\omega(-, i_{-})$ is positive definite,
- 3. $\omega(v, w) \in \mathbb{Z}$ for all $v, w \in \Gamma$.

Hand-in: Via Email or in person to Jonas Stelzig until Mo, 30.05., 14:00.