2-3 Rationale Zahlen

Nur die Strategie wird vorgestellt-wie in trap. 2-2! Idee: jede rat-Zahl ist Bruch, a " uit a EZ, b EN.

Probleme: Division noch nicht det.

nicht eindentige Davstellung 11 = 4 = 3.4=2.6

12.16 Satz / Li) Für (a, b), (e,d) ← Z×Z*, Z*:=Z/303, def.

(a, b) & (c,d): (=> ad = bc

eine Aquiv. vel. aut Z×Z* mit Aquiv. klassen $[(a,b)]:=\{(c,d)\in \mathbb{Z}\times \mathbb{Z}^*: (c,d)\stackrel{\mathcal{U}}{\sim}(a,b)\}$

Menye der vationalen Zahlen Q:= {[(a,b)]: a ∈ Z, b ∈ Z*} (ii) Addition [(a, b,)] [[(az, bz)]:=[(a, bz+azb,, b, bz)] und

Multiptikation [(a, b,)] [[(az, bz)]:=[(a,az,b,bz)]

sind wohldefiniert.

(iii) [7] und [1] sind kommutativ, assoziativ und distubutiv

ist ventrales Element von III, $[(0,1)] \in \mathbb{C}_{c}$ (iv)

> ist inverses Element von [(-a, b)] € Cx

[(1,51] + Q bzgl- [+]

```
(V) [(1,1)] ist neutrales Element von @ bzgl. []
     and Y [(a, b)] & Q\{[(o,1)]) ist [(ba]] & Q\{[(o,1)])
     inverses Element begl. [.].
 2 usammenfassung (il-(v): Q ist Körper (vgl. Lin. Alg.)
 (vi) (Q, 🖾) ist angeordneter Körper, wobei
   [(a, b,1] [[(a, b,2)]; (=> ] m E INo (:= INu {o}), n E IN:
                          [(a_2,b_2)] = [(a_1,b_1)] + [(m,n)]
   Die Ordnung ist verträglich mit der auf Z
 (Det. von [], [], [] wire in Det. 2.6)
2-17 Definition | Für [(a, b,1], [(az, bz]] € C?:
   [(a_1,b_1)] = [(a_2,b_2)] := [(a_1,b_1)] + [(-a_2,b_2)] \in \mathbb{Q}
· Für [(a, b, 1] e Q, [(a, b)] e Q \ {[(0,11]} :
        \frac{\left[\left(a_{1},b_{1}\right)\right]}{\left[\left(a_{2},b_{2}\right)\right]}:=\left[\left(a_{1},b_{1}\right)\right] \cdot \left[\left(b_{2},a_{2}\right)\right] \in \mathbb{Q}
  · fair ≥ ∈ Z sei 2:=[(2,1)] ∈ Q
12.18 Solz Unter Weglassung aller II (ab sofoit! gilt
         a = [(a,b)] faeZ, VbeZ*, sowie
```

 $\frac{a}{b} = [(a,b)] \quad \forall a \in \mathbb{Z}, \forall b \in \mathbb{Z}^*, so$ alle bekannten Rechensegeln für $+,-,\circ,/, \leq, <, >, \geq$

2.19 Lemma

(i) Die Ordnung auf Q ist Archimedisch, d.h. Yq, r eQ, q, r>o, In eN mit q<nr

(ii) Dichte: Yq, r & Q mit q < r J S & Q: q < S < r

Beweis;

weis:
(i) Schreibe
$$q = \frac{a}{g}, r = \frac{b}{g}$$
 mit $a, b, g \in \mathbb{N}$
(gem. Nenner)

-> Beh. (C=> Ya, b \in N \in n \in W \in a < n b)

wahr: wahk n = a + 1

=>
$$s = q + \frac{r-q}{2} => s > q$$

$$r = s + \frac{r - q}{2} \implies r > s$$

2.20 Definition (. Sei qE Q

(Absolut -) Betrag
$$|q| := \begin{cases} q & | & q \ge 0 \\ -q & | & q < 0 \end{cases}$$

. Seien q₂₁q₂ € R

$$min(q_1,q_2):=\begin{cases} q_1 & |q_1| \leq q_2 \\ q_2 & |q_2| \leq q_1 \end{cases}$$
 $max(q_1,q_2)=\begin{cases} q_1 & |q_1| \geq q_2 \\ q_2 & |q_2| \leq q_1 \end{cases}$

Sount $|q| = \max(q, -q) \ge 0$.

(B1)
$$\forall q \in \mathbb{K} \text{ ist } |q| \ge 0 \text{ und}$$

$$|q| = 0 \iff q = 0$$

(B2)
$$Vq_1, q_2 \in K$$
: $|q_1q_2| = |q_1| |q_2|$

Beweis: (B1) aus Def. von 19/ klar!

(B2) Sei
$$q_j = S_j r_j (j = 1,2)$$
 mit $r_j \ge 0$ und $S_j \in \{+1,-1\}$
 $=) |q_1q_2| = |S_1S_2r_1r_2| = |S_1S_2| r_1r_2 = |q_1| \cdot |q_2|$

$$= |S_2r_2|$$

(B3) da
$$q_1 \leq |q_1| \wedge q_2 \leq |q_2|$$

=) $q_1 + q_2 \leq |q_1| + |q_2|$

anderevsits: $-q_1 \leq |q_1| \wedge -q_2 \leq |q_2|$

-> $-(q_1 + q_2) \leq |q_1| + |q_2|$

(If $\wedge Q_1$

-> $\max (q_1 + q_2) - (q_1 + q_2) \leq |q_1| + |q_2|$

```
Q ist aber leider nicht groß gering:
```

[2.22 Satz] \$ ce & mit c=2

Beweis: Wir branchen: Sei $n \in \mathbb{N}$ ungerade (: \subseteq : $\exists k \in \mathbb{N}$.) n = 2k + 1) = $n = (n-1) \cdot n + n$ ist ungerade

gerade ungerade ($n \in \mathbb{N}$ gerade: \subseteq : $\exists k \in \mathbb{N}$.) n = 2k

Annahme: ∃c∈ Q: c=2; ohne Einschränkung (o.f.)

sei c>0 (c=0 micht möglich; falls cco ware, gilt auch für ~:=-c>0 dass ~=2)

=> Jp,q EIN, p und q teilerficund: C= \$\frac{7}{4}\$

=) $2 = c^2 = \frac{p^2}{q^2} =$ $p^2 = 2q^2$ genade

(*) p gerade, also p=2p mit p∈N

=) $q^2 = 2\tilde{p}^2$ gerade =) q gerade

-> P19 nicht feilerfreud } => Beh.