
VISCOSITY SOLUTIONS

PETER HINTZ

We follow Han and Lin, Elliptic Partial Differential Equations, §5.

1. Motivation

Throughout, we will assume that Ω ⊂ Rn is a bounded and connected domain
and that aij ∈ C(Ω) satisfies

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2, x ∈ Ω, ξ ∈ Rn,

for some Λ, λ > 0. We consider the operator L defined by

Lu = aij(x)Diju

for u ∈ C2(Ω).
Suppose u ∈ C2(Ω) is a supersolution in Ω, i.e. Lu ≤ 0. Then if φ ∈ C2(Ω)

satisfies Lφ > 0, we get L(u− φ) < 0 in Ω, hence by the maximum principle, u− φ
does not have interior local minima in Ω. Put differently, if φ ∈ C2(Ω) is such that
u− φ has a local minimum at x0 ∈ Ω, then necessarily Lφ(x0) ≤ 0. Geometrically,
u− φ having a local minimum at x0 means that the graph of φ touches the graph
of u from below at x0, if we shift φ by a constant.

Definition 1.1. Let f ∈ C(Ω). We say that u ∈ C(Ω) is a viscosity supersolution
(resp. subsolution) of Lu = f in Ω if for all x0 ∈ Ω and all functions φ ∈ C2(Ω)
such that u− φ has a local minimum (resp. maximum) at x0, the inequality

Lφ(x0) ≤ f(x0) (resp. ≥ f(x0))

holds. We say that u is a viscosity solution if it is both a viscosity supersolution
and a viscosity subsolution.

Since L is a second order operator, we in fact obtain an equivalent definition if
we restrict φ to be a quadratic polynomial.

Lemma 1.2. If u ∈ C2(Ω), then u is a classical supersolution (resp. subsolution)
if and only if is a viscosity supersolution (resp. subsolution).

Proof. The ‘only if’ part follows from the discussion preceding Definition 1.1. For
the ‘if’ part, we can simply choose φ = u ∈ C2(Ω) in the definition of viscosity
solutions; note that in this case u − φ ≡ 0 has a local minimum (resp. maximum)
at every point x0 ∈ Ω. �

The point of viscosity solutions is that the regularity requirements on u are very
weak, and spaces of viscosity (super-/sub-)solutions have good closure/compactness
properties (as do the space S ± defined below), which is particularly important in
the study of nonlinear (degenerate elliptic) PDEs.
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Connecting to the discussion preceding Definition 1.1, for any function φ which
is C2 at x0, the condition Lφ(x0) ≤ 0 is equivalent to

∑
ij aij(x0)Dijφ(x0) ≤ 0,

and hence by Lemma 1.3 below, we obtain∑
k

αkek ≤ 0,

where α1 ≥ · · · ≥ αn > 0 are the eigenvalues of aij(x0), and e1 ≤ · · · ≤ en are the
eigenvalues of Dijφ(x0) (notice the reversed order). Splitting the sum, this gives∑

ek>0

αkek ≤
∑
ek<0

αk(−ek),

and thus, using λ ≤ αk ≤ Λ for all k,

λ
∑
ek>0

ek ≤ Λ
∑
ek<0

(−ek), (1.1)

which is to say that the positive eigenvalues ofD2φ(x0) are controlled by its negative
eigenvalues.

Lemma 1.3. Let A be a positive definite n×n matrix with eigenvalues α1 ≥ · · · ≥
αn ≥ 0, and suppose B is a symmetric n×n matrix with eigenvalues β1 ≥ · · · ≥ βn.
Then

n∑
k=1

αkβn−k+1 ≤ Tr(ATB) ≤
n∑
k=1

αkβk.

Proof. This is closely related to von Neumann’s trace inequality. We give a proof in
the spirit of Leon Mirsky, A trace inequality of John von Neumann. Let T, S ∈ O(n)

be such that TTAT = Ã and STBS = B̃ are diagonal, which diagonal entries
α1, . . . , αn and β1, . . . , βn, respectively, in this order. Then

Tr(ATB) = Tr(TÃTTST B̃S) = Tr(STÃ(ST )T B̃) = Tr((ÃQ)TQB̃)

with Q = (ST )T ∈ O(n). The claim reduces to the inequalities

n∑
k=1

αkβn−k+1 ≤
n∑

i,j=1

dijαiβj ≤
n∑
k=1

αkβk (1.2)

for dij = q2
ij . Now notice that

∑
i q

2
ij = 1 =

∑
j q

2
ij because of Q ∈ O(n); hence the

matrix D = (dij) is doubly stochastic, thus, by the Birkhoff-von Neumann theorem,
a convex combination of permutation matrices. But the set of matrices D for which
(1.2) holds is easily seen to contain all permutation matrices (this uses αk ≥ 0),
and moreover is convex, and the proof is complete. �

The inequality (1.1) is independent of the particular matrix aij(x0), and we use
it to define a general class of functions which is designed to capture ‘all solutions
to all elliptic equations’ (which satisfy an appropriate ellipticity condition):

Definition 1.4. Let f ∈ C(Ω), Λ, λ > 0. We define the space S +(λ,Λ, f) (resp.
S −(λ,Λ, f)) to consist of all u ∈ C(Ω) such that the following holds: If φ ∈ C2(Ω)
is such that u− φ has a local minimum (resp. maximum) at x0, then

M−(λ,Λ, D2φ) := λ
∑
ek>0

ek(x0) + Λ
∑
ek<0

ek(x0) ≤ f(x0),
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resp.

M +(λ,Λ, D2φ) := Λ
∑
ek>0

ek(x0) + λ
∑
ek<0

ek(x0) ≥ f(x0),

where1 e1(x0), . . . , en(x0) are the eigenvalues of the Hessian D2φ(x0). We denote

S (λ,Λ, f) = S +(λ,Λ, f) ∩S −(λ,Λ, f).

By the above discussion, any viscosity supersolution (resp. subsolution) of Lu =
f with L = aijDij as before belongs to the class S +(λ,Λ, f) (resp. S −(λ,Λ, f)).

Remark 1.5. By Lemma 1.3, we can define M± (still assuming Λ ≥ λ > 0) alter-
natively by

M−(λ,Λ,M) = inf
λ≤A≤Λ

∑
ij

AijMij ,

M +(λ,Λ,M) = sup
λ≤A≤Λ

∑
ij

AijMij ,

withM a symmetric n×nmatrix, where the inf and sup are taken over all symmetric
n×n matrices A for which λ|ξ|2 ≤

∑
ij Aijξiξj ≤ Λ|ξ|2 for all ξ ∈ Rn. In particular,

this gives

M−(λ,Λ,M +N) ≤M−(λ,Λ,M) + M−(λ,Λ, N). (1.3)

2. Alexandroff maximum principle

We now prove the Alexandroff maximum principle for viscosity solutions. For
a continuous function v on an open convex set Ω, recall the convex envelope of v,
defined by

Γ(v)(x) = sup
L
{L(x) | L ≤ v in Ω, L affine function}, x ∈ Ω.

Clearly, Γ(v) is a convex function in Ω. The set {v = Γ(v)} is called the (lower)
contact set of v. The points in the contact set are called contact points.

We recall the classical version of the Alexandroff maximum principle:

Proposition 2.1. Suppose u ∈ C1,1(B1) ∩ C0(B1), u|∂B1 ≥ 0. Then

sup
B1

u− ≤ c(n)

(∫
B1∩{u=Γu}

detD2u

)1/n

,

where u− = max(−u, 0) is the negative part of u (which is a positive function!),
and Γu = Γ(−u−) is the convex envelope of −u−.

The viscosity version is:

Theorem 2.2. Suppose u ∈ S +(λ,Λ, f) in B1 with u ≥ 0 on ∂B1, where f ∈
C(B1). Then

sup
B1

u− ≤ c(n, λ,Λ)

(∫
B1∩{u=Γu}

(f+)n
)1/n

,

where u− = max(−u, 0) and Γu = Γ(−u−) as before, and f+ = max(f, 0).

1M± are called the Pucci extremal operators.
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Proof. We will prove that at a contact point x0, the inequalities

f(x0) ≥ 0 (2.1)

and

L(x) ≤ Γu(x) ≤ L(x) + C(f(x0) + ε(x))|x− x0|2 (2.2)

hold for some affine function L and any x close to x0, where ε(x) = o(1) as x→ x0,
and C = C(n, λ,Λ) is a positive constant. By Alexandroff’s theorem on convex
functions (yielding that Γu has a second derivative almost everywhere), the estimate
(2.2) together with (2.1) implies

detD2Γu(x) ≤ C(n, λ,Λ)f+(x)n

for a.e. x ∈ {u = Γu}, and hence applying Proposition 2.1 to Γu gives the result.
To prove (2.1) and (2.2), suppose x0 is a contact point, i.e. u(x0) = Γu(x0). By

translating the domain, we may assume x0 = 0, and by subtracting a supporting
plane from u, i.e. an affine linear function L with L(x0) = u(x0) and L(x) ≤ −u−(x)
for all x ∈ B1, we may moreover assume u ≥ 0 in B1 and u(0) = 0. Notice that
changing the function φ in the definition of the space S +(λ,Λ, f) by an affine linear
function does not affect the Hessian of φ, hence the new function u, after translating
it and subtracting a supporting plane from it, still belongs to S +(λ,Λ, f). Let w
be the corresponding translated and shifted version of Γu.

The estimate (2.1) is now obvious since u has a local minimum at 0, which by
definition of S +(λ,Λ, f) gives 0 ≤ f(0), as desired. We will prove the estimate
(2.2) in the form

0 ≤ w(x) ≤ C(n, λ,Λ)(f(0) + ε(x))|x|2, x ∈ B1,

where ε(x) = o(1) as x→ 0. We need to estimate

Cr =
1

r2
max
Br

w

for r > 0 small. Since in the case Cr = 0, there is nothing to do, we may assume
Cr > 0. By convexity, w attains its maximum in Br at some point on the boundary
∂Br, say at (0, . . . , 0, r). We claim that this implies

w(x′, r) ≥ w(0, . . . , 0, r) = Crr
2

for all x = (x′, r) ∈ B1. Indeed, if w(x′, r) < w(0, r), then by continuity of w, we
would also have w(x′, r+ε) < w(0, r) for some small ε > 0, but then by convexity of
w, the value of w at the second intersection point of the line through (x′, r+ ε) and
(0, r) with ∂Br would have to be larger than the value of w at (0, r), contradicting
the definition of the point (0, r). We use this information to construct a quadratic
polynomial that touches u from below in

Rr = {(x′, xn) | |x′| ≤ Nr, |xn| ≤ r},
with N = N(n, λ,Λ) to be chosen below, which curves upwards quickly in the
xn-direction, but curves downwards very slowly in the x′-directions. Concretely,
define

φ̃(x) = (xn + r)2 − 4

N2
|x′|2.

Then we have

(1) for xn = −r, φ̃ ≤ 0,

(2) for |x′| = Nr, φ̃ ≤ 4r2 − 4r2 = 0,
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(3) for xn = r, φ̃ ≤ 4r2.

Hence, if we set

φ(x) =
Cr
4
φ̃(x),

we obtain φ ≤ w ≤ u on ∂Rr and φ(0) = Crr
2/4 > 0 = w(0) = u(0). Therefore,

u − φ has a local minimum somewhere inside Rr. The eigenvalues of D2φ at any
point are given by Cr/2,−2Cr/N

2, . . . ,−2Cr/N
2, thus by definition of S +(λ,Λ, f),

we have

λ
Cr
2
− 2Λ(n− 1)

Cr
N2
≤ max

Rr

f.

By choosing N = N(n, λ,Λ) large (N =
√

8Λ(n− 1)/λ works), this gives λCr/4 ≤
maxRr

f , or put differently,

max
Br

w ≤ 4

λ
r2 max

Rr

f.

Since maxRr
f → f(0) as r → 0, we obtain (2.2). �

3. Harnack inequality

We will prove:

Theorem 3.1. Suppose u belongs to S (λ,Λ, f) in B1 with u ≥ 0 in B1 for some
f ∈ C(B1). Then

sup
B1/2

u ≤ C
(

inf
B1/2

u+ ‖f‖Ln(B1)

)
, (3.1)

where C = C(n, λ,Λ) is a positive constant.

This immediately gives interior Hölder continuity:

Corollary 3.2. Suppose u belongs to S (λ,Λ, f) in B1 for some f ∈ C(B1). Then
u ∈ Cα(B1) for some α = α(n, λ,Λ) ∈ (0, 1). Moreover, there is a positive constant
C = C(n, λ,Λ) such that for all x, y ∈ B1/2, the estimate

|u(x)− u(y)| ≤ C|x− y|α
(

sup
B1

|u|+ ‖f‖Ln(B1)

)
holds.

Proof. The estimate (3.1) scales as

sup
BR/2

u ≤ C
(

inf
BR/2

u+R‖f‖Ln(BR)

)
. (3.2)

Let M(r) = maxBr
u and m(r) = minBr

u for r ∈ (0, 1), and put ω(r) = M(r) −
m(r). It suffices to show that

ω(r) ≤ Crα
(

sup
B1/2

|u|+ ‖f‖Ln(B1)

)
for r < 1/2. Applying (3.2) to M(r)− u ≥ 0 in Br, we obtain

sup
Br/2

(M(r)− u) ≤ C
(

inf
Br/2

(M(r)− u) + r‖f‖Ln(Br)

)
,

that is,

M(r)−m(r/2) ≤ C
(
M(r)−M(r/2) + r‖f‖Ln(Br)

)
.
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Similarly, apply (3.2) to u−m(r) ≥ 0 in Br, which gives

M(r/2)−m(r) ≤ C
(
m(r/2)−m(r) + r‖f‖Ln(Br)

)
.

Adding these two inequalities gives

ω(r) + ω(r/2) ≤ C
(
ω(r)− ω(r/2) + r‖f‖Ln(Br)

)
,

thus, with γ = (C − 1)/(C + 1) < 1,

ω(r/2) ≤ γω(r) + Cr‖f‖Ln(Br).

Iterating this inequality easily gives

ω(ρ) ≤ Cρα
(
ω(1/2) + ‖f‖Ln(B1)

)
for ρ ∈ (0, 1/2]; but ω(1/2) ≤ 2 supB1/2

|u|, finishing the proof. �

We now turn to the proof of Theorem 3.1; we will work with cubes instead of
balls for simplicity (we will be using a Calderon-Zygmund decomposition later) and
deduce the theorem from the following lemma:

Lemma 3.3. Suppose u belongs to S (λ,Λ, f) in2 B2
√
n with u ≥ 0 in B2

√
n for

some f ∈ C(B2
√
n). Then there exist two positive constants ε0 and C, depend-

ing only on λ,Λ and n, such that if infQ1/4
u ≤ 1 and ‖f‖Ln(B2

√
n) ≤ ε0, then

supQ1/4
u ≤ C.

Proof of Theorem 3.1 given Lemma 3.3. For u ∈ S (λ,Λ, f) in B2
√
n with u ≥ 0 in

B2
√
n, consider

uδ =
u

infQ1/4
u+ 1

ε0
‖f‖Ln(B2

√
n) + δ

for δ > 0. Then Lemma 3.3 applies to uδ (with f replaced by fδ, defined analogously
to uδ), which in the limit δ → 0 gives

sup
Q1/4

u ≤ C
(

inf
Q1/4

u+ ‖f‖Ln(B2
√

n)

)
.

A covering argument then gives (3.1). �

Roughly speaking, our strategy consists of the following three steps:

(1) Show that if a viscosity solution u is small somewhere in the large cube Q3,
then it can be bounded on a large subset of Q1 (Lemma 3.4);

(2) use this to show a quantitative rate of decay for the size of the set where u
is larger than t > 0 as t→∞ (Lemma 3.5);

(3) considering δ(C−u) (δ > 0 small, C > 0 large) instead of u, this gives that
if u is very large at some point in a big cube, it has a large lower bound on
a large subset of a smaller cube, contradicting the established quantitative
decay rate and proving Lemma 3.3.

We begin with

Lemma 3.4. Suppose u belongs to S +(λ,Λ, f) in B2
√
n for some f ∈ C(B2

√
n).

Then there exist constants ε0 > 0, µ ∈ (0, 1) and M > 1, depending only on λ,Λ, n,
such that if

u ≥ 0 in B2
√
n, inf

Q3

u ≤ 1, ‖f‖Ln(B2
√

n) ≤ ε0,

2The factors of
√
n appear to make the cubes fit nicely into balls with ‘nice rational’ diameters.
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then

|{u ≤M} ∩Q1| > µ.

Proof. The idea is to construct a C2 function g that only depends on λ,Λ and n,
which satisfies

g ≥ 2 on Q3, g|∂B2
√

n
= 0, (3.3)

so that w = u − g is ≤ −1 at some point in Q3 but w ≥ 0 on ∂B2
√
n. Then

the Alexandroff maximum principle, Theorem 2.2, will give a lower bound on the
measure of the lower contact set of −w−, which proves the lemma.

If φ ∈ C2(B2
√
n) is such that w − φ has a local minimum at x0 ∈ B2

√
n, then

u− (φ+ g) has a local minimum at x0. By definition of S +(λ,Λ, f), this implies

M−(λ,Λ, D2φ(x0) +D2g(x0)) ≤ f(x0),

hence by (1.3)

M−(λ,Λ, D2φ(x0)) ≤ f(x0)−M−(λ,Λ, D2g(x0)).

We thus want to choose g such that

M−(λ,Λ, D2g(x0)) ≥ 0 for all x0 ∈ B2
√
n \B1/2. (3.4)

With such g, which we will construct below, we obtain

w ∈ S +(λ,Λ, f + η) in B2
√
n

for some η ∈ C∞c (Q◦1), 0 ≤ η ≤ C(n, λ,Λ). (Indeed, just take η to be a function
in C∞c (Q◦1) with η + M−(λ,Λ, D2g) ≥ 0 in B1/2.) Now, since infQ3

w ≤ −1 and
w|∂B2

√
n
≥ 0, we may apply Theorem 2.2 to w and obtain

1 ≤ C
(∫

B2
√

n∩{w=Γw}
(|f |+ η)n

)1/n

≤ C‖f‖Ln(B2
√

n) + C|{w = Γw} ∩Q1|1/n.

Thus, for ε0 = 1/2C and f with ‖f‖Ln(B2
√

n) ≤ ε0, we obtain

1/2 ≤ C|{w = Γw} ∩Q1|1/n.
Recalling that Γw = Γ(−w−) is non-positive on B2

√
n, the equality w(x) = Γw(x)

implies w(x) ≤ 0, hence u(x) ≤ g(x) ≤ M := sup g, thus |{u(x) ≤ M} ∩ Q1| ≥
(2C)−n, as desired.

It remains to construct the function g satisfying (3.3) and (3.4). We put

g(x) = M

(
1− |x|

2

4n

)β
with β > 0 chosen below, and M = M(β) chosen such that g ≤ −2 in Q3. Notice
that automatically g|∂B2

√
n

= 0. In order to ensure (3.4), we need the eigenvalues

of D2g. We compute

Dijg(x) = −M
2n
β

(
1− |x|

2

4n

)β−1

δij +
M

(2n)2
β(β − 1)

(
1− |x|

2

4n

)β−2

xixj .

By spherical symmetry, it suffices to compute the eigenvalues of D2g at a point
x = (|x|, 0, . . . , 0), in which case they are

e+(x) =
M

2n
β

(
1− |x|

2

4n

)β−2(
2β − 1

4n
|x|2 − 1

)
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with multiplicity 1 and

e−(x) = −M
2n
β

(
1− |x|

2

4n

)β−1

with multiplicity n − 1; thus e+(x) > 0 for |x| ≥ 1/2 if β is large enough, and
e−(x) < 0. Thus

M−(λ,Λ, D2g(x)) = λe+(x) + (n− 1)Λe−(x)

=
M

2n
β

(
1− |x|

2

4n

)β−2 [
λ

(
2β − 1

4n
|x|2 − 1

)
− (n− 1)Λ

(
1− |x|

2

4n

)]
≥ 0

for β = β(n, λ,Λ) large enough. Thus, (3.4) holds, and the proof is finished. �

Following our strategy, we deduce a quantitative decay of the distribution func-
tions:

Lemma 3.5. Suppose u belongs to S +(λ,Λ, f) in B2
√
n for some f ∈ C(B2

√
n).

Then there exist positive constants ε0, ε and C, depending only on λ,Λ, n, such that
if

u ≥ 0 in B2
√
n, inf

Q3

u ≤ 1, ‖f‖Ln(B2
√

n) ≤ ε0,

then

|{u ≥ t} ∩Q1| ≤ Ct−ε for t > 0. (3.5)

Proof. With M and µ as in Lemma 3.4, we will prove

|{u > Mk} ∩Q1| ≤ (1− µ)k (3.6)

for k = 1, 2, . . ., which implies (3.5): Indeed, given t > M (with 0 < t ≤M handled
trivially), choose k ∈ N such that Mk ≤ t ≤Mk+1, then

|{u ≥ t} ∩Q1| ≤ |{u ≥Mk} ∩Q1| ≤ (1− µ)k = (M2ε(1− µ))kM−2εk

≤ t−2εk/(k+1) ≤ t−ε

if ε > 0 is chosen such that M2ε(1− µ) ≤ 1.
We prove (3.6) inductively: For k = 1, this is just Lemma 3.4. Assuming (3.6)

holds for k − 1, set

A = {u > Mk} ∩Q1, B = {u > Mk−1} ∩Q1,

then |B| ≤ (1− µ)k−1 by the inductive hypothesis, and we aim to prove

|A| ≤ (1− µ)|B|. (3.7)

Now A ⊂ B ⊂ Q1 and |A| ≤ 1 − µ. We claim that if Q = Qr(x0) is a cube in Q1

such that

|A ∩Q| > (1− µ)|Q|, (3.8)

then Q̃∩Q1 ⊂ B for Q̃ = Q3r(x0), i.e. if A has large measure in some cube Q, then

B contains a ‘parent cube’ Q̃; by Lemma 3.6 below, this implies (3.7). We argue

by contradiction, assuming there is x̃ ∈ Q̃ such that u(x̃) ≤ Mk−1. The idea is
to consider a rescaled version ũ of u in Q3r(x0) and apply Lemma 3.4 to see that
|Ac ∩Q| > µ|Q|, contradicting the assumption (3.8).



VISCOSITY SOLUTIONS 9

More precisely, let x = x0 + ry, y ∈ Q1, x ∈ Q = Qr(x0), and put

ũ(y) =
1

Mk−1
u(x).

Then ũ ≥ 0 in B2
√
n and infQ3

ũ ≤ 1. Moreover, ũ ∈ S +(λ,Λ, f̃) in B2
√
n with

‖f̃‖Ln(B2
√

n) ≤ ε0 in view of

f̃(y) =
r2

Mk−1
f(x), y ∈ B2

√
n,

thus

‖f̃‖Ln(B2
√

n) ≤
r

Mk−1
‖f‖Ln(B2

√
n) ≤ ‖f‖Ln(B2

√
n) ≤ ε0.

By Lemma 3.4,

µ < |{ũ(y) ≤M} ∩Q1| = r−n|{u(x) ≤Mk} ∩Q|,
thus |Ac ∩Q| > µ|Q|, providing the desired contradiction to (3.8). �

To finish the proof, we need the following lemma. We first introduce some
terminology: Cut the unit cube Q1 equally into 2n cubes, which we call the first
generation; cut these cubes equally into 2n cubes, obtaining the second generation,
and so on. The cubes from all generations are called dyadic cubes. Every (k+ 1)-th

generation cube Q is a 2n-th part of a k-th generation cube Q̃, called its predecessor.

Lemma 3.6. Suppose A ⊂ B ⊂ Q1 are measurable sets such that

(1) |A| < δ ∈ (0, 1);

(2) for any dyadic cube Q, |A ∩ Q| ≥ δ|Q| implies Q̃ ⊂ B for the predecessor

Q̃ of Q.

Then |A| ≤ δ|B|.

Proof. Apply the Calderon-Zygmund decomposition to the characteristic function
of A. We obtain a sequence of dyadic cubes {Qj} such that

δ ≤ |A ∩Q
j |

|Qj |
< 2nδ,

|A ∩ Q̃j |
|Q̃j |

< δ

for the predecessor Q̃j of Qj ; moreover, A ⊂
⋃
j Q

j except for a set of measure

zero (this is because δ < 1, and by the Lebesgue differentiation theorem, the set of
points in A for which the lim sup of the averages over cubes containing the point is
≤ δ < 1 has measure 0). By assumption, we have Q̃j ⊂ B for each j. Hence

A ⊂
⋃
j

Q̃j ⊂ B.

Relabelling the Q̃j so that they are mutually disjoint, we get

|A| =
∑
i

|A ∩ Q̃i| ≤ δ
∑
i

|Q̃i| ≤ δ|B|. �

We are now in a position to prove Lemma 3.3, and thus Theorem 3.1.

Proof of Lemma 3.3. We prove that there exist θ ' 1 and M0 � 1, depending only
on λ,Λ and n, such that if u(x0) = P > M0 for some x0 ∈ B1/4, there exists

a sequence {xk} ∈ B1/2 such that u(xk) ≥ θkP for k ∈ N0, contradicting the
boundedness of u; we thus conclude supB1/4

u ≤M0. The idea is simple: If x1 did
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not exist, then θP−u (appropriately rescaled) would be positive with small infimum
over a certain small cube, thus it would be quantitatively bounded from above on
a large subset of a smaller cube, hence u would be bounded from below on a large
subset of a smaller cube, which contradicts the decay established in Lemma 3.5.

Concretely, assuming u(x0) = P > M0 for some x0 ∈ B1/4, we choose r such
that {u > P/2} covers less than half of Qr(x0); to accomplish this, note that
infQ3

u ≤ infQ1/4
u ≤ 1, hence Lemma 3.5 gives

|{u > P/2} ∩Q1| ≤ C(P/2)−ε ≤ rn/2 (3.9)

for rn/2 ≥ C(P/2)−ε. Choosing P > M0 large, we may assume r ≤ 1/4. For such
r, we have Qr(x0) ⊂ Q1 and

1

|Qr(x0)|
|{u > P/2} ∩Qr(x0)| ≤ 1/2

We now show that for θ ' 1, there exists a point in B2
√
nr(x0) at which u ≥ θP .

Assuming that u < θP in B2
√
nr(x0), we rescale as usual, putting x = x0 + ry for

y ∈ B2
√
n, x ∈ B2

√
nr(x0), and

ũ(y) =
θP − u(x)

(θ − 1)P
.

By assumption, ũ ≥ 0 in B2
√
n, and infQ3

ũ ≤ ũ(0) = 1; moreover ũ ∈ S +(λ,Λ, f̃)

in B2
√
n with ‖f̃‖Ln(B2

√
n) ≤ ε0, as is seen from

f̃(y) = − r2

(θ − 1)P
f(x), y ∈ B2

√
n,

which gives

‖f̃‖Ln(B2
√

n) ≤
r

(θ − 1)P
‖f‖Ln(B2

√
nr(x0)) ≤ ε0

provided r ≤ (θ − 1)P . By Lemma 3.5,

1

|Qr(x0)|
|{u ≤ P/2} ∩Qr(x0)| =

∣∣∣∣{ũ ≥ θ − 1/2

θ − 1

}
∩Q1

∣∣∣∣ ≤ C (θ − 1/2

θ − 1

)−ε
< 1/2

if θ is chosen close to 1. This contradicts (3.9). To summarize what this gives:
There exists θ = θ(n, λ,Λ) > 1 such that if u(x0) = P for some x0 ∈ B1/4, then
u(x1) ≥ θP for some x1 ∈ B2

√
nr(x0), provided

C(n, λ,Λ)P−ε/n ≤ r ≤ (θ − 1)P.

Thus, we choose P such that P ≥ (C/(θ − 1))n/(n+ε), and then take r = CP−ε/n.
We may iterate this to get a sequence {xk} such that for any k ∈ N, there

exists xk ∈ B2
√
nrk(xk−1) such that u(xk) ≥ θkP , where rk = C(θk−1P )−ε/n =

Cθ−(k−1)ε/nP−ε/n. In order to ensure that xk ∈ B1/2 for all k ∈ N, we need∑
2
√
nrk < 1/4, which is satisfied if we choose M0 such that

M
ε/n
0 ≥ 8

√
nC

∞∑
k=1

θ−(k−1)ε/n

and M0 ≥ (C/(θ − 1))n/(n+ε) (which is the above condition on P ) and then take
P > M0. The proof is complete. �
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