VISCOSITY SOLUTIONS

PETER HINTZ

We follow Han and Lin, Elliptic Partial Differential Equations, §5.

1. MOTIVATION

Throughout, we will assume that 2 C R™ is a bounded and connected domain
and that a;; € C(Q) satisfies

)‘|£‘2 S aij(m)gl{j S A|§|2a S Qaf S an
for some A, A > 0. We consider the operator L defined by
Lu= (%7 (x)Diju

for u € C*(Q).

Suppose u € C?(Q) is a supersolution in €2, i.e. Lu < 0. Then if ¢ € C?(Q)
satisfies L > 0, we get L(u — ¢) < 0 in 2, hence by the maximum principle, u — ¢
does not have interior local minima in Q. Put differently, if ¢ € C?(Q) is such that
u — ¢ has a local minimum at zg € Q, then necessarily Lo(xg) < 0. Geometrically,
u — ¢ having a local minimum at xy means that the graph of ¢ touches the graph
of u from below at xg, if we shift ¢ by a constant.

Definition 1.1. Let f € C(2). We say that u € C(Q) is a viscosity supersolution
(resp. subsolution) of Lu = f in  if for all 9 € Q and all functions ¢ € C?(Q)
such that u — ¢ has a local minimum (resp. maximum) at xo, the inequality

Lo(xo) < f(xo) (resp. > f(zo))

holds. We say that u is a wviscosity solution if it is both a viscosity supersolution
and a viscosity subsolution.

Since L is a second order operator, we in fact obtain an equivalent definition if
we restrict ¢ to be a quadratic polynomial.

Lemma 1.2. If u € C?(2), then u is a classical supersolution (resp. subsolution)
if and only if is a viscosity supersolution (resp. subsolution).

Proof. The ‘only if’ part follows from the discussion preceding Definition 1.1. For
the ‘if’ part, we can simply choose ¢ = u € C?(Q2) in the definition of viscosity
solutions; note that in this case u — ¢ = 0 has a local minimum (resp. maximum)
at every point xg € €. O

The point of viscosity solutions is that the regularity requirements on u are very
weak, and spaces of viscosity (super-/sub-)solutions have good closure/compactness
properties (as do the space .#* defined below), which is particularly important in
the study of nonlinear (degenerate elliptic) PDEs.
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Connecting to the discussion preceding Definition 1.1, for any function ¢ which
is C? at o, the condition Le¢(x) < 0 is equivalent to > @ij(20) Dijo(zo) < 0,
and hence by Lemma 1.3 below, we obtain

Z age, <0,
%

where a1 > -+ > a, > 0 are the eigenvalues of a;;(z¢), and e; < --- < e, are the
eigenvalues of D;;¢(zo) (notice the reversed order). Splitting the sum, this gives

Z ageg < Z ar(—ex),
er>0 e <0
and thus, using A\ < ap < A for all &,

AD e <A (—er), (1.1)

e >0 e <0

which is to say that the positive eigenvalues of D?¢(x) are controlled by its negative
eigenvalues.

Lemma 1.3. Let A be a positive definite n X n matriz with eigenvalues oy 2 R
an > 0, and suppose B is a symmetric n X n matriz with eigenvalues B > -+ > B,.
Then

Zakﬁn i1 S Tr(ATB) < .
k=1 k=1

Proof. This is closely related to von Neumann’s trace inequality. We give a proof in
the spirit of Leon Mirsky, A trace inequality of John von Neumann. Let T, S € O(n)
be such that T"AT = A and STBS = B are diagonal, which diagonal entries
ay,...,qn and Bi,. .., B,, respectively, in this order. Then

Tr(ATB) = Te(TATTSTBS) = Tr(STA(ST)" B) = Tr((AQ)TQB)
with @ = (ST)T € O(n). The claim reduces to the inequalities

Zakﬂn f1 < Z dijou By < Zakﬂk (1.2)

1,j=1

for d;; = qu. Now notice that ), qu =1=3; qu because of @ € O(n); hence the
matrix D = (d;;) is doubly stochastic, thus, by the Birkhoff-von Neumann theorem,
a convex combination of permutation matrices. But the set of matrices D for which
(1.2) holds is easily seen to contain all permutation matrices (this uses oy > 0),
and moreover is convex, and the proof is complete. O

The inequality (1.1) is independent of the particular matrix a;;(zo), and we use
it to define a general class of functions which is designed to capture ‘all solutions
to all elliptic equations’ (which satisfy an appropriate ellipticity condition):

Definition 1.4. Let f € C(2), A, A > 0. We define the space .1 (\, A, f) (resp.
S~ (M A, f)) to consist of all u € C(£2) such that the following holds: If ¢ € C?(Q)

is such that u — ¢ has a local minimum (resp. maximum) at xg, then

M (NAD?G) =X er(wo) +A D erlwo) < flao),

er>0 er <0
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resp.
MTNA, D) = A D en(zo) + A D en(xo) > flao),
e >0 e <0
where! €1 (), ... ,en(z0) are the eigenvalues of the Hessian D2¢(x). We denote

SNAL) =TT NS (A, ).

By the above discussion, any viscosity supersolution (resp. subsolution) of Lu =
f with L = a;;D;; as before belongs to the class .2 (X, A, f) (resp. %~ (A A, f)).

Remark 1.5. By Lemma 1.3, we can define .#* (still assuming A > X > 0) alter-
natively by

M (N A, M) :AglgféAZAijMiw
ij

%Jr(A’A,M) = Ssup ZAijMija
ASASA T

with M a symmetric nxn matrix, where the inf and sup are taken over all symmetric
n x n matrices A for which \|¢|? < Zij A€ < AJ€)? for all € € R™. In particular,
this gives
M NN M+N) <M (NAM)+ 4 (XA N). (1.3)
2. ALEXANDROFF MAXIMUM PRINCIPLE

We now prove the Alexandroff maximum principle for viscosity solutions. For
a continuous function v on an open convex set €2, recall the convex envelope of v,
defined by

I'(v)(x) =sup{L(z) | L <wvin , L affine function}, = € Q.
L

Clearly, I'(v) is a convex function in Q. The set {v = T'(v)} is called the (lower)
contact set of v. The points in the contact set are called contact points.
We recall the classical version of the Alexandroff maximum principle:

Proposition 2.1. Suppose u € C11(B1) N C°(By), ulop, > 0. Then

1/n
supu” < ¢(n) (/ det Dgu) )
B, Bin{u=I,}

where u~ = max(—u,0) is the negative part of u (which is a positive function!),
and Ty, = T'(—u™) is the convex envelope of —u~.

The viscosity version is:

Theorem 2.2. Suppose u € ST (N A, f) in By with u > 0 on OBy, where f €

C(B1). Then
1/n
supu” < ¢(n, A\, A) (/ (f+)") ,
B Bin{u=T,}

where u~ = max(—u,0) and I, = T'(—u~) as before, and f+ = max(f,0).

L+ are called the Pucci extremal operators.
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Proof. We will prove that at a contact point z(, the inequalities

f(zo) =20 (2.1)

and
L(z) < Ty(z) < L(x) + C(f(x0) + €(x)) | — zo/? (22)
hold for some affine function L and any x close to xg, where e(x) = o(1) as © — xq,
and C = C(n,\,A) is a positive constant. By Alexandroff’s theorem on convex

functions (yielding that T',, has a second derivative almost everywhere), the estimate
(2.2) together with (2.1) implies

det D*T,(z) < C(n, A\, A) f ()"

for a.e. x € {u =T}, and hence applying Proposition 2.1 to I',, gives the result.

To prove (2.1) and (2.2), suppose xg is a contact point, i.e. u(zg) = I'y(zo). By
translating the domain, we may assume xg = 0, and by subtracting a supporting
plane from u, i.e. an affine linear function L with L(z¢) = u(zo) and L(z) < —u~ ()
for all x € B, we may moreover assume u > 0 in By and u(0) = 0. Notice that
changing the function ¢ in the definition of the space .+ (A, A, f) by an affine linear
function does not affect the Hessian of ¢, hence the new function u, after translating
it and subtracting a supporting plane from it, still belongs to . (A, A, f). Let w
be the corresponding translated and shifted version of T',.

The estimate (2.1) is now obvious since v has a local minimum at 0, which by
definition of Z (A, A, f) gives 0 < f(0), as desired. We will prove the estimate
(2.2) in the form

0 < w(z) < C(n,\,A)(f(0) + e(z))|z|?, = € By,

where €(x) = o(1) as * — 0. We need to estimate

1
C, = — maxw
r2 B,
for 7 > 0 small. Since in the case C, = 0, there is nothing to do, we may assume
Cr > 0. By convexity, w attains its maximum in B, at some point on the boundary
0B, say at (0,...,0,7). We claim that this implies

w(z',r) > w(0,...,0,r) = Cpr?

for all x = (2/,r) € By. Indeed, if w(a’,r) < w(0,7), then by continuity of w, we
would also have w(z’,r+¢€) < w(0,r) for some small € > 0, but then by convexity of
w, the value of w at the second intersection point of the line through (z/, r +¢€) and
(0,7) with OB, would have to be larger than the value of w at (0,7), contradicting
the definition of the point (0,7). We use this information to construct a quadratic
polynomial that touches u from below in

R, = {(.T/7.%'n) | |$C/| < Nr, |xn| < T}7

with N = N(n,\,A) to be chosen below, which curves upwards quickly in the
xp-direction, but curves downwards very slowly in the z’-directions. Concretely,
define

Ha) = (an + 1) = gl
Then we have

(1) for z, = —r, $ <0,

(2) for |z'| = N7, ¢ < 4r2 — 4r2 =0,
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(3) for z, =, ¢ < 4r2.

Hence, if we set
$(z) = —"6(x),

we obtain ¢ < w < u on IR, and ¢(0) = C,.r?/4 > 0 = w(0) = u(0). Therefore,
u — ¢ has a local minimum somewhere inside R,. The eigenvalues of D?¢ at any
point are given by C,./2, —2C,./N2, ..., —2C,./N?, thus by definition of . (), A, f),
we have

/\9 —2A(n — 1)% < max f.

By choosing N = N(n, A\, A) large (N = /8A(n — 1)/ works), this gives AC,. /4 <
maxp, f, or put dlfferently,

4,
maxw < —r°max f.
< Sr¥ max f

T s

Since maxp, f — f(0) as r — 0, we obtain (2.2). O

3. HARNACK INEQUALITY
We will prove:

Theorem 3.1. Suppose u belongs to L (N, A, f) in By with u > 0 in By for some
f€C(By). Then

supu<C(1nf uw+ || fllznes, ) (3.1)
By/s

where C' = C(n, A\, ) is a positive constant.

This immediately gives interior Holder continuity:

Corollary 3.2. Suppose u belongs to (N, A, f) in By for some f € C(B;1). Then
u € C*(By) for some a = a(n, A\, A) € (0,1). Moreover, there is a positive constant
C = C(n, A\, A) such that for all x,y € By s, the estimate

[u(e) ~ u)| < Cla = 91° (suplu| + [ flzoca,))

holds.

Proof. The estimate (3.1) scales as
sup u < c( inf B flin o) ) (3.2)
Bry2

Let M(r) = maxp, u and m(r) = ming_u for r € (0,1), and put w(r) = M(r) —
m(r). It suffices to show that

w(r) < Cr (sup [u] + | f]

By

L"(Bl))
for r < 1/2. Applying (3.2) to M(r) —u > 0 in B,, we obtain

sup (M(r) —u) < O(nf (M(r) ) + |l 1r5,))

B2
that is,
M(r) = m(r/2) < C(M(r) = M(r/2) +7[| fln(B,))-
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Similarly, apply (3.2) to w — m(r) > 0 in B,., which gives
M(r/2) —m(r) < C(m(r/2) —m(r) + || fllL~(5,))-
Adding these two inequalities gives
w(r) +w(r/2) < C(w(r) —w(r/2) + 7l fllLns,)),

thus, with vy = (C - 1)/(C+1) <1,

w(r/2) <qw(r) +Crlfll-s,)-
Tterating this inequality easily gives

w(p) < Cp™(w(1/2) + [ fllzn(sy))
for p € (0,1/2]; but w(1/2) < 2supp, , |ul, finishing the proof. O

We now turn to the proof of Theorem 3.1; we will work with cubes instead of
balls for simplicity (we will be using a Calderon-Zygmund decomposition later) and
deduce the theorem from the following lemma:

Lemma 3.3. Suppose u belongs to (N, A, f) in? By m with w > 0 in By s for
some f € C(By /7). Then there exist two positive constants €g and C, depend-
ing only on A\, A and n, such that if infg, ,u < 1 and |f|
supg, , U <(C.

Ln(BQﬁ) < €0, then

Proof of Theorem 3.1 given Lemma 3.3. For u € (XA, f) in By s with u >0 in

By /m, consider
u

ian1/4 u+ %Hﬂ
for 6 > 0. Then Lemma 3.3 applies to us (with f replaced by fs, defined analogously
to us), which in the limit 6 — 0 gives

us =

L(B, ) +4

su u§C(infu—|— n )
Qli ot 1l (By )

A covering argument then gives (3.1). O

Roughly speaking, our strategy consists of the following three steps:

(1) Show that if a viscosity solution u is small somewhere in the large cube Qs3,
then it can be bounded on a large subset of @ (Lemma 3.4);

(2) use this to show a quantitative rate of decay for the size of the set where u
is larger than ¢ > 0 as ¢ — oo (Lemma 3.5);

(3) considering 6(C' —wu) (6 > 0 small, C' > 0 large) instead of u, this gives that
if u is very large at some point in a big cube, it has a large lower bound on
a large subset of a smaller cube, contradicting the established quantitative
decay rate and proving Lemma 3.3.

We begin with
Lemma 3.4. Suppose u belongs to /(N A, f) in By s for some f € C(By 7).

Then there exist constants €g > 0, p € (0,1) and M > 1, depending only on \, A, n,
such that if

u=>0in By, glfu <L fllens,ym < €o
3

2The factors of /1 appear to make the cubes fit nicely into balls with ‘nice rational’ diameters.
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then
[{u < M}NQ:i[ > p.

Proof. The idea is to construct a C? function g that only depends on A, A and n,
which satisfies

g = 2 on QS; g|632\/; = Oa (33)

so that w = u — g is < —1 at some point in Q3 but w > 0 on 9B, 5. Then
the Alexandroff maximum principle, Theorem 2.2, will give a lower bound on the
measure of the lower contact set of —w™, which proves the lemma.

If ¢ € CQ(BQ\/E) is such that w — ¢ has a local minimum at zo € By, /5, then
u — (¢ + g) has a local minimum at zg. By definition of .#* (X, A, f), this implies

M~ (AN A, D*¢(wo) + D?g(x0)) < f(x0),
hence by (1.3)
M= (0 A, D?(w0)) < fwo) — A4~ (M A, D2g(a0)).
We thus want to choose g such that
M (N A, D?g(x0)) > 0 for all 29 € By /57 \ Byo. (3.4)
With such g, which we will construct below, we obtain
we ST(NA, f+n)in By

for some n € C*(Q3), 0 < n < C(n,\,A). (Indeed, just take n to be a function
in C°(QS) with 4+ .4~ (X\,A,D?*g) > 0 in By 5.) Now, since infg, w < —1 and
w\aBzﬁ > 0, we may apply Theorem 2.2 to w and obtain

1/n
1§C(/ (f|+77)n> SCHf”L"(Bzﬁ)+C|{w:Fw}ﬂQl‘1/n'
BQ\/*PI{U)—F }

Thus, for ¢g = 1/2C and f with ||fHLn(B2ﬁ) < €p, we obtain

1/2 < CH{w =T,}NnQy Y™

Recalling that I', = I'(—w™) is non-positive on By /5, the equality w(z) = T'y ()
implies w(z) < 0, hence u(z) < g(z) < M := supg, thus |[{u(z) < M} N Q| >
(2C)~™, as desired.

It remains to construct the function g satisfying (3.3) and (3.4). We put

g(m)=M( —Ef)ﬁ

with 8 > 0 chosen below, and M = M(f) chosen such that g < —2 in Q3. Notice
that automatically g[op, . = 0. In order to ensure (3.4), we need the eigenvalues
of D%2g. We compute

2\ B-1 M 2\ B2
Dijg(x) = **5 ( |if7|z > 0ij + @T)Qﬂ(ﬂ -1 ( — ZL) T

By spherical symmetry, it suffices to compute the eigenvalues of D?g at a point
x = (|z|,0,...,0), in which case they are

e = M (1 ) (2 )
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=My (- Y

with multiplicity n — 1; thus e*(z) > 0 for |z] > 1/2 if 3 is large enough, and
e (x) < 0. Thus

M~ (N A, D?*g(x )):)\e+( )+ (n—1)Ae™ ()

(-1 () - )

zo

for 8 = B(n, A\, A) large enough. Thus, (3.4) holds, and the proof is finished. O

with multiplicity 1 and

Following our strategy, we deduce a quantitative decay of the distribution func-
tions:

Lemma 3.5. Suppose u belongs to ST(\, A, f) in By m for some f € C(By /z)-
Then there exist positive constants €y, € and C, depending only on X\, A,n, such that

if
u>0in By /m, gljfu <1, ||fHL”(Bz\/;) < ¢
then
{u>t}NQq < Ct™€ for t > 0. (3.5)

Proof. With M and p as in Lemma 3.4, we will prove
[{u>M Qi < (1" (3.6)
for k =1,2,..., which implies (3.5): Indeed, given t > M (with 0 < ¢ < M handled
trivially), choose k € N such that Mk<t< MkH, then
{u> N Qi < [{u>MYNQu < (1—p)" = (M*(1—p)M>*
< t72ek/(k+1) <t
if € > 0 is chosen such that M2¢(1 — u) < 1.

We prove (3.6) inductively: For k = 1, this is just Lemma 3.4. Assuming (3.6)
holds for k£ — 1, set

A={u>M"YnQ), B={u>M"1nQ,
then |B| < (1 — u)*~! by the inductive hypothesis, and we aim to prove
4] < (1= p)|B. (3.7)
Now A C B C @ and |A] <1 — u. We claim that if Q = Q,(xo) is a cube in Q1
such that
ANQ > (1 -plel, (3.8)

then QNQ; C B for Q = Q3r(z0), i.e. if A has large measure in some cube @, then
B contains a ‘parent cube’ Q; by Lemma 3.6 below, this implies (3.7). We argue
by contradiction, assuming there is & € Q such that u(Z) < M*~'. The idea is
to consider a rescaled version @ of u in Q3,-(z) and apply Lemma 3.4 to see that
|A° N Q| > p]Q)|, contradicting the assumption (3.8).
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More precisely, let © = xg + 1y, y € Q1, € Q = Q..(x9), and put
N 1
a(y) = WU($)~
T{len @ > 0in By 5 and infg,u < 1. Moreover, u € ST\ A, f) in By m with
[fllzn (B, ) < €0 in view of
~ ']"2

fly) = Wf(x)» Y € Byyms

thus 3 ,
£z (B, m < WHJ’"HL"(BQﬁ) <N fllen (B, ) < €o-
By Lemma 3.4,

p<Ha(y) < Myn Q| =r""[{u(z) < M*}NnQ),
thus |A° N Q| > u|Q)|, providing the desired contradiction to (3.8). O

To finish the proof, we need the following lemma. We first introduce some
terminology: Cut the unit cube @1 equally into 2™ cubes, which we call the first
generation; cut these cubes equally into 2" cubes, obtaining the second generation,
and so on. The cubes from all generations are called dyadic cubes. Every (k+1)-th
generation cube @ is a 2""-th part of a k-th generation cube Q, called its predecessor-

Lemma 3.6. Suppose A C B C @1 are measurable sets such that
(1) |A]l <d € (0,1); .
(2) for any dyadic cube Q, |AN Q| > 6|Q| implies Q C B for the predecessor
Q of Q.
Then |A| < 4|B|.

Proof. Apply the Calderon-Zygmund decomposition to the characteristic function
of A. We obtain a sequence of dyadic cubes {@Q”} such that
ANQI ANQI
0 < ﬂ < 2"6, @ <0
Q| Q|

for the predecessor Q7 of Q7; moreover, A C U,; @ except for a set of measure
zero (this is because § < 1, and by the Lebesgue differentiation theorem, the set of
points in A for which the lim sup of the averages over cubes containing the point is
< ¢ < 1 has measure 0). By assumption, we have @7 C B for each j. Hence

AclJ@Q cB.
i

Relabelling the Qj so that they are mutually disjoint, we get
Al =) 1ANQ <6 |Q < 4[BI. 0

K2

We are now in a position to prove Lemma 3.3, and thus Theorem 3.1.

Proof of Lemma 3.3. We prove that there exist § Z 1 and M, > 1, depending only
on A\, A and n, such that if u(zg) = P > My for some 9 € By4, there exists
a sequence {x} € Byjo such that u(zy) > 6% P for k € Ny, contradicting the
boundedness of u; we thus conclude supp, ,, U < Mjy. The idea is simple: If x; did
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not exist, then  P—u (appropriately rescaled) would be positive with small infimum
over a certain small cube, thus it would be quantitatively bounded from above on
a large subset of a smaller cube, hence u would be bounded from below on a large
subset of a smaller cube, which contradicts the decay established in Lemma 3.5.

Concretely, assuming u(xg) = P > My for some xy € By 4, we choose r such
that {u > P/2} covers less than half of @Q,(zg); to accomplish this, note that
info, u < ian1/4 u < 1, hence Lemma 3.5 gives

Hu> P/2} NQ1| < C(P/2)~¢ <r"/2 (3.9)
for r™/2 > C(P/2)~¢. Choosing P > M, large, we may assume r < 1/4. For such
r, we have Q,.(zo) C @1 and

1
L jfu> P2} 0 Qulao)| < 1/2
|Qr(x0)|
We now show that for 6 2 1, there exists a point in By s, (z0) at which u > 0P.
Assuming that u < 0P in B, s,.(70), we rescale as usual, putting = x¢ + ry for
Y € By m, € By /iy (20), and
_ 0P — u(x)

By assumption, @ > 0 in By s, and infg, @ < (0) = 1; moreover @ € .7 (\, A, f)

in By s with /] L"(B, =) < €0, @S is seen from

7“2

fly) = —mf(ﬂﬁ)a Y € By s

which gives

: T
||f||L"(B2ﬁ) < m”f”L"(BzﬁT(xo)) <€
provided r < (f — 1)P. By Lemma 3.5,
1 o 0-1)2 9—1/2\
— Hu<P/2YNQu(xo)| = |0 > no,| <c <1/2
gt Pt = [{ax o na <o () <
if # is chosen close to 1. This contradicts (3.9). To summarize what this gives:
There exists 6 = 0(n, A\, A) > 1 such that if u(zg) = P for some zq € By /4, then
u(z1) > 0P for some 1 € By /5, (20), provided
C(n,\,A)P=/" <r < (§ —1)P.
Thus, we choose P such that P > (C/(# — 1))*/(**9) and then take r = CP~/".
We may iterate this to get a sequence {z} such that for any k € N, there

exists x € By my, (k1) such that u(zy) > 0% P, where rp = C(9F—1p)=—</n =
Cco—(k=De/np—c/n_ Tn order to ensure that z; € Byjp for all k € N, we need
> 2y/nri, < 1/4, which is satisfied if we choose M) such that

oo

M'™ > 8y/nC Y g E=e/n
k=1

and My > (C/(0 — 1)) ("+€) (which is the above condition on P) and then take
P > M. The proof is complete. O
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