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Abstract

There are many notions of solutions of nonlinear elliptic partial differential equa-

tions. This paper is concerned with solutions which are obtained as suprema

(or infima) of so-called subfunctions (superfunctions) or viscosity subsolutions

(viscosity supersolutions). The paper also explores the relationship of these (gen-

eralized) solutions of differential inequalities and provides a relevant example for

which existence questions have been studied using these concepts.
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1 Introduction

A seminal paper concerning the existence of harmonic functions satisfying given
Dirichlet boundary conditions appeared in 1923. In it, [33], Perron used the notions
of sub- and superharmonic functions to define sub- and superfunctions for the given
boundary value problem and then obtained the existence of a harmonic function,
which satisfies the boundary data in a certain generalized sense, as the supremum
of all subfunctions. The process (since called the Perron process) is in some sense a
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constructive one and has been abstracted in many different ways. It was Beckenbach
who introduced the concept of generalized convex functions, [5], which then gave rise
to the concepts of sub- and superfunctions of several variables, [6]; these concepts
were subsequently used by Jackson, [22], [23], to study boundary value problems
for certain quasilinear elliptic equations. This approach was refined for the case of
ordinary differential equations in [15], [4] and others, and has been summarized in
detail in [24]. It turned out that such functions, when smooth enough, were solutions
of differential inequalities, cf. [32], [15], [4], [35], which then provided the basis of
the so-called sub- and supersolution method (lower- and uppersolution method) (in
a classical and weak sense) for semilinear and quasilinear elliptic partial differential
equations; this allowed for the creation of a multitude of existence results for many
different types of boundary value problems for second order ordinary and semi- and
quasilinear elliptic partial differential equations. The origin of such results likely lies
in the work by Scorza-Dragoni, [36], (who subsequently extended and refined his
work further), the work of Nagumo, [30], [31], several papers by Akô, including [1],
[2], and many others, e.g. [3], [11], [10], [14], [17], [27], [28], [29], [34]. The area of
viscosity solutions of nonlinear partial differential equations has enjoyed tremendous
activity during the past two and a half decades and has become a standard approach
in the study of such equations. This is largely because of the broad applicability
of the methods to nonlinear elliptic equations, problems of Hamilton - Jacobi -
Bellman type (and hence for problems of stochastic control and differential games)
etc., see [13]. Since viscosity solutions are, in general, obtained as suprema of
collections of viscosity subsolutions, the area is reminiscent of the abstract approach
of Beckenbach [5] and Beckenbach and Jackson [6]. In this paper we shall discuss
such a relationship at least for some specific and special class of problems and hence
complement some of the work of Ishii [18] and [19]. We will show, in Section 3,
that for this class of elliptic problems, the subfunctions of Beckenbach and Jackson
are equivalent to viscosity subsolutions. This relationship is explored further in
the somewhat more delicate case of the k-Hessian equations in Section 5.2. We
also describe in some detail the axiomatic approach of Beckenbach and Jackson
(Section 4), and demonstrate how this approach applies to Dirichlet problems for
the k-Hessian equations in Section 5.3. The plan of this paper is as follows. In
Section 2, we introduce some basic terminology and notation, define subfunctions
and viscosity solutions, and review some of the relevant theory for these topics.
Next we show the equivalence of viscosity subsolutions and subfunctions. We then
turn to the abstract Perron method of Beckenbach and Jackson in Section 4. We
conclude with a section devoted to k-Hessian equations and their connection to the
ideas of the previous sections.

2 Preliminaries

In this section, we introduce the class of partial differential equations we shall
consider, define viscosity solutions and discuss the part of the theory relevant for
the Perron method. We also introduce the subfunctions of Beckenbach and Jackson.
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2.1 A class of differential equations

The class of partial differential equations we shall consider is the following: Let
Ω ⊂ RN be an open connected set and SN be the set of N ×N symmetric matrices.
Let

F : Ω× R× RN × SN → R

be a continuous mapping. Associated with F will be the differential equation

F (x, u,Du, D2u) = 0, (2.1)

where Du is the gradient and D2u is the Hessian matrix of second derivatives of a
function

u : Ω → R.

In the set SN the following is a partial order:

X ≤ Y ⇐⇒ Y −X is positive semidefinite.

It will be assumed throughout that F has the following monotonicity property
(usually called degenerate ellipticity) either for all X and Y in SN or in a specific
subset (see Section 5).

F (x, r, p, X) ≥ F (x, r, p, Y ), whenever X ≤ Y. (2.2)

We remark that in the absence of degenerate ellipticity, classical solutions may fail
to be viscosity solutions, as one can easily see.

2.2 Semicontinuous envelopes

For a function
u : Ω → R

one defines the upper semicontinuous envelope u∗ by

u∗(x) = lim sup
y→x

u(y)

and the lower semicontinuous envelope u∗ by

u∗(x) = lim inf
y→x

u(y).

2.3 Viscosity solutions

A function
u : Ω → R

is called a viscosity subsolution of (2.1) provided that u∗ : Ω → R and for x ∈ Ω
and φ ∈ C2(Ω) such that

u∗(x)− φ(x) = max
Ω

(u∗ − φ),
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it follows that
F (x, u∗(x), Dφ(x), D2φ(x)) ≤ 0.

Similarly, a function
u : Ω → R

is called a viscosity supersolution of (2.1) provided that u∗ : Ω → R and for x ∈ Ω
and φ ∈ C2(Ω) such that

u∗(x)− φ(x) = min
Ω

(u∗ − φ),

it follows that
F (x, u∗(x), Dφ(x), D2φ(x)) ≥ 0.

A function
u : Ω → R

is called a viscosity solution of (2.1) if it is both a viscosity sub- and a viscosity
supersolution. We note that the class of test functions employed in the preceding
definitions can be restricted to quadratic polynomials (see for example [9]). So-
lutions of differential inequalities in the viscosity sense and classical solutions are
related in the following way. If

u : Ω → R

is of class C2 and is a viscosity subsolution, then it must satisfy

F (x, u(x), Du(x), D2u(x)) ≤ 0.

In other words, if u is a C2 viscosity subsolution, then it is a classical subsolution.
Conversely, it follows from the degenerate ellipticity, (2.2), that classical subsolu-
tions are viscosity subsolutions. Furthermore if u is a viscosity subsolution and has
first and second order superdifferentials at a point x, i.e.

0 ≤ u(x)− u(y) + p · (x− y) +
1
2
(x− y)T X(x− y) + o(|x− y|2)

for some p ∈ RN , some X ∈ SN , and all y near x, then

F (x, u(x), p,X) ≤ 0.

For the above assertions, see [18]. When a comparison principle for viscosity sub-
and supersolutions holds, the Perron method can be used to demonstrate the exis-
tence and uniqueness of viscosity solutions to Dirichlet problems. More precisely,
let us consider the following assumption.

Assumption 2.1 (Comparison Principle) Suppose u is a viscosity solution and
v is a viscosity supersolution for (2.1) in a domain D. If u∗ ≤ v∗ on ∂D, then
u∗ ≤ v∗ in D.

With this assumption, the following theorem holds.
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Theorem 2.2 (Proposition II.1, [20]) Let g ∈ C(∂Ω), and suppose that As-
sumption 2.1 holds. If there exist a viscosity subsolution u ∈ C(Ω) and a viscosity
supersolution v ∈ C(Ω) of (2.1) satisfying u = v = g on ∂Ω, then there exists a
unique viscosity solution W ∈ C(Ω) to (2.1) with W = g on ∂Ω. Furthermore, if

S = {w : w is a viscosity subsolution of (2.1), w = g on ∂Ω},

then
W (x) = sup

w∈S
w(x).

Thus the existence and uniqueness of a viscosity solution to the Dirichlet problem
can be reduced to demonstrating Assumption 2.1 and finding a continuous viscos-
ity subsolution and a continuous viscosity supersolution both of which attain the
boundary data. To demonstrate this comparison principle, it is often assumed that
F is nondecreasing in r for each (x, p, X). This assumption should be compared
to the case of linear second-order elliptic equations. Conditions on F which permit
the establishment of Assumption 2.1 are given in [20], [13], [26], and [37], among
others. For a particular example, we quote the following result of Ishii ([18]).

Theorem 2.3 Let Ω be a bounded domain, and let G = G(r, p,X) be non-decreasing
in r for all (p,X), continuous and degenerate elliptic. Define the mapping F by:

F [u] = u + G(u, Du, D2u).

Let u be a viscosity subsolution to F [w] = 0 and v be a viscosity supersolution to
F [w] = 0. Suppose also that u∗ ≤ v∗ on ∂Ω. Then u∗ ≤ v∗ in Ω.

Assumption 2.1 implies that viscosity solutions (and hence also classical solutions)
to the Dirichlet problem are unique. Therefore, this comparison principle cannot
hold for any equation that admits multiple solutions to the Dirichlet problem.

2.4 Subfunctions, superfunctions and generalized solutions

An upper semicontinuous function

u : Ω → R

is called a subfunction relative to (2.1) provided that if B is any ball with B ⊂ Ω,
and φ ∈ C2(B) ∩ C(B) is a solution of (2.1) with

u ≤ φ on ∂B,

then
u ≤ φ in B.

A lower semicontinuous function

u : Ω → R
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is called a superfunction relative to (2.1) provided that if B is any ball with B ⊂ Ω,
and φ ∈ C2(B) ∩ C(B) is a solution of (2.1) with

u ≥ φ on ∂B,

then
u ≥ φ in B.

We now define a generalized solution to (2.1) as a function that is both a subfunction
and a superfunction in Ω. When a comparison principle of the type in Postulate 4.2
below holds for classical solutions of (2.1), classical solutions are generalized solu-
tions. In Section 3 we compare these subfunctions and viscosity subsolutions, and
demonstrate their equivalence under some assumptions on the equation (2.1). We
remark that the theory can be built on the notions of local subfunctions and su-
perfunctions, for which the necessary comparison properties are required to hold
only on suitably small domains. The same is also true in the viscosity case, see for
example the definition in [9].

3 Subfunctions and viscosity subsolutions

We now show that under some natural assumptions, the notions of subfunctions
and upper semicontinuous viscosity subsolutions are equivalent. The same argu-
ment shows that lower semicontinuous viscosity supersolutions are superfunctions,
and hence that continuous viscosity solutions and generalized solutions coincide for
the class of equations considered here. We assume first that Assumption 2.1 holds.
This trivially guarantees that upper semicontinuous viscosity subsolutions are sub-
functions by the following argument. If u is an upper semicontinuous viscosity
subsolution in Ω and v is a classical solution in B such that u ≤ v on ∂B, for some
ball B compactly contained in Ω, then by Assumption 2.1, u ≤ v in B. In other
words, u is a subfunction. Under the following additional assumption, subfunctions
are viscosity subsolutions.

Assumption 3.1 (Local Solvability) There exists δ > 0 such that the problem
{

F (x, u, Du, D2u) = 0 in B
u = φ on ∂B

has a solution u ∈ C2(B) ∩ C(B) for any ball B of radius smaller than δ and any
φ ∈ C(∂B).

Proposition 3.2 If Assumptions 2.1 and 3.1 hold, a subfunction is a viscosity sub-
solution. Hence, under these assumptions, subfunctions and upper semicontinuous
viscosity subsolutions are equivalent.

Proof. Suppose that u is a subfunction but is not a viscosity subsolution. Then
there exist x ∈ Ω and φ ∈ C2(Ω) such that

u(x)− φ(x) = max
Ω

(u− φ),
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and
F (x, u(x), Dφ(x), D2φ(x)) > 0. (3.1)

We note that (3.1) remains valid for φ + c for any constant c, and thus we may
assume that u(x) = φ(x) and (3.1) becomes

F (x, φ(x), Dφ(x), D2φ(x)) > 0. (3.2)

By the continuity of F and φ and its derivatives, (3.2) holds in the ball B = Br(x),
where r is smaller than the number δ of Assumption 3.1. Let v satisfy

{
F (x, v,Dv, D2v) = 0 in B

v = φ on ∂B.
(3.3)

Because v is a classical solution, it is a viscosity subsolution, so we conclude from
Assumption 2.1 and (3.2) that

v(y) ≤ φ(y), y ∈ B.

Since u is a subfunction and v = φ on ∂B, it follows that

u(y) ≤ v(y) ≤ φ(y), y ∈ B.

Therefore, since u(x) = φ(x), v − φ has a local maximum at x, and we must have
that

u(x) = v(x) = φ(x), Dv(x) = Dφ(x), and D2v(x) ≤ D2φ(x).

Hence by (3.3) and degenerate ellipticity, (2.2):

0 = F (x, v(x), Dv(x), D2v(x)) = F (x, φ(x), Dφ(x), D2v(x))

≥ F (x, φ(x), Dφ(x), D2φ(x)),

contradicting (3.2).

Remark 3.3 By restricting the class of test functions for viscosity solutions to
quadratic polynomials, we can prove Proposition 3.2 provided Assumption 3.1 holds
only for φ ∈ C∞(∂B).

4 Axiomatic approach to boundary value prob-
lems

In this section, we summarize the abstract Perron method used by Beckenbach
and Jackson as found in [23] and [6]. This method concerns families of functions
that satisfy a list of postulates, which describe the essential elements of the Perron
argument. We remark that Jackson [23] applied this approach to the Dirichlet
problem for the minimal surface equation for nonconvex planar domains that satisfy
an exterior sphere condition, provided the boundary data satisfy some technical
conditions. We also show that this method produces a generalized solution to
the Dirichlet problem when a modification (relevant for the k-Hessian equations
considered in Section 5) to the axiomatic structure is made. Let F be a family of
functions satisfying the following postulates.
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Postulate 4.1 For any ball B with B ⊂ Ω and any g ∈ C(∂B), there is a unique
u ∈ F ∩ C(B) such that u = g on ∂B.

Postulate 4.2 For any ball B with B ⊂ Ω, let g1, g2 ∈ C(∂B) be such that g1−g2 ≤
M on ∂B, with M ≥ 0. Let u1 and u2 be those elements of F corresponding to g1,
g2 and B which exist by Postulate 4.1. Then u1 − u2 ≤ M in B. Furthermore, if
there exists x ∈ ∂B such that g1(x)− g2(x) < M , then u1 − u2 < M in B.

Postulate 4.3 For any ball B with B ⊂ Ω, if {gn} ⊂ C(∂B) is a uniformly bounded
sequence, the corresponding sequence of functions {un} ⊂ F is an equicontinuous
family in B.

Before stating the fourth postulate, we need to introduce some terminology. In
this abstract setting, an upper semicontinuous function u : D → R is called a
subfunction in D if for any ball B ⊂ D ⊂ Ω and w ∈ C(∂B) for which u ≤ w
on ∂B, we also have that u is less than or equal to that element of F that is
continuous on B with boundary values w. Superfunctions are defined similarly.
Compare this definition with that given in Section 2.4. Note that by (the weak part
of) Postulate 4.2, elements of F are both sub- and superfunctions on their domains
of definition. Conversely, if a function is a subfunction and a superfunction, then
it is in F . Suppose D is a bounded domain with D ⊂ Ω and that g is bounded on
∂D. Then the function s ∈ C(D) is said to be a subsolution (with respect to g, F
and D) if s ≤ g on ∂D and s is a subfunction in D. The function S ∈ C(D) is
called a supersolution if S ≥ g on ∂D and S is a superfunction in D.

Postulate 4.4 If D is any bounded domain with D ⊂ Ω, and g is bounded on ∂D,
then there exists a subsolution and a supersolution with respect to F , g and D.

We now link this axiomatic framework to the more concrete setting of partial dif-
ferential equations. The family F represents the collection of (local) solutions of a
certain partial differential equation in the larger domain Ω. In other words, f ∈ F
if it satisfies the partial differential equation on some subdomain of Ω. Then Postu-
late 4.1 concerns the unique solvability of the Dirichlet problem on balls, possibly in
a weak or generalized sense. Postulate 4.2 is a comparison principle. Postulate 4.3
is a compactness result, and Postulate 4.4 deals with the existence of subsolutions
and supersolutions. The following theorem should be compared with Theorem 2.2.

Theorem 4.5 ([6], [23]) Let Ω be bounded and g ∈ C(∂Ω). Then if F satisfies
Postulates 4.1, 4.2, 4.3 and 4.4, and there exist a subsolution s and a supersolution
S, with s = S = g on ∂Ω, then there exists u ∈ C(Ω̄) that solves the Dirichlet
problem in the sense that u = g on ∂Ω and on any ball B compactly contained in
Ω, u agrees with that element of F that is equal to u on ∂B. Furthermore,

u(x) = sup{v(x) : v a subsolution} = inf{w(x) : w a supersolution}.

We remark that if g is only assumed to be bounded or if no subsolutions or superso-
lutions attain the boundary data, there is still the notion of a generalized solution
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to the Dirichlet problem, obtained in precisely the same way, although then the
supremum of the subsolutions need not coincide with the infimum of the superso-
lutions. See Theorem 4.8 below. The proof of these theorems relies on “lifting” a
subsolution over a ball B compactly contained in Ω to produce a new subsolution.
To show that this lift is also a subsolution, Beckenbach and Jackson in [6] use the
strong comparison principle of Postulate 4.2. However, if the strong comparison
principle does not hold or is not easily established, the same result can be obtained
if the following weak comparison principle holds in general domains and not just in
balls.

Postulate 4.6 Suppose u ∈ C(D̄) is a subfunction and v ∈ C(D̄) is a superfunction
in D, and that u ≤ v on ∂D. Then u ≤ v in D.

Postulate 4.6 is a consequence of Postulates 4.1 and 4.2 as the following simple ar-
gument shows. Suppose Postulate 4.6 does not hold. Then there exist a subfunction
u ∈ C(D̄), a superfunction v ∈ C(D̄), and a point x ∈ D such that u ≤ v on ∂D
and u(x) > v(x). Let M = maxD u− v > 0. Let E be the set of points in D where
u−v = M . Then E is nonempty, closed and does not intersect ∂D. Let x0 ∈ E be a
closest point to ∂D, and let B be any ball compactly contained in D centered at x0.
Then (u− v)|∂B ≤ M and this inequality is strict at some point on ∂B (otherwise
there is a point in E closer to ∂D than x0). Invoking Postulate 4.1, let U ∈ C(B̄)
be the unique element of F with boundary values u and let V be the member of F
in C(B̄) with boundary values v. Then we have that u ≤ U and v ≥ V in B. By
the strong comparison principle of Postulate 4.2, U − V < M in B. This implies
that u− v < M in B. In particular this is true at x0, but this contradicts x0 ∈ E.
Postulate 4.6 is the subfunction version of Assumption 2.1 for viscosity solutions.

Theorem 4.7 Let u be a continuous subfunction in Ω, and let B be a ball compactly
contained in Ω. Suppose that Postulates 4.1 and 4.6 hold; suppose that the weak
part of Postulate 4.2 also holds. Define the lift of u over B by

ũ(x) =
{

u(x) x ∈ Ω \B
U(x) x ∈ B

where U ∈ F ∩ C(B̄) satisfies U |∂B = u. Then ũ is a subfunction in Ω.

Proof. Since u and U agree on ∂B, ũ is continuous in Ω. Also, since u is a sub-
function that agrees with U on ∂B, we have that U ≥ u in B and hence ũ ≥ u in
Ω. Since u is a subfunction in Ω \ B and U is a subfunction in B, we only need
to verify that ũ satisfies the defining condition for a subfunction on balls B̃ that
intersect both B and Ω\B. Suppose w ∈ C(B̃) is such that w ≥ ũ on ∂B̃. We let w
also denote the element of F that is continuous on the closure of B̃ with boundary
values w. On ∂B̃, w ≥ u, and u is a subfunction, so w ≥ u in B̃, and hence w ≥ ũ
in the portion of B̃ that lies outside of B. We then have that w ≥ U on ∂(B ∩ B̃),
and therefore by Postulate 4.6, w ≥ U in (B ∩ B̃), and ũ is a subfunction.
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Theorem 4.8 Suppose Ω is bounded and g is a bounded function on ∂Ω. Suppose
F satisfies Postulates 4.1, 4.3, 4.4, 4.6, and the weak part of Postulate 4.2. Then

u(x) = sup{v(x) : v subsolution}

is an (interior) generalized solution to the Dirichlet problem in Ω with boundary
values g, i.e., u is continuous in Ω, u ≤ g on ∂Ω, and in any ball B compactly
contained in Ω, u agrees with that element of F that is equal to u on ∂B. The same
is true of the infimum of all supersolutions, except that this function dominates g
on ∂Ω.

Proof. We prove the statement for the supremum of the subsolutions. Observe first
that u is well-defined and bounded. By Postulate 4.4, there exists a subsolution
V and a supersolution W . Therefore, by hypothesis V ≤ u ≤ W in Ω. The next
step is to show that u is continuous. We use an argument similar to ones in [1] and
[34]. Since u is the supremum of continuous functions, it is lower semicontinuous.
Denote the set of subsolutions by Sg. Let {yn}∞n=1 ⊂ Ω be dense in Ω. For each n,
there exists a sequence {vn,m} ⊂ Sg such that

lim
m→∞

vn,m(yn) = u(yn).

From the definition of subsolution, the maximum of any finite set of subsolutions
is also a subsolution. Therefore, we may assume that for each n, {vn,m} is a
monotonically nondecreasing sequence. ¿From the sequence {vn,m}, we construct a
monotonically nondecreasing sequence {um} in Sg that will converge to u at each
point yn. Let u1 = v1,1. Let

u2(x) = max{u1(x), v1,2(x), v2,2(x)}.

Note that u2 ∈ Sg, and that u2 ≥ u1. Having defined ui, define ui+1 by

ui+1(x) = max{ui(x), v1,i+1(x), v2,i+1(x), . . . , vi+1,i+1(x)}.

Then ui+1 ∈ Sg, and ui+1 ≥ ui ≥ · · · ≥ u1. We also have that each ui is continuous
in Ω. Since for any n and any j ≥ n,

u(yn) ≥ uj(yn) ≥ vn,j(yn),

we have that limj→∞ uj(yn) = u(yn). Now let B be any ball compactly contained
in Ω. For each i, let ũi be the lift of ui over B. By Theorem 4.7, ũi ∈ Sg; we also
have that ui ≤ ũi, and the sequence {ũi} is monotonically nondecreasing. Since
ui ≤ ũi ≤ u and for each n, ui(yn) → u(yn), ũi(yn) → u(yn) for all n. The functions
ui are uniformly bounded on ∂B. Therefore, by Postulate 4.3, the family {ũi} is
equicontinuous in B. Because {ũi} ⊂ Sg, the ũi are uniformly bounded. Therefore,
a subsequence of {ũi} converges uniformly on compact subsets of B to a function
T ∈ C(B), but since the sequence {ũi} is monotone, we obtain that ũi → T . In



Generalized solutions of nonlinear elliptic equations 299

particular, if yn ∈ B, ũi(yn) → T (yn) and therefore, T (yn) = u(yn). By density,
for any x ∈ B, there is a sequence {zj} ⊂ {yn} ∩B such that zj → x. Then

u(x) = lim inf
j→∞

u(zj) = lim
j→∞

T (zj) = T (x).

Therefore, u agrees with the continuous function T on B, and hence it is continuous.
We now show that u agrees with the unique element U ∈ F that is continuous on B̄
and equal to u on ∂B, where B is any ball compactly contained in Ω. Postulate 4.1
guarantees the existence of U . The argument is similar to that given in [6]. Let
v ∈ Sg. Then u ≥ v in Ω. Since v is a subfunction, v ≤ ṽ in B, where ṽ is the lift
of v over B. By the weak part of Postulate 4.2, ṽ ≤ U in B. Therefore we have
that v ≤ U in B, and taking the supremum over all v ∈ Sg, we get that u ≤ U in
B. To prove the opposite inequality, let ε > 0. Then for any point x ∈ B, there
exists a subsolution φ such that φ(x) > u(x) − ε/2. By continuity, there exists an
r > 0 such that φ(x) > u(x) − ε on B0, where B0 = Br(x) ⊂ B. By the weak
part of Postulate 4.2, we have that φ̃ > ũε in B0, where φ̃ is the lift of φ over B0

and ũε is the lift of u − ε over B0. The strict inequality follows from the weak
part of Postulate 4.2 because the strict inequality holds at all points on ∂B0. By
using Postulate 4.2 again, we see that ũε ≥ ũ − ε in B0. By the definition of u,
u ≥ φ̃. Therefore, for all x ∈ B0, u(x) ≥ φ̃(x) ≥ ũ(x)− ε but since ε > 0 and x are
arbitrary, we get that u ≥ ũ in B.

5 Example: k-Hessian equations

We now apply the ideas of the preceding sections to a discrete family of operators
that includes both the Laplacian and the Monge-Ampère operator. We begin by
defining these operators and discussing their ellipticity and other basic properties.
In order to be consistent with the literature concerning these operators, in this
section we reverse the inequality in the definition of degenerate ellipticity found in
Section 2.1. The k-th elementary symmetric polynomial in N variables is

Pk(x1, . . . , xN ) =
∑

i1<···<ik≤N

xi1 · · ·xik
.

The k-Hessian operators Sk, acting on C2(Ω), are defined as follows: For 1 ≤ k ≤ N ,
let

Sk(D2u)(x) = Pk(λ1(x), λ2(x), . . . , λN (x)),

where λ1(x), . . . , λN (x) are the eigenvalues of D2u(x). Equivalently,
Sk(D2u) is the sum of the k×k principal minors of the Hessian matrix. When k = 1,
Sk(D2u) = trace (D2u) = ∆u, and, at the other extreme, SN (D2u) = det(D2u) is
the Monge-Ampère operator. When k ≥ 2, these operators are fully nonlinear.
k-Hessians have been studied extensively, e.g. in [8], [21], [39], [38], [40], [41], [25],
[44], [12], [43], [42], [16]. In general, these operators are not elliptic. However,
they are elliptic when restricted to a certain subset of C2(Ω), which we now intro-
duce. A function u ∈ C2(Ω) is called (uniformly) k-convex if Sj(D2u) ≥ (>) 0 for
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j = 1, . . . , k. Note that 1-convex functions are subharmonic, and N -convex func-
tions are convex in the usual sense. Equivalently, a C2 function is k-convex if all of
the eigenvalues of its Hessian matrix lie in the convex cone ΓN

k in RN defined by

ΓN
k = {λ ∈ RN : Pj(λ) ≥ 0, j = 1, . . . , k}.

The set of continuous k-convex functions on Ω will be denoted Φk(Ω), and Φk
2(Ω)

will stand for Φk(Ω) ∩ C2(Ω). As an immediate consequence of the definition,
we see that Φk

2(Ω) ⊂ Φl
2(Ω) for l ≤ k. The natural domains for boundary value

problems concerning these operators are the k−convex domains. The domain Ω ⊂
RN is (uniformly) k−convex if the principal curvatures at all points on ∂Ω are in
Γ̄N−1

k (ΓN−1
k ). In [8] it is shown that if u ∈ Φk

2(Ω), then Sk is degenerate elliptic
with respect to u. Thus, in order to work in the elliptic realm, we will restrict our
attention to Φk(Ω). If u ∈ Φk

2(Ω), then Sk(D2u) ≥ 0, so we will consider boundary
value problems for the differential equation:

Sk(D2u) = h(x, u,Du), (5.1)

where h = h(x, r, p) is a non-negative function defined on Ω× R× RN .

5.1 Weak solutions

We now introduce two notions of weak solutions for k-Hessian equations.

5.1.1 Viscosity solutions

Since these operators are not elliptic on all of C2(Ω), we need to restrict the class
of test functions used in defining viscosity solutions. A function

u : Ω → R

is called a viscosity subsolution of (5.1) if u∗ : Ω → R, and if x ∈ Ω and φ ∈ Φk
2(Ω)

are such that
u∗(x)− φ(x) = max

Ω
(u∗ − φ),

then
Sk(D2φ(x)) ≥ h(x, u∗(x), Dφ(x)).

Viscosity supersolutions (and viscosity solutions) are then defined for these opera-
tors in the obvious way. If this modification in the definition is not made, there are
classical solutions which are not viscosity solutions. See [12] for an example.

5.1.2 Weak solutions defined by approximation

Trudinger, considering (5.1) where h ∈ Lp(Ω) is independent of u and Du, defined
another concept of weak solution for k-Hessian equations in [39] in terms of contin-
uous k-convex functions. A similar definition was also employed in [40] for equation
(5.1) when the right-hand side is replaced by a finite Borel measure. For this further
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generalization of (5.1), the notion of k-convexity was extended to upper semicon-
tinuous functions. A function u ∈ C(Ω) is k-convex (u ∈ Φk(Ω)) if there exists a
sequence {un} ⊂ C2(Ω), such that on any subdomain Ω′ with Ω′ ⊂ Ω, un converges
to u uniformly, and un ∈ Φk

2(Ω′) for all n sufficiently large. Equivalently, u ∈ Φk(Ω)
if u is a continuous viscosity solution of Sk(D2u) ≥ 0. A function u ∈ Φk(Ω) is a
weak solution to (5.1), where h = h(x) ∈ Lp(Ω) if there exists an approximating
sequence {un}, as described above, such that

Sk(D2un) → h in L1
loc(Ω).

When h ∈ C(Ω), this notion of weak solution coincides with that of viscosity solution
([41]). We will show, in Section 5.3, that the axiomatic approach described in
Section 4 applies to these weak solutions when h ∈ L∞(Ω).

5.2 Subfunctions and viscosity subsolutions

In this section, we observe that continuous viscosity subsolutions are continuous
subfunctions for a certain class of k-Hessian equations. In order for Proposition 3.2
to apply to equation (5.1), we need to know that Assumptions 2.1 and 3.1 hold. The
following result of Urbas supplies the necessary comparison principle for continuous
viscosity solutions.

Theorem 5.1 (Proposition 2.3, [43]) Let Ω be bounded, and suppose h is posi-
tive, uniformly continuous on Ω̄×R×RN , Lipschitz continuous in r and p, nonde-
creasing in r, and |hp| is bounded above. If u, v ∈ C(Ω) are respectively a viscosity
subsolution and a viscosity supersolution of equation (5.1) and u ≤ v on ∂Ω, then
u ≤ v in Ω̄.

We turn now to the local solvability of (5.1). To establish existence results in small
balls for these problems, we will need to impose more conditions on the function h
and require more regularity of the boundary data. This necessity is made clear by
the following result of Urbas [43].

Theorem 5.2 For any integers k and N satisfying 3 ≤ k ≤ N and any positive
function h ∈ C∞(B1 × R × RN ), there exists ε ∈ (0, 1) and u ∈ C0,1(Bε) which is
a viscosity solution of (Sk(D2u))

1
k = h(x, u, Du) in Bε such that u 6∈ C1,α(Bε) for

any α.

In the situation where viscosity solutions of the Dirichlet problem are unique (e.g.
when the comparison principle holds), Theorem 5.2 implies that there may be no
classical solutions. In [8] it is proved that the problem

{
Sk(D2u) = h(x) in B

u = g on ∂B,

where h ∈ C∞(B), h > 0, and g ∈ C∞(∂B), has a unique k-convex solution
u ∈ C∞(B). The strong smoothness requirements for the boundary data do not
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pose a problem for us here, as we can restrict the class of test functions used for
viscosity solutions to the class of k-convex quadratic polynomials (see Remark 3.3).
Also, the assumption that h ∈ C∞(B) can be relaxed to h ∈ C1,1(B), in which
case the solution will lie in C3,α(B), see [38] for a statement of this result (and
also the corresponding result for ratios of k-Hessian operators). Therefore, when
h = h(x) ∈ C1,1(Ω̄) is positive, continuous subfunctions coincide with continuous
viscosity subsolutions of (5.1).

5.3 Application of axiomatic approach

By citing the work of Trudinger and Wang, we show that the modified axiomatic
approach of Beckenbach and Jackson, as in Theorem 4.8, applies to weak solutions
(as described in Section 5.1.2) of the equation

Sk(D2u) = h(x) ≥ 0, where h ∈ L∞(Ω). (5.2)

In this way, we can obtain a generalized solution to a Dirichlet problem with
bounded boundary data in any bounded domain.

Theorem 5.3 Let Ω ⊂ RN be a bounded domain. Let g : ∂Ω → R be a bounded
function. There exists a generalized solution to the problem

{
Sk(D2u) = h in Ω

u = g on ∂Ω (5.3)

Proof. Let F be the family of weak (local) solutions (as in Section 5.1.2) of (5.2).
In other words, u ∈ F if u is a weak solution of (5.2) in some domain D ⊂ Ω. We
prove the theorem by showing that F satisfies the hypotheses of Theorem 4.8.

Postulate 4.1: To demonstrate the local existence of solutions, we apply the
following theorem of Trudinger when D is a ball B.

Theorem 5.4 (Theorem 1.1, [39]) Let k ≥ 2, D be a uniformly (k− 1)−convex
domain, h(x) ∈ Lp(D), where p > N/2k, and g ∈ C(D̄). Then

{
Sk(D2u) = h in D

u = g on ∂D

has a unique weak solution u ∈ Φk(D) ∩ C(D̄) ∩ Cα(D), where α < 1 satisfies
α ≤ 2−N/kp.

Postulates 4.6 and the weak part of 4.2: We establish these weak comparison
results by using the following result of Trudinger and Wang. Note that because
equation (5.2) is simpler than (5.1), the hypotheses are simpler than those in The-
orem 5.1. Theorem 5.5 in fact applies to the case where h is replaced by a Borel
measure in (5.2).
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Theorem 5.5 (Theorem 3.1, [40]) Let u, v ∈ C(D) ∩ Φk(D) satisfy
{

Sk(D2u) ≥ Sk(D2v) in D
u ≤ v on ∂D.

Then u ≤ v in D.

Now let B be a ball with B̄ ⊂ Ω, and let g1, g2 ∈ C(∂B) satisfy g1 − g2 ≤ M . Let
ui, i = 1, 2, be the unique solutions (which exist by Theorem 5.4) of

{
Sk(D2u) = h in B

u = gi on ∂B.

By adding M to u2 and g2, we may assume M = 0, and by Theorem 5.5, it follows
that u1 ≤ u2.

Postulate 4.3: Given a ball B and a uniformly bounded sequence {gn} ⊂ C(∂B),
we need to demonstrate that the solutions un of

{
Sk(D2u) = h in B

u = gn on ∂B

form an equicontinuous family. We use an oscillation estimate and standard argu-
ments. Let ω(u,B) denote the oscillation of u in B:

ω(u,B) = sup
B

u− inf
B

u.

We first observe that a uniform bound on |gn|, say |gn| ≤ M, n = 1, 2, · · · , implies
an upper bound on ω(un, B). Since gn − gm ≤ 2M for any n and m, by the
weak part of Postulate 4.2 we have un − um ≤ 2M for all n, m. In particular,
un(x)− u1(x) ≤ 2M for all x ∈ B and all n, so maxB un ≤ (maxB u1) + 2M for all
n. Similarly, minB un ≥ (minB u1)− 2M . Therefore, for all n,

ω(un, B) ≤ 4M + ω(u1, B). (5.4)

We now use the following estimate:

Theorem 5.6 (Theorem 4.1, [39]) Let u ∈ Φk(D) be a weak solution of (5.1)
with h = h(x) ∈ Lp

loc(D) for some p > N/2k. Then for any α < 1 such that
α ≤ 2−N/kp, any B = BR(y) ⊂ D and any σ ∈ [0, 1),

ω(u,BσR(y)) ≤ Cσα
{

ω(u,B) + R2−N/kp||h||1/k
p

}
, (5.5)

where C is a constant depending on k, N , p and α.

Thus, for each n, we may estimate ω(un, BσR(y)) by using (5.5). By (5.4), ω(un, B)
can be uniformly dominated, and since each un is a solution of the same equation
(5.2) (and L∞(Ω) ⊂ Lp

loc(Ω)), we get a uniform bound on ω(un, BσR(y)). This
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provides a uniform bound on the α-Hölder coefficient of un at y, which then implies
the equicontinuity of the family {un} at y.

Postulate 4.4: It is easy to find subsolutions and supersolutions because h in (5.2)
is bounded. Let w(x) = const > sup∂Ω g. Then Sk(D2w) = 0, so if u is any solution
of (5.2) in a ball B with u ≤ w on ∂B, then u ≤ w in B by Theorem 5.5, consequently
w is a superfunction and hence a supersolution. Let v(x) = A|x − x0|2 + C, for
constants A and C to be determined. Sk(D2v) is a constant depending on k, N and
A. Choose A so that Sk(D2v) ≥ ||h||L∞ . Then if u is any solution of (5.2) in a ball
B with u ≥ v on ∂B, then u ≥ v in B by Theorem 5.5, so w is a subfunction. Now
choose C so that v ≤ g on ∂Ω. These choices make v a subsolution. We remark that
the boundedness of h was not needed to produce a supersolution. Therefore, all
hypotheses of Theorem 4.8 are satisfied and problem (5.3) has a generalized solution.
By Theorem 5.3, we get a generalized solution to the problem (5.3) in any bounded
domain Ω, where h ∈ L∞(Ω) is nonnegative. When g ∈ C(∂Ω), a natural question
is whether the boundary data are continuously assumed by a generalized solution.
The answer is yes if we can find a subsolution and a supersolution which both
equal g on ∂Ω. For domains that are not k-convex, this is not trivial, although if
the domain is regular for the Laplacian, a solution of Laplace’s equation assuming
the given boundary data is a supersolution. For problems with dependence on
u and its derivatives, the situation is more complicated. The solvability of the
Dirichlet problem in the Monge-Ampère case is reduced to the existence of a convex
subsolution in [7]. When such a subsolution can be found, the problem has a smooth
solution. Similar results hold for the other k-Hessian operators with some conditions
on h; see [16]. We conclude this section by mentioning some existence results that
do not require finding a subsolution. The problem with zero boundary data and
some technical assumptions on h in the p variables was considered by Ivochkina in
[21]. Urbas, in [43], proves an existence result for small balls that does not require
the structural assumptions on h found in [21] (and needs only positivity and mild
smoothness), but requires smoothness and smallness of the boundary data.
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chung zweiter Ordnung, Proc. Phys. Math. Soc. Japan 24 (1942), 845–851.

[32] M. Peixoto, Generalized convex functions and second order differential inequalities,
Bull. Amer. Math. Soc. 55 (1949), 563–572.

[33] O. Perron, Eine neue Behandlung der ersten Randwertaufgabe für ∆u = 0, Math. Z.
18 (1923), 42–54.

[34] K. Schmitt, Boundary value problems for quasilinear second order elliptic equations,
Nonlinear Analysis, TMA, 2 (1978), 263–309.

[35] K. Schrader, A note on second order differential inequalities, Proc. Amer. Math. Soc.
19 (1968), 1007–1012.

[36] G. Scorza-Dragoni, Il problema dei valori ai limiti studiato in grande per gli integrali
di una equazione differenziale del secundo ordine, Giornale di Mat. (Battaglini) 69
(1931), 77–112.

[37] N. Trudinger, Comparison principles and pointwise estimates for viscosity solutions
of nonlinear elliptic equations, Rev. Mat. Iberoamericana 4 (1988), 453–468.

[38] , On the Dirichlet problem for Hessian equations, Acta Math. 175 (1995), 151–
164.

[39] , Weak solutions of Hessian equations, Comm. Partial Differential Equations 22
(1997), 1251–1261.

[40] N. Trudinger and X. Wang, Hessian measures. I, Topol. Methods Nonlinear Anal. 10
(1997), 225–239.

[41] , Hessian measures. II, Ann. of Math. (2) 150 (1999), 579–604.

[42] K. Tso, On symmetrization and Hessian equations, J. Analyse Math. 52 (1989), 94–
106.

[43] J. Urbas, On the existence of nonclassical solutions for two classes of fully nonlinear
elliptic equations, Indiana Univ. Math. J. 39 (1990), 355–382.

[44] X. Wang, A class of fully nonlinear elliptic equations and related functionals, Indiana
Univ. Math. J. 43 (1994), 25–54.


