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1 Introduction.

1.1 Partial Differential Equations.

Preliminary facts:

• The theory of viscosity solutions can be applied to study linear and
nonlinear Partial Differential Equations of any order.

• A Partial Differential Equation (PDE) of order k ≥ 1 is an equation
involving an unknown function u and its derivatives up to the order k.
In particular we consider the case k = 1 and k = 2, i.e.

F (x, u, Du,D2u) = 0, x ∈ Ω ⊂ Rn,

where F : Ω× R× Rn ×Mn,n → R.
Notation: F = F (x, z, p,M).

• Note that the unknown function is a scalar function; the theory of vis-
cosity solutions is not in general applied to systems of PDEs, this means
that we will not study equations like the Navier-Stokes equations.

• We in general assume that the function u and the PDE (i.e. the function
F ) are both continuous.

• A PDE of order k is called linear if it has the form

Lu = f(x)

where L is a differential operator of order k and L is linear,
i.e. L(λu1 + µu2) = λL(u1) + µL(u2) for any λ, µ ∈ R.
Otherwise the PDE is called nonlinear.

• E.g. Du · η = f(x) is a first-order linear PDE for any η ∈ Rn,
while |Du| = f(x) is nonlinear.

• E.g. ∆u =
∑n

i=1
∂2

∂xi∂xi
u = 0 is a second-order linear PDE,

while ∆u + u2 = 0 is nonlinear.

• Another very important linear PDE is the heat equation

ut −∆u = 0;

For other examples of linear PDEs see the book of Evans, page 3-4.
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• A linear PDE is called homogeneous if f ≡ 0. In this case, given two
solutions u1 and u2, then λu1 +µu2 is still a solution for any λ, µ ∈ Rn.

The theory of viscosity solutions is very useful for studying nonlinear PDEs.
Some examples of first- and second-order nonlinear PDEs are the following:

1. The Eikonal Equation:
|Du| = f(x),

which is related to geometric optics (rays).

2. (Stationary) Hamilton-Jacobi equation:

H(x, u, Du) = 0, Ω ⊂ Rn,

where H : Ω × R × Rn → R is called Hamiltonian and is continuous
and in general convex in p (i.e. in the gradient-variable). The eikonal
equation is in particular a (stationary) Hamilton-Jacobi equation.

3. (Evolution) Hamilton-Jacobi equation:

ut + H(x, u, Du) = 0, Rn × (0, +∞);

4. The Hamilton-Jacobi-Bellman equation:
It is a particular Hamilton-Jacobi equation which is very important in
control theory and economics.
In this case the Hamiltonian has the form:

H(x, p) := sup
a∈A

{−f(x, a) · p− l(x, a)},

where A is a subset of Rm (or more in general a topological space) and
l : Rn × A → R and f : Rn × A → Rn are both continuous functions.
For any fixed λ > 0, the (viscosity) solution of the equation

λu + H(x, Du) = 0, x ∈ Rn (1)

has a particular form. If fact, the solution is known to be “the value
function associated to a control problem”.
A control function is a measurable function α : [0, +∞) → A and a
control problem is a nonlinear system of ordinary differential equation:

{
ẏ(t) = f(y(t), α(t)), t > 0,

y(0) = x.

3



We indicate by yα
x the trajectories solving the previous control system

with starting point x.
Given a control function and a corresponding trajectory yα

x (t), we define
a “pay-off” as

J(x, α) =
+∞

0

l(yα
x (t), α(t))e−λ tdt;

the constant λ ≥ 0 is called interest rate.
Let A := {α(t) control} be the set of all possible controls with value in
A. The value function of this control problem is given by

v(x) = inf
α∈A

J(x, α).

Then the function v(x) solves, in the viscosity sense, the equation (1).

5. Differential Games: It is a more complicated control problem where
two different controls have to be considered (roughly speaking corre-
sponding to the strategies of two different players playing one against
the other). Therefore f = f(x, a, b) and l = l(x, a, b) where a ∈ A and
b ∈ B and A and B are two compact metric spaces (which can be also
different). The two set of controls are A and B respectively.
Moreover note that in general the two families of controls are not inde-
pendent (i.e. α = α[β]), which means that the strategies of each player
depend also on the choices of the other player.
Then A[B] ⊂ A is a set of controls for the player I under suitable re-
strictions depending on β ∈ B.
Then the (lower) value function

v(x) = inf
α∈A[B]

sup
β∈B

J(x, α, β)

solves
λu + H(x, Du) = 0, x ∈ Rn,

where
H(x, p) := min

b∈B
max
a∈A

{−f(x, a, b) · p− l(x, a, b)}.

6. The Monge-Ampère equation:

det(D2u) = f(x),

which has many applications in differential geometry and calculus of
variations (Monge-Kantorovitch mass transfer problem).
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7. Evolution by mean curvature flow:

ut −∆u +

〈
D2u

Du

|Du| ,
Du

|Du|

〉
= 0.

The equation is degenerate elliptic since F (x, p,M) is not well-defined
whenever |p| = 0.
The equation describes the evolution of a hypersurfaces in the direction
of the internal normal and proportional to the mean curvature and it
is associated to the gradient-flow of the area-functional, which means
that the hypersurface evolves trying to minimize its area.

Other examples of nonlinear PDEs can be found in the book of Evans (page 5).

1.2 Classical and weak solutions.

The two main problems that we are going to consider are:

I The Dirichlet problem:
{

F (x, u, Du, D2u) = 0, x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω,
(2)

with Ω open and bounded in Rn and g continuous boundary condition.

II The Cauchy problem:
{

ut + F (x, u, Du,D2u) = 0, (t, x) ∈ (0, +∞)× Rn,

u(0, x) = g(x), x ∈ Rn,
(3)

where g is a continuous initial condition.

Definition 1.1. Given a PDE of order k ≥ 1, a function u : Ω → Rn is
called classic solution if u ∈ Ck(Ω) and u solves the PDE at any x ∈ Ω.

Remark 1.1. Under suitable assumptions on the PDE (and given suitable
initial or boundary conditions), classic solutions are in general unique but
they might not exist.

Example 1.1 (Eikonal equation). Let us consider the eikonal equation with
f ≡ 1 in Ω = [−1, 1], i.e.

|u′(x)| = 1, for x ∈ (−1, 1). (4)
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Let us assume that there exists a classical solution with vanishing Dirichlet
condition, which means u ∈ C1(−1, 1) solving (4) with u(−1) = u(1) = 0.
By the Mean Value Theorem, there exists a point ξ ∈ (−1, 1) such that
u′(ξ) = 0, so u cannot solve (4). Hence, since u ∈ C1 there exists even
a non-empty interval (−a, a) (with 0 < a < 1) such that |u′(x)| < 1 for
x ∈ (−a, a) ⊂ (−1, 1), which contradicts (4) in a whole interval.

Hence the necessity of weaker notions of solution.
Thinking of the eikonal equation, one could require that the solution is Lip-
schitz instead of C1. This implies that the first-derivatives do not exist at
any point but just almost everywhere. Then the idea is to require that the
equation is satisfied just at the points where the derivatives exist.
So, more in general, one can introduce the following notion.

Definition 1.2 (Almost everywhere solutions). Given a PDE of order k ≥ 1,
a function u : Ω → Rn continuous is called almost everywhere solution if the
derivatives up to the order k exist almost everywhere and u solves the PDE
almost everywhere.

Using again the example of the eikonal equation, we can show that the pre-
vious notion is good for existence but very bad for uniqueness.

Example 1.2 (Eikonal equation and Rademacher functions). The function
u(x) = −|x| + 1 and v(x) = |x| − 1 are two different almost everywhere
solutions of (4) with vanishing boundary condition u(−1) = u(1) = 0. More
in general, the Rademacher functions give infinitely many almost everywhere
solutions of (4). The Rademacher functions are defined, for any k ∈ N, as

uk(x) =






x + 1− i

2k−1
, if x ∈

[
−1 +

i

2k−1
,−1 +

2i + 1

2k

)
,

−x− 1 +
i + 1

2k−1
, if x ∈

[
−1 +

2i + 1

2k
,−1 +

i + 1

2k−1

)
,

i = 0, 1, ..., 2k−1,

(5)

!1 1

1

!1

0

!|x|+1

|x|!1
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Remark 1.2 (Distributional solutions). A different approach to weak solu-
tions for PDEs is given by the so called distributional solutions.
These solutions satisfy good properties of existence and uniqueness but they
can be applied just if the PDE is linear at least in the derivatives of maximum
order.

Crandall and Lions in 1982 introduced a different notion of weak solution
which works very well for many first- and second-order nonlinear PDEs, and
satisfies properties of existence, uniqueness and stability. Moreover, this new
notion selects in a suitable sense the optimal almost everywhere solution.

2 Viscosity solutions.

2.1 Definition and main properties.

Before giving the main definition of this course, we would like to give an
intuition where the idea comes from.

Let us suppose to have a classical solution of−∆u = 0 and consider a function
ϕ ∈ C2, touching u from above at some point x0, which means ϕ ≥ u and
ϕ(x0) = u(x0); then u − ϕ has a local maximum at the point x0. Therefore
u− ϕ looks locally concave around x0, which implies

0 ≥ ∆(u− ϕ)(x0) = ∆u(x0)−∆ϕ(x0) = −∆ϕ(x0) ⇒ −∆ϕ(x0) ≤ 0.

Consider a function ϕ ∈ C2 touching u from below, we can deduce the re-
verse inequality at the minimum-points, i.e. −∆ϕ(x0) ≥ 0, at any point x0

where u− ϕ attends a local minimum.

When the function u is not C2, we will use the above properties for C2-
functions touching from above and from below to say whenever u solves the
PDE in a weak sense.

We can now introduce the definition of viscosity solutions for second-order
PDEs:

F (x, u, Du,D2u) = 0, x ∈ Ω. (6)

Definition 2.1. Let Ω ⊂ Rn be an open set and u continuous in Ω;

(i) We say that u is a viscosity subsolution of (6) at a point x0 ∈ Ω, if and
only if, for any test function ϕ ∈ C2(Ω) such that u − ϕ has a local
maximum at x0, then

F (x0, u(x0), Dϕ(x0), D
2ϕ(x0)) ≤ 0; (7)
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(ii) We say that u is a viscosity supersolution of (6) at a point x0 ∈ Ω, if
and only if, for any test function ϕ ∈ C2(Ω) such that u−ϕ has a local
minimum at x0, then

F (x0, u(x0), Dϕ(x0), D
2ϕ(x0)) ≥ 0; (8)

(iii) We say that u is a viscosity solution in the open set Ω if u is a viscosity
subsolution and a viscosity supersolution, at any point x0 ∈ Ω.

Remark 2.1. For PDEs of order k, we can give the same definition requiring
a Ck-regularity for the test functions.

Remark 2.2. In order to check the condition for viscosity subsolution (resp.
viscosity supersolution), it is enough to require that the function is upper
semicontinuous (resp. lower semicontinuous).

Remark 2.3. One can always assume ϕ(x0) = u(x0) and, by replacing ϕ(x)
with ϕ(x) + |x − x0|4 (resp. ϕ(x) − |x − x0|4), that the local minimum
(maximum) at x0 may be assumed strict.

Remark 2.4. Note that the equation F = 0 and the equation −F = 0 are
not equivalent in the viscosity sense (see next example).

Example 2.1 (The eikonal equation). We show that u(x) = −|x| + 1 is a
viscosity solution of |u′|− 1 = 0 in (−1, 1), but it is not of −|u′|+ 1 = 0.
Let ϕ ∈ C1((−1, 1)) be such that u − ϕ has a local maximum (resp. min-
imum) at some x0 ∈ (−1, 1). If x0 += 0, u is differentiable at x0 and
|ϕ′(x0)| = |u′(x0)| = 1. The problem is just at the point x0 = 0 where
|x| is not differentiable.
So we have just to consider the case where u − ϕ attends a local minimum
(resp. maximum) at 0.
Let us first consider the subsolution property, i.e. x0 local (strict) maximum
point and assume u(0) = ϕ(0); then −|x| ≤ u(x)− u(0) ≤ ϕ(x)− ϕ(0), near
0, which implies

1 ≥ ϕ(x)− ϕ(0)

x
, for x < 0 and

ϕ(x)− ϕ(0)

x
≥ −1, for x > 0.

Since ϕ ∈ C1, passing to the limit as x → 0, we can conclude |ϕ′(0)| ≤ 1.
Therefore the subsolution condition (7) is satisfied at any point x0 ∈ (−1, 1).
To verify the supersolution condition, we assume that u − ϕ attends a lo-
cal maximum (equal to 0) at the point 0. Proceeding as above we find
D−ϕ(0) ≥ 1 and D+ϕ(0) ≤ −1, which means D−ϕ(0) += D+ϕ(0).
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Therefore there cannot be C1-functions touching u(x) = −|x|+1 from below,
which means the condition (8) is trivially verified.
This allows us to conclude that u(x) = −|x|+1 is a viscosity solution of (4).

Let us now consider the equation −|u′(x)| + 1 = 0 and the function ϕ(x) =
−x2 + 1. It is easy to show that ϕ is a C1 function touching u from above at
0. Nevertheless −|ϕ′(0)|+ 1 = 1 > 0, therefore (7) is not satisfied.

Exercise 2.1. Show that u(x) = |x|−1 is a viscosity solution of −|Du|+1 =
0 but it is not of |Du|− 1 = 0.

Exercise 2.2. Show that, if u is a viscosity solution of (6), then −u solves
in the viscosity sense −F (x,−u,−Du,−D2u) = 0.

Viscosity solutions are a good notion in particular for first-order PDEs and
second-order elliptic PDEs: this means that they are almost everywhere so-
lutions or classical solutions whenever they are regular enough and moreover
the classical solutions are always viscosity solutions, too. As we have seen in
the example of the eikonal equation, almost everywhere solutions are instead
not always viscosity solutions.

Remark 2.5. Let u ∈ Ck be viscosity solution of a PDE of order k, then
this is a classical solution. To show this, we can just choose as test function
u itself in both the subsolution and the supersolution properties.

Proposition 2.1. Let us assume that u ∈ C2 is a classical solution of (6),
then u is a viscosity solution whenever one of the following two is satisfied:

1. The PDE does not depend on D2u.

2. F satisfies the following assumption:

F (x, z, p,M) ≤ F (x, z, p,N), M ≥ N. (9)

Proof. Let ϕ ∈ C2 be such that u − ϕ has a local maximum at x0, then
Du(x0) = Dϕ(x0) and D2u(x0) ≤ D2ϕ(x0).
If (6) is a first-order PDE, then

0 = F (x0, u(x0), Du(x0)) = F (x0, u(x0), Dϕ(x0))

therefore u is a viscosity subsolution. To check that u is a supersolution is
exactly the same.
If (6) is a second-order PDE, we need to assume (9), which implies

0 = F (x0, u(x0), Du(x0), D
2u(x0)) ≥ F (x0, u(x0), Dϕ(x0), D

2ϕ(x0)).

If we assume that u−ϕ has a local minimum at x0, then D2u(x0) ≥ D2ϕ(x0)
and so we get the other inequality.
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The previous results say that the notion of viscosity solutions is consistent
with classical solutions. The property can be also proved at any point where
the viscosity solution is differentiable, see e.g Theorem 10.1.1 in the book of
Evans, for the first-order case.

Remark 2.6. Assumption (9) tells that the equation is degenerate elliptic.
The main example is −∆u = f(x). In that case

F (x, z, p,M) = −Tr(M)− f(x).

Remark 2.7. For second-order PDEs, we usually assume also that

F (x, z, p,M) ≤ F (x, z′, p, M), z ≤ z′. (10)

In this case the function F is said proper. An example of a PDE not satis-
fying assumption (10), is F (x, z, p,M) = b(z)p − f(x) in R which is never
increasing neither decreasing in z (e.g. one can take p = +1 and p = −1).
Hence we do not consider PDEs like b(u)ux = f(x).
Condition (10) is not necessary for consistence but it is for comparison prin-
ciples (i.e. uniqueness), which are one of the main properties of viscosity
solutions. Without assumption (10), comparisons do not hold even for clas-
sical solutions. Note that comparison principles for classical solutions ensure
that the definition of viscosity solutions selects the correct solution.

Next we show an other key-property for viscosity solutions: stability.
Stability is key for solutions of PDEs since PDEs usually describe models in
physics, economics, etc. and therefore the data of the equation (boundary
and initial conditions but also the coefficient of F ) come from measurement,
hence they are never “exact”.

Proposition 2.2. Let Fε and F be continuous in all the variables and such
that Fε → F , as ε → 0+ and let uε be a viscosity solutions of

Fε(x, uε, Duε, Du2
ε) = 0

such that uε → u (locally uniformly), as ε → 0+.
Then u is a viscosity solution of

F (x, u, Du,D2u) = 0.

Proof. First note that since the convergence is uniform, then u is continuous.
Let ϕ ∈ C2 be such that u − ϕ has a local strict maximum at x0 and let
us denote by BR(x0) the ball where u(x)− ϕ(x) ≤ u(x0)− ϕ(x0). Consider
K = B R

2
(x0) and let xε be the maximum point of uε − ϕ in K.
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We want to show that xε → x0, as ε → 0+.
Since xε ∈ K compact set, (up to a subsequence) there exists y ∈ K such
that xε → y. Note that xε is a maximum point in K so in particular

uε(x0)− ϕ(x0) ≤ uε(xε)− ϕ(xε).

Passing to the limit as ε → 0+, we get

u(x0)− ϕ(x0) ≤ u(y)− ϕ(y).

Therefore since x0 is a strict local maximum, we deduce x0 = y.
Now to conclude is very easy. In fact, uε is a viscosity solution, so

Fε(xε, uε(xε), Dϕ(xε), Dϕ2(xε)) = 0

Since ϕ ∈ C2 and Fε is continuos, passing to the limit as ε → 0+, we get

F (x0, u(x0), Dϕ(x0), Dϕ2(x0)) = 0;

therefore u is a viscosity subsolution.
To show that u is a viscosity supersolution, one proceeds similarly.

The next remark gives an application on the previous stability result to
the existence problem. This method is at the origin of the name “viscosity
solution”.

Remark 2.8 (Existence for Hamilton-Jacobi equations by viscosity approx-
imations). Let us consider the first-order Cauchy problem:

{
ut + H(x, Du) = 0,

u(0) = g.
(11)

A method for solving the problem is to add a “viscosity term” to the equation,
i.e. −ε∆u, for any ε > 0. In this way, the equation becomes a heat equation
plus a nonlinear lower-order term:

{
uε

t − ε∆uε + H(x, Duε) = 0,

uε(0) = g.
(12)

Existence for equation (12) is easier to prove and, since the equation is
parabolic and linear in the high-order operator, it is in general possible to
show the existence of classical solutions uε. Then we need just to get an
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estimate for the solutions, uniform in 0 < ε << 1 and, by Ascoli-Arzela
Theorem, we can define

u(t, x) = lim
ε→0+

uε(t, x),

where the above limit is locally uniform.
Therefore using the stability-result for viscosity solutions (Proposition 2.2),
u(t, x) solves, in the viscosity sense, the limit-equation, which is the Cauchy
problem (11).

The same method can be applied to the Dirichlet problem.
More information about the vanishing viscosity method can be found in the
book of Evans (Section 10.1) and in the following papers: P.L. Lions, Gen-
eralized Solutions of Hamilton-Jacobi Equations Research, Notes in Mathe-
matics 69, 1982 (Section 1.4 and Section 8); M.G. Crandall, L.C. Evans and
P.L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equa-
tions, Trans. Am. Mat. Soc. 282, 1984 (Theorem 3.1.); G. Barles and
B. Perthame, Exit time problems in optimal control and vanishing viscosity
method, SIAM J. Control Opt. 26, 1988; and many others.

Now we show the nice behavior of viscosity solutions w.r.t. the operations
of infimum and supremum.

Proposition 2.3. Let v ∈ F be a family of viscosity subsolutions (resp.
viscosity supersolutions) of (6) and look at

u(x) = sup
v∈F

v(x) (resp. u(x) = inf
v∈F

v(x)).

For sake of simplicity, we also assume that u(x) is upper semicontinuous
(resp. lower semicontinuous), then u is a viscosity subsolution (resp. viscosity
supersolution) of (6).

Proof. We show just the property for the infimum.
Let ϕ ∈ C2 be such that u − ϕ has a local strict minimum at x0, i.e. there
exists R > 0 such that

u(x0)− ϕ(x0) < u(x)− ϕ(x), ∀x ∈ Br(x0)\{x0}.

Since u(x0) = inf{v(x0) | v ∈ F}, for any n ∈ N, there exists vn ∈ F such
that

vn(x0) < u(x0) +
1

n
.
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Let xn be a sequence of points where vn−ϕ attend minimum in B R
2
(x0), i.e.

vn(xn)− ϕ(xn) ≤ vn(x)− ϕ(x), ∀x ∈ K := Br(x0). (13)

Up to a subsequence, xn → y ∈ K. Using that u ≤ vn, for any vn ∈ F ,
inequality (13) at x0 gives

u(xn)− ϕ(xn) ≤ vn(xn)− ϕ(xn) ≤ vn(x0)− ϕ(x0) < u(x0) +
1

n
− ϕ(x0).

Passing to the liminf, as n → +∞, and using the lower semicontinuity of u
and the continuity of ϕ, we get

u(y)− ϕ(y) ≤ u(x0)− ϕ(x0).

Exactly as in the proof of the stability, the assumption that x0 is a strict
minimum point allows us to conclude that x0 = y.
Therefore, since vn are viscosity supersolutions, we know that

F (xn, ϕ(xn), Dϕ(xn), D2ϕ(xn)) ≥ 0,

which, passing to the limit as n → +∞, proves that u is viscosity supersolu-
tion of equation (6).

Remark 2.9. Note that in general the supremum of viscosity supersolutions
(resp. the infimum of viscosity subsolutions) is not a viscosity supersolution
(resp. viscosity subsolution). Moreover it is not necessary to assume the
right semicontinuity for the supremum or the infimum. Nevertheless without
this assumption the result is still true but one has to use the theory of
discontinuous viscosity solution, which means to deal with the lower and the
upper semicontinuous envelopes.

As application of the behavior w.r.t. the operations of infimum and supre-
mum, we introduce a first method for existence of viscosity solutions.

2.2 Existence by Perron’s method

In 1987 H. Ishii used for the first time the Perron’s method to solve nonlinear
first-order equations (Perron’s method for Hamilton-Jacobi equations, Duke
Math. J. 55). This method had been introduced in 1923 by Oskar Perron
in order to find solutions for the Laplace equation and consists in building
a solution as the supremum of a suitable family of viscosity subsolutions.
Since the supremum of viscosity subsolutions is a viscosity subsolution, one
has just to prove that it is a viscosity supersolution, too.
The Perron’s method can be sketched, as follows:
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Theorem 2.1 (Perron’s Method). Let us assume that

1. Comparison principle for (6) holds, i.e. given u viscosity subsolution
and v viscosity supersolution satisfying the same boundary condition,
then u ≤ v.

2. Suppose that there exist u and u which are, respectively, a viscosity
subsolution and a viscosity supersolution, satisfying the same boundary
condition.

We define

W (x) = sup{w(x) |u ≤ w ≤ u and w viscosity subsolution},

Then W is a viscosity solution of (6), which satisfies the same boundary
condition satisfied by u and u.

Let us set

F = {w |u ≤ w ≤ u and w viscosity subsolution},

so that W can be written as

W (x) = sup
w∈F

w(x).

To prove the Perron’s Method, we need to use the following result.

Lemma 2.1. If v ∈ F is not a viscosity supersolution, then there exists
w ∈ F such that v(y) < w(y) at some y ∈ Ω.

Proof. Let us assume v ∈ F is not a supersolution, this means that there
exists y0 ∈ Ω and ϕ ∈ C2 such that v − ϕ has a local minimum at y0 and

F (y0, v(y0), Dϕ(y0), D
2ϕ(y0)) < −η, (14)

for some η > 0.
We may assume that ϕ(y0) = v(y0) and that the local minimum at y0 is
strict. We are going to use the test function ϕ to build a subsolution w ∈ F
such that v(y0) < w(y0).
First note that v(y0) < u(y0). In fact, if it would be v(y0) = u(y0), recalling
that u ≥ v ≥ ϕ, then u− ϕ would have a local minimum at y0. Since u is a
viscosity supersolution, that would mean F (y0, v(y0), Dϕ(y0), D2ϕ(y0)) ≥ 0,
which contradicts (14).
Therefore we can find δ1 > 0 such that v(y) + δ1 < u(y), on Bδ1(y0).
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Now we use the continuity of F and (14), which implies that there exists δ2

such that, whenever x, u, p,M satisfy

|x−y0| < δ2, |u(y0)−v(y0)| < δ2, ‖p−Dϕ(y0)‖ < δ2,
∥∥M −D2ϕ(y0)

∥∥ < δ2,

then F (x, u, p, M) < 0. Let be δ := min{δ1, δ2} > 0; we define

w(x) =

{
max{φ(x) + δ, v(x)}, x ∈ Bδ(y0),

v(x), x ∈ Ω\Bδ(y0).

Then w is continuous and is a viscosity subsolution. Moreover u ≤ w ≤ u,
then w ∈ F and w(y0) = ϕ(y0) + δ > v(y0) so the lemma is proved.

Proof of Theorem 2.1. Note that F += ∅, therefore W is a viscosity subso-
lution of (6) satisfying the same boundary condition (since g(x) = u(x) ≤
w(x) ≤ u(x) = g(x) on x ∈ ∂Ω).
The fact that W is a viscosity supersolution follows by Lemma 2.1, assum-
ing that W is continuous. In fact, if we assume that W is not a viscosity
supersolution, then the lemma contradicts the fact that W is defined as the
supremum on F , at any point.
Nevertheless, as we have already remarked, in general W is not continuous
but just lower semicontinuous.
However the proof still works substituting W and the supersolutions used to
prove the lemma by their semicontinuous envelopes.

Perron’s method is good to prove existence-results for very general PDEs
(both first-order and second-order cases). The limit of this method is that
does not give representative formula for the solution neither information on
the regularity of the solution.
For the first-order case, we will see later an other method which gives much
more information on the solution (called Hopf-Lax formula).

2.3 Further properties.

Let us conclude this introduction on the theory of viscosity solutions, showing
the following properties.

Proposition 2.4. Let us consider Φ ∈ C2(R), with Φ′ > 0 and Φ(R) = R,
if u is a viscosity subsolution (resp. viscosity supersolution) of the equation
(6),
then v := Φ ◦ u is a viscosity subsolution (resp. viscosity supersolution) of

F (x, Ψ(v(x)), Ψ′(v(x))Dv, Ψ′′(v(x))DvDvT + Ψ′(v(x))D2v) = 0, (15)

with Ψ = Φ−1.
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Proof. Note that if Φ′ > 0 =⇒ Ψ′ > 0; therefore Ψ is increasing.
As usual, we show only one property, i.e. that v is a viscosity subsolution of
(15), since the other one is exactly the same.
Let ϕ ∈ C2 be such that v − ϕ has a local maximum at x0, that we can
assume = 0. Then

v(x) ≤ ϕ(x), near x0 and v(x0) = ϕ(x0). (16)

Since Ψ is increasing, then (16) implies

u(x) ≤ Ψ ◦ ϕ(x), near x0 and u(x0) = Ψ ◦ ϕ(x0).

Therefore, φ̃ := Ψ ◦ ϕ ∈ C2 is a test function touching u from above at x0,
i.e.

F (x0, u(x0), Dφ̃(x0), D
2φ̃(x0)) ≤ 0.

To conclude it is sufficient to observe that Dφ̃(x0) = Ψ′(ϕ(x0))Dϕ(x0) while
D2φ̃(x0) = Ψ′′(ϕ(x0))Dϕ(x0)DϕT (x0)+Ψ′(ϕ(x0))D2ϕ(x0) and v(x0) = ϕ(x0).

Exercise 2.3. What happens if instead Φ′ < 0?

Now we want to show what happens when the transformation is a change of
charts, i.e. let us consider Φ : Rn → Rn diffeomorphism smooth enough.
For sake of simplicity, we consider just the first-order case, i.e.

F (x, z, p,M) = F (x, z, p).

Note that in this case DΦ is not a vector but a n × n symmetric matrix,
(which is usually called Jacobian-matrix and indicate by JΦ.)

Proposition 2.5. Let u be a viscosity solution of

F (x, u, Du) = 0,

and Φ ∈ C1 diffeomorphism. Then v := u ◦ Φ is a viscosity solution of

F (y, v
(
Φ−1(y)

)
, (DΦ−1)T (y) Dv

(
Φ−1(y)

)
) = 0. (17)

Proof. We show just that v is a viscosity subsolution of (17). Hence, let
ϕ ∈ C1 be such that v − ϕ has a local maximum at x0; this means

u(Φ(x))−ϕ(x) ≤ u(Φ(x0))−ϕ(x0) =⇒ u(y)−ϕ ◦Φ−1(y) ≤ u(y0)−ϕ ◦Φ−1(y0)

with y = Φ(x) and y0 = Φ(x0).
Therefore ϕ̃ := ϕ ◦ Φ−1 ∈ C1 is a test function touching u from above at y0.
Applying the viscosity subsolution property for u and remarking that u =
v ◦ Φ−1 and Dϕ̃(y) = (DΦ−1)T (y) Dϕ(Φ−1(y)), we can conclude.
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Remark 2.10. Note that we do not need to assume any condition on the
diffeomorphism Φ (but the necessary regularity).

Remark 2.11. A similar property holds also for second-order PDEs but
the formula is much more complicate. The idea is always to derive the
equation heuristically assuming everything smooth. Then, if you have a
diffeomorphism smooth enough, from the result for classical solutions the
corresponding one for viscosity solutions follows trivially.

Exercise 2.4. (Difficult) Assuming n = 1, state the corresponding of
Proposition 2.5 for the second-order case.

Exercise 2.5. (Very Difficult: need to know tensorial calculus) Do
the previous exercise with n > 1 (note that in this case D2Φ is a 3-tensor) .

3 Control Systems and Hamilton-Jacobi-Bellman
Equations.

Let us introduce the notations:

• x ∈ Rn and t ≥ 0;

• A ⊂ Rm closed and bounded (e.g. A = B1(0)), hence compact;

• A control α(t) is a function α : [0, +∞) → A measurable;

• A is the set of all the controls;

• The dynamics is a continuous function f : Rn × A → Rn, which we
assume to be Lipschitz in x, uniformly in a ∈ A;

We consider the following control system (called also state equation):

{
ẏ(t) = f(y(t), α(t)), t > 0,

y(0) = x.
(18)

Since f is Lipschitz and the control is measurable then, for any α ∈ A there
exists a unique solution of (18), that we indicate by yα

x , given by

yα
x (t) = x +

t

0

f(yα
x (s), α(s))ds, ∀ t > 0, x ∈ Rn, α ∈ A.

Moreover the following properties hold:
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(i) yα
x (t) is absolutely continuous on the compact sets of [0, +∞);

(ii) |yα
x (t)− yα

z (t)| ≤ eLt|x− z|, for all t > 0, x, z ∈ Rn and α ∈ A, where by
L we indicate the Lipschitz constant of the dynamics f ;

(iii) |yα
x (t)| ≤

(
|x|+

√
2Kt

)
eKt, for all α ∈ A and t > 0, where

K := L + sup{|f(0, a)| | a ∈ A}.
(Note that K < +∞ since A compact and f continuous).

(iv) |yα
x (t)− x| ≤ Mx t, for all α ∈ A and t ∈ [0, 1/Mx],

where Mx := sup{|f(y, a)| | |y − x| ≤ 1, a ∈ A}.

Note that the property (i) implies that yα
x (t) satisfies (18) almost everywhere

for t ∈ [0, +∞), for any x ∈ Rn and α ∈ A, the property (ii) means that
the trajectories yα

x (t) are Lipschitz in x, uniformly w.r.t to α ∈ A and and
locally uniformly in time, while the property (iii) tells that the trajectories
yα

x (t) are bounded in any compact interval [0, T ], uniformly in α ∈ A and
locally uniformly in x.

For more details existence (local and global) and uniqueness for general
ODEs, one can look at T.W. Körner, A companion to analysis (2004) and
F. Tricomi, Differential Equations (1961) and many others text-books on
ODEs. For more information on the solutions of (18) and in particular on
the properties (i), (ii) and (iii) for yα

x (t), we refer to the book of Bardi and
Capuzzo Dolcetta, Section III.5.

Remark 3.1 (Uniform continuity). A continuous function h : Ω → Rm is
uniformly continuous in Ω ⊂ Rn if there exists ω(r) modulus of continuity
(i.e. ω : [0, +∞) → [0, +∞) continuous, nondecreasing with ω(0) = 0) such
that

|h(x)− h(y)| ≤ ω(|x− y|), ∀x, y ∈ Ω.

The uniform continuity is weaker than the Lipschitz continuity.
In general, we assume Lipschitz regularity for the functions involved in the
control problem. Nevertheless, it is possible to prove the same results, requir-
ing that such functions are just uniformly continuous, instead of Lipschitz.
The proofs are the same, replacing L|x − y| by the modulus of continuity
ω(|x− y|) and using the relative properties.

Let us introduce a running cost which is a function l : Rn × A → R and
a terminal cost g : Rn → R and let us assume that both the running cost
and the terminal cost are Lipschitz and bounded in x, uniformly w.r.t. a ∈ A.
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The cost functional (called also pay-off) is given by

J(t, x; α) :=
t

0

e−λs l(yα
x (s), α(s))ds + e−λtg(yα

x (t)),

where λ ≥ 0 is a constant called interest rate.

The aim is to minimize J(t, x; α) and if it is possible to find a control which
realize such a minimum. Therefore we are interested in studying the following
function:

v(t, x) := inf
α∈A

J(t, x; α), (19)

which is called value function.

Remark 3.2. A second important question is to find conditions ensuring
the existence of an optimal control, i.e. some α ∈ A such that J(t, x; α) =
v(t, x). Note that, whenever an optimal control exists, then

v(t, x) = min
α∈A

J(t, x; α).

Example 3.1. Let us consider the easy case where A = B1(0), f(x, a) = a,
therefore

yα
x (t) = x +

t

0

α(s)ds.

To define the pay-off we assume λ = 0, l ≡ 0 and g(x) = |x|, i.e.

J(t, x; α) = |yα
x (t)| =

∣∣∣∣x +
t

0

α(s)ds

∣∣∣∣.

We want to minimize J , therefore we want that, at the time t > 0, the point
y(t) = x +

t

0 α(s)ds is as close to 0 as possible. The idea is to go as fast
as possible to 0 and, once there, to stop. Recall that |α| ≤ 1, this means to
choose as control α(t) = − x

|x| , if t ≤ |x| and α(t) = 0, if t > |x|, which gives

J(t, x; α) =
(
1− t

|x|

)
|x|, if t ≤ |x|, and J(t, x; α) = 0, if t > |x|. Therefore

the value function has the expression

v(t, x) = max

{(
1− t

|x|

)
|x|, 0

}
.

Proposition 3.1. Under the above assumptions on the functions f, l, g, then

1. v is bounded and continuous on [0, T ]× Rn;
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2. Assuming λ > 0, v is bounded and continuous on [0, +∞)× Rn.

Proof. Since v(τ, z) = infα∈A J(τ, z; α), for any ε > 0, there exists αε ∈ A
such that

v(τ, z) ≥ J(τ, z; αε)− ε.

We are going to use the control αε to estimate v(t, x)− v(τ, z); in fact:

v(t, x)− v(τ, z) ≤ J(t, x; αε)− J(τ, z; αε) + ε =
t

0

e−λs l(yαε
x (s), αε(s))ds

−
τ

0

e−λs l(yαε
z (s), αε(s))ds + e−λtg(yαε

x (t))− e−λτg(yαε
z (τ)) + ε.

Let us assume 0 ≤ τ ≤ t ≤ T , then the above inequality becomes:

v(t, x)− v(τ, z) ≤
τ

0

e−λs
∣∣l(yαε

x (s), αε(s))− l(yαε
z (s), αε(s))

∣∣ds

+
t

τ

e−λs l(yαε
x (s), αε(s))ds + e−λτ

∣∣g(yαε
x (t))− g(yαε

z (τ))
∣∣ + ε

≤ Lip(l)eL T |x− z|
τ

0

e−λsds + M
t

τ

e−λsds

+ e−λτLip(g)
∣∣yαε

x (t)− yαε
z (τ)

∣∣ + ε,

where we have used the property (ii) for the solutions of (18) and L = Lip(f)
is the Lipschitz constant of f while Lip(l) and Lip(g) are respectively the Lip-
schitz constant of l and g and M is a global bound of l.

Note that, since λ, s ≥ 0, then e−λτ ≤ 1, and moreover τ < T , that means

v(t, x)− v(τ, z) ≤ Lip(l)eL T T |x− z|+M |t− τ |+Lip(g)
∣∣yαε

x (t)− yαε
z (τ)

∣∣+ ε.

We rest to estimate
∣∣yαε

z (τ) − yαε
x (t)

∣∣, using the properties given for yα
x (t).

By triangle inequality:
∣∣yαε

z (τ)− yαε
x (t)

∣∣ ≤
∣∣yαε

z (τ)− yαε
x (τ)

∣∣ +
∣∣yαε

x (τ)− yαε
x (t)

∣∣,

Property (i) implies
∣∣yαε

z (τ)− yαε
x (τ)

∣∣ ≤ eLT |x− z|;

moreover

∣∣yαε
x (τ)−yαε

x (t)
∣∣ =

∣∣∣∣
t

τ

f(yαε
x (s), αε(s))ds

∣∣∣∣ ≤
t

τ

|f(yαε
x (s), αε(s))|ds ≤ C|t−τ |,
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since f is continuous and, by property (iii), yαε
x (t) is bounded in compact

intervals, uniformly in α ∈ A.

Hence ∣∣yαε
z (τ)− yαε

x (t)
∣∣ ≤ eLT |x− z|+ C|t− τ |,

where L and C are constants, independent of αε.
Then we can sum up the following estimate:

v(t, x)− v(τ, z) ≤
(
Lip(l)T + Lip(g)

)
eL T |x− z|+

(
M + C Lip(g)

)
|t− τ |+ ε,

where all the constants at the right-hand side do not depend on αε.
Passing to the limit as ε → 0+ and swapping x and z and, τ and t, we can
conclude:

|v(t, x)−v(τ, z)| ≤ eL T (Lip(l)T +Lip(g))|x−z|+(M +C Lip(g))|τ − t|→ 0,

as |x− z|→ 0 and |τ − t|→ 0; hence the continuity of v(t, x) in t and x.

To prove that v(t, x) is bounded is sufficient to remark that

|J(t, x; α)| =
∣∣∣∣

t

0

e−λs l(yα
x (s), α(s))ds + e−λtg(yα

x (t))

∣∣∣∣ ≤ M
t

0

e−λsds + G,

for any t ≥ 0, x ∈ Rn and α ∈ A, where M and G are, respectively, the
smallest constant bounding l and g.
Then, whenever t ∈ [0, T ],

|J(t, x; α)| ≤ MT + G < +∞,

for any λ ≥ 0.
In the case T = +∞, we have to assume λ > 0, so that

|J(t, x; α)| ≤ M

λ

(
1− e−T

)
+ G ≤ M

λ
+ G < +∞,

which proves the result in 2. and conclude the proposition.
Note: whenever λ = 0, the above estimate for |J(t, x; α)| explodes to +∞.

Remark 3.3. In the previous proposition we have indeed showed that the
value function is Lipschitz in t (uniformly w.r.t. the space) and in x (locally
uniformly w.r.t. the time).

Remark 3.4. It is trivial to see that v(x, 0) = g(x), for all x ∈ Rn, which
means that the value function v(t, x) assumes g as initial datum.
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The Dynamic Programming Principle is one of the key-properties for value
functions and it follows by the semigroup property for the trajectories of (18),
that means, for any 0 ≤ τ ≤ t and for any x ∈ Rn,

yα
x (t) = yeα

y (t− τ),

where y := yα
x (τ), and α̃(s) := α(s + τ);

(so that α̃(0) = α(τ) and α̃(t− τ) = α(t)).

Proposition 3.2 (Dynamic Programming Principle). For all x ∈ Rn and
0 ≤ τ ≤ t, it holds

v(t, x) = inf
α∈A

{ τ

0

e−λsl(yα
x (s), α(s))ds + e−λτv(t− τ, yα

x (τ))

}
. (20)

Proof. If t = 0 there is nothing to prove. Moreover, if τ = t, the the identity
follows trivially by Remark 3.4.
Let us fix 0 < τ < t and α ∈ A and define α̃(s) := α(s + τ), then

J(t, x; α) =
t

0

e−λs l(yα
x (s), α(s))ds + e−λtg(yα

x (t))

=
τ

0

e−λs l(yα
x (s), α(s))ds+

t

τ

e−λs l(yα
x (s), α(s))ds+e−λτe−λ(t−τ)g(yα

x (t)).

Now we make a change of variables in the second integral: s 1→ s̃ = s − τ ,
which gives

J(t, x; α) =
τ

0

e−λs l(yα
x (s), α(s))ds + e−λτJ(t− τ, yα

x (τ); α̃)

≥
τ

0

e−λs l(yα
x (s), α(s))ds + e−λτv(t− τ, yα

x (τ)).

Since the above inequality holds for any α ∈ A, taking the infimum among
α ∈ A, we get

v(t, x) ≥ inf
α∈A

{ τ

0

e−λsl(yα
x (s), α(s))ds + e−λτv(t− τ, yα

x (τ))

}
.

To prove the opposite inequality, we set y := yα
x (τ), then for any ε > 0 there

exists αε ∈ A such that

v(t− τ, y) + ε ≥ J(t− τ, y; αε).
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We define a new control on [0, +∞) (still depending on ε) as

α :=

{
α(s), 0 ≤ s ≤ τ,

αε(s− τ), s > τ.

Recall that, by the semigroup property, yα
x (t) = yαε

y (t− τ).
Then, for any ε > 0,

v(t, x) ≤ J(t, x; α)

=
τ

0

e−λsl(yα
x (s), α(s))ds +

t

τ

e−λsl(yαε
y (s), αε(s))ds + e−λtg(yαε

y (t− τ))

=
τ

0

e−λsl(yα
x (s), α(s))ds + e−λτJ(t− τ, y; αε)

≤
τ

0

e−λsl(yα
x (s), α(s))ds + e−λτv(t− τ, y) + e−λτε.

Passing to the limit as ε → 0+ and then taking the infimum among α ∈ A,
we can deduce

v(t, x) ≤ inf
α∈A

{ τ

0

e−λsl(yα
x (s), α(s))ds + e−λτv(t− τ, yα

x (τ))

}
,

and so we can conclude (20).

Next we are going to characterize the value function v(t, x) as the unique
viscosity solution of the Hamilton-Jacobi-Bellman equation:

ut + λu + H(x, Du) = 0, (21)

where the Hamiltonian is given by

H(x, p) = sup
a∈A

{
− f(x, a) · p− l(x, a)

}
. (22)

Theorem 3.1. Under the same assumptions of Proposition 3.1, then the
value function (19) is a viscosity solution of the equation (21), satisfying the
initial condition v(0, x) = g(x), (see Remark 3.4).

Proof. The idea is to show both the subsolution and the supersolution prop-
erties, using the Dynamic Programming Principle.

I. We prove that v(t, x) is a viscosity subsolution: Let ϕ ∈ C1(Rn× (0, +∞))
be such that v − ϕ has a local maximum at some point (t0, x0), i.e. there
exists R > 0 such that

v(t, x)− ϕ(t, x) ≤ v(t0, x0)− ϕ(t0, x0), ∀ |x− x0| < R, |t− t0| < R,
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which is equivalent to say:

v(t0, x0)− v(t, x) ≥ ϕ(t0, x0)− ϕ(t, x), ∀ |x− x0| < R, |t− t0| < R. (23)

Now, for any a ∈ A, let us consider the trajectories corresponding to the
constant control α(t) = a, i.e. ya

x0
solving:

{
ẏ(t) = f(y(t), a), t > 0,

y(0) = x0.

Fix 0 ≤ τ ≤ t0 small enough that |t0−(t0−τ)| = τ < R and |ya
x0

(τ)−x0| < R.
Then the inequality (23) holds with x = ya

x0
(τ) and t = t0 − τ . Using (20)

to estimate v(t0, x0), we can deduce

ϕ(t0, x0)− ϕ(t0 − τ, ya
x0

(τ)) ≤ v(t0, x0)− v(t0 − τ, ya
x0

(τ))

≤
τ

0

e−λsl(ya
x0

(s), a)ds +
(
e−λτ − 1

)
v(t0 − τ, ya

x0
(τ)).

Now we add and subtract ϕ(t0−τ, x−0) (in such a way we vary one variable
at a time) and we divide by τ > 0 , which means

ϕ(t0, x0)− ϕ(t0 − τ, x0)

τ
+

ϕ(t0 − τ, x0)− ϕ(t0 − τ, ya
x0

(τ))

τ

≤ 1

τ

τ

0

e−λsl(ya
x0

(s), a)ds +
e−λτ − 1

τ
v(t0 − τ, ya

x0
(τ)).

Passing to the limit as τ → 0+ and by using that ϕ ∈ C1, the continuity of the
functions ya

x0
(·), l(ya

x0
(·), a) and v(·, x) and the fact that ẏa

x0
(τ) = f(yα

x (τ), a)
is continuous too (since the control is constant), then we can conclude

ϕt(t0, x0) + λv(t0, x0)−Dϕ(t0, x0) · f(x0, a)− l(x0, a) ≤ 0.

Since the above inequality is true for any a ∈ A, taking the supremum in A,
we get

ϕt(t0, x0) + λv(t0, x0) + H(x0, Dϕ(t0, x0)) ≤ 0;

therefore v(t, x) is a viscosity subsolution of the equation (21).

II. We prove that v(t, x) is a viscosity supersolution: Let ϕ ∈ C1(Rn ×
(0, +∞)) be such that v− ϕ has a local minimum at some point (t0, x0), i.e.
there exists R > 0 such that

v(t, x)− ϕ(t, x) ≥ v(t0, x0)− ϕ(t0, x0), ∀ |x− x0| < R, |t− t0| < R,
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which is equivalent to say:

v(t0, x0)− v(t, x) ≤ ϕ(t0, x0)− ϕ(t, x), ∀ |x− x0| < R, |t− t0| < R. (24)

We want to use the Dynamic Programming Principle to estimate v(t0, x0)
from below. Therefore, by the definition of infimum, for any ε > 0 and
τ > 0, there exists a control α(t) = αε,τ (t) such that

v(t0, x0) ≥
τ

0

e−λsl(yα
x0

(s), α(s))ds + e−λτv(t0 − τ, yα
x0

(τ))− τε.

Choosing τ > 0 small enough that (24) holds, we can write

(
ϕ(t0, x0)− ϕ(t0 − τ, x0)

)
+

(
ϕ(t0 − τ, x0)− ϕ(t0 − τ, yα

x0
(τ))

)
+

−
τ

0

e−λsl(yα
x0

(s), α(s))ds +
(
1− e−λτ

)
v(t0 − τ, yα

x0
(τ)) + τε ≥ 0. (25)

To conclude is a bit more technical than in the case of the subsolution-
property because this time the control is not constant and it depends on ε
and τ . We need to use the Lipschitz continuity of l(x, a) and f(x, a) and
the properties (iii) and (iv) for the trajectories yα

x (t), which tell that yα
x (t)

is locally bounded, uniformly w.r.t. the control and locally uniformly w.r.t.
x (property (iii)) and that

|yα
x0

(τ)− x0| ≤ Mx0 τ,

for any α ∈ A and for τ > 0 small enough and where Mx0 is a positive
constant depending just on f and x0 (property (iv)).
Let us first look at the integral-term:

−
τ

0

e−λsl(yα
x0

(s), α(s))ds ≤ −
τ

0

e−λsl(x0, α(s))ds+

+
τ

0

e−λs|l(yα
x0

(s), α(s))− l(x0, α(s))|ds ≤ −
τ

0

e−λsl(x0, α(s))ds+

+ Lip(l)Mx0

τ

0

s ds ≤ −
τ

0

e−λsl(x0, α(s))ds + Lip(l)Mx0

τ 2

2

= −
τ

0

l(x0, α(s))ds +
τ

0

(
1− e−λs

)
l(x0, α(s))ds + Lip(l)Mx0

τ 2

2

≤ −
τ

0

l(x0, α(s))ds + Cl

τ

0

λsds + Lip(l)Mx0

τ 2

2

= −
τ

0

l(x0, α(s))ds +
(
Clλ + Lip(l)Mx0

)τ 2

2
(26)
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where we have used that l(x, a) is bonded uniformly w.r.t. a and that 1 −
e−λs ≤ λs.
For sake of simplicity, let us call C1 :=

(
Clλ + Lip(l)Mx0

)
/2.

Now we need to estimate:

ϕ(t0 − τ, x0)− ϕ(t0 − τ, yα
x0

(τ)) = −
τ

0

Dϕ(yα
x0

(s)) · f(yα
x0

(s), α(s))ds

= −
τ

0

Dϕ(x0) · f(x0, α(s))ds +
τ

0

[
Dϕ(x0)−Dϕ(yα

x0
(s))

]
· f(x0, α(s))ds+

+
τ

0

Dϕ(yα
x0

(s)) ·
[
f(x0, α(s))− f(yα

x0
(s), α(s))

]
ds

≤ −
τ

0

Dϕ(x0) · f(x0, α(s))ds + C1,x0Mx0

τ 2

2
+ Lip(f)Mx0C2,x0

τ 2

2

= −
τ

0

Dϕ(x0) · f(x0, α(s))ds + C2τ
2, (27)

where C1,x0 depends on a local bound for f and a local bound for Dϕ (assum-
ing ϕ ∈ C2 and the local maximum strict) while C2,x0 := max{|Dϕ(x)| | |x−
x0| ≤ C} and C > 0 is a constant independent of the control and τ , which
is given by the property (iii) for the trajectories yα

x (t).
Since α(s) ∈ A, for any s > 0, we can estimate the sum of (26) and (27) by
taking the supremum for a ∈ A, which gives:

ϕ(t0 − τ, x0)− ϕ(t0 − τ, yα
x0

(τ))−
τ

0

e−λsl(yα
x0

(s), α(s))ds

≤ H(x0, Dϕ(x0)) τ +
(
C1 + C2

)
τ 2

(28)

Using (28) in (25) and dividing by τ > 0, we find

ϕ(t0, x0)− ϕ(t0 − τ, x0)

τ
− e−λτ − 1

τ
v(t0 − τ, yα

x0
(τ)) + H(x0, Dϕ(x0))

+
(
C1 + C2

)
τ + ε ≥ 0,

which gives the supersolution-property passing to the limit as τ → 0+ and
then as ε → 0+.

We rest prove that the value function is the unique viscosity solution of the
Hamilton-Jacobi-Bellman equation (21) having the terminal cost as initial
condition. In such a way, one can solve the corresponding Hamilton-Jacobi-
Bellman equation in order to find the value function of the associated control
problem.
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Theorem 3.2 (Comparison Principles). Let H : R2n → R continuous and
satisfying (22) with f(x, a) and l(x, a) continuous, Lipschitz in x uniformly
w.r.t. a ∈ A and l(x, a) bounded in x uniformly w.r.t. a ∈ A and λ ≥ 0.
Let u1, u2 : (0, +∞)×Rn → R be continuous and bounded in [0, T ]×Rn for
any T > 0.
If u1 and u2 are, respectively, a viscosity subsolution and a viscosity super-
solution of the equation (21) on [0, +∞)× Rn, then, for any T > 0,

sup
[0,T ]×Rn

(u1 − u2) ≤ sup
{0}×Rn

(u1 − u2)
+. (29)

Comparison Principles implies uniqueness for the viscosity solutions of the
corresponding Cauchy problem.

Corollary 3.1. Under the assumptions of Theorem 3.2 and given g : Rn →
R continuous and bounded, there exists a unique continuous and bounded
viscosity solution of the equation (21) on [0, T ]×Rn, such that u(0, x) = g(x).

Proof. It is sufficient to apply Theorem 3.2 to two different viscosity solutions
u1 and u2 with the same initial condition, i.e. such that

sup
{0}×Rn

|u1(x)− u2(x)| = sup
Rn

|g(x)− g(x)| = 0.

Proof of Theorem 3.2 (Comparison Principles). We prove the theorem by con-
tradiction: this means that we are going to assume (29) false and then to
build two particular test-functions (one for u1 and the other one for u2) which
will lead to a contradiction.

Let us start studying the following continuous function:

Φ(t, s, x, y) := u1(t, x)− u2(s, y)+

− |t− s|2 + |x− y|2

2ε
− β

(
(1 + |x|2)m

2 + (1 + |y|2)m
2
)
− η(t + s),

where ε, β, m, η positive parameters to choose later in a suitable way.
Note that the above function is a function defined on [0, +∞) × [0, +∞) ×
Rn × Rn. This method is called “doubling of variables” and it is typical for
proving comparison principles for viscosity solutions.

Note also that

Φ(t, s, x, y) ≤ u1(t, x)− u2(s, y), ∀ (s, t, x, y) ∈ [0, +∞)2 × R2n. (30)
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We define
A := sup

{0}×Rn

(u1 − u2)
+ ≥ 0.

and we assume for contradiction that (29) does not hold, which means that
there exists δ > 0 and t̃ ∈ (0, T ] and x̃ ∈ Rn such that

u1(t̃, x̃)− u2(t̃, x̃) = A + δ.

Now let us choose β > 0 and η > 0 such that 2β(1 + |x̃|2)m/2 + 2ηt̃ ≤ δ/2,
for all m ≤ 1, which implies

Φ(t̃, t̃, x̃, x̃) ≥ A + δ − δ

2
= A +

δ

2
; (31)

therefore

sup
[0,T ]2×R2n

Φ(t, s, x, y) ≥ A +
δ

2
. (32)

Moreover, Φ(t, s, x, y) → −∞, whenever |x|+ |y|→ +∞, hence there exists
(t, s, x, y) such that

Φ(t, s, x, y) = sup
[0,T ]2×R2n

Φ(t, s, x, y) ≥ A +
δ

2
> 0.

Note that u1(t, x) − u2(s, y) − β
(
(1 + |x|2)m

2 + (1 + |y|2)m
2

)
≥ Φ(t, s, x, y),

for any s, t, x, y, then, writing the previous inequality in (t, s, x, y), we find

β
(
(1 + |x|2)m

2 + (1 + |y|2)m
2
)
≤ sup

[0,T ]×Rn

u1 − inf
[0,T ]×Rn

u2 − A := C1, (33)

for any ε > 0 and m ∈ (0, 1].
Moreover by (30) and (32), we can observe that C1 > 0.

¿From (33) we find x, y ∈ B := B(0, (C1/β)1/m), in fact

|x|m ≤ (1 + |x|2)m
2 ≤ (1 + |x|2)m

2 + (1 + |y|2)m
2 ≤ C1

β
, (34)

and analogously for y.

Now we want to show that the maximum point (t, s, x, y) is near the diago-
nal, in a suitable sense, w.r.t. ε > 0.
First we remark that, since u1 and u2 are continuous in a compact set, then
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they are both uniformly continuous, therefore there exists a modulus of con-
tinuity ω(·) (that we can assume to be the same, up to consider the sum of
the two moduli of continuity which is still a modulus of continuity) such that

ui(t, x)−ui(s, y) = ω(|t−s|+|x−y|), ∀t, s ∈ [0, T ], x, y ∈ B, and for i = 1, 2.
(35)

Since (t, s, x, y) is the maximum point for Φ, it is trivial that

Φ(t, t, x, x)− Φ(s, s, y, y) ≤ 2Φ(t, s, x, y),

which (writing down explicitly the functions in the above inequality) means

|x− y|2 + |t− s|2

ε
≤ u1(t, x)− u1(s, y) + u2(t, x)− u2(s, y)

≤ 2 sup
[0,T ]×Rn

u1 + 2 sup
[0,T ]×Rn

u2 =
C2

√
2
, (36)

since u1 and u2 are continuous and so bounded in the compact set [0, T ]×B.

Now we are going to use (35) in order to improve (36). In fact, using the
concavity of √ , (36) implies:

|x− y|+ |t− s| ≤ C
√

ε. (37)

Therefore, by (35) and (37), then the estimate (36) becomes:

|x− y|2 + |t− s|2

ε
≤ 2 ω(C

√
ε). (38)

Now the idea is to use that u1 and u2 are, respectively, a viscosity subsolu-
tion and a viscosity supersolution of the equation (21), and to build suitable
test-functions at the points (t, x) and (s, y), respectively.

So the first step is to show that t += 0 and s += 0. This is easy to prove using
the above estimates (in particular (35) and (37) ) and (31) (that we have
assumed for contradiction of (29)). In fact, let us assume for contradiction
that t = 0, then

Φ(0, s, x, y) ≤ u1(0, x)− u2(s, y) = u1(0, x)− u2(0, x) + u2(0, x)− u2(s, y)

≤ sup
{0}×Rn

(u1−u2)+
(
u2(0, x)−u2(s, y)

)
≤ A+ω(|s|+|x−y|) ≤ A+ω(C

√
ε).
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Therefore, choosing ε > 0 small enough that ω(C
√

ε) ≤ δ
4 < δ

2 , then the
above inequality gives

Φ(t, s, x, y) = Φ(0, s, x, y) < A +
δ

2
,

which contradicts (31). To prove s += 0 is exactly the same.

Next we define the following test-functions:

ϕ(t, x) := u2(s, y) +
|x− y|2 + |t− s|2

2ε
+ β

(
(1 + |x|2)m

2 + (1 + |y|2)m
2
)

+ η(t + s),

ψ(s, y) := u1(t, x)− |x− y|2 + |t− s|2

2ε
− β

(
(1 + |x|2)m

2 − (1 + |y|2)m
2
)
− η(t + s).

It is not difficult to show that (u1 − ϕ)(t, x) attends maximum at (t, x)
while (u2−ψ)(s, y) attends minimum at (s, y). Therefore, using that u1 is a
viscosity subsolution and u2 is a viscosity supersolution, we get:

ϕt(t, x) + λu1(t, x) + H(x, Dϕ(t, x)) ≤ 0,

ψt(s, y) + λu2(s, y) + H(y, Dψ(s, y)) ≥ 0;

subtracting the second one to the first one, we can write

0 ≥ ϕt(t, x)−ψt(s, y)+λ
(
u1(t, x)−u2(s, y)

)
+H(x, Dϕ(t, x))−H(y, Dψ(s, y)).

(39)
Now we rest to calculate the derivatives of the test-functions and to esti-
mate in a suitable way the difference of the two Hamiltonian-terms using the
structure of H. So first note

ϕt(t, x) =
t− s

ε
+ η,

ψt(s, y) =
t− s

ε
− η,

and

Dϕ(t, x) =
x− y

ε
+ mβ(1 + |x|2)

m−2
2 x =

x− y

ε
+ γx,

Dψ(s, y) =
x− y

ε
−mβ(1 + |y|2)

m−2
2 y =

x− y

ε
− τy,

where, for sake of simplicity, we have written γ = mβ(1 + |x|2)m−2
2 and

τ = mβ(1 + |y|2)m−2
2 .
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Then the inequality (39) becomes:

0 ≥ 2η + λ
(
u1(t, x)− u2(s, y)

)
+ H

(
x,

x− y

ε
+ γx

)
−H

(
y,

x− y

ε
− τy

)

≥ 2η + λ

(
A +

δ

2

)
+ H

(
x,

x− y

ε
+ γx

)
−H

(
y,

x− y

ε
− τy

)
, (40)

using (30) and (32).

To conclude we use the following property for the Hamiltonian H(x, p) (that
we will verify at the end of the proof):

H

(
y,

x− y

ε
− τy

)
−H

(
x,

x− y

ε
+ γx

)

≤ 1

ε
Lip(f)|x− y|2 + Lip(l)|x− y|+ γK(1 + |x|2) + τK(1 + |y|2). (41)

Using (41) in (40) we can conclude; in fact

2η ≤ 1

ε
Lip(f)|x− y|2 + Lip(l)|x− y|+ γK(1 + |x|2) + τK(1 + |y|2), (42)

where we have used that A + δ
2 ≥ 0.

We can estimate the first two terms in the above inequality by (38) and
(37), respectively; then, using the definition of γ and τ , the inequality (42)
becomes

2η ≤ 2Lip(f) ω(C
√

ε) + Lip(l)C
√

ε + mβK
(
(1 + |x|2)m

2 + (1 + |y|2)m
2
)
.

(43)
Now we use (34) in (43) getting

2η ≤ 2Lip(f) ω(C
√

ε) + Lip(l)C
√

ε + 2mβK
C1

β
= ω̃(ε) + 2mKC1, (44)

where ω̃(ε) → 0, as ε → 0+.

Then we can choose m ≤ min {η/(2KC1), 1}, and by (44) we can conclude

2η ≤ ω̃(ε) + η

which, passing to the limit as ε → 0+, contradicts the fact that η > 0.

31



Now we remain to prove that if H(x, p) is given by (22), then the property
(41) is satisfied.
The claim is easy to prove using the Lipschitz continuity of f(x, a) and l(x, a)
w.r.t. x. Note that H(x, p) is given as supremum, then, for any ε > 0, there
exists a = aε ∈ A control such that

H

(
y,

x− y

ε
+ τy

)
≤ −f(y, a) ·

(
x− y

ε
+ τy

)
− l(y, a) + ε,

hence

H

(
y,

x− y

ε
+ τy

)
−H

(
x,

x− y

ε
+ γx

)

≤ −f(y, a) ·
(

x− y

ε
+ τy

)
+ f(x, a) ·

(
x− y

ε
+ γx

)
− l(y, a) + l(x, a) + ε

≤ 1

ε
Lip(f)|x− y|2 + Lip(l)|x− y|− τf(y, a) · y + γf(x, a) · x + ε

≤ 1

ε
Lip(f)|x− y|2 + Lip(l)|x− y|+ τK(1 + |y|2) + γK(1 + |x|2) + ε,

using that f(z, a) · z ≤ Lip(f)|z|2 + supa∈A |f(0, a)| |z| ≤ K(1 + |z|2)
(note |z| ≤ (1 + |z|2) always) and passing to the limit as ε → 0+.
Then claim (41) is proved and so the theorem is.

For more information on optimal control problems and Hamilton-Jacobi-
Bellman equations, we refer to the book of Bardi and Capuzzo Dolcetta,
Chapter 2 I and III. For sake of completeness, we in particular suggest to
see Section I.6 for a necessary and sufficient condition for the existence of
optimal trajectories (namely the Pontryagin Maximum Principle).

4 The Hopf-Lax formula.

In this section we are going to study the Cauchy problem for first-order PDEs,
in the particular case when the Hamiltonian depends only on the gradient,
i.e.

H(x, z, p) = H(p).

This means we want to study the viscosity solution of the Cauchy problem:
{

ut + H(Du) = 0, x ∈ Rn, t > 0,

u(0, x) = g(x), x ∈ Rn.
(45)
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Let us assume that the Hamiltonian H is continuous and satisfies

p 1→ H(p) convex and lim
|p|→+∞

H(p)

|p| = +∞. (46)

Example 4.1. The main example to bear in mind is

H(p) =
1

α
|p|α, with α > 1. (47)

Example 4.2. Another family of Hamiltonians satisfying (46) is:

H(p) = eλ |p| + C,

for any λ > 0 and C ∈ R.

Next we recall the definition of the Legendre-Fenchel transform, which one
of the main notion in convex analysis.

Definition 4.1 (Legendre-Fenchel transform).
Let us assume that H : Rn → R is continuous, then we call Legendre-Fenchel
transform the following function:

H∗(q) = sup
q∈Rn

[q · p−H(p)]. (48)

Example 4.3. The Legendre-Fenchel transform of the Hamiltonian given by
formula (47) is

H∗(q) =
1

β
|q|β, (49)

where β = α
α−1 > 1.

In particular, whenever α = 2, then β = 2: therefore in this case H = H∗.

Proposition 4.1 (Properties of the Legendre-Fenchel transform). Under
assumptions (46), the same two properties are true for H∗, that means

q 1→ H∗(q) convex and lim
|q|→+∞

H∗(q)

|q| = +∞. (50)

Moreover H∗∗ = H; we say that the Legendre-Fenchel transform is involutive.

For a proof of the previous results, one can see the book of Evans (Theorem
3, Section 3.3).
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Using the above remark and setting L := H∗, we can write

H(p) = L∗(p) = sup
q∈Rn

{
p · q − L(q)

}
; (51)

in this way any Hamiltonian depending just on the gradient can be written
as a Hamiltonian of an Hamilton-Jacobi-Bellman equation and therefore as-
sociated to a control problem, with f(x, a) = −a, l(x, a) = L(a) = H∗(a)
and where a = q ∈ Rn. Then the set where the controls take values is a
priori not compact. Nevertheless, by the following remark we can partially
overcome such a problem.

Remark 4.1. By assumption (46) it is easy to show that the supremum in
(51) is attained in some compact K ⊂ Rn, i.e. there exists R >> 0 such that

H(p) = sup
q∈Rn

{
p · q − L(q)

}
= sup

q∈BR(p)

{
p · q − L(q)

}
. (52)

Note that in general the compact set where the supremum is attained depends
on p. If one can show that |Du| ≤ C, then p is in a compact set and the
supremum in (51) is attained in a compact set independent of p.

Let now write the associated control system and value function, which are,
respectively,

{
ẏ(t) = −α(t), t > 0

y(0) = x
=⇒ yα

x (t) = x−
t

0

α(s)ds;

and

v(t, x) = inf
α∈A

{ t

0

L(α(s))ds + g

(
x−

t

0

α(s)ds

)}
. (53)

Now we are going to manipulate the expression in (53), to write this in a
more “calculus of variation form”.

First we set y := x− t

0 α(s)ds and define ξ(s) := x− s

0 α(s′)ds;: note that

ξ(0) = x, ξ(t) = y and ξ̇(t) = −α(t), for any t > 0.
Let us denote by AC([0, +∞); Rn) the set of all the functions ξ : [0, +∞) →
Rn absolutely continuous.
Therefore, (53) can be written as

v(t, x) = inf

{ t

0

L
(
− ξ̇(s)

)
ds + g (y)

∣∣ ξ ∈ AC([0, +∞); Rn) ξ(0) = x, ξ(t) = y

}
.

(54)

34



Fix t > 0 and define w(s) := ξ(t− s), this new curve is such that

ẇ(s) = −ξ̇(s) = α(s), w(0) = y, w(t) = x.

Hence the infimum in (54) can be equivalently written as

v(t, x) = inf

{ t

0

L
(
ẇ(s)

)
ds + g (y)

∣∣ w ∈ AC([0, +∞); Rn) w(0) = y, w(t) = x

}
.

(55)
Note that, in the above formulation g is not anymore considered as “terminal
cost” but as “initial cost”.

In the next theorem, we show that the infimum given by (55) (which is an
infimum in an infinite-dimensional space) can indeed be expressed by an
infimum in Rn.

Theorem 4.1. Assuming H is continuous and convex, for any t > 0 and
any x ∈ Rn, if v(t, x) is the value function given in (55), then

v(t, x) = inf
y∈Rn

[
g(y) + tH∗

(
x− y

t

) ]
=: u(t, x). (56)

We call the infimum on the right-hand side Hopf-Lax function.

Proof. Recall that, by definition L(q) = H∗(q).

We first show that v(t, x) ≤ u(t, x).
Fix y ∈ Rn and look at w(s) := y + s(x− y)/t with 0 ≤ s ≤ t:
note that w is absolutely continuous and w(0) = y and w(t) = x, hence w is
a function as the ones considered in the infimum in (55). Then

v(t, x) ≤
t

0

L
(
ẇ(s)

)
ds + g(y) = tH∗

(
x− y

t

)
+ g(y).

Since this is true for any fixed y ∈ Rn, taking the infimum over y ∈ Rn, we
can conclude v(t, x) ≤ u(t, x).

We remain to prove that u(t, x) ≤ v(t, x).
Let now considering w absolutely continuous and such that w(t) = x, then
since L is convex we can apply Jensen inequality (for a proof see e.g. the
book of Evans, Appendix B , Theorem 2) and we get

H∗
(

1

t

t

0

ẇ(s)ds

)
≤ 1

t

t

0

H∗(ẇ(s)
)
ds =

1

t

t

0

L
(
ẇ(s)

)
ds.
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Since w(0) = y and w(t) = x, the left-hand side gives exactly

H∗
(

x− y

t

)
,

therefore it is immediate to conclude

u(t, x) ≤ g(y) + tH∗
(

x− y

t

)
≤

t

0

L
(
ẇ(s)

)
ds + g(y).

Since the previous inequality is true for any w absolutely continuous with
w(t) = x and w(0) = y, taking the infimum among all such w(·),
we can conclude u(t, x) ≤ v(t, x).

Remark 4.2. Under (46), u(0, x) = g(x), for any x ∈ Rn and for any t > 0.

Lemma 4.1. Under the assumptions (46) and assuming that

g : Rn → R is Lipschitz continuous and bounded, (57)

then, for any t > 0 and x ∈ Rn,

u(t, x) = min
y∈Rn

[
g(y) + tH∗

(
x− y

t

)]
. (58)

We leave the proof as an exercise.

Remark 4.3. Assuming H∗(0) = 0, then u(t, x) ≤ g(x). This property is
very useful to estimate the radius where the minimum above is attained.
If H∗(0) += 0, we get the more general bound: u(t, x) ≤ g(x) + tH∗(0).

Note that, since f(x, a) = −a and l(x, a) = L(a) = H∗(a) are continuous
and do not depend on x, they both satisfy in a trivial way the assumptions
required in the previous section. Then we can apply Theorems 3.1 and 3.2
and get that the Hopf-Lax formula (58) is the unique viscosity solution of
(45), but the assumption of compactness for the set A. Lipschitz functions
have bounded gradient at almost every points. This is not enough but we
assume that such a bound is at any point so that, by Remark 4.1, we can
apply the above Theorems and conclude the following result.

Theorem 4.2. Under assumptions (46) and (57), the Hopf-Lax formula (58)
is the unique viscosity solution of the Cauchy problem (45).
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You can find a rigourous proof of the above theorem in the book of Evans,
Section 10.2 Theorem 1 and Section 10.3, Theorem 3.
The proofs are very similar to the ones that we have showed in the previous
section.

The key point is to use the following functional identity:

u(t, x) = min
y∈Rn

[
u(s, y) + (t− s)H∗

(
x− y

t− s

)]
, (59)

for any x ∈ Rn and 0 ≤ s < t.

For a proof, see Lemma 1, Section 3.3 in the book of Evans.

Remark 4.4. Assuming H∗(0) = 0, then by (59), it easily follows that the
Hopf-Lax function is non increasing in t > 0.

Lemma 4.2. Under the assumptions (46) and H∗(0) = 0, if g : Rn → R
continuous and bounded, then the Hopf-Lax formula (58) is locally Lipschitz
continuous in Rn × [0, +∞).

Proof. Note that H∗ convex then H∗ locally Lipschitz continuous. We are
going to use this property in order to prove the same property for the Hopf-
Lax function w.r.t. x.
Let us fix t ∈ [0, T ] and x, y ∈ K with K compact set and let y ∈ Rn be a
point where the infimum for u(t, y) is attained. Then

u(t, x)− u(t, y) ≤ g(y) + tH∗
(

x− y

t

)
− g(y)− tH∗

(
y − y

t

)

= t

[
H∗

(
x− y

t

)
−H∗

(
y − y

t

)]

where we know that y ∈ BR(t)(y).
Note that y depends on t, too. Then if we show that ∀ t ∈ [0, T ] there exists
a compact K = K(T ) =⊂ Rn such that x, y, y ∈ K, using that H∗ is locally
Lipschitz, we can conclude

u(t, x)− u(t, y) ≤ LK |x− y − y + y| = LK |x− y|,

where LK = Lip(H∗; K) is the Lipschitz constant of H∗ in the compact set
K. Remember that the constant LK depends on K but also on T > 0.
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Thus, in order to get the Lipschitz continuity in space, we remain just to
prove that x, y, y ∈ K for some compact set K which depends just on T .
Let us introduce the function

G(r) := inf
p : |p|=r

H∗(p) = min
p : |p|=r

H∗(p).

There exists a point pr ∈ Rn such that |pr| = r such that H∗(pr) = G(r).
Note that

G(r)

r
=

H∗(pr)

|pr|
→ +∞, as r → +∞.

Therefore (by the definition of limit), for any L > 0 there exists r̃ = r̃(L) > 0
such that G(r)

r > L, for all r > r̃.
Now let us fix R > 1 such that R

T > r̃. Then for |x − y| > R, we get
|x−y|

t > R
T > r̃, which implies

tH∗
(

x− y

t

)
=

H∗ (
x−y

t

)

|x−y|
t

|x− y| ≥
G

(
|x−y|

t

)

|x−y|
t

|x− y| ≥ L R > L, (60)

since we have chosen R > 1.
Now let us consider L = L := 2 ‖g‖∞ and R := max{1; r̃(L)}.
Using (60) with L = L and R = R, we get that

u(t, x) ≥ g(x) + 2 ‖g‖∞ ≥ −‖g‖∞ + 2 ‖g‖∞ = ‖g‖∞ .

Since we know that u(t, x) ≤ g(x) (by the assumption H∗(0) = 0), then
u(t, x) ≤ ‖g‖∞, therefore the infimum in u(t, y) has to be attained in the
closed ball BR(y), for any t ∈ [0, T ], where R depends just on the datum
g(x) and on T > 0.

This shows the claim and therefore the Lipschitz continuity in space for the
Hopf-Lax function.

To show the Lipschitz continuity in time, we use the Functional Identity (59).

First note that, by Remark 4.4, u(t, x) is non-increasing in time.
Hence in order to get the local Lipschitz continuity in time, fixed x ∈ K ⊂ Rn

compact and t ∈ [0, T ], it is sufficient to find a constant C > 0 (depending
on T and K) such that u(t, x)− u(s, x) ≥ −C(t− s).

So let us fix T ≥ t > s ≥ 0 and let LK be the local Lipschitz constant of
the Hopf-Lax function u(t, x) w.r.t. the space-variable on the compact set
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KT , where KT ⊂ Rn is a compact set such that, for any s ∈ [0, T ] and for
any x ∈ K, the minimum points y(s) realizing the infimum in the Functional
Identity (59) belong to KT .

u(t, x) = min
y∈Rn

[
(t− s)H∗

(
x− y

t− s

)
+ u(s, y)− u(s, x)

]
+ u(s, x)

≥ min
y∈KT

[
−LK + (t− s)H∗

(
x− y

t− s

)]
.

Setting z = x−y
t−s , we can write

u(t, x) ≥ min
z∈Rn

[−LK(t− s)|z|+ (t− s)H∗(z)] =

− (t− s) max
z∈Rn

[
− LK |z|+ H∗(z)

]
= −(t− s) max

w∈BLK
(0)

max
z∈Rn

[
w · z −H∗(z)

]

= −(t− s) max
w∈BLK

(0)
|H(w)| = −C(t− s),

where C = maxw∈BLK
(0) |H(w)| > 0 which depends on H, K and T .

Therefore we can conclude

u(t, x)− u(s, x) ≥ −C(t− s),

which implies the local Lipschitz continuity in time, i.e.

|u(t, x)− u(s, x)| ≤ C|t− s|,

Example 4.4. Let us consider the following Cauchy problem




ut +

1

α
|Du|α = 0, t > 0, x ∈ Rn,

u(0, x) = g(x), x ∈ Rn.
(61)

then, for any α > 1 and g : Rn → R bounded and uniformly continuous, the
unique viscosity solution is given by

u(t, x) = inf
y∈Rn

[
g(y) +

|x− y|β

β tβ−1

]
. (62)
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Definition 4.2. In the particular case α = β = 2, formula (62) is known
as inf-convolution of the function g(x). We will study in more details this
particular case, in the next sections.

To conclude the section, we would like to quote the following more general
theorem, which we are going to use in the exercise-session.

Theorem 4.3 (Alvarez -Barron-Ishii, 1999). Let us consider the Cauchy
problem (45), assuming p 1→ H(p) continuous and convex and such that the
coercivity property (46) holds. Let be g : Rn → R continuous and such that

g(x) ≥ −C
(
|x|+ 1

)
, (63)

for some C > 1, then the (unique) viscosity solution of (45) if given by the
Hopf-Lax formula (58).

Lemma 4.3. Under (63), show that there exists C ′ > 0 such that the fol-
lowing holds for the Hopf-Lax formula (58):

u(t, x) ≥ −C ′(|x|+ t + 1
)
.

Proof. First note that, for any R > 0, you have:

tH∗
(

x− y

t

)
= sup

z∈Rn
[z · (x− y)− tH(z)]

≥ max
z∈BR(0)

[z · (x− y)− tH(z)] ≥ max
z∈BR(0)

[
z · (x− y)− t max

z∈BR(0)
H(z)

]

Let C(R) := maxz∈BR(0) H(z), then

u(t, x) ≥ inf
y∈Rn

[
−C − C |y|+ max

z∈BR(0)

[
z · (x− y)

]
− tC(R)

]

= inf
y∈Rn

[−C − C |y|+ R |x− y|− tC(R)]

≥ inf
y∈Rn

[−C − C |x|− C |x− y|+ R |x− y|− tC(R)] .

Choosing R = C, one can conclude.

In the Exercises we will show further properties of the Hopf-Lax function.
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5 Convexity and semiconvexity

5.1 Viscosity characterization of convex functions.

Let us start recalling the definition of convexity in Rn.

Definition 5.1 (Convexity). We say that a function u : Rn → R is convex,
if for any x, y ∈ Rn and for any λ ∈ (0, 1), then

u(λx + (1− λ)y) ≤ λu(x) + (1− λ)u(y). (64)

A continuous function u is concave if −u is convex.

We remind that a n× n-matrix M is non-negative definite, whenever

aT Ma =
〈
Ma, a

〉
≥ 0, ∀ a ∈ Rn.

It is well-known that any matrix M can be written as M = S + A,
where S is symmetric while A is antisymmetric.
Note: aT Ma = aT Sa, for any a ∈ Rn.
Moreover, given any n×n-matrix M , this is non-negative definite if and only
if the minimum eigenvalue of the symmetric part of M is non-negative.

Lemma 5.1. Let be u ∈ C2(Rn), then u is convex in Rn if and only if
D2u(x) ≥ 0, for any x ∈ Rn.

Proof. Let us assume that u ∈ C2(Rn) is convex; in particular

u

(
y1 + y2

2

)
≤ u(y1) + u(y2)

2
, ∀ y1, y2 ∈ Rn.

Let us fix x, a ∈ Rn and ε > 0, we can write the previous inequality for
y1 = x + εa and y2 = x− εa, which means

u(x) = u

(
(x + εa) + (x− εa)

2

)
≤ u(x + εa) + u(x− εa)

2

≤ u(x) + εDu(x) · a + ε2aT D2u(x)a + u(x)− εDu(x) · a + ε2aT D2u(x)a + o(ε2)

2
= u(x) + ε2aT D2u(x)a + o(ε2), (65)

where we have used the Taylor’s expansion of order 2 centered at x for both
u(y1) and u(y1). Hence by (65), we can deduce

ε2aT D2u(x)a + o(ε2) ≥ 0,
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which implies aT D2u(x)a ≥ 0, just dividing by ε2 and passing to the limit
as ε → 0+. This concludes one implication.

To show the reverse implication, we first assume that the implication is true
in the 1-dimensional case. A way to prove this claim is to use the geometric
properties for 1-dimensional convex functions w.r.t. the secant and the Mean
Value Theorem.

Assuming the result for n = 1, it is easy to show the same for n > 1.
In fact, let us assume that D2u(x) ≥ 0: we want to show that u is convex,
which is equivalent to prove that, for any x, y ∈ Rn, the function

G(λ) := u(λx + (1− λ)y)− λu(x)− (1− λ)u(y)

is non-positive in [0, 1].
First note that G(0) = G(1) = 0. Moreover, set z := λx + (1− λ)y, then

G′′(λ) = (x− y)T D2u(z)(x− y) ≥ 0, for any λ ∈ (0, 1).

Hence G(λ) is convex in (0, 1), which implies

G(λ) = G(λ 1 + (1− λ) 0) ≤ λG(1) + (1− λ)G(0) = 0,

which concludes the proof.

A similar characterization holds for functions which are just continuous.

Definition 5.2 (Convexity in the viscosity sense). We say that a continuous
function is convex in the viscosity sense if

−D2u(x) ≤ 0, in the viscosity sense, (66)

which means
D2ϕ(x0) ≥ 0,

for any ϕ ∈ C2(Rn) such that u− ϕ has a local maximum at x0.

A continuous function is said concave in the viscosity sense if

−D2u(x) ≥ 0, in the viscosity sense, (67)

which means
D2ϕ(x0) ≤ 0,

for any ϕ ∈ C2(Rn) such that u− ϕ has a local minimum at x0.
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Remark 5.1. A continuous function u is convex in the viscosity sense if and
only if −u is concave in the viscosity sense.

Theorem 5.1 (Alvarez-Lasry-Lions, 1997). Let be u ∈ C(Rn), then u is
convex if and only if u is convex in the viscosity sense.
The corresponding result holds for concave functions.

Proof: “u convex =⇒ u convex in the viscosity sense”.
The proof is exactly the same that we have seen for the smooth case but
applied to the test-functions.
Then let be x0 ∈ Rn and ϕ ∈ C2 such that u(x0) = ϕ(x0) and u(x) ≤ ϕ(x)
for x near x0 and let us look at y1 = x0 + εa and y2 = x0 − εa, with a ∈ Rn

arbitrary and ε > 0 sufficiently small; the convexity of u implies

u(x0) = u

(
y1 + y1

2

)
≤ u(y1) + u(y2)

2
≤ ϕ(y1) + ϕ(y2)

2
.

Applying the Taylor’s expansion of order 2 centered at x0 to the C2-test
function ϕ, respectively at the points y1 and y2, we can conclude.

Proof: “u convex in the viscosity sense =⇒ u convex”.
This implication is much more complicate. We show this just for n = 1.
In the 1-dimensional case, the proof is very similar to the one already showed
to characterize monotone functions, in the viscosity sense.
We argue by contradiction: let us suppose that there exist t1 < t3 and
λ ∈ (0, 1) such that

u(t2) > λu(t1) + (1− λ)u(t3),

where t2 = λt1 + (1 − λ)t3. Note that it is possible to find ϕ ∈ C2 with
ϕ′′ < 0 (i.e. strictly concave) in (t1, t3) such that

ϕ(t1) = u(t1),

ϕ(t3) = u(t3),

ϕ(t2) < u(t2).

Therefore there exists a t ∈ (t1, t3) which is (local) maximum point for u−ϕ.
Since by hypotesis −u′′ ≤ 0 in the viscosity sense, then −ϕ′′(t) ≤ 0 but this
contradicts the fact that ϕ is a strictly concave function in (t1, t3).

Example 5.1. Note that u(x) = |x| is convex in the viscosity sense in the
whole Rn. In fact, there are not test-functions touching u from above at 0,
so the subsolution-property is trivially satisfied at 0 (try for exercise with
n = 1). Moreover outside the origin the function is smooth and linear and
therefore D2u(x) = 0, for any x += 0.
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5.2 Semiconcavity and semiconvexity

Definition 5.3 (Semiconcave and semiconvex functions). Let be u : Rn → R
continuous, then u is semiconcave if and only if there exists C ≥ 0 such that

u(x + h) + u(x− h)− 2u(x) ≤ C|h|2, ∀ x, h ∈ Rn. (68)

The constant C is called semiconcavity constant of u.
A continuous function u is semiconvex if −u is semiconcave.

Proposition 5.1 (Characterization of semiconcave functions.). Given a con-
tinuous function u : Rn → R, then the following are equivalent:

(i) u is semiconcave with constant C ≥ 0 (i.e. (68) holds);

(ii) For any x, y ∈ Rn and for any λ ∈ (0, 1), it holds:

λu(x) + (1− λ)u(y) + u(λx + (1− λ)y) ≤ C
λ(1− λ)

2
|x− y|2; (69)

(iii) The function v(x) := u(x)− C
2 |x|

2 is concave;

(iv) The following viscosity inequality holds:

−D2u(x) + C In ≥ 0, in the viscosity sense. (70)

where by In we indicate the n× n-identity-matrix.

Proof. Let us first show that (i) is equivalent (iii). Let us assume (i), an
easy calculation shows that:

v(x + h) + v(x− h)− 2v(x) = u(x + h) + u(x− h)− 2u(x)+

− C

2

(
|x + h|2 + |x− h|2 − 2|x|2

)
≤ C|h|2 − C|h|2 = 0. (71)

The inequality (71) is equivalent to the concavity property (see Proposi-
tion A.1.2. in the book of Cannarsa and Sinestrari “Semiconcave Functions,
Hamilton-Jacobi Equations, and Optimal Control”).
The reverse implication is exactly the same, therefore (i) are (iii) equivalent.

The equivalence between (iii) and (iv) follows directly by Theorem 5.1.

We remain to prove the equivalence between (ii) and (iii), which come from
the identity

λ|x|2 + (1− λ)|y|2 + |λx + (1− λ)y|2 = λ.

Therefore an easy calculation shows that (ii) and the concavity for v(x) =
u(x)− C

2 |x|
2 are equivalent.
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Example 5.2. Let be u(x) = |x|, then u is not semiconcave at the origin.
In fact (70) does not hold for any C > 0 at x = 0. Let be C > 0 and
ϕ(x) = C|x|2. Note that u−ϕ has a local minimum at 0; in fact u(0) = ϕ(0)
and, let us choose |x| ≤ 1

C , then ϕ(x) = C|x|2 ≤ C 1
C |x| = u(x).

To conclude is sufficient to remark that D2ϕ(x) = 2C In > C In and this
implies that u is not semiconcave at 0.

Example 5.3. Let be u(x) = |x|2 ∈ C2(Rn) and D2u(x) = 2In at any point
x ∈ Rn. Therefore u is both semiconcave and semiconvex.

Remark 5.2. Any C2-function is both semiconcave and semiconvex in any
bounded domain in Rn. Moreover if a function is both semiconcave and
semiconvex, one can always assume that the semiconvexity constant and
semiconcavity constant are the same.

The following result states, in some sense, a reverse implication for the above
remark.

Theorem 5.2. [Cannarsa-Sinestrari, “Semiconcave Functions, Hamilton-
Jacobi Equations, and Optimal Control” Section 3, Corollary 3.3.8.]
If u : Rn → R is both semiconvex and semiconcave with constant C ≥ 0,
then u ∈ C1,1(Rn) and the Lipschitz constant of Du is equal to C ≥ 0.

Remark 5.3. Theorem 5.2 implies in particular that any function, which is
semiconcave and semiconvex, has continuous first-order derivatives but it is
also twice-differentiable almost everywhere.

Proposition 5.2 (Semiconcavity property of the Hopf-Lax formula).
Let assume that g : Rn → R is bounded continuous and semiconcave with
constant C ≥ 0. The the Hopf-Lax formula u(t, x) given by (58) is semicon-
cave with the same constant C ≥ 0.

Proof. The proof is immediate. Let us consider a point y ∈ Rn such that
u(t, x) = g(y)+tH∗ (

x−y
t

)
, then choosing y = y+h and y = y−h to estimate

respectively u(t, x + h) and u(t, x− h), one can deduce:

u(t, x + h) + u(t, x− h)− 2u(t, x)

≤ g(y+h)+tH∗
(

x− y

t

)
+g(y−h)+tH∗

(
x− y

t

)
−2g(y)−2tH∗

(
x− y

t

)

= g(y + h) + g(y − h) +−2g(y) ≤ C|h|2.

We conclude this section observing that all the above results can be state
also for functions defined in convex bounded domains of Rn.
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5.3 Application to inf-convolution and sup-convolution.

Here we apply the results showed in the previous section to the particular
case of the inf-convolution and the sup-convolution.

Given a function g : Rn → R bounded and continuous, we remind that
the inf-convolution is the particular case of the Hopf-Lax formula (62) with
β = 2, where the time-variable is considered as a parameter.
Let us give the definitions more precisely.

Definition 5.4 (inf-convolution). For any ε > 0, the inf-convolution of the
function g is defined as:

gε(x) = inf
y∈Rn

[
g(y) +

|x− y|2

2ε

]
. (72)

Analogously one can introduce the sup-convolution of the function g.

Definition 5.5 (sup-convolution). For any δ > 0, the sup-convolution of the
function g is defined as:

gδ(x) = sup
y∈Rn

[
g(y)− |x− y|2

2δ

]
. (73)

The next Lemma shows that the inf-convolution and sup-convolution are
approximations of the function g and states some their basic properties.

Lemma 5.2. Given a continuous function g : Rn → R,
the following properties are true:

(i) If g(x) is bounded by a constant G, then gε(x) and gδ(x) are both
bounded by the same constant G. Moreover they are both locally
Lipschitz.

(ii) If g(x) is bounded then the infimum in (72) and the supremum in (73)
are both attained in some points yε and yδ which, respectively, belong
to the balls B√

4 ‖g‖∞ ε
(x) and B√

4 ‖g‖∞ δ
(x).

(iii) If g(x) is Lipschitz with constant L, then gε(x) and gδ(x) are both
Lipschitz with the same constant.

(iv) gε(x) and gδ(x) are both approximations of g, i.e.

lim
ε→0+

gε(x) = g(x), and lim
δ→0+

gδ(x) = g(x).
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Proof. One can prove the above properties exactly as we have done for the
corresponding properties for the Hopf-Lax formula. So we leave those by
exercise.

The main result we are going to prove for the inf-convolution and sup-
convolution is that, applying twice these regularizations to any bounded and
continuous function g, one can get a C1,1-approximation of g.
The idea is to show that the following functions are both semiconcave and
semiconvex, for a suitable choice of the parameters ε > 0 and δ > 0.

(gδ(x))ε = inf
y∈Rn

[
gδ(y) +

|x− y|2

2ε

]
= inf

y∈Rn
sup
z∈Rn

[
g(z)− |y − z|2

2δ
+
|x− y|2

2ε

]
,

(gδ(x))ε = sup
y∈Rn

[
gδ(y)− |x− y|2

2ε

]
= sup

y∈Rn
inf

z∈Rn

[
g(z) +

|y − z|2

2δ
− |x− y|2

2ε

]
.

The following properties hold also for the Hopf-Lax formula, under suitable
assumptions on the Hamiltonian H and it follows immediately by the stability
of viscosity supersolutions and viscosity subsolutions, respectively, w.r.t. the
operation of infimum and supremum.

Lemma 5.3. Let be F a family of continuous functions v : Rn → R.

(i) If for any v ∈ F , v(x) is semiconvex with semiconvexity constant C ≥ 0,
then u(x) := supv∈F v(x) is semiconvex with the same semiconvexity
constant.

(i) If for any v ∈ F , v(x) is semiconcave with semiconcavity constant C ≥ 0,
then u(x) := supv∈F v(x) is semiconcave with the same semiconcavity
constant.

Proof. Let us show (i). We use the characterization of semiconvex functions
by property (iv) of Proposition 5.1 and the stability of subsolution with
respect to the operation of supremum (Proposition 2.3) and the result follows
immediately. The other one is similar.

Corollary 5.1. Given any initial datum g, for any ε > 0 and δ > 0, the
inf-convolution gε(x) is semiconcave with semiconcavity constant 1/ε while
the sup-convolution gδ(x) is semiconvex with semiconvexity constant 1/δ.

Proof. For any fixed ε > 0, δ > 0 and y ∈ Rn, setting

F y
1 (x) := g(y) +

|x− y|2

2ε
and F y

2 (x) := g(y)− |x− y|2

2δ
,
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note that

D2F y
1 (x) =

1

ε
In and D2F y

2 (x) = −1

δ
In,

where In is the identity-n× n-matrix.
Therefore F y

1 (x) and F y
2 (x) are both semiconvex and semiconcave for any

y ∈ Rn. By applying Lemma 5.3 we can conclude the corollary.

Now we need to prove the following theorem. For sake of simplicity, let us
first define:

gΦ(x) := inf
y∈Rn

[
g(y) + Φ(x− y)

]
. (74)

Definition 5.6. A function Φ(x) is uniformly convex if there exists C > 0
such that Φ(x)− C

2 |x|
2 is convex.

Whenever Φ ∈ C2(Rn), to be uniformly continuous is equivalent to require
that D2Φ(x) ≥ C > 0 while if the function is just continuous to be uniformly
convex is equivalent to −D2Φ(x) ≤ −C < 0, in the viscosity sense.

Remark 5.4. Note that in the case of the inf-convolution, we have

Φ(x) =
|x|2

2ε

therefore on this case Φ is uniformly convex with constant C = 1
ε .

Theorem 5.3. Let g : Rn → R continuous and bounded. Let us assume
that Φ is uniformly convex w.r.t. a constant C > 0 and that g is semiconvex
with semiconvexity constant B ≤ 0.
If B < C, then gΦ is semiconvex with constant C̃ := BC

C−B .

Remark 5.5. An analogous result holds for gΦ = supy∈Rn

[
g(y)+Φ(x− y)

]
,

assuming Φ uniformly concave and g semiconcave.
This case can be applied to the sup-convolution where Φ(x) = − |x|2

2δ is a
uniformly concave function with constant C = 1

δ .

Before proving the previous theorem, we are going to show how to apply this
to get the C1,1-regularity for the functions (gδ(x))ε and (gδ(x))ε.

Corollary 5.2. Given g : Rn → R continuous and bounded,
whenever δ > ε > 0, the functions

(
gδ(x)

)
ε

and
(
gδ(x)

)ε
are C1,1(Rn).

Proof. Note first that, by Corollary 5.1 gδ(x) is semiconvex with semiconvex-

ity constant B = 1
δ . Moreover, Remark 5.4 tells that Φ(x) = |x|2

2ε is uniformly
convex with constant C = 1

ε . Therefore, whenever 1
δ < 1

ε , i.e. δ > ε, we can
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apply Theorem 5.3 and we get that
(
gδ(x)

)
ε

is semiconvex.
Using again Corollary 5.1, we know also that

(
gδ(x)

)
ε

is semiconcave since
it is an inf-convolution. Then Theorem 5.2 implies that

(
gδ(x)

)
ε
∈ C1,1(Rn).

Similarly one can proceed to show that
(
gδ(x)

)ε ∈ C1,1(Rn).

Example 5.4. In the Exercises 9.21 and 9.22, we give some explicit exam-
ples of the previous result.

In particular we show that, starting from the function g(x) = |x| /∈ C1(Rn)
or from the g(x) = −|x| /∈ C1(Rn), if δ > ε > 0, then the sup-inf-convolution(
gδ(x)

)ε
is C1,1(Rn) (but in general not C2(Rn)).

To conclude we remain just to prove Theorem 5.3.

Proof Theorem 5.3. Note that, by setting x1 = x + h and x2 = x − h in
(68), to prove that gΦ(x) is semiconvex is equivalent to prove that, for any
x1, x2 ∈ Rn,

gΦ(x1) + gΦ(x2)− 2gΦ

(
x1 + x2

2

)
≥ −C̃

∣∣∣∣
x1 − x2

2

∣∣∣∣
2

(75)

for some C̃ > 0.

To estimate gΦ(x1) + gΦ(x2) − 2gΦ

(
x1+x2

2

)
from below we choose the two

points y1 and y2, realizing respectively the infimum in (74) with x = x1 and
x = x2. Moreover note that

−2gΦ

(
x1 + x2

2

)
≥ g(y) + Φ

(
x1 + x2

2
− y

)
, ∀ y ∈ Rn.

So in particular we can choose y = y1+y2

2 and we get

gΦ(x1)+gΦ(x2)−2gΦ

(
x1 + x2

2

)
≥ Φ(x1−y1)+Φ(x2−y2)−2Φ

(
x1 + x2

2
− y1 + y2

2

)

+ g(y1) + g(y2)− 2g

(
y1 + y2

2

)
=: IΦ + Ig, (76)

where IΦ is the sum of the first three terms on the right-hand side while Ig

is the sum of the first three ones.

Let us first estimate IΦ.
We claim that, by the uniform convexity assumption on Φ, we have

IΦ ≥
C

2

(
|x1 − y1|2 + |x2 − y2|2 − 2

∣∣∣∣
x1 − y1

2
− x2 − y2

2

∣∣∣∣
2
)

. (77)
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To check the claim (77), note that

x1 + x2

2
− y1 + y2

2
=

x1 − y1

2
+

x2 − y2

2

and then write the definition of convexity for the function Φ(x) − C
2 |x|

2 in
such mid-point.

Then by using the following identity

C

2

(
|x1 − y1|2 + |x2 − y2|2 − 2

∣∣∣∣
x1 − y1

2
− x2 − y2

2

∣∣∣∣
2
)

=
C

4

(
|x1 − x2|2 + |y1 − y2|2 − 2

〈
x2 − x1, y2 − y1

〉)

≥ C

4

(
|x1 − x2|2 + |y1 − y2|2 −

C

C −B
|x1 − x2|2 −

C −B

C
|y1 − y2|2

)

=
BC

C −B
|x1 − x2|2 + B|y1 − y2|2, (78)

where we have used that
〈
x2 − x1, y2 − y1

〉
= λ|x2 − x1|2 + 1

λ |y2 − y1|2, for
any λ > 0 and we have chosen λ = C

C−B which is positive and well-defined
since the assumption C > B ≥ 0.

Using (78) in (77), we can deduce

IΦ ≥
BC

C −B
|x1 − x2|2 + B|y1 − y2|2.

We remain to estimate Ig using the semiconvexity assumption on g,
which tells:

Ig ≥ −B|y1 − y2|2,

hence, by (76), we conclude

gΦ(x1) + gΦ(x2)− 2gΦ

(
x1 + x2

2

)
≥ IΦ + Ig

≥ BC

C −B
|x1 − x2|2 + B|y1 − y2|2 −B|y1 − y2|2 =

BC

C −B
|x1 − x2|2,

which gives exactly (75) with C̃ = BC
C−B ≥ 0.
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6 Discontinuous viscosity solutions.

The theory of viscosity solutions can be applied to discontinuous functions,
too. We already remarked that the necessary regularity to state the subso-
lution requirement is the upper semicontinuity since we have to work with
maximum points. Analogously, the necessary regularity for the supersolution
requirement is the lower semicontinuity since this condition is related to test-
ing at minimum points. For the notion of lower and upper semicontinuous
functions and some examples, see the Appendix.
The previous remark is the key-point in order to introduce a definition of
viscosity solutions for discontinuous functions.

Let us first recall the definition of upper and lower semicontinuous envelopes
of a function u : Rn → R, which are, respectively, given by

u∗(x) : = inf{v(x) | v ≥ u and v lower semicontinuous}
= lim sup

ε→0+

{u(y) | |x− y| ≤ ε},

and

u∗(x) : = sup{v(x) | v ≤ u and v upper semicontinuous}
= lim inf

ε→0+
{u(y) | |x− y| ≤ ε}.

Definition 6.1. Let u : Rn → R be an a priori discontinuous function, then
u is a (discontinuous) viscosity solution of

F (x, u(x), Du(x), D2u(x)) = 0, (79)

if and only if,

(i) u∗ is a viscosity subsolution for the equation (79),

(ii) u∗ is a viscosity supersolution for the equation (79).

Remark 6.1. It is immediate to note that if u is continuous, then the previ-
ous definition is exactly the standard definition of viscosity solution, (in fact:
u = u∗ = u∗ whenever u is a continuous function).

In the discontinuous case, many of the results shown in the continuous case,
still hold.

More information on discontinuous viscosity solutions can be found in the
book of Bardi and Capuzzo Dolcetta and in the book of Barles “Solutions
de Viscosité des Équations de Hamilton- Jacobi” and in the paper of Barles
“Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations:
a guided visit” (1993).
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7 An example of degenerate elliptic PDE.

7.1 Elliptic and degenerate elliptic second-order PDEs.

A general theory for the viscosity solutions for second-order PDEs, under
the assumptions (9) and (10), can be found in the “User’s guide to viscos-
ity solutions of second order partial differential equations” by Crandall, Ishii
and Lions. Moreover we refer to the book of Caffarelli and Cabrè “Fully
Nonlinear Elliptic Equations”, too, where one can find a complete regularity
theory for second-order, fully nonlinear, uniformly elliptic, PDEs.

We would like to recall that a nonlinear PDE is called fully nonlinear if it
is nonlinear in the highest order part; e.g. ∆∞u = 0 is fully nonlinear while
∆u + |Du| = 0 is nonlinear but it is not fully nonlinear.

Moreover, assuming for sake of simplicity F (D2u(x)) = f(x), a second-order
PDE is uniformly elliptic if there exist two constants 0 < λ ≤ Λ (which are
called constants of ellipticity) such that

λ ‖N‖ ≤ F (M)− F (M + N) ≤ Λ ‖N‖ , ∀N ≥ 0. (80)

Note in particular that λ ‖N‖ ≥ 0, which implies F (M) ≥ F (M + N).
Hence a uniformly elliptic PDE in particular satisfies assumption (9), too.

Here we are interested in understanding what happens if the function
F (x, z, p,M) is not continuous w.r.t the variables p and/or M (which means
that the equation is not continuous w.r.t. to the first-order and/or the second-
order derivatives).
Next we give the definition of viscosity solutions in this degenerate case.
For more information on a theory of viscosity solutions for a large class of
degenerate elliptic PDEs, we refer to the book of Giga “Surface Evolution
Equations”.

Note that, for sake of simplicity, we omit to consider the case of equation
depending on u, i.e. we assume F (x, z, p,M) = F (x, p,M).

Definition 7.1. Let us look at the equation

F (x, Du(x), D2u(x)) = 0, x ∈ Ω, (81)

with F (x, p, M) a priori discontinuous w.r.t. the variables p and M .
Given a continuous function u : Ω → R, we say that u is a viscosity solution
of (81) if and only if
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(i) u is a viscosity subsolution of the equation

F∗(x, Du(x), D2u(x)) = 0, x ∈ Ω,

where

F∗(x, p,M) = lim inf
ε→0+

{
F (q, N) | |p− q| ≤ ε, ‖N −M‖ ≤ ε};

(ii) u is a viscosity supersolution of the equation

F ∗(x, Du(x), D2u(x)) = 0, x ∈ Ω,

where

F ∗(x, p,M) = lim sup
ε→0+

{
F (q, N) | |p− q| ≤ ε, ‖N −M‖ ≤ ε}.

We recall that, if u : Ω → R is discontinuous on Ω, we require the property
(i) for the upper semicontinuous envelope u∗ and the property (ii) for the
lower semicontinuous envelope u∗.

In particular, existence results and comparison principles hold for the vis-
cosity solutions of the previous equation, whenever F (x, p,M) = F (p, M)
satisfies the degenerate elliptic assumption (9) and the following geometric
condition:

F
(
µ p, µ M + α p⊗ p

)
= µ F (p, M), (82)

for any µ > 0, α ∈ R, p ∈ Rn with p += 0 and M symmetric n × n-matrix,
and where p⊗ p is the n× n matrix defined by p⊗ p := p pT .

We want also to point out that an analogous definition and similar existence-
results and uniqueness-results can be given in the case of an evolution equa-
tion:

ut + F (x, Du,D2u) = 0,

with F (x, p, M) degenerate elliptic.

In the next sections we are going to study a particular degenerate elliptic
PDE: the level-set equation for the evolution by mean curvature flow.
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7.2 The geometric evolution by mean curvature flow.

Let Σ ⊂ Rn be an hypersurface, i.e.dim Σ = n− 1 (for sake of simplicty, one
may think of the case n = 3, then Σ is a surface).
From now on, we assume n ≥ 2.

Let us indicate by n(x) the external normal at the point x ∈ Σ, we recall the
definition of mean curvature for a hypersurface Σ ⊂ Rn, which is the scalar
defined, at any point x ∈ Σ, as

k(x) := div(n(x)).

Remark 7.1. In geometry the mean curvature is defined as the mean of the
principal curvatures at any point x ∈ Σ, i.e.

k̃(x) :=
k1(x) + · · ·+ kn(x)

n
,

where k1(x), . . . , kn(x) are the principal curvatures at the point x.
Note that k(x) = n k̃(x), so they differ just by a constant.

The curvature vector is given by

k(x) := k(x)n(x) = div(n(x))n(x).

Example 7.1 (The sphere). Let us consider a sphere Sn−1
R (p) := ∂BR(p),

which is a hypersurface in Rn. Without loss of generality, we may assume
p = 0. Then the external normal, at any point x, is given by n(x) = x

|x|
(recall that, if x ∈ Sn−1

R (0), |x| = R).
So an easy calculation shows that

k(x) = div(n(x)) = div

(
x

|x|

)
=

n− 1

|x| =
n− 1

R
.

Exercise 7.1. For R > 0, calculate the mean curvature of the cylinder
CR := {(x, y, z) ∈ R3 |x2 + y2 = R2}.

Definition 7.2 (Evolution by mean curvature flow). Given a hypersurface
Σ0 ⊂ Rn, we say that a family of hypersurfaces {Σ(t)}t≥0 is an evolution by
mean curvature flow of the initial hypersurface Σ0, if and only if

(i) Σ(0) = Σ0;
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(ii) Recalling that the normal velocity at a point x(t) is defined as vn(x(t)) =(
ẋ(t) · n(x(t))

)
n(x(t)) then, for any x(t) ∈ Σ(t),

vn(x(t)) = −k(x(t)),

which means ẋ(t) · n(x(t)) = −k(x(t)).

Remark 7.2. The evolution by mean curvature flow is related to hypersur-
faces which evolve trying to minimize the area. In fact the mean curvature
flow is the gradient flow of the area-functional.

Let us now consider a particular family of evolving hypersurfaces: the hy-
persurfaces evolving without changing their shapes.

Definition 7.3 (Homotetic solutions). A family of hypersurfaces {Σ(t)}t≥0 is
a homotetic solution (or also self-similar solution) of the evolution by mean
curvature flow from an initial hypersurface Σ0, if there exists a family of
numbers λ(t) > 0 such that λ(0) = 1 and

Σ(t) := λ(t)Σ0 = {(x1(t), . . . , xn(t)) = (λ(t) x1, . . . ,λ(t) xn) | (x1, . . . , xn) ∈ Σ0}

is an evolution by mean curvature flow of Σ0.

Example 7.2 (The sphere). The sphere is a homotetic solution (Fig. 1),
therefore Σ(t) = ∂BR(t)(p). We assume that the initial hypersurface is Σ0 =
∂BR0(p), i.e. R(0) = R0. The normal velocity is Ṙ(t), so if Σ(t) ⊂ Rn

is an evolution by mean curvature flow of Σ0, we can deduce the following
differential equation for the radius R(t):

Ṙ(t) = −k(x(t)) = −n− 1

R(t)
, with R(0) = R0.

Solving the previous equation, we find

R(t) =
√

R2
0 − 2(n− 1)t .

Note that

R( t̂ ) = 0 ⇐⇒ t̂ =
R2

0

2(n− 1)
.

When the radius R(t) degenerates to 0, the hypersurfaces shrink in the center.
There the evolution expires since a point is not anymore a hypersurface.
The time t̂ > 0 is called expiration time.

More in general we may introduce the following notion.
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Definition 7.4. The expiration time is the time t̂ > 0 satisfying

dim
(
Σ( t̂ )

)
≤ n− 2 and dim

(
Σ(t)

)
= n− 1, for any 0 ≤ t < t̂.

At the expiration time the evolution expires since Σ( t̂ ) is not anymore a
hypersurface in Rn.

Exercise 7.2. Assuming that the cylinder CR := {(x, y, z) ∈ R3 |x2 + y2 =
R2} is a homotetic solution of the evolution by mean curvature flow, find
λ(t) and the expiration time (Fig. 2).
Note that in this case the surface shrinks in a line and not in a point.

In the book of Ecker “Regularity Theory for Mean Curvature Flow”, it is
proved that, if we assume that k(x(t)) > 0 for any x(t) ∈ Σ(t) and that Σ(t)
is a smooth hypersurface for any t > 0, then the unique homotetic solutions
of the evolution by mean curvature flow are the spherical cylinders, which
are hypersurfaces in Rn defined, for any 0 ≤ k ≤ n, as

Cn,k(t) := ∂Bn+1−k
R(t) × Rk.

Note that if k = 0 then Cn,0(t) is a sphere in Rn while, whenever n = 3 and
k = 1, we get a classical cylinder in R3.

We conclude giving briefly some examples of surfaces evolving by mean cur-
vature flow. More details (and nice pictures, too) can be found in the book
of Ecker.

Example 7.3 (Tori). A torus evolving by mean curvature flow evolves in tori
(but not in self-similar tori) until it shrinks in a S1 or in a point, depending
on the relationship between the two radius defining the initial torus (i.e.
depending “how much fat the initial torus is”), see Figures 3 and 4.

Example 7.4 (Convex sets). A convex set in general evolves trying to get
as much similar as possible to a sphere and then it shrinks, in finite times,
in some internal point.

Problems can arise when the starting evolving hypersurface is not convex.

Example 7.5 (The dumbbell). A dumbbell can build as two spheres (with
equal radius) connected by a thin cylinder. Assuming that the two spheres
are very big, while the cylinder is long enough and thin enough, it is easy to
understand the corresponding evolution by mean curvature flow.
In fact, the cylinder shrinks very fast in a line while the two balls evolve
very slowly in almost self-similar balls. Therefore after a while the dumbbell
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shrinks in two disconnected balls. In that moment an meaningful topological
change occurs and it is not possible to speak anymore of normal vector or
curvature vector. Then the two spheres go on evolving separately until they
shrink in two different internal points (see Fig. 5).

PP P

Figure 1: The sphere evolving by mean curvature flow.

P P P

Figure 2: The cylinder evolving by mean curvature flow.

1
R

R
1

2

S

Figure 3:The torus evolving by mean curvature flow withR1 << R2.
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P

R

R

2

1

Figure 4: The torus evolving by mean curvature flow with R1 ≈ R2.

P Q

Figure 5: The dumbbell evolving by mean curvature flow.

The example of the dumbbell can be made easily in a smooth hypersurface
and the corresponding evolution does not change significantly.
Therefore, even initial smooth hypersurfaces, evolving by mean curvature
flow, can generate singularities in finite times.

To try to overcome this problem, several weak notions of evolution by mean
curvature flow were introduced in the years. We are going to study the, so
called, evolution by level-sets.
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7.3 The level-set equation.

The level-set approach was introduced in 1991, independently, by Evans and
Spruck and by Chen, Giga and Goto.

The idea is to write the initial hypersurface Σ0 and the evolving family of
hypersurfaces {Σ(t)}t≥0 as level-sets of suitable functions, which means

Σ0 = {x ∈ Rn |u0(x) = 0} and Σ(t) = {x ∈ Rn |u(t, x) = 0},

for some u0 : Rn → R and u : [0, t̂ ] → Rn where t̂ is the expiration time of
the evolution.

Assuming that Σ(t) is an evolution by mean curvature flow of Σ0, we derive
the PDE solved by u.

Let us assume that all the hypersurfaces involved are smooth, we observe
that x(t) ∈ Σ(t) if and only if u(t, x(t)) = 0, for any t ∈ [0, t̂ ], which implies

d

dt
u(t, x(t)) = 0. (83)

Note also that equation (83) is indeed equivalent to the fact: x(t) ∈ Σ(t), if
we consider every constant-level sets instead of just the zero-level sets.

Equation (83) is equivalent to

ut + Du · ẋ(t) = 0. (84)

Since Σ(t) are evolving by mean curvature flow, by Definition 7.2 we know
that the normal velocity at any point is equal to minus the mean curvature
at that point.

We recall that, whenever a hypersurface is defined as the zero-level set (or
more in general the constant-level set) of some function, then the external
normal direction is given by the renormalized gradient of the function at such
a point, i.e.

n(x) =
Du(x)

|Du(x)| .
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This gives the following computations:

Du · ẋ(t) = −|Du| |vn(x(t))| = −|Du|k(x(t)) = −|Du|div

(
Du

|Du|

)

= −|Du|
(

div(Du)

|Du| − (Du)T D2u
Du

|Du|3

)
= −∆u +

〈
D2u

Du

|Du| ,
Du

|Du|

〉

= −∆u + ∆∞u,
(85)

where ∆u is the standard Laplacian of u while ∆∞u is the, so called, infinite-
Laplacian of u.

Using (85) in (84), we find that u(t, x) solves the following PDE:

ut −∆u + ∆∞u = 0. (86)

The previous nonlinear second-order PDE is called level-set equation for the
evolution by mean curvature flow.

Next we introduce the following weak notion for the evolution by mean cur-
vature flow, using the viscosity solutions of the level-set equation (86).

Definition 7.5. Given an initial continuous function u0 : Rn → R, we
say that {Σ(t)}t≥0 is a generalized evolution by mean curvature flow of the
initial hypersurface Σ0 = {x ∈ Rn |u0(x) = 0} if and only if Σ(t) = {x ∈
Rn |u(t, x) = 0} where u(t, x) is the (unique) viscosity solution of

{
ut −∆u + ∆∞u = 0, x ∈ Rn, t > 0,

u(0, x) = u0(x), x ∈ Rn.
(87)

Note that the PDE in (87) is degenerate whenever |Du| = 0 since the infinite-
Laplacian operator is so. Thus, we understand the viscosity solutions of (87)
by applying Definition 7.1.

Therefore we have to calculate the upper and lower envelopes F ∗(p, M) and
F∗(p, M) with

F (p, M) := −Tr(M) +

〈
M

p

|p| ,
p

|p|

〉
= −Tr

( (
Id− p⊗ p

|p|2

)
M

)
,

where by Id we mean the n× n-identity matrix.
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First we recall some useful properties for the trace of a matrix, which is
defined as the sum of the elements on the diagonal:

(i) The trace of a scalar is the scalar itself, i.e.

Tr(λ) = λ, ∀λ ∈ R.

(ii) The trace is a linear operator, i.e.

Tr(λ A + µ B) = λ Tr(A) + µ Tr(B),

for all λ, µ ∈ R and A and B n× n-matrices.

(iii) The trace is invariant under permutations, i.e.

Tr(ABC) = Tr(BCA) = Tr(CAB),

for all A, B and C n× n-matrices.

(iv) The trace is invariant under orthonormal reparametrizations, i.e.

Tr(OT AO) = Tr(A),

for any A n × n-matrix and any O orthonormal n × n-matrix (i.e.
OT O = Id). Note that this property is a trivial consequence of prop-
erty (iii). Moreover, this implies that whenever the matrix M can be
written in a diagonal form (e.g. whenever M is a real symmetric n×n-
matrix, as in our case), then the trace can be defined as the sum of the
eigenvalues.

(v) For any non-negative definite matrices M, N ≥ 0,

Tr(M N) ≥ 0.

Note that the trace of a non-negative definite matrix is always non-
negative. Nevertheless, the fact that M and N are both non-negative
does not in general imply that the product matrix M N is non-negative,
too. In general M N ≥ 0 just in the case when M and N commute.

We remain to calculate F ∗ and F∗.

Note that, since only the infinite-Laplace operator is degenerate, it is enough
to calculate the upper and lower regularizations of

G(p, M) = Tr

(
p⊗ p

|p|2 M

)
,
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at the point p = 0. Using the above properties of the trace, it is not difficult
to show that

G∗(0, M) = λmax(M),

while
G∗(0, M) = λmin(M),

where by λmax(M) and λmin(M) we mean the maximum and the minimum
eigenvalues of the matrix M , respectively.
Hence we can give the following definition.

Definition 7.6. Let Σ0 = {x ∈ Rn|u0(x) = 0} be a hypersurface in Rn.
We say that Σ(t) = {x ∈ Rn|u(t, x) = 0} is a generalized evolution by horizon-
tal mean curvature flow if u is a continuous function satisfying u(0, x) = u0(x)
and such that

1. for any ϕ ∈ C2(Rn× (0, +∞)) such that u−ϕ has a local minimum at
(t0, x0), then

{
ϕt −∆ϕ + ∆∞ϕ ≥ 0, at (t0, x0), if Dϕ(t0, x0) += 0,

ϕt −∆ϕ + λmax(D
2ϕ) ≥ 0, at (t0, x0), if Dϕ(t0, x0) = 0.

(88)

2. for any ϕ ∈ C2(Rn × (0, +∞)) such that u − ϕ has a local maximum
at (t0, x0), then

{
ϕt −∆ϕ + ∆∞ϕ ≤ 0, at (t0, x0), if Dϕ(t0, x0) += 0,

ϕt −∆ϕ + λmin(D
2ϕ) ≤ 0, at (t0, x0), if Dϕ(t0, x0) = 0.

(89)

Remark 7.3. Evans and Spruck use a slightly different definition of gener-
alized evolution by mean curvature flow, but it is possible to show that the
two definitions are indeed equivalent.

Remark 7.4. It is possible to show that the definition of generalized evolu-
tion by mean curvature flow does not depend on the chosen parametrization
u0 but just on the zero-level set: {u0 = 0}. This means that, whenever
{u0 = 0} = {v0 = 0} then {u(t, x) = 0} = {v(t, x) = 0}, where u and v are
the viscosity solutions of (87), with initial condition u0 and v0 respectively.
A proof of this result can be found in the book of Giga.
We just remark that the key point is a technical reparametrization of the
function v0 in order to be able to apply the comparison principles for the
viscosity solutions of the level-set equation.

62



Now let us recall that the level-set equation for the evolution by mean cur-
vature flow can be written as

ut + F (Du, D2u) = 0,

where

F (p, M) = −Tr

( (
Id− p⊗ p

|p|2

)
M

)
. (90)

We want to conclude proving that the level-set equation is a degenerate
elliptic, geometric PDE.

Lemma 7.1. The level-set equation for the evolution by mean curvature
flow is degenerate elliptic, i.e. F (p, M) given in (90) satisfies property (9).

Proof. Let us first remark that, since the trace is linear, then property (9) is
equivalent to

−Tr

( (
Id− p⊗ p

|p|2

) (
M −N

))
≤ 0, ∀M ≥ N. (91)

Note that M −N ≥ 0, thus by the property (v) for the trace, in order to get
(91), it is sufficient to prove that the matrix

B(p) :=

(
Id− p⊗ p

|p|2

)

is non-negative definite, for any p += 0.
This means to show that, for any η ∈ Rn, we have ηT B(p) η ≥ 0.
Let us first estimate

ηT p⊗ p

|p|2 η =
ηT p pT η

|p|2 =

(
pT η)T pT η

|p|2 =
|pT η|2

|p|2 ≤
∣∣pT

∣∣2|η|2

|p|2 =
|p|2|η|2

|p|2 = |η|2,

by Cauchy-Schwartz inequality.

Therefore, we can conclude

ηT B(p) η = ηT η − ηT p⊗ p

|p|2 η ≥ |η|2 − |η|2 = 0,

which tells that B(p) ≥ 0, for any p += 0, that implies (91) and so (9).

Lemma 7.2. The level-set equation for the evolution by mean curvature
flow is geometric, i.e. F (p, M) given in (90) satisfies property (82).
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Proof. Let us set Y := µ M + α p⊗ p and p̃ = µ p where p += 0. We have to
prove that

F (Y, p̃) = µ F (p, M). (92)

We first calculate

p⊗ p

|p|2 p⊗ p =
(p pT )(p pT )

|p|2 =
p (pT p) pT

|p|2 =
p |p|2 pT

|p|2 = p⊗ p.

Hence, identity (92) is given by the following easy calculation:

F (Y, p̃)

= −Tr

( (
Id− p̃⊗ p̃

|p̃|2

)
Y

)
= −Tr

( (
Id− µ p⊗ µ p

µ2 |p|2

) (
µ M + α p⊗ p

))

= −Tr

(
µ M + α p⊗ p− µ

p⊗ p

|p|2 M − α
p⊗ p

|p|2 p⊗ p

)

= −Tr

(
µ M + α p⊗ p− µ

p⊗ p

|p|2 M − α p⊗ p

)

= −Tr

(
µ M − µ

p⊗ p

|p|2 M

)

= −µ Tr

( (
Id− p⊗ p

|p|2

)
M

)

= µ F (p, M).

One can prove the existence by Perron’s method and comparison principles
for the generalized evolution by mean curvature flow, as a particular case of
(evolution) degenerate elliptic PDEs under the geometric assumption (82)
(e.g. see the book of Giga for details on these results).

In the particular case of the level-set equation, direct proofs for existence
and uniqueness of viscosity solutions can be found also in the already quoted
papers by Evans and Spruck and by Chen,Giga and Goto, where these ideas
where first introduced.
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7.4 The Kohn-Serfaty game.

In this section we present an approximation-method for the viscosity solu-
tions of the level-set equation of the evolution by mean curvature flow, by
using a suitable deterministic two-person game. This game and the related
results have been proved by Kohn and Serfaty in “A deterministic-control-
based approach to motion by mean curvature”, published in Communication
in Pure and Applied Mathematics (2005).

Let us consider Ω ⊂ R2 open, bounded and convex and let us fix a constant
ε > 0 which is called step of the game.

The game consists in two players, which we will call Player I and Player II,
playing against each others.
The rules of the game are pretty easy:

1. Player I chooses a direction, which means that he chooses a vector
v ∈ R2 such that ‖v‖ = 1 (to make the mathematical techniques
working easier, one may assume ‖v‖ ≤ 1).

2. Player II chooses a scalar b = ±1.

The game evolves from a point x ∈ Ω to a point y := x +
√

2 ε v.
Note that y does not necessary belong to Ω.

The goal of Player I is to go out from the set, i.e. equivalently to reach ∂Ω,
while the goal of Player II is to keep the game inside the open domain Ω.
When the game reaches (or crosses) a point of ∂Ω, the game ends and Player
I wins. Of course Player I wants to win as soon as possible, so he wants to
reach ∂Ω and to do it in the shortest time as possible.

Two important questions arise:

(A) Can always Player I reach ∂Ω?

(B) Which is the optimal strategy for Player I?
In other words, which is, at any step, the choice of v that leads Player
I to reach ∂Ω as fast as possible?

The answer to question (A) is “yes if the set Ω is convex”.
To give instead an answer to question (B), we are first going to study the
particular case of a ball, i.e. Ω = BR(p), for some R > 0 and p ∈ R2.
As usual, without loss of generality, we may assume p = 0.
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Let us fix ε > 0 and build a first crown Ω1, from where Player I can win in
just one step. Hence we consider the set

C1 :=

{
z ∈ Ω

∣∣ z =
y1 + y2

2
, with y1, y2 ∈ ∂Ω and |y2 − y1| = 2

√
2 ε

}
.

By Pythagoras’ Theorem, C1 is the circle centered at p = 0 with radius
R1 =

√
R2 − 2ε2. This means that the distance between C1 and ∂Ω is equal

to d1 := R−
√

R2 − 2ε2.

The crown Ω1 is the open portion of plain between ∂Ω and C1, i.e.

Ω1 = {z ∈ R2 | 0 < d(z, ∂Ω) < d1},

see Figure 1.
Note that, if ε > 0 small enough, then d1 ≈ ε2

R (show this as an exercise).

O

}
R

2 d1!

Figure 6: The first crown Ω1 ⊂ Ω = BR(0).

Let us assume that x ∈ C1, then Player I can always reach ∂Ω in exactly one
step. In fact, if Player I chooses one of the two tangent directions v1 or v2,
whatever the choice of Player II is, the game evolves into a point y1 or y2 of
the boundary, as one can see in Figure 2.
Therefore, if Player I “plays good”, then in just one step he can win.

The previous remark still holds if x ∈ Ω1. In fact, Player I can still chooses
one of the two directions tangent to the crown passing through the point x
and he can cross ∂Ω in only one step.
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1

O

y
1

y
2

x

R

R1

vv 2

Figure 7: The two possible evolutions of the game from the point
x, following an optimal choice for Player I.

Similarly, one can build a second crown, looking at

C2 :=

{
z ∈ Ω

∣∣ z =
y1 + y2

2
, with y1, y2 ∈ ∂Ω and |y2 − y1| = 4

√
2ε

}
.

Then the second crown Ω2, is the open portion of plain between C2 and C1.
If Player I moves always in a direction tangent to the crown passing from the
point itself, in two steps he will reach ∂Ω and he will win.
Analogously the kth crown is the set from where Player I can reach ∂Ω is
exactly k ≤ 1 steps and it is given by the portion of plan between Ck−1 and
Ck, where

Ck :=

{
z ∈ Ω

∣∣ z =
y1 + y2

2
, with y1, y2 ∈ ∂Ω and |y2 − y1| = 2k

√
2ε

}
.

Therefore an optimal strategy for Player I consists in moving always in a
direction tangent to the crown passing from that point.

It is clear that optimal strategies are unique. In fact at any point, Player I
can chooses a tangent direction or the opposite one (which is still tangent).

The numbers of steps necessary to reach ∂Ω following an optimal strategy is
easy to estimate. In fact, we have already remarked that, whenever ε > 0
small enough, the radius of each crown is d ≈ ε2

R .
Therefore Player I needs approximately n steps where n is given by

n =
R2

ε2
.

The natural number n is called exit time.
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4

x

xxy=

x1x2

3

Figure 8: An optimal configuration of the game starting from the
origin x = 0. The game ends at the point y in exactly 4 steps.

We may also notice that Player II cannot neither stop nor slow down Player
I, whenever Player I chooses an optimal direction.

Now let us investigate what happens if the set Ω is not a ball.
If the set is convex then it is always possible to build crowns exactly as in the
case of the ball and what we have shown in the particular case Ω = BR(0) is
still correct. In Figures 4 and 5, you can get an idea of the crowns when Ω
is a square or a triangle; as an exercise, build the crowns for ellipses.

Instead whenever the set is not convex the crowns do not anymore entirely
belong to the set Ω and when the game is near the non-convex part of the
set, Player II can always push the game far away from the boundary.

Therefore we consider now just convex sets.

In this case it is possible to show that the exit times of the previous games
give, as ε → 0+, an approximation of the generalized evolution by mean
curvature flow.

Definition 7.7. Given a game as above with step ε > 0, we indicate by
U ε(x) the function given by the minimum exit time from the point x ∈ Ω,
i.e.

U ε(x) = ε2k,

where k is the numbers of steps that Player I needs to reach ∂Ω starting from
the point x ∈ Ω and following an optimal strategy.
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We quote the following two results without proofs.

Proposition 7.1 (Dynamic Programming Principle). Let be ε > 0 and
U ε : Ω → R be the exit-time given in Definition 7.7, then for any x ∈ Ω

U ε(x) = min
‖v‖=1

max
b=±1

{
ε2 + U ε(x +

√
2εbv)

}
.

Remark 7.5. As we will see later, in the theory of differential games, the
Dynamic Programming Principle assumes always the form of a max-min or
of a min-max. This is one of the main differences with the classic control
theory and expresses the fact that, for Player I, it is not enough to minimize
the pay-off but he has to minimize it, thinking that Player II is playing as
good as possible. The fact that the Dynamic Programming Principle is a
min-max instead of a max-min means that we are looking at the game from
the point of view of Player I. All these remarks will be clarified in the next
section.

Exactly as for the value function of a control problem, the previous Dynamic
Programming Principle is the key-step in order to associate a PDE to the
exit-time of a differential game.

Theorem 7.1. Let be ε > 0 and U ε : Ω → R be the exit-time given in
Definition 7.7, then (up to a subsequence) U ε(x) converges uniformly in Ω
to a function U(x). Moreover the limit-function U(x) is the unique viscosity
solution of the Dirichlet problem:

{
∆ U(x)−∆∞ U(x) + 1 = 0, x ∈ Ω,

U(x) = 0, x ∈ ∂Ω.

Note that the PDE given in the previous theorem is “mean curvature= 1”,
but we are not interested in function related to a constant mean curvature
but to the corresponding evolution problem.

So to conclude this section we are going to show briefly how it is possible
to go from a game associated to a stationary equation (i.e. to a Dirichlet
problem) to a game associated to an evolution equation (i.e. to a Cauchy
problem).

Therefore, let us now consider an objective function u0, which expresses the
function we want to optimize and let T > 0 be a fixed time when the game
ends, which is in general called maturity time.
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The goal for Player I is not anymore to go out from a fixed bounded domain
but to minimize the objective function when the game reaches the maturity
time. This means that we need to consider the value function:

uε(t, x) = min
yt,x (s)

u0

(
yt,x(T )

)
, (93)

where yt,x(s) are all the possible piecewise linear paths which give the his-
tory of the game, starting at the time t (with 0 < t < T ) from a point x ∈ R2.

As we have done for exit-time U ε(x), using a suitable Dynamic Programming
Principle, as ε → 0+, it is possible to associate a PDE to the limit-function
of uε(t, x).

Proposition 7.2 (Dynamic Programming Principle). Let be ε > 0 and
uε : [0, T ] × Rn → R be the value function (93), then for any t ∈ [0, T ] and
for any x ∈ R2

uε(t, x) = min
‖v‖=1

max
b=±1

uε(t + ε2, x +
√

2εbv).

Theorem 7.2. Let be ε > 0 and uε : [0, T ]× Rn → R be the value function
(93), then (up to a subsequence) uε(t, x) converges uniformly in [0, T ]×Rn to
a function u(t, x). Moreover the limit-function u(t, x) is the unique viscosity
solution of the following problem:

{
ut + ∆ u−∆∞ u = 0, in [0, T )× Rn,

u = u0, in {T}× Rn.
(94)

The previous theorem tells that, the Kohn-Serfaty’s game gives a discretiza-
tion with step ε > 0 of the viscosity solution for the backward level-set
equation for the evolution by mean curvature flow.
To get an approximation of the generalized evolution by mean curvature
flow for the initial hypersurface Σ0 := {x ∈ R2 |u0(x) = 0}, it is sufficient to
reverse the time, which means to look at the function

v(t) := u(T − t), ∀ t ≥ 0.

If u(t, x) is the viscosity solution of problem (94), then v(t, x) is the viscosity
solution of the Cauchy problem:

{
vt −∆ v + ∆∞ v = 0, in (0, +∞)× Rn,

v = u0, in {0}× Rn.
(95)
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A similar game can be introduced to study surfaces evolving in R3.
This game is very similar to the one we have presented but Player I has to
choose two vectors v, w ∈ R3 such that ‖v‖ = ‖w‖ = 1 and v⊥w, while
Player II chooses two numbers b, β ∈ {−1, +1} and the game evolves from a
point x to a point y := x +

√
2 ε(b v + β w).

To generalize the game in Ω ⊂ Rn with n ≥ 4 is given as an open question.

The previous game works just when the initial evolving hypersurface is con-
vex. Whenever the Σ0 is not convex, the game gives as limit the evolution by
positive mean curvature flow since the non-convex part of Σ0 does not move.
The evolution by positive mean curvature flow is much less interesting evo-
lution to study because it is not anymore associated to the gradient-flow of
the area.

To find a generalization of this game which can give, as limit, the general-
ized evolution by mean curvature flow also for non-convex sets, it is a very
interesting open problem.

Figure 9: Behavior of the crowns for the square.

Figure 10: Behavior of the crowns for the triangle.
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8 Differential games.

In this section we give a brief overview on two-person zero-sum differential
games. For more details we refer to the book of Bardi and Capuzzo Dolcetta,
Chapter VIII.

Roughly speaking, to study a two-person zero-sum differential game means
to consider optimal control problems depending on two different families of
controls, giving respectively the set of choices for the player I and the set
of choices for the player II and a cost functional that the player I tries to
minimize while the player II tries to maximize. Therefore we can consider
that the cost for player I is minus the cost for player II. This explains the
term “zero-sum” which means that the total cost (i.e. the sum of the cost
for player I and the cost for player II) is always zero.

Therefore, let us introduce two compact metric spaces A and B: usually one
can think of two compact subsets of Rm. E.g in the Kohn-Serfaty’s game
A = ∂B1(0) (or also A = B1(0)) while B = {−1, +1}.

Let us define the two following sets of controls:

A := {α : [0, +∞) → A measurable},
B := {β : [0, +∞) → B measurable},

which give respectively the set of controls for the player I and the set of
controls for player II.

We look at continuous dynamics f : Rn × A × B → Rn. Then the corre-
sponding control systems are

{
ẏ(t) = f(y(t), α(t), β(t)), t > 0,

y(0) = x.
(96)

We indicate by yα,β
x (t) the solution of (96), which we recall to be given by

yα,β
x (t) = x +

t

0

f(yα,β
x (s), α(s), β(s))ds.

The goal of the player I is to minimize J(x; α, β) while the goal of player II
is to maximize J(x; α, β).
In other words, J is the cost that player I has to pay while −J is the cost
that player II has to pay (which implies, as we have already remarked, that
the total cost is zero).
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In addition we assume the following condition for the dynamics, i.e.

(
f(x, a, b)− f(y, a, b)

)
· (x− y) ≤ L|x− y|2, (97)

for some L > 0 and for all x, y ∈ Rn and for any a ∈ A and b ∈ B.

Under all the previous assumptions, the following properties for the solutions
of (96) hold:

(i) |yα,β
x (t)− yα,β

z (t)| ≤ eLt|x− z|, for all x, z ∈ Rn and t > 0,

(ii) |yα,β
x (t)− x| ≤ Mxt, for any t ∈ [0, 1/Mx],

(iii) |yα,β
x (t)| ≤ (|x|+

√
2Kt) eKt, for all x ∈ Rn and t > 0,

where the constant L is given by assumption (97), while

Mx := max{|f(z, a, b)| | |x− z| ≤ 1, a ∈ A, b ∈ B},

and
K := L + max{|f(0, a, b)| | a ∈ A, b ∈ B}.

Now we introduce the notion of strategies which characterize the fact that,
in the theory of differential games, usually the choices of the a player depend
on the choices of the other player.

Definition 8.1. A strategy for the player I is a map γ : B → A while a
strategy for the player II is a map γ : A→ B.

A strategy for the player I is called non-anticipating if, for any t > 0,

β(s) = β̃(s), ∀ s ≤ t ⇒ γ[β](s) = γ[β̃](s), ∀ s ≤ t.

The same definition holds for the strategies of player II.

We indicate respectively by Γ and ∆, the set of all the non-anticipating
strategies for the player I and the set of all the non-anticipating strategies
for the player II.

Example 8.1. In the Kohn-Serfaty’s game the strategies are non-anticipating
while in a game like chess one in general has to consider that the strategies
are anticipating, since the choice of each player depends also on the future
choice of the other player.
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As we did for the optimal control problems, now we want to introduce the
“value” of the game associated to some functional J : Rn ×A× B → R.
In the theory of differential games, in general, there are two different values,
depending if you look at the game from the point of view of the player I or
from the point of view of the player II.

Definition 8.2 (Upper and lower values). Given a cost-functional J(x; α, β),
the lower value of the game is defined as

v(x) := inf
γ∈Γ

sup
β∈B

J(x; γ[β], β);

while the upper value of the game is defined as

u(x) := sup
δ∈∆

inf
α∈A

J(x; α, δ[α]).

If v(x) = u(x), we say that the game with initial point x has a value.

Remark 8.1. Note that

u(x) ≤ v(x), for all x ∈ Rn.

To prove the inequality is not easy. Heuristically, at each instant of time the
first player knows the choice that the second one is making at the same time.

A limit case of the described game is the static game (which is easier to study
but much less interesting for the applications).
A static game is a game where the player I chooses on the set A and the
player II on the set B without any interaction between the two players.

In the case of a static game the lower and upper values are simply given by:

vs(x) = sup
β∈B

inf
α∈A

J(x; α, β),

us(x) = inf
α∈A

sup
β∈B

J(x; α, β).

In this case, it is trivial to note that vS(x) ≤ uS(x), for any x ∈ Rn. In fact,
for any α ∈ A and β ∈ B,

inf
α∈A

J(x; α, β) ≤ J(x; α, β) ≤ sup
β∈B

J(x; α, β).

More in general, one could prove:

vS(x) ≤ v(x) ≤ u(x) ≤ uS(x).

Therefore we can note that is much easier that an “interacting game” has a
value than the corresponding static game has.
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While we were studying the optimal control problem, we have looked mainly
at the case of time-depending functionals, which is in general associated to
a Cauchy problem for an evolution Hamilton-Jacobi-Bellman equation. This
case is in general called finite horizon problem.

In this section we will instead pay more attention to the so called infinite
horizon problem, which is associated to a functional time-independent and it
is related to a stationary equation.

Let us fix λ > 0, and look at a continuous running cost l : Rn×A×B → R.
We also assume that the running cost is Lipschitz and bounded in x, uni-
formly in A×B.

Then the functional can be written as

J(x; γ[β], β) =
+∞

0

l
(
yγ[β],β

x (t), γ[β](t), β(t)
)
e−λtdt,

and analogously,

J(x; α, δ[α]) =
+∞

0

l
(
yα,δ[α]

x (t), α(t), δ[α](t)
)
e−λtdt.

We state the following regularity result for the lower and upper values of the
game. A proof can be found in the book of Bardi and Capuzzo Dolcetta
(Proposition VIII.1.8.)

Proposition 8.1. Under all the previous assumptions, the lower and the
upper values u(x) and v(x) are bounded and uniformly continuous in Rn.
Moreover they are Hölder continuous with exponent γ, with

γ =






1, if λ > L,

any γ < 1, if λ = L,

λ

L
, if λ < L.

where L > 0 is the constant given in assumption (97).

Remark 8.2. We recall that for the optimal control problem we have showed
that the value is Lipschitz (see Remark 3.3).
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We are interested in associating a PDE to the values of the game.

The main point is again to show that a Dynamic Programming Principle.
For a proof see the book of Bardi and Capuzzo Dolcetta (Theorem VIII.1.9).

Proposition 8.2 (Dynamic Programming Principle). Under all the previous
assumptions, then for all x ∈ Rn and for any t > 0, it holds

v(x) = inf
γ∈Γ

sup
β∈B

{ +∞

0

l
(
yγ[β],β

x (s), γ[β](s), β(s)
)
e−λ sds + v(yγ[β],β

x (t))e−λ t

}
,

u(x) = sup
δ∈∆

inf
α∈A

{ +∞

0

l
(
yα,δ[α]

x (s), α(s), δ[α](s)
)
e−λ sds + u(yα,δ[α]

x (t))e−λ t

}
.

Using the Dynamic Programming Principle, it is possible to show that the
lower and the upper values solve, respectively, two (a priori) different Hamilton-
Jacobi-Bellman equations. More precisely:

Theorem 8.1. Under all the previous assumptions, the lower value v(x)
is a viscosity solution of the following stationary Hamilton-Jacobi-Bellman
equation:

λv + H1(x, Dv) = 0, in x ∈ Rn,

where
H1(x, p) := min

b∈B
max
a∈A

{
− f(x, a, b) · p− l(x, a, b)

}
.

The upper value u(x) is a viscosity solution of the following stationary
Hamilton-Jacobi-Bellman equation:

λu + H2(x, Du) = 0, in x ∈ Rn,

where
H2(x, p) := max

a∈A
min
b∈B

{
− f(x, a, b) · p− l(x, a, b)

}
.

The proof is very similar to the one that we gave for the optimal control
problem. One can find a proof in the book of Bardi and Capuzzo Dolcetta
(Theorem VIII.1.10).

Note that in general H1(x, p) += H2(x, p).

Nevertheless, whenever u(x) = v(x) (which means that the game has a value
starting from any point x ∈ Rn), then H1(x, p) = H2(x, p).
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9 Exercises.

Exercise 9.1. Let be

u(x) =






x, 0 < x ≤ 1

2
,

1− x,
1

2
< x < 1.

(i) Show that u(x) is a viscosity solution of |u′(x)|− 1 = 0 on (0, 1).

(ii) Show that u(x) is not a viscosity solution of −|u′(x)|+ 1 = 0 on (0, 1).

(iii) Find a viscosity solution of −|u′(x)|+ 1 = 0 on (0, 1).

Exercise 9.2. Given the Cauchy problem:
{

ut + |ux|2 = 0, (0, +∞)× R,

u = 0, {0}× R,

(i) show that u1(t, x) = 0 is a viscosity solution.

(ii) show that

u2(t, x) =






0, |x| ≥ t

x− t, 0 ≤ x < t

−x− t, − t < x ≤ 0

is not a viscosity solution.
Hint: show that u2 is not a viscosity supersolution at points (t0, x0) =
(t, 0) with t0 > 0, using as test-function ϕ(t, x) = −t.

Exercise 9.3. Show by exhibiting an example that is false in general that,
if u1 and u2 are viscosity solutions of H(Du) = 0, the same is true for u1∧u2

and u1 ∨ u2.
Hint: look at |x|− 1 and −|x|+ 1, respectively, as maximum and minimum
of two lines and use what you know about the eikonal equation.

Exercise 9.4. Using the Perron’s method and assuming the validity of com-
parison principles, prove the existence of a viscosity solution for the Dirichlet
problem: {

|u′(x)|− f(x) = 0, x ∈ (0, 1),

u(0) = u(1) = 0,

where f is a continuous on [0, 1] and f ≥ 0.
Solution: consider the viscosity subsolution u(x) = 0 and the viscosity
supersolution u(x) = −M

∣∣x− 1
2

∣∣ + M
2 , where M := maxx∈[0,1] f(x).
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Exercise 9.5. Let u : R → R be a viscosity solution of

F (x, u, u′, u′′) = 0.

Write the equation solved by v(x) = e
u(x)

ε and show that v is indeed a viscosity
solution of the found equation.
Solution: v is a viscosity solution of F

(
x, ε ln(v), ε

v v′,− ε
v2 (v′)2 + ε

v v′′
)

= 0.

Exercise 9.6. Let u : R → R be a viscosity solution of

F (x, u, u′) = 0.

Write the equation solved by v(y) = u ◦ Φ(y), where Φ(y) = e
x
ε and show

that v is indeed a viscosity solution of the equation you found.
Solution: let y = Φ−1(x) = ε ln x,

then v(y) is a viscosity solution of F
(
y, v(ε ln y), ε

y Dv(ε ln y)
)

= 0.

Exercise 9.7. Show that, given u : [0, T ] → R continuous, the following
properties are equivalent:

(i) u is non-decreasing in [0, T ],

(ii) u′(x) ≥ 0, in the viscosity sense, in [0, T ].

Hint: to show that (ii) ⇒ (i), use the following claim to get a contradiction.
Claim: given 3 points 0 < t1 < t < t2 < T such that u(t1) > u(t) > u(t2),
then there exists ϕ ∈ C1([t1, t2]) such that






ϕ(t1) = u(t1),

ϕ(t2) = u(t2),

ϕ(t) < u(t),

ϕ′(t) < 0, t ∈ (t1, t2).

Exercise 9.8. Using Exercise 9.7, show that, given u : [0, T ] → R continu-
ous, then

u′(x) = 0, in the viscosity sense, in [0, T ] ⇐⇒ u = constant in [0, T ].

Exercise 9.9. Given a 1-dimensional control problem, with n = 1, A =
{1,−1}, f(x, a) = a and

J(x; α) =
+∞

0

eλt l(yα
x (t))dt,
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where λ > 0 and the function l : R → R smooth, and such that





l(x) = l(−x),

max
R

l(x) = l(0) > 0,

l(x) = 0, for |x| > R,

x l′(x) < 0, for |x| < R,

for some R > 0.
Find the explicit expression for the value function.
Hint: observe that the optimal control α∗ is constant in time, then, for any
x, α∗(t) = 1 or α∗(t) = −1 and use the properties of the running cost l(x) to
conclude.

Exercise 9.10. Under the assumption (46) and (57), show that the Hopf-
Lax formula (58) is globally Lipschitz in Rn × [0, +∞).
Hint: Use that the infimum in (58) is attained in some point to get the
Lipschitz continuity in space and then the Functional Identity (59) in order
to get the Lipschitz property in time (see the proof of Lemma 4.1).

Exercise 9.11. Let be H(p) = |p|2
2 and g(x) = |x|2

2 .
Find the viscosity solution of (45).

Solution: u(t, x) = |x|2
2(t+1) .

Exercise 9.12. Let be H(p) = |p|2
2 and g(x) = −|x|.

Find the viscosity solution of (45).
Solution: u(t, x) = −|x|− t

2 .

Exercise 9.13. Write the solution of (45) with H(p) = |p|α
α with α > 1, for

any g Lipschitz continuous initial datum.

Exercise 9.14. Given H(p) = |p|α
α with α > 1 and g bounded, show that

the infimum in (58) is a minimum and it is attained in the ball centered in

the origin and with radius R(t) =
(
2β

) 1
β t

β−1
β ‖g‖

1
β
∞, where β = α

α−1 > 1.
Hint: Note that the infimum in (58) is smaller or equal to ‖g‖∞.
Then, using the explicit formula found in the Exercise 9.13, show that, for

any y ∈ Rn\BR(t)(x), f(y) > ‖g‖∞, where f(y) = g(y)+ |x−y|β
tβ−1 and β = α

α−1 .

Exercise 9.15. Let be H(p) = |p|, write the Hopf-Lax formula (58);
Solution: u(t, x) = inf{g(y) | |x− y| ≤ t}.
Note that the minimum is attained in the ball BR(t)(x) with R(t) = t.
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Exercise 9.16. Let us look at the Cauchy problem:
{

ut(t, x) + b ·Du = 0, x ∈ Rn, t > 0,

u(0, x) = g(x), x ∈ Rn.
(98)

and assuming g Lipschitz.

(i) Show that the Hopf-Lax formula (58) is given by

u(t, x) = g(x− tb).

Hint: show that if H(p) = b · p then the Legendre-Fenchel transform is
given by H∗(p) = +∞ for any p += b and H(b) = 0.

(ii) Is the condition (46) satisfied?

Exercise 9.17. Let be δ > 0 and gδ(x) the sup-convolution of g(x), i.e.

gδ(x) = sup
y∈Rn

[
g(y)− |x− y|2

2δ

]
. (99)

Assuming that g is bounded on Rn, show that
∥∥gδ

∥∥
∞ ≤ ‖g‖∞.

Exercise 9.18. Assuming that g is bounded on Rn and gδ(x) is the sup-
convolution given by (99), prove that the supremum is attained in the ball
BR(δ)(x) with R(δ) = 2

√
δ ‖g‖∞.

Exercise 9.19. Assuming that g is bounded and Lipschitz on Rn and gδ(x)
is the sup-convolution given by (99), prove that, for any δ, gδ(x) is locally
Lipschitz continuous in Rn.
Hint: Proceed similarly to Exercise 9.10.

Exercise 9.20. Assuming that g is bounded on Rn and gδ(x) is the sup-
convolution given by (99), prove that, for any δ, gδ(x) is locally Lipschitz
continuous in Rn.
Hint: Proceed similarly to Lemma 4.1.

Exercise 9.21. Let be g(x) = |x| and δ > ε > 0, calculate u(x) :=
(
gδ(x)

)ε
,

where gδ(x) is the inf-convolution given by (72) while gε(x) is the sup-
convolution given by (73). Check that u ∈ C1,1(Rn) but not C2.
Solution:

-A. First step: Calculate gδ(x) = infy∈Rn f(y) where f(y) = |y|+ |x−y|2
2δ .

A.1: Check the limit as |y|→ +∞.
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A.2: Note that the unique non-differentiability point of f(y) is y0 = 0.

A.3: Note that the stationary point is given by y = |x|−δ
|x| x and it is admis-

sible if and only if |x| ≥ δ.

A.4: Compare f(y0) and f(y) in the case when |x| ≥ δ.

A.5: Conclude that

gδ(x) =






|x|2

2δ
, |x| < δ,

|x|− δ

2
, |x| ≥ δ.

-B. Second step: Calculate the sup-convolution of the previous function
gδ(x) assuming δ > ε > 0.

B.1: Observe that

(
gδ(x)

)ε
= sup

y∈Rn

{
sup
|y|≤δ

[
|y|2

2δ
− |x− y|2

2ε

]
; sup
|y|≥δ

[
|y|− δ

2
− |x− y|2

2ε

]}
=: sup

{
I1(x); I2(x)

}
.

B.2: Note that f(y) = |y|2
2δ −

|x−y|2
2ε is a parabola, therefore the supremum

is attained in the stationary point y, whenever |y| ≤ δ otherwise the
supremum is attained on the boundary |y| = δ.

B.3: Calculate f at the stationary point which is y = δ
δ−ε x and note that

the point is admissible whenever |x| ≤ δ − ε. This means that

I1(x) =






|x|2

2(δ − ε)
, |x| ≤ δ − ε,

sup
|y|=δ

[
δ

2
− |x− y|2

2ε

]
, |x| > δ − ε.

B.4: To calculate I2(x), one has to proceed similarly.

First note that, since |y| ≥ δ > ε > 0, then h(y) = |y| − |x−y|2
2ε − δ

2 is
differentiable at any point of the domain.

B.5: Calculate the stationary point which is y = |x|+ε
|x| x which is admissible

if and only if |x| ≥ δ − ε.
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B.6: Therefore, you get

I2(x) =






|x|+ ε− δ

2
, |x| ≥ δ − ε,

sup
|y|=δ

[
δ

2
− |x− y|2

2ε

]
, |x| < δ − ε.

B.7: Using that f(y) = h(y) whenever |y| = δ, it is easy to show that
I1(x) ≥ I2(x) when |x| ≤ δ − ε while I1(x) ≤ I2(x) when |x| ≥ δ − ε.
Therefore, one can conclude

u(x) =
(
gδ(x)

)ε
=






|x|+ ε− δ

2
, |x| ≥ δ − ε,

|x|2

2(δ − ε)
, |x| < δ − ε.

C. Third step: Check that the previous function is C1,1(Rn) but not C2.
In fact

Du(x) =






x

|x| , |x| > δ − ε,

x

δ − ε
, |x| < δ − ε,

which is continuous and Lipschitz at any point while

D2u(x) =






1

|x|

(
Id− x

|x| ⊗
x

|x|

)
, |x| > δ − ε,

1

δ − ε
Id, |x| < δ − ε,

which is not continuous at the points |x| = δ − ε.

Exercise 9.22. Do as in Exercise 9.21, starting from the function
g(x) = −|x|.

Exercise 9.23. What happens in the Exercises 9.21 and 9.22,
assuming 0 < δ < ε? Is

(
gδ(x)

)ε ∈ C1,1?
and what can you say about the limit case 0 < δ = ε?
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10 Appendix: Semicontinuity.

We recall the definitions of liminf and limsup at a point x0 ∈ Rn:

lim inf
x→x0

f(x) := sup
r>0

inf
x∈Br(x0)\{x0}

f(x),

lim sup
x→x0

f(x) := inf
r>0

sup
x∈Br(x0)\{x0}

f(x).

Remark 10.1. Note that, if we set

fr(x0) = inf
x∈Br(x0)\{x0}

f(x),

f r(x0) = sup
x∈Br(x0)\{x0}

f(x),

then fr(x0) is non-increasing in r > 0 while f r(x0) is non-decreasing.

Therefore the liminf and limsup are both well-defined and are the limits as
r → 0+ of fr(x0) and f r(x0), respectively.

Remark 10.2. Recall that

lim inf
x→x0

f(x) ≤ lim sup
x→x0

f(x),

for any x0 ∈ Rn (easy to check).

Definition 10.1. Given f : Ω → R with Ω ⊂ Rn open and x0 ∈ Ω, then

1. f is lower semicontinuous at x0 if

lim inf
x→x0

f(x) ≥ f(x0);

2. f is upper semicontinuous at x0 if

lim sup
x→x0

f(x) ≤ f(x0).

Remark 10.3 (Continuity). If f is lower and upper semicontinuous at a
point x0, then f is continuous at x0. In fact:

f(x0) ≤ lim inf
x→x0

f(x) ≤ lim sup
x→x0

f(x) ≤ f(x0).
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Figure 11: Example of a lower semicontinuous function.

Figure 12: Example of an upper semicontinuous function.

Lemma 10.1 (Infimum and supremum of semicontinuous functions). The
supremum of continuous functions is lower semicontinuous while the infimum
of semicontinuous functions is upper semicontinuous.

Example 10.1. Consider fn(x) = xn defined on [0, 1] and take the infimum
among n ∈ N. The infimum takes the value 0 in [0, 1) but it is 1 at 1, then
it is upper semicontinuous.

Proof. Let fν a family of continuous functions for any ν ∈ V and let f(x) :=
infν∈V fν(x). Note that f(x) ≤ fν(x) for any ν ∈ V , hence

lim sup
x→x0

f(x) = lim sup
x→x0

inf
ν∈V

fν(x) ≤ inf
ν∈V

lim sup
x→x0

fν(x) ≤ inf
ν∈V

fν(x0) = f(x0).

In the same way, one could prove the property for the supremum.

We conclude recalling the following notions, very useful in viscosity theory.

Definition 10.2 (Lower and upper semicontinuous envelopes). Let f : Ω →
Rn (discontinuous) function, then:

1. The lower semicontinuous envelope of f is defined as

f∗(x) : = inf{g(x) | g ≥ f and g lower semicontinuous}
= lim inf

ε→0+
{f(y) | |x− y| ≤ ε};

2. The upper semicontinuous envelope of f is defined as

f ∗(x) : = sup{g(x) | g ≤ f and g upper semicontinuous}
= lim sup

ε→0+

{f(y) | |x− y| ≤ ε}.

Exercise 10.1. Given f(x) = sin 1
x on [0, +∞), find f ∗(x) and f∗(x).
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