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1. Introduction

This paper deals with viscosity solutions of nonlinear degenerate elliptic
partial differential equations (PDEs) involving nonlocal operators.
To begin with, we show model problems. Let QCR¥ be a bounded do-

main.
Model I. (Integro-differential equation with obstacle)

{max{Lu—f, u—p} =0 in Q,

(1.1) u(x) = Sn u(y) O(dy, x) for x€0Q,

where L is an integro-differential operator of the form:
N
Lu(x) = — 33 8i(%) (%) +0x(x) u(x)+2() Sn (u(x)—u()) Q(dy, %) ,

and Q(+, ) is a probability measure in Q for x€Q.
Model II. (Second order elliptic PDE with implicit obstacle)

(1.2) {max{Lu—f, u—Mu} =0 in Q,
' max{u—g,u—Mu} =0 on 8Q,

where L denotes the following linear (possibly degenerate) second order ellip-
tic operator:

L) = — 32 (5) t, (¥) 33 B,(8) 1, (3)-+ () ()
and Mu is a nonlocal term defined by
Mu(x) = inf {k(E)+u(x+E&)|ES(R)Y, x+E€0} .

Model I is derived from the optimal stopping problem for piecewise-deter-
ministic (PD) processes. S.M. Lenhart-Y.C. Liao [8] discussed the optimal
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stopping for PD processes and characterized a W= solution of (1.1) as the
minimal cost function of it. S.M. Lenhart [6] proved the uniqueness and exi-
stence of viscosity solutions of (1.1). Her existence result was obtained by an
iterative approximation scheme. S.M. Lenhart-the second author [9] showed
that Perron’s method can be used for general integro-differential equations in-
cluding (1.1). In the case Q=RY, the similar results were obtained in [8] and
[6].

Model II is the dynamic programming equation arising in the impulse con-
trol problem for diffusion processes. See A. Bensoussan-J.L. Lions [3] for
more backgrounds. In Perthame [11] the existence and uniqueness of visco-
sity solutions of (1.2) were obtained and the solution was represented as the
optimal cost function for the associated impulse control problem. His existence
result was also based upon an iterative approximation scheme. The first author
[5] extended the result of [11] to the case where the principal part of (1.2) is a
degenerate elliptic operator. When Q=RY¥, G. Barles [1] and B. Perthame [10]
treated the impulse control problem and G. Barles [2] discussed the existence
and uniqueness of viscosity solutions of (1.2) in a general first order operator
case.

As explained above, Models I and II have been considered as separate prob-
lems. In this paper we shall unify these two models from the view point of
viscosity solution. More precisely, we shall get the comparison principle and
existence of viscosity solutions for the boundary value problems of the general
form:

{F(x, u, Du, D*u,u—Mu) =0 in Q,
B(x, u,u—Mu) =0 on 00,

where Du, D?u are, respectively, the gradient and Hessian matrix of ¥ and M
is a nonlocal operator line in Models I and II.

This paper is organized as follows. In Section 2 we state our assumptions
and recall the definitions of viscosity solutions. In Section 3 we establish the
comparison principle and existence of viscosity solutions for the problem (1.3).
As to the fundamental arguments, see M.G. Crandall-H. Ishii-P.L. Lions [4].
Our methods are essentially based upon them. Section 4 is devoted to treating
the case Q=RY. In Section 5 we mention Models I and II precisely.

Finally we refer the reader to S.M. Lenhart [7] which discussed the unique-
ness and existence of viscosity solutions of nonlinear PDEs involving the ope-
rators in Models I and II.

(1.3)

2. Assumptions and Definitions

In this section we state our assumptions and recall the notion of viscosity
solutions. We set I=QXRXR¥XS¥X R and Z=0Q X RX R, where S¥ de-
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notes the set of all N XN real symmetric matrices. For a topological space T,
we denote by USC(T), LSC(T) and C(T), respectively, the set of all real valued
upper semi-, lower semi- and continuous functions defined on T.  We make the
following assumptions on F.

(D) QCRY is a bounded domain.
(F.1) FeC(T) and satisfies the degenerate ellipticity condition, that is,

F(x,r,p, X+Y,m)<F(x,7,p, X, m)

for all (x, 7, p, X, m)ET and Y 8" such that Y=O0.
(F.2) There exists o, = C(R*) with ,(0)=0, such that if X, Y&S¥, a>1 and

—3a < <3a s
O1I 0O -Y —I I

F(y,r, a(x—y), Y, m)—F(x,r, a(x—y), X, m)
Saoyalx—y|*+|x—y])
for all x, yeQ,r,meR.
(F.3) There exists w,& C(R*) with w,(0)=0 such that

|F(x, 7, p, X, m)—F(x,7,q, Y, m)| S| p—q| +IX—YI|)

then

for all (%, 7, p, X, m)eT, g R" and YE8Y, where ||X]|| is the operator
norm of X €8¥ as a self-adjoint operator.
(F.4) For each 0<u=1, there exist functions ay(¥, u), o5(%, p)ECEOQ X (0, 1]),
BEC(Q) and constants a;>0, a,=0 satisfying
F(x,r, p, X, m)—Fu(x, s, p, X, n)
< max {o(r—s)+oy(x, 1—p),
aofr—s-+as(, 1— ) +B(x) (m—n)} ,
llos(=5 w)lle, lloa( s w)lle@ =0 (»—0),
B(x)>0 for x€Q

for all (x, 7, p, X, m) T and s, nE R such that r<s, where

Fu(x,7,p, X, m) = uF(x, L’ L: K’ ‘1‘”‘) .
Bopopp
ReMARK 2.1. The assumption (F.4) includes the monotonicity of F. Tak-
ing u=1, we have
F(x, 7, p, X, m)—F(x, s, p, X, n) =max {o,(r—s), ay(r—s)+ B(x) (m—n)} .

Then we see that F is nondecreasing in 7 and that
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F is strictly increasing in 7 if a,>>0 (e.g., Medel I (1.1)),
F is nondecreasing in 7 if a,=0 (e.g., Model II (1.2)).

Next we mention the assumptions on the nonlocal operator M. Letwu, v be
bounded functions on 0.

(M.1) M:USC@Q)— USC(Q) and M: LSC(Q) — LSC (D).
(M.2) u(2)—v(2)=Mu(z)—Mv(z) for all 20 such that u(2)—v(2)=
supg(4—o).
(M.3) For each 0<p =1, there exists k=0 satisfying
k=0 (p—0),
M((1—p) u) (2) 2 (1—p) Mu(x)+ku .

We make the following assumptions on B.

(B.1) BeC(X).
(B.2) For each 0<p=1, there exist function o4, u)=C(0Q X (0, 1]) and con-
stants 7, =0, 7,=0 such that ,47v,>0, satisfying

B(x, r, m)— Bu(x, s, n)
=7, max {(r—s)+as(x, 1 —p), m—n} +y,(m—n),
llos(+s )llcoy = 0 (= —0),
for all (x, 7, m)€3] and s, nE R such that r<s and m<n, where
Bu(x,r,m) = uB (x, L, my.
7"
RemARk 2.2. As in Remark 2.1, B is monotone with respect to 7, m, res-

pectively.

We conclude this section by recalling the notion of viscosity solutions. We
prepare some notations. For the function u: O— R, we define the upper semi-
continuous (u.s.c) envelope #* and lower semicontinuous (l.s.c.) envelope uy

of u by
w*(x) = lim sup {u(y)| yEQ, |y—x| <r}, us(%) = —(—u)*(x).
We observe easily that uy <u<u* on O and that «* and u, are, respectively,

u.s.c., L.s.c. on Q with values in RU {4 oo}.

DeFINITION 2.1, Let u be a bounded function defined on Q.
(1) We call u a viscosity subsolution of (1.3) provided that for each p&C*Q),
if u¥*—q@ has a local maximum at xyQ, then

F (o, w*(2%o), Dep(0), D¥p(0), w*(60) — Mu*(,)) <0 .
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(2) We call u a viscosity supersolution of (1.3) provided that for each p<C* ),
if ugy— @ has a local minimum at x,EQ, then

F(xO’ u*(xo)’ D¢(x0)) D2¢(x0)’ u*(xo)_Mu*(xO))gO .
(3) We call u a viscosity solution of (1.3) if u is a viscosity sub- and supersolution
of (1.3).
In the following we surpress the term “viscosity” since we are concerned
mainly with viscosity sub-, super- and solutions.
To prove the comparison principle, it will be convenient for us to have at

hand certain alternative definitions. For the function u: Q—R, J**u(x) de-
notes the super 2-jet at xEQ:

Jo* w(x) = {(p, X)ERY X 8" |u(y) Su(x)+<p, y—*>
3 X(y—), y—w>+o(ly—x]") s A2y},
where {-, +> is the Euclidian inner product in RY. We denote by T u(x)
the “graph closure” of J>* u(x):
J#*u(x) = {(p, X)ERY X S¥|3(x,, puy X,) EQX RY X SV
such that (p,, X,)€ J** u(x,) and
(xm u(xn)) P ‘Yn) - (x) u(x))_p) X) as n—> +°°} ’

We define the sub 2-jet /%~ u(x) of u at x and its closure J%~ u(x) by similar
way. It is easily seen that the following propositions hold.

Proposition 2.2. Let u be a bounded function on . Then u is a subsolution
of (1.3) if and onlv if

F(x, u*(x), p, X, u*(x)— Mu*(x))<0
for all x€Q, and (p, X)E J>* u*(x).

Proposition 2.3. Let u be a bounded function on Q. Suppose that F is
continuous on T' and nondecreasing in the variable m and that M satisfies (M.1).
Then u is a subsolution of (1.3) if and only if

F(x, u*(x), p, X, u*(x)— Mu*(x))<0
for all x€Q, (p, X)E J>* u*(x).

As to the supersolutions of (1.3), we can get the equivalent propositions
similar to the above ones. (See [4, Section 2].)

3. Uniqueness and existence of solutions

In this section we establish the comparison principle and existence of solu-
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tions of (1.3).

Theorem 3.1. Assume (D), (F.1)-(F.4), (M.1)-(M.3) and (B.1)-(B.2)
hold. Moreover assume either (3.1) or (3.2) holds:
(3.1) When ;=0 in (F.4), k>0 (0<p<<1) holds in (M.3).
(3.2) When a,>0 in (F.4), if the maximum of the function u—v is attained only
on 0Q, then we have in (M.2)

u(2)—v(2)>Mu(z)—Mv(z)

for all zE0Q such that u(z)—v(z)=supg(u—v).
Let u and v be, respectively, a subsolution and a supersolution of (1.3). If
u, v satisfy
(3.3)  B(x,u*, u*—Mu*)<0 and B(x, vy, vs—Muvg)=0 on 3Q,

then u* vy on Q).

Proof. We may assume u€USC(2) and v&LSC(Q2) because, if other-
wise, we replace # and v with »* and vy, respectively. We suppose supg(u—v)
=260>0 and shall get a contradiction.

For each mEN, we set u,,=(1—1/m)u. Since (p, X)E J** u,(x) implies
(m'p, m'X)E J** u(x), where m’=m|(m—1), and u is a subsolution of (1.3),
we have

F(x, u(x), m'p, m' X, u(x)— Mu(x)) <0 .
By (M.3) we obtain

u(x)—Mu(x) = m’(u,,(x)—(1—m~?) Mu(x))
2 (%) — Mt (%) +keyym) -

Thus from the monotonicity of F and the definition of F,, we get
3.4 (%, thyg(), Py X, thy(%)— Mtk (%) +Ryy) <0 .
Similarly, using (M.3) and (B.2) we obtain

3.5) By (%, thyyy thy— Mty +kyy,) <0 on 0Q.

Now, let 20 be a maximum point of the function #,—v on Q. Since
Un(2)—0(2)—20 as m—>+-oco, we have u,(2)—v(2)=0 for sufficiently large
m&N. Consider the case 2€0Q and (4,—v) (x)<(#4,—7) (2) for x€Q. In
this case we obtain by (3.3), (3.5) and (B.2),

(3.6) 0=B(z, v(), v(2)—Muv(2))
— By (2, tm(2), () —Mur,(2)+Rism)
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=7 max {0(2) —u,(2)+ay(z, m™),
V(%) — Mv(2)—thy(2)+ Mt (2)—Rymt
+72(v(2)— Mo (2) —thyy(2)+ Mk (2) —Ryj) -
If (3.1) holds, then by using (M.2) we get
Oéyl max {—0+63(2, m_l)a _kl/m} —%2 kl/,n<0

for sufficiently large m&EN. Hence we have a contradiction. If (3.2) holds,
then we get

v, max {—0+oy(2, m™?), v(2)— Mo(2) —u,,(2)+Mu,(2)}
+95(v(2) — Mo (2) —t,(2)+ Mu,(z)) <0 .

Combining this with (3.6), we obtain a contradiction. Therefore we can see
that there exists a maximum point 2E€Q of w,—v. Then, for any a>1, we
define the function ®(x, y) on O x O by

B, y) = a(x)—2(y)— - [8—yIP— | y—2*

and let (¥, ¥)€0 X O be a maximum point of ®(x,y). By the usual calculation
we obtain the behaviors of %, ¥, u,,(%), v(¥) as a—>+oo:

X, §— 2, Uy (%) = u,(2), v(F) = v(2), 2| F—F|* = 0.

Then we apply the maximum principle for semicontinuous functions to obtain
X, Y =8¥ satisfying

(a(®—3), X)EJ** up(®), ((2—3), Y)ET*~(v(I)+|5—=I",
o2 )<(E O)zsel ).

(As to the above arguments, see M.G. Crandall-H. Ishii-P.L. Lions [4, Section
3].) Furthermore, we get

(a(F—3)—p, Y-2Z)E ]~ v(3),
where p=4|y—=z|%(y—=z) and Z=4|y5—=z|*I+8(¥—=2)Q(J—=). Thus using
(3.4) and the fact that v is a supersolution of (1.3), we have
Fip (%, (%), A(Z— ), X, th(X)— Mu,,(X)+-kyy,) <0,
F(j’, v(j-’)! (X(iﬂ_—y)—_[), Y_Zv v(j})—Mv(j}))gO .

Remarking that u,(¥)>v(¥), we observe from the above inequalities, (F.2) and
(F.3) that
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0=F (3, (3), a(%—3)—p, Y—Z, v(5)— Mv(J))
—F i/ (%, (%), A(X— ), X, (%) — Mk, (X)+ k1)
Sao(a|®—F|* 4 |Z—F|)+oy ] p| +11Z]])
+max {a;(V(F) —(®))+ 1(%, m™Y), ay(v(F)+ tin(%)+oo(%, m~?))
+B(%) (0(7)—Mo(F)—tin(%) + Mt(%) — R/} -

Noting that

lim oy(@|#—F1*+|2—F1) = lim | | +11ZI) = 0,

lim sup (v(3)—Mo(F)—tn(%)+Mun(%))

=0(2)—Mv(2)—u,(2)+ Mu,(2) ,
and letting a¢— 4 oo, we have
3.7) 0=max {—a, 0+a,(2, m™?), a,(—0+ay(z, m™))
+B(2) (2(2)— Mo (2) —thn(2)+ Mt () —ym)} -
If a,=0, by (3.1) and B(z)>0, we get
B(2) (v(2)—Mv(2)—t,(2)+ Mu,(2)—kyy)<0 for large meN.

Thus taking m& N sufficiently large in (3.7), we obtain a contradiction. In the
case a,>0, we also have a contradiction. Therefore the proof is complete. W

The existence result is stated as follows. It is proved by Perron’s method.

Theorem 3.2. Let Q, F, M, and B as in Theorem 3.1. In addition, assume
(M..4) M is monotone, that is, if u<v on Q, then Mu<Mv on Q).
Assume there exist a u.s.c. subsolution w and a ls.c. supersolution @ of (1.3)

satisfying
(3.8) B(x, u,u—Mu)=<0 and B(x,n,8—Mn)=0 on 3Q.

Then there exists a solution u of (1.3) satisfying B(x, u, u— Mu*)<0 on 8Q.
Proof. Let & and u be defined by

S = {v: subsolution of (1.3)|
B(x, v, v—Mv*)<0 on 8Q and v=#% on O} (F0),
u(x) = sup {v(»)|vES} (x€0).
We note by the definition of # and Theorem 3.1 that u<u=<# on §). In order

to obtain the assertion we shall prove the following properties hold:
(3.9) ues,
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(3.10) If v=S is not a supersolution of (1.3), there exist a function w €S and
a point y €Q such that w(y)>ov(y).

First we show the property (3.9). Fix x€Q and (p, X)= J>* u*(x). The
definition of u.s.c. envelope and the function # imply that there exist (x,, %,) €
Qx &8 such that

(g, uk(x,)) = (x, u*(x)) as n— —oo.
Hence we can find by [4, Proposition 4.3] £,€Q and (p,, X,)E J>* uf(£,)
satisfying
(%ar UE(£,), Do X) > (3,65 (®),, X) a5 n—> fo0.
Since u,E S, we have
F(£,, 4¥(£2), Pur X,y ik (£,)— Mui(£,))<0.

It follows from the definition of % and (M.4) that Mu} < Mu* on Q. Moreover
using the monotonicity of F with respect to m, we obtain

(3.11) F(£,, u¥(2,), pn X, uk(£,)—Mu*(£,))<0.
Since Mu*s USC(Q2) by (M.1) and {Mu*(x,)} is bounded, we can find a subse-
quence {Mu*(x,,)} satisfying

lim Mu*(x,,) = lim sup Mu*(x,) < Mu*(x) .

k> +00

Hence substituting #=m, in (3.11) and letting to k— -+ oo, we obtain
F(x, u*(x), p, X, u*(x)— Mu*(x))<0 .

Let x€98Q be fixed. Choose {u,} C& such that u,(x)—>#(x) as n—>-4oco. Using
Mu}¥ < Mu*, we have B(x, u,(x), u,(x)— Mu*(x))<0. Sending n— - co, we have
B(x, u(x), u(x)—Mu*(x))=0. Hence we get ucS.

Next, we prove the property (3.10). Suppose v&S is not a supersolution
of (1.3). Then there exist 2 and (p, X)E J*~ v4(2) satisfying

F(z, v4(2), p, X, va(3)—Mo(2))<0.

We claim v4(2)<@(2). If vy(2)=2%(z), we get (p, X)eJ> a(z). Noting
Muvy<Mu on O, we have

F(z; 'v*(z)» § 2 X, v*(z)—Mv*(z))gF(z, u(z)’P’ X, u(z)——Mu(z))gO ’

because # is a l.s.c. supersolution of (1.3). This is a contradiction. Thus we
obtain the claim. Since Muy is ls.c. on O, there exists a function Y& C(Q)
such that \»< Moy on Q and yr(2)=Muv(z). Thus we have
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F(z, v4(2), p, X, v4(2)—(2))<O0.
We set

00,1() = Da(+3+<p, ¥+ (X (5—2), v—x>—y] 53",

Then by the same method as in [4, Section 4] we obtain, for small 7, §, y>0,
that v, y(x)<<#lx(x) on B,(2) and v,y is a classical solution of

(3.12) F(x,u, Du, D* u,u—y)<0 in B/(2),

where B,(2)={xER": |x—z| <r}. We note that v,y is also a subsolution of
(3.12) since F is degenerate elliptic. It is easily seen that, taking 8=7* /8,
9(x)>v; y(x) when 7/2=< |x—=z| =r. Hence we define the function w by

( max {v(x), vs 4(x)} for x€B(z,7),

() = v(x) otherwise.

and then we see Moy, < Mv* < Mw* on ). Therefore we get
B(x, w, w—Mw*)<0 on 8Q

since w=v on 0Q and v&S&. By the similar proof to that of the property (3.9)
we obtain wES.  Since v, y(2)=v4(s)+ 8, there exists a point yEQ such that

w(y)=vs,2(y)>v(y). W
As to the boundary condition, we know only B(x, u, u—Mu*)<0 on 9Q

in the above proof. By the following corollary, we can show that u is a unique
solution of (1.3) and satisfies the boundary codnition.

Corollary 3.3. Let the assumpitons in Theorem 3.2 hold. Let u be a so-
lution of (1.3) constructed in Theorem 3.2. If u satisfies both B(x, u*, u*—Mu*)<0
and B(x, uy, he— Muy) =0 on 8Q, then u is a unique solution of (1.3). Moreover
u is continuous on Q and satisfies the boundary condition.

Proof. Let v be any solution of (1.3) satisfying B(x, v*, v*—Mv*)<0 and
B(x, vy, v4—Mwvy)=0 on 9Q. Theorem 3.1 implies u=v=C(Q2). It is easily
seen that u satisfies the boundary condition. W

4, The case Q=R~V

We devote this section to establish the comparison principle and existence
of solutions of the following problems:

4.1) F(x,u, Du, D’ u,u—Mu)=0 on RV,

where F is continuous on R¥ X RX R¥ x S¥ X R.
Let # and v be bounded functions on RY and T=R"XRXR"XS" X R.
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(F.2)" There exist w;&C(R*) with wy(0)=0 and functions oy(p) (0<p=1),
BEC(R") and constants a;>0, ar,=0 satisfying

F(y,r, a(x—y)+p, Y+Z, m)—Fu(x, s, a(x—y), X, n)
= max {oyet|x—y|*+ |x—y| +| p| +IZ]])
tar—s)+osl—p),
ay(ws(a|x—y|*+ |x—y |+ p| +IIZI])
+r—s+oy(1—p))+B(x) (m—n)} ,
o) =0 (p—0),
B(x)>0 for x€RY and |[|B|lcrm)<-+ oo

for all x,yER",r,sER,pERY, X, Y, ZE8Y, m,nER and a>1 such that

r<sand
3a(I O)S(X @) )<3 (I —1I
o1)3\o —v/)=%\1 1)’
where Fy is defined in (F.4).
(M.2)" For any >0, and 2€ R" such that supp#(#—v)—yp=u(2)—v(2),

u(2)—v(2)+ 7= Mu(z)—Mo(2) .

We give the definition of sub-, super- and solutions of (4.1) as in Defini-
tion2.1 with Q=R". Then we have the similar propositions to those in Section
2. Our main results in this section are stated as follows.

Theorem 4.1. Assume (F.1), (F.2)’, (M.1), (M.2)" and (M..3) hold. More-
over assume (4.2) holds.
(4.2) If a,=0in (F.2)', then it holds ku>0 (0<p<1) in (M.3).

Let u and v be, respectively, a subsolution and a supersolution of (4.1). Then
u¥* <o, on R".

Theorem 4.2. Let F and M be as in Theorem 4.1. Assume (M.4) in
Theorem 3.2 holds with Q=RY. Assume there exist a u.s.c. subsolution u and
a ls.c. supersolution @ of (4.1). Then there exists a (unique) solution u of (4.1).
Moreover us C(RV).

If we admit Theorem 4.1 holds, we can get Theorem 4.2 by Perron’s method
as in the proof of Theorem 3.2. So we show only Theorem 4.1.

Proof of Theorem 4.1. Since the proof is similar to that of Theorem 3.1,
we point out the differences. We may assume v& USC(RY) and v€LSC(RY).
We suppose supgr(#—v)=20>0 and get a contradiction.

Let u,=(1—1/m)u. Since u is bounded in R", we have
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sup (u,—v)=0 forlarge mEN.
RN

Moreover, for any »&(0, §), we can find &€ R" such that

0<sup (4p—v)—n=uy(2)—v(2).
RN
We remark that the function u,, satisfies

(43) Fl/rn'(x» U, Dy X, um—Mum‘I'kllm)§O .

for all x€RY and (p, X)E J>* u,(x).
For each a>1, Let the function ® on RY X R¥ be as in the proof of Theo-
rem 3.1. Then & attains its maximum because ®& USC (R X R") and

D(2,2)>0 and P(x,y)—> —co (|x|+|y]— +0).
Let (%, )€ R X R" be a maximum point of ®. By ®(z, 2)<D(%, 7) we obtain
1 EF=I == S2ul+llell) - (lull = sup Ju(x)]),
*ER

and so {¥} 4> CR" is bounded and |*— )| —0 as a—-+oo. Then we may con-
sider that ¥ and ¥y converge to some 2,ERY as a— -+ oo by taking subsequence
if necessary. By the semicontinuity of %, and v we get

(4'-4') um(z)"i’(z)éum(zo)‘"v(zo) )
(4.5) lim sup (a|#—F|*+[7—=|")=7.
Moreover we note that u,(%)—u,(2,) and v(y)—v(2,) as a—>+oco. As in the
proof of Theorem 3.1, using the maximum principle, we have the following
inequalities:
Fl/m'(xv um(‘f)» a(x—j’), X) um(x)_MuM(x)_}_kl/m)éO )
F(3,v(3), a(x—3)—p, Y—Z, v(3)—M»(5)) =0,
where p=4|y—z2|%(y—z) and Z=4|y—z|* I+8(y—2)@(¥—=2). By (F.2)' the
same calculation as in the proof of Theorem 3.1 implies
0=F (3, »(¥), a(X—3)+p, Y+Z, v(§)—Mv(y))
_Fllm’("?’ um(x)’ a(x‘—_)"’), X! um(x)_Mum(x)_’_kl/m)
=max {oy(a|2—F|*+|2—F| +| p| +]|2]])—t; 0+ o5(m™),
awi(a|F—3 |+ |Z—7| + | pl +1Z|])— 0+ o4(m™))
+B(%) (v(9)—Mv(P) —un(%)+ Mup(¥)—kyn)} -

Letting a—+ oo, we obtain
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(4.6) 0= max {wy(n+47"+129%)—a; 0+ ay(m™Y),
ay(wf(n+47"+1297)— 0+ oy(m™))
+8(20) (7—kym)}

since (M.2)’ is satisfied at 2, from (4.4). We suppose a,>0. Using (F.2)’,
(M.3) and letting »—0, we get

0=max {—az0+ay(m™), a(—0+ay(m™))} .

Taking sufficiently large m& N, we obtain a contradiction because of (F.2)".
Next we suppose a,=0. Sending »—0 in (4.6), we also have a contradiction
for sufficiently large mEN by (4.2). W

5. Model problems I and II

In this section we mention Models I and II precisely. In the following
we consider only the case QC RY is a bounded domain and assume that 0Q is

sufficiently smooth.
First we consider Model I. Then we make the following assumptions on

O and the coefficients of (1.1):
(I.1) For all veL}(Q),

{00 0@,
(I.2) The function

=C,||vl|tg) for some C,>0.

2= | o 0@y, %),

is continuous in the variable x&Q, uniformly for vE L=(Q).

(1.3) g, eWr=(Q) (=1, -, N), a, \, f, peC(Q).

(14) a=a,on Q for some ;>0 and A>0 in Q.

(I.5) gi(x) vi(x)>0 for x€0Q, where »(x)=(vy(x), -+, vy(x)) denotes the out-
ward unit normal at xE0Q.

(L6) SQ 2(y) O(dy, x)< o) for x€0.

Under thsee conditions we see (F.1)-(F.4), (M.1)-(M.3) and (B.1)-(B.2) hold.
Thus we can apply Thoerem 3.1 to obtain the comparison principle of solutions
of (1.1). Since u=—C and #=C on Q are, respectively, a subsolution and a
supersolution of (1.1) satisfying

uv=| uy Oy, and wx)z| #(3) 0wy, forall sedn

for sufficiently large C>0, Theorem 3.2 holds for (1.1). We prepare the fol-
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lowing lemma to apply Corollary 3.3.

Lemma 5.1. Assume (I.1)-(1.6) hold. Let u be the function defined as in
the proof of Theorem 3.2. Then u satisfies

u*(x)=< Sa u*(y) O(dy, x) and uu(x)= Sn ux(y) O(dy, x) for all x€0Q.

Proof. To prove the first inequality, we suppose that there exists x,E9Q
such that u*(xo)>SQu*(y) O(dy, x,) and shall get a contradiction. As in the

proof of Theorem 3.2, we can find (x,,%,)E0 XS satisfying (x,, u,(x,))—
(o, u*(%)) as m—>—+oo. Noting (I.2), there exists §>0 such that

w*(x) — 8= Sn #*(y) O(dy, x) for »<B(xg )N
Using the facts that #,<u on Q and ,E S, we get, for all nEN,

u, is a subsolution of
Lu—\(u*(x)—8)—f =0 in B(x, 8)NQ,
Uy — (U* (%) —8) =0 on B(x,8)NoQ,
u, <% on O,
where Lu=—33_1 g; u,,+(a@+A) u. It is easily seen that from (I.5) that there
exist & & (0, 8) and Y& CYB(x,, &) N Q) N C(B(x,, &) N Q) satisfying
Lyyp—\Mu*(x)—8)—f20 in B(x, &)NQ,
Y(%o) = t¥(%0)—3
Ar—(u* (%) —8) =0 on B(x,, &) N0Q,
=% on 8B(xy, &) NO .
By the standard comparison argument we have

U= on B(x, &)NQ forall neN.

By the way, there exists #n,&N such that x,EB(x,, &) NQ for all n>n,. Thus
we obtain u,(x,) <+(x,) for such nEN. Letting n— oo, we get

w*(%0) S (%) = u* (%) —3,
which is a contradiction.
Next we show the second inequality. As the above argument, we suppose
u*(xo)<g ux(y) O(dy, x,) for some x,=0 and shall get a contradiction. We
Q

remark (%)) <@ (%) holds from (I.6). By (I.2) and (I.3), there exists §>0
such that
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Uy(%p)+8<<min {L ux(y) O(dy, x), p(x)} for xEB(x, &) N .
It is easily seen from (I.5) that there exist & (0, 8) and Yr& CH(B(wx,, &) N2) N
C(Blxy, €) N Q) satisfying
max {Ip—f, v—@} <0 in B(x, &) NQ,
¥(@)=|_uly) Oy, %) for ¥ B, &)NOQ,

Y(x0) = 4(%6) 13,

V=@ on  B(x, &) NQ,

Y<infu on 0B(x, &) N,
Q

where f(x)=f(x)—A\(x) Sn u(y) O(dy, x). We define the function w by

max {u(x), (%)} xEB(x,, &) NQ,
u(x) otherwise.

w(x) = {

Then it is easily verified that w(x)és w¥(y) O(dy, x) for x€8Q. Therefore
Q

by similar argument to the proof of (3.10), we get a contradiction. W

Hence, using Corollary 3.3 we can see that the solution # of (1.1) is unique
and satisfies the boundary condition. Besides S.M. Lenhart-the second author
[9, Section 2] proved by another method that the solution u of (1.1) satisfies the
boundary condition.

Remark 5.1. We can also treat a second order equation:
max {‘__jzl:‘,la,-i Uyt Lu—f,u—@} =0 in Q,
where the matrix (a;(x)) satisfies {(a;;(x)) &, £>=0 for all x€Q) and EERY.
Next we mention Model II. We assume the following:
(I1.1) There exists P: QX (R*)¥—(R*)" satisfying
x+P(x, £)€l) forany x€Q, Es(RY)Y,

Px,g)=¢ if x+£€0,
P(-, £) is continuous on {} for each E€(R*)V .

(IL.2) keC((R*)Y), k(E)=k, on (R*)" for some ky>>0.
(I1.3) For the matrix (a;;(x)), there exists a nonnegative matrix (a;;(x)) such
that

(a;;) = Y(oy;) (03;) with a;;€WH=(Q) (i,j=1,-,N),

where ¢4 is the transposed matrix of 4.
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(I1.4)
(IL5)

(I1.6)
By the assumptions (IL.1), (I1.2) it is seen that the operator M maps USC(Q2)

K. IsHir anp N. Yamapa

b, e W-=(Q) (i=1, ---,N), ¢, f, g€ C(Q).

by(x) v,(x)<0 on {x€0Q|22Y ;1 a; (%) v;(x) v (x)=0}

where v(x)=(v\(%), :**, vx(x)) is the outward unit normal to Q at xE0Q.
c=c¢, on  for some ¢,>0.

into itself. (cf. A. Bensoussan-]J.L. Lions [3, Chapter 4, Lemma 1.6] or the first
author [5, Proposition 2.3].) From (II.1)-(IL.6) we can check that (F.1)-(F.4),
(M.1)-(M.3) and (B.1)-(B.2) hold. Thus we get the comparison principle of
solutions of (1.2) by Theorem 3.1. Moreover, using the barrier argument, we
can apply Corollary 3.3 to obtain the existence of a unique solution of (1.2)
satisying the boundary condition. (cf. The first author [5, Section 4].)
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