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ON DERIVATIVES OF VISCOSITY SOLUTIONS TO FULLY

NONLINEAR ELLIPTIC EQUATIONS

NIKOLAI NADIRASHVILI

Abstract. We prove that partial derivatives of viscosity solutions of
elliptic fully nonlinear equations are viscosity solutions of linear elliptic
equations.
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1. Introduction

Let

F (D2u) = 0 (1)

be a fully nonlinear second-order elliptic equation defined in a domain of Rn. Here
D2u denotes the Hessian of the function u. We assume that F is a smooth function
defined on the set S2(Rn), the space of n× n symmetric matrices. Recall also that
(1) is called uniformly elliptic if there exists a constant C = C(F ) > 1 (called an
ellipticity constant) such that

1

C
|ξ|2 6 Fuijξiξj 6 C|ξ|2, ∀ξ ∈ Rn.

Here, uij denotes the partial derivative ∂2u/∂xi∂xj . A function u is called a
classical solution of (1) if u ∈ C2(Ω) and u satisfies (1). Actually, any classical
solution of (1) is a smooth (Cα+3) solution, provided that F is a smooth (C1+α)
function of its arguments.

Let u1, u2 be two classical solutions of the equation (1). Then the difference
v = u1 − u2 is a solution of a linear uniformly elliptic equation

Lv =
∑

aij(x)
∂2v

∂xi∂xj
= 0, (2)

where

aij = Fuij (θD2u1 + (1− θ)D2u2), (3)
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and 0 < θ < 1. Equality (3) follows from a multidimensional version of Rolle’s
theorem. The coefficients aij(x) satisfy the inequalities

C−1|ξ|2 6
∑

aijξiξj 6 C|ξ|2,

where C > 0 is an ellipticity constant.
A function v is called a classical solution of equation (2) with measurable coef-

ficients if v ∈ C2 and v satisfies (2) almost everywhere.
In oder to get a solution to the Dirichlet problem for each of the equation (1) or

(2) the notion of classical solutions has to be extended. Such extension, known as
viscosity (weak) solutions can be done for equations (1) and (2) in different ways.

For the fully nonlinear equation (1) the set of the viscosity solution can be defined
as an intersection of C-closures of the sets of super and subsolutions.

For the linear operator (2) one can define a continuous strong Markov process
x(·) such that for small h > 0, x(t+ h)− x(t) behaves as a Gaussian process with
mean zero and covariance a(x(t)).

The main goal of this paper is to show that the Rolle’s relation (2), (3) holds
in a weak sense, i.e., if u1, u2 are viscosity solutions of (1) then v is a viscosity
solution of (2).

Acknowledgments. The author would like to thank M. Safonov and S.Vlăduţ for
very useful discussions.

2. Viscosity Solutions to Linear and Nonlinear Elliptic Equations

We recall first the formal definitions of viscosity solutions to the equation (1)
and (2).

Let Ω ⊂ Rn be a smooth bounded domain. Let L be a linear uniformly elliptic
operator (2) defined in Ω with the ellipticity constant C.

We consider a Dirichlet problem in Ω:{
Lv = 0 in Ω

v = ϕ on ∂Ω,
(4)

Due to the result of Jensen [J2] two following definitions of the viscosity solutions
to the Dirichlet problem (4) are equivalent.

Definition 1. Function v is a viscosity solution of (1) if

v = lim vk,

where

Lvk =
∑

akij(x)
∂2vk
∂xi∂xj

= 0,

akij are continuous and akij → aij in L1(Ω).

Definition 2. Function v is a viscosity solution of (1) if

(i) lim
ε→+0

sup ε−n
∫
|x−y|<ε

[∑
aij(y)

( ∂2φ

∂xi∂xj
+ ηδij

)]+
dy > 0
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for all η > 0, whenever x ∈ Ω and φ ∈ C2(Ω) are such that

0 = (v − φ)(x) > (v − φ)(y)

for all y ∈ Ω, and if

(ii) lim
ε→+0

sup ε−n
∫
|x−y|<ε

[∑
aij(y)

( ∂2φ

∂xi∂xj
− ηδij

)]−
dy > 0

for all η > 0, whenever x ∈ Ω and φ ∈ C2(Ω) are such that

0 = (v − φ)(x) 6 (v − φ)(y)

for all y ∈ Ω, where [t]+ denote max{0, t}, and [t]− denote max{0, −t}.

Though from Definition 1 follows the existence of the viscosity solution to the
Dirichlet problem (4), the principal question on the uniqueness of the viscosity
solution remains open. For a general uniformly elliptic operator (2) we showed
[N2] that the viscosity solutions to the Dirichlet problem (4) are not unique, (see
also some extension of the result in [S1]). However under certain restriction on the
coefficients of operator L number of the uniqueness results are known, see, e.g., the
survey [K].

We will need the following proposition [N1].

Proposition 1. Let u be a viscosity solution of the equation (2). Then for almost
every point y ∈ Ω there exists a second order polynomial py(x) such that u(x) −
py(x) = o(|x− y|2) and Lpy = 0.

Now we consider the Dirichlet problem for the fully nonlinear equation{
F (D2u) = 0 in Ω

u = ϕ on ∂Ω,
(5)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω and ϕ is a continuous
function on ∂Ω.

Definition 3. A continuous function u in Ω is a viscosity subsolution (resp. vis-
cosity supersolution) of (1) in Ω when the following condition holds: if x0 ∈ Ω, f ∈
C2(Ω) and u− f has a local maximum at x0 then

F (D2f(x0)) > 0

(resp. if u− f has a local minimum at x0 then F (D2f(x0)) 6 0).
We say that u is a viscosity solution of (1) when it is subsolution and superso-

lution.

The existence and the uniqueness of the viscosity solution to Dirichlet problem
(5) was shown by Crandall, Lions, Evans and Jensen, see [CC].

Following Ishii [I], one can also define viscosity solutions of (5) using Perron’s
method, see also [CIL].

The existence of nonclassical viscosity solutions to fully nonlinear elliptic equa-
tions was shown in [NV].

Denote by U+ the set of C2-supersolutions of the problem (5): u+ ∈ U+ if
u+ ∈ C2(Ω) and F (D2u+) 6 0, and u+ > ϕ on ∂Ω. Correspondingly U− be the set
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of C2-subsolutions of the problem (5): u− ∈ U− if u− ∈ C2(Ω) and F (D2u−) > 0,
and u− 6 ϕ on ∂Ω.

The following important result is due to M. Safonov [S2].

Theorem 1. Let u be a viscosity solution of (5). Then there are sequences u+n ∈
U+, u−n ∈ U− such that

u = lim
n→∞

u+n = lim
n→∞

u−n .

Proof. Let u be a continuous function in Ω and let H ⊂⊂ Ω be an open set. Define,
for ε > 0, the upper ε-envelope of u:

uε(x0) = sup
x∈H
{u(x) + ε− |x− x0|2/ε}.

According to a result of Jensen [J1] (see also [CC, Section 5.1]), if u is a vis-
cosity subsolution of F (D2u) = 0, then the upper ε-envelopes uε are also viscosity
subsolutios of F (D2u) = 0. Moreover, uε → u as ε → 0, uniformly on compact
subsets, and uε are C1,1 from below. In particular, they have second differential
almost everywhere and F (D2uε) > 0 a.e.

Let ηδ be a smooth nonnegative function with the support in Bδ and the total
integral 1. Consider the standard mollifiers uε,δ = uε ∗ ηδ, which are smooth and
satisfy

D2uε,δ → D2uε

almost everywhere, as δ → 0. Since the functions uε,δ + C|x|2 are convex, with
C = C(ε), we have

0 6 f ε,δ := (F (D2(uε,δ)))− 6 C = C(ε),

and f ε,δ → 0 a.e. as δ → 0.
Let vε,δ be a classical solution of the Dirichlet problem with the concave minimal

Pucci operator [CC, p. 17] and Lipschitz right side f ε,δ:{
M−(D2vε,δ) = f ε,δ in Ω

vε,δ = 0 on ∂Ω

By the Alexandrov–Bakelman–Pucci estimates, [CC], 0 > vε,δ → 0 as δ → 0,
uniformly on Ω. Then one can choose small positive ε, δ and cε such that the
function wε,δ := uε,δ + vε,δ − cε < u, and it can be made arbitrarily close to u.
Finally

F (D2(wε,δ) > F (D2(uε,δ)) +M−(D2vε,δ) = F (D2uε,δ)) + (F (D2(uε,δ)))− > 0.

Thus we proved that a viscosity solution can be uniformly approximated from
below by classical subsolutions. The “upper” approximation is quite similar. The
theorem is proved. �

We will need the following propositions, see [A].

Proposition 2. Let B ⊂ Rn be a unit ball. Let u ∈W 2,n(B) be such that

Lu > −1 in B,
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where L is the uniformly elliptic operator (2) and

u|∂B 6 0.

Let U be the convex envelope of the graph of u+, and

ν : U → Sn

be the Gauss normal map. Let ds be the element of the surface area of U and Jds
be the Jacobian of the map ν. Then

J 6 C1,

where a positive constant C1 depends on the ellipticity constant of the operator L.
Moreover the support of the function J is on the set of coincidence of the graphs of
function u+ and J .

As an immediate corollary of Proposition 2 we have the following

Proposition 3. Let B ⊂ Rn be a unit ball. Let un ∈ W 2,n(B), n = 1, 2, . . . be
such that

Lnun > −1 in B,

where Ln is a sequence of uniformly elliptic operators (2) with a joint constant of
ellipticity. Assume that the sequence converges in C(B), un → u, and

u|∂B 6 0.

Let U be the convex envelope of the graph of u+, and

ν : U → Sn

be the Gauss normal map. Let ds be the element of the surface area of U and Jds
be the Jacobian of the map ν. Then

J 6 C1,

where a positive constant C1 depends on the ellipticity constant of the operators Ln.

Two following propositions are due to Trudinger [T2], [T1].

Proposition 4. Let u be a viscosity solution of the fully nonlinear equation (1).
Then for almost every point y ∈ Ω there exists a second order polynomial py(x)
such that u(x)− py(x) = o(|x− y|2) and F (D2py) = 0.

Proposition 5. Let u be a viscosity solution of the fully nonlinear equation (1).
Then u ∈ C1,δ, δ > 0.

Theorem 2. Let u1, u2 be viscosity solutions of equation (1), v = u1−u2. Then v
is a viscosity solution of the equation (2) where coefficients aij satisfy equality (3).

Proof of Theorem 2. Since by Proposition 5 the functions u1, u2 have almost every-
where approximative second differentials which satisfy the equation (1) it follows
that function v has almost everywhere an approximative second differential which
satisfies the equation (2) with the coefficients satisfying (3).

Assume by contradiction that v is not a viscosity solution of (2). Then by
Definition 2 it follows that either property (i) or (ii) fails to be true. We may
assume without loss that (ii) is not satisfied for the function v. That implies the
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existence of a point y ∈ Ω, function φ ∈ C2(Ω), xφ(y) = v(y) and constant δ > 0
such that for any ε > 0 there exists r > 0 such that in the ball B = {x : |x−y| < r}
the following inequalities hold φ 6 v − δ|x − y|2 and Lφ > 0 on B \ E, where E
is a Borel subset of B such that measE < εmeasB. Set ψ = φ − v + δr2/2. Let
V be the convex envelope of ψ+. By Proposition 2 there are convergent sequences
u−n → u1, u+n → u2, u−n , u

+
n ∈ C2 such that u−n are subelliptic, F (D2u−n ) > 0 and

u+n are superelliptic, F (D2u−n ) < 0. Set vn = u+n − u−n . Then vn are superelliptic
functions for a linear uniformly elliptic operator (2),

Lnvn 6 0.

Thus we can apply Proposition 4 to function ψ. Denote by V the convex envelope
of the function ψ. Let J = ads be the Jacobian of the Gauss map of the function V .
Since the functions ψn are subelliptic then by Proposition 4 a < C, where constant
C > 0 depends on C2-norm of φ and the ellipticity constant of the operator F .
Since the function v has almost everywhere the second differential satisfying (2) we
conclude that a = 0 on B \ E. Thus by the maximum principle of Alexandrov–
Bakelman–Pucci [A], [CC] it follows that ψ < Cr2ε1/n, C > 0. Since ψ(y) = δr2/2
then choosing sufficiently small ε > 0 we get a contradiction. The theorem is
proved. �

Corollary 1. Let u be a viscosity solution of the fully nonlinear equation (1). Then
any partial derivative v = uxk

is a solution of the uniformly elliptic operator (2),
with the coefficients aij defined almost everywhere by

aij = Fuij .

Proof. We may assume that k = 1. Set

vm = m(u(x1, . . . , xn)− u(x1 + 1/m, . . . , xn)).

By Theorem vm is a viscosity solution of the equation (2) with the coefficients

amij = Fuij (θD2u1 + (1− θ)D2u2),

0 < θ < 1. For ε > 0 we denote

E(m, ε) = {x ∈ Ω: |D2u(x1, . . . , xn)−D2u(x1 + 1/m, . . . , xn)| > ε}.
Since D2u is defined almost everywhere and is measurable on Ω then by Lusin’s
theorem for any ε > 0 measE(m, ε) → 0 as m → ∞. Thus amij → aij in L1(Ω) as
m → ∞ and from Definition 1 it follows that v is a viscosity solution of (2). The
corollary is proved. �

Corollary 2. Let u be a viscosity solution of the fully nonlinear equation (1).
Then function u has almost everywhere the third approximative differential, i.e.,
for almost every point y ∈ Ω there exists a third order polynomial py(x) such that
u(x)− py(x) = o(|x− y|3).

Proof. By Corollary 1 the functions uxi
, i = 1, 2, . . . , are viscosity solutions of uni-

formly elliptic equations. Integrating the function ux1 over dx1 we get by Proposi-
tion 1 that the function u has almost everywhere an approximative third differential
along the lines parallel to x1 axis. Consequently integrating functions uxi

over dxi,
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i = 1, 2, 3, . . . , we get by induction that function u has almost everywhere an ap-
proximative third differential along the planes parallel to x1x2, along the subspaces
parallel to x1x2x3, etc. The corollary is proved. �
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