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Introduction

We shall be mainly concerned with the linear, degenerate elliptic, partial
differential equation

(1.1) Pu=f in Q

where Q is an open subset of RY and & is the operator defined by

L) = = Y @yt + 3 b () + (D).

Throughout this paper we assume that the coefficients a;;(x), b;(x), c(x) and
f(x) are real and that the matrices a(x) = (a;;(x)) are symmetric and nonnegative
definite and

a;€CH1(Q), beC>'(Q), ¢, feC(Q) Vi,j=1,...,N.

It is known that under these assumptions the square root ¢ = a'/? of a is in
C%Y(Q). E.g., see [10] for a proof of this fact.

We consider weak solutions of (1.1) in the class of continuous
functions. Subsolutions in the distribution sense are defined as follows. A

function ue C(2) is a distribution subsolution of (1.1) if

(1.2) j WL*p — fo)dx <0

for any ¢e2 . (Q)={peCg(2)|¢ =0}, where £* is the formal adjoint
operator of &, i.e.,

N N
g*go = - Z (aij(p)xixj - Z (biqo)xi + qu V(pecz(g)'
ij=1 i=1

* Supported in part by Grant-in-Aid for Scientific Research (04640189), the Ministry of
Education, Science and Culture of Japan.
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Likewise, a distribution supersolution is defined to be a continuous function
u which satisfies (1.2) with > replacing <. We shall indicate that u is a
distribution subsolution (respectively, a distribution supersolution) by writing

Lu<f in 2'(Q) (respectively, Lu > f in 2'(Q)).

A distribution solution of (1.1) is a function which is both a distribution
subsolution and a distribution supersolution of (1.1). Equivalently, ue C(Q)
is a distribution solution of (1.1) if

j wL*p — fo)dx =0 VoeCF ().

This is indicated by writing Xu = f in 2'(Q).
For our exposition it is convenient to consider the general second-order,
degenerate elliptic partial differential equation

(1.3) F(x, u, Du, D*u) = 0 in Q.

Here F: 2 x R x RN x S¥ - R is a continuous function, where SV denotes
the set of real N x N symmetric matrices, and Du and D?u denote the gradient
(uy,,...,uy,) and the Hessian matrix (u,,,). The precise meaning of “degenerate
ellipticity” is this. The function F or equation (1.3) is degenerate elliptic if
F(x,r,p, X) < F(x,r, p, Y) provided X > Y, i.e., X — Yis nonnegative definite.
A function ue C(2) is a viscosity subsolution of (1.3) if F(x, u(x), Do(x),
D*¢p(x)) <0 whenever peC?(R2), xeQ and (u — ¢)(x) = sup,(u — ¢). Similarly,
ue C(Q) is a viscosity supersolution of (1.3) if F(x, u(x), Do(x), D*>¢(x)) > 0
whenever ¢ € C%(Q2), xeQ and (u — ¢)(x) = info(u — @). ue C(RQ) is a viscosity
solution of (1.3) if it is both a viscosity subsolution and a viscosity supersolution
of (1.3). When convenient, we shall indicate that u is a viscosity subsolution
(respectively, a viscosity supersolution, or a viscosity solution) of (1.3) by writing

F(x, u, Du, D*u) < 0 (respectively, > 0, or = 0) in.Q in the viscosity sense.
We set
Fo(x,r, p, X) = —tra(x)X + <b(x), py + c(x)r — f(x).

Now (1.1) reads Fg(x, u, Du, D*u) =0 in Q. Since a(x) >0, it is seen that
F, is degenerate elliptic. Subsolutions, supersolutions and solutions of (1.1)
in the viscosity sense are defined with F,.

The definitions of distribution solutions and viscosity solutions are based
on the integration by parts and on the maximum principle, respectively. The
maximum principle here means that if ve C?(Q) attains its maximum at xeQ,
then Duv(x) =0 and D?v(x) < 0.
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The question we address here is if these two notions of weak solutions
of (1.1) are equivalent. An affirmative answer has ben given in [8] by P.-L.
Lions. The arguments there are largely based on probabilistic techniques to
deduce the answer. We will give here another approach based on purely
PDE and viscosity solutions methods to obtain a similar conclusion.

Theorem 1 If ueC(Q) is a viscosity subsolution of (1.1), then it is a
distribution subsolution of (1.1).

Theorem 2 Assume that ce C1(Q). If ueC(Q) is a distribution subsolu-
tion of (1.1), then it is also a viscosity subsolution of (1.1).

Our results are slightly better in the sense that the regularity requirements
on a is less than those in [8]. In deed, it is assumed in [8] that o is in
ChH(Q).

The paper is organized as follows. In Section 1 we explain an observation
concerning the sup-convolution of viscosity solutions. Section 2 is devoted
to the proof of Theorem 1. In Section 3 we collect solvability and regularity
results (Theorems 4 and 5) of solutions of (1.1) which are needed in the proof
of Theorem 2. Theorem 2 is proved in Section 4. Theorems 4 and 5 are
proved in Section 5.

§1 Approximation of viscosity solutions

It is well known that the sup-convolutions and inf-convolutions yield
good approximations of viscosity subsolutions and supersolutions, respectively.
We give here an additional remark concerning these approximations.

Throughout this section, for simplicity of presentation we assume that Q2
is bounded and only consider those solutions u which are bounded, uniformly
continuous, i.e., ues BUC(Q). For a function ue BUC(Q2) and &> 0 the
sup-convolution is defined by

1
ui(x) = sup <u(y) — |x — yt2>-

We shall write Q, = {xeQ|dist (x, Q) > &}.
To formulate the result, we introduce some conditions on F.

(A1) For each R > 0 there is a function w,ge C([0, 00)) satisfying w,g(0) =0
such that if — R<r<s<R, then F(x,r,p, X)< F(x,s, p, X)+ w,g(s — 7).

(A2) For each R >0 there is a function w,gze C([0, o0)) satisfying w,x(0)
such that if |[r| <R and if « > 1 and X, YeS" satisfy
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I 0 X 0 I -1
— 3a < < 3« R
01 0 Y -1 I

F(y’ r, OC(X - y)a - Y) < F(X, r, OC(X - )’), X) + COZR(OCIX - yI2 + 1/0()

then

We note that if F satisfies (A2), then F is degenerate elliptic. Note also
that F, satisfies (A1) and (A2) provided ¢ and b are Lipschitz continuous
and ¢ and f are uniformly continuous on . See for these [2].

Theorem 3 Let (Al) and (A2) hold. Let ue BUC(Q) be a viscosity
subsolution of (1.3). Then for each ¢ > Q there is 5> 0 such that for 0 < <4y,

F(x, u’, Du?, D*v’) < ¢ in Q. in the viscosity sense.
e Y

Remark The constant §, can be chosen so that it depends on u only
through supe|u| and its modulus of continuity.

Proof. We choose M > 0 so that M > 2sup,|u|, and a nondecreasing
function we C([0, o)) satisfying @(0) =0 so that

sup {u(x) — u(y)|x, yeQ, |x — y| <r} < () Vr >0,

and max {w;,, W,y < o, where w;,, and w,,, are from (Al) and (A2) with
R = M, respectively.

Let 6 > 0. It is obvious that u <u® on Q. Therefore, it is easily seen
that if y = (20M)"/* and xeQ,, then B(x, y) < Q and

1
u’(x) = max {u(y) ~ 55 |x — yI*| yeB(x, V)}-
For each xeQ, we fix y(x, 6)e B(x, y) so that
1
u’(x) = u(y(x, 9)) — = Ix — y(x, 9)|*.
20
We observe that from the inequality u < u® on Q that
1 _
25 X v O <u(y(x, 8)) — ulx) < o(Ix — y(x, 9)) < o).

We recall that if xeQ, and (p, X)eJ2’+u5(x); then y(x, §) = x + dp. See
[2] for this, the definitions of semijets J2 *u, J>*y and relevant facts. Now,
fix xeQ, and (p, X)eJ*> " u’(x). We set

v(z)=<p,z—x>+%<X(z—x),z—x> Vze RY,
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and w(y, z) = u(y) — v(z) for yeQ, zeR". We observye that

1
Wiy, 2) — <1y — 2> < u’(2) — v(2) < U’(x) + o(lz — x|*)

— Wy, 9), x) — 515 Iy 8) — xP + o(lz — xP)  as z—x,

ie.,

1 I -1
(%(y (5 8) = %), (v = ylx, 5)),;(_1 1 >)

— 1 I _I J2,+ 5
_<pa ——p,g(—l I ))G W(y(xa )a x)'

By the maximum principle for semicontinuous functions (see [2]), we see that
there are Y, ZeS" such that

o )=l 2)=3(5 7))

- = < < - s
o\0 I 0 Z o\—1 1

. (p) Y)sz’+u(y(xa 5)): (pa - Z)ejzy_v(x)‘

The last inclusion implies that —Z < D?v(x) = X. Since u is a viscosity
subsolution of (1.3), we have

F(y(x, 6), u(y(x, 9)), p, Y) <0.

To proceed, we assume that § < 1. Assumption (A2) now yields

F(x, u(y(x, 3)), %(y(x, 5) = x), — Z)

1 1
< F(y(x, 9), ul(y(x, 9)), g(y(x, 0)—x),Y)+ w((sly(x, 8) — x|* + 5)-

Consequently,
0> F(x, u(y(x, ), p, — Z) — ow(y) + 9)
> F(x, u(y(x, 9)), p, X) — 02w (y) + 0)
> F(x, u’(x) + (1/26)|y(x, 6) — x|, p, X) — 02w(y) + 0)
> F(x, w(x), p, X) — o(0() — Qo) + ).
Thus
F(x, u’(x), p, X) < 20Q2w(y) + 9) in Q
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in the viscosity sense. Noting that y = 2yM)'? -0 and 2wQw(y) + ) — 0
as 00, we finish the proof. MW

§2 Proof of Theorem 1

Theorem 3 and the following lemma will be key observations in our proof
of Theorem 1. We denote by Z(Q2) and by 2'(Q2) the spaces of Radon
measures on 2 and of distributions on €, respectively. Recall that we may
identify .#(€2) with the dual space C,(2) of Cy(£2).

Lemma 1 (A. D. Aleksandrov) Let ue C(R") be semiconvex. Then there
are matrices U - (ulj)l <i,j<N Wllh uijeL%oc RN) al’ld V: (Uij)lsi,jSN Wllh
v;€M(R") such that

Du=U+Vin 2(Q), V=0 in 4R,
(Du(x), D*u(x))eJ?u(x) a.e. in R",

where J?u(x) = J* u(x)nJ* " u(x). Moreover, the measures v;; are singular
with respect to the Lebesgue measure.

For a proof of this lemma we refer the reader to [5].

Proof of Theorem 1. Because of the local property of the assertion, we
may assume that Q is bounded and that ae C*'(Q), be C**(Q), ¢, fe C(Q),
ceC%(Q) and ue C(Q). This guarantees that F satisfies (A1) and (A2).

Now, fix peZ,(2). Choose ¢ >0 so that supp ¢ < 2,. By virtue of
Theorem 3, there is d, > 0 such that if 0 < < 9, then

(2.1) F,(x, u’, Du’, D*u’) < ¢ in Q, in the viscosity sense.

Fix 6€(0, §,). By Lemma 1 we find U; = (uf)) with uf;e L}, (R") and ¥; = (v7)
with vf;e .4 (R") such that

D = U, + ¥ in Z'(RY), ;>0 in .#(RY),
(Du(x), Us(x)) e J*u’(x) a.e.
The last inclusion and (2.1) yield
F,(x, u’(x), Du’(x), Us(x)) < ¢ a.e. in Q,,

and multiplying this by ¢ and integrating over 2 yield

(2.2) J (F o (x, u®(x), Du’(x), Us(x)) — &)@ (x)dx < 0.
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Now we observe that

N N
Z aij(Pdv?j(x) = Z (Gu''?) (O-jkq)llz)dv?j(x) > 0,

i,j=1JQ i,j,k=1JQ

and that if we identify . (RY) with Cy(RYY = 2'(R"), then

N
21 {J | a;;pdvli(x) + J aijqoufjdx}
i,j= o} Q

N
<u(i§j + v?ja aij(P> = Z <“iixj, aij(p>

ij=1 i,j=1

I
W=

i,j=1 iL,j=1JQ

N
= Z <u65 (aijq))xixj> = Z ué(aij(p)xixjdx'

Here {g, Y denotes the duality pairing between ge Z2'(R") and y e C§(RY)
and we may assume by approximation that the g;; are C*. Combining these,
we have

N N
> a;;puiidx < . Z

Lji=1J0 Lj=1

f ua(aijq))xixjdx'
Q
Therefore, from (2.2) we obtain

J W L*p — fo — ep)dx < 0.

J Q

Noting that u®(x) — u(x) uniformly in Q as ¢|0 and passing to the limit as
¢ 10, we conclude that

J wL*p — fo)dx < 0.

This completes the proof. W

§3 Solvability of (1.1)

In this section we treat the case when Q = RY, and consider the solvability
of (1.1). The results here are more or less known.
' Concernng the regularity of a we do not assume that ae W2 ®(R") except
in the assertion (ii) of Theorem 5, and instead we only assume that
ce W *(RV).

We define
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tr(o(x) — a(»))* — <b(x) — b(y), x — y> } .

co =1nfc, 45 = sup{
RN |x — y|?

XFEYy
We note that A, may be negative.

Theorem 4 Assume that cqo >0 and c, fe BUC(RY). Then there is a
unique viscosity solution ue BUC(R") of (1.1) and moreover,

(3.1) Nl < — 1l

Co

Theorem 5 Assume that ¢, > 0, and let ue BUC (R) be a viscosity solution
of (1.1). Then: () if co> Ao and ¢, fe W' (RY), then ue W1*(R") and

1
(3.2) IDullp- < 7 (IDf llre + 1 Delle 1]l Loo)-

Co 0
(ii) if co > A, = max {iq, 240} and o, b, ¢, fe W**(R"), then ue W2 °(R™) and
(3.3) ID%u| e < C(| D?6 g + 1),

where

C = M(, 1/(co — A1), DG |[Lo, 1 D?*bllpws DS lwr.cos € llwzcos | tllr1.0)
for some continuous function M on R.

Theorems 4 and 5 have been proved in [6], [7], [8], [3] and [4]. See
also [9]. The condition that ¢, > A; in the assertion (ii) of Theorem 5 is
slightly sharper than that used in [9]. Theorem 4 and the assertion (i) of
Theorem 5 are valid for Hamilton-Jacobi-Bellman-Isaacs equations under
similar assumptions. Half of the assertion (ii) of Theorem 5, the estimate on
solutions u

(D*ué, &) < C(|D*a L=+ 1) VEe RN with £ <1

(in the viscosity sense or equivalenltly in the distribution sense) is valid for
Hamilton-Jacobi-Bellman equation under similar assumtions. This assertion
requires convexity of equations. Indeed, [6], [7] and [8] treat Hamilton-
Jacobi-Bellman equations and techniques there are largely based on stochastic
optimal control theory, and [3] treat Hamilton-Jacobi-Bellman-Isaacs equa-
tions.

The proof of these theorems will be postponed until Section 5.
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§4 Proof of Theorem 2

We may assume that ¢ = 0; otherwise we regard the original f — cu as
fin (1.1). Let ue C(£2) satisfy

Lu<f in 2'(Q).
Suppose that u does not satisfy
Fu<f in 2 in the viscosity sense.

We shall show that this yields a contradiction.
By this supposition we find ze, r > 0 and @ e C?*(22) such that

Lox)=>f(x)+ 2r VxeB(z, 1),

u(z) = ¢(2),
u(x) < o(x) — |x — z* VxeB(z, r).

Of course, we assume here that B(z, r) = . Set U = B(z, r)°. By continuity,
there is &6 >0 such that for any e€[0, 5], if we define ¢,eC*(U) by
0.(x) = p(x) — &, then Lo, (x) > f(x)+r for VxeU.

We assume that 6% <r, so that B(z, 6!/*)c U. Let 0 <& <, and we
set w,(x) = u(x) — ¢,(x) for xeU. Then w,e C(U), maxg w, =&, w,(x) <0 for
Vxe U\ B(z, ¢'/*) and Lw, < —r in 2'(U).

Fix {eC&(U) so that 0<{<1 in U and {(x) =1 for VxeB(x, ¢'/%).
Define the operator %, by

Ly =LY = —tr ((PaD*y) + <(?b, DY >.
Then,
Few, < —r(? in 2'(U).

Let 1 >0 be a constant to be fixed later on. We let ¢ = {0, r/i}, so that
iw, <r{? in U and moreover,

w, + Zw, <0 in Z'(U).
Thus
4.1) Wy, Av + LFv) <0 Yoe W= (U) with v > 0.
We put

N N
;= Loy, b= [(?h; + '21 (Czaij)xj:la
j=



110 Hitoshi Isun

M=

oY

N
(CZaij)x“xJ‘ - Z (Czbi)xi'
i=1

i,j=1

We extend these functions to R by assuming their values to be zero outside
of U, and set 6 =(6;))1<i;<n> d=1(6)> and b = (b,...,by). Now we may
regard £¥ as an operator defined for functions on R, i.e.,

LEy = —tr(@D>y) + <b, DYy + &y for e C*(RY).

Note that &;;€ C*(R"), b,e Wt*(RY) and éeL*(R"). By using standard
mollification techniques, we find C§ functions ¢?;, b?, ¢°, with 6€(0, 1) and
1<i,j< N, such that

lodilwee < 165 1wi e, D03l < 5 IDG ;]| o

15F o < 1B llwncos 1€Moo < N1E ] pons

and as 00,

4.2) ?w%_@ﬂu=0®L

167 = billp — 0, ¢ = &]ps — 0.
We may moreover assume that the ¢7;, b} and ¢’ vanish outside of a compact
subset of U.

In view of Theorems 4 and 5 we set

Ao = sup {tr (0*(x) — O_a(J’))zl;ibjl(;) — b%(y), x — y)

x #y, o pe(0, 1)},

co = inf {c’(x)|xeR", 0 <y < 1},

and fix A>0 so that 1> c¢,+ 2max{l,, 0}. Fix yeCy(RY) so that
suppy < U. Theorems 4 and 5 guarantee that for each «, 8, ye(0, 1) there
is a unique viscosity solution v = v*#7e€ BUC (R") of

v+ Ly =y in RY,
where
LPp(x) = — tr a*(x)D?v(x) + {bP(x), Dv(x)) + ¢’ (x)v(x).

Moreover, for any «, B, ye(0, 1) we have v*»’e W2 °(RN), and

1
| D2v*7 |, < - Ci(B, ),

(4.3) D]l < Cy (),
o]l < Cs,
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where C,(B, 7), C,(y) and C; are constants independent, respectively, of o, of
« and B and of « B and y. Since the a*, b’ and ¢’ vanish outside of a
compact subset of U, so does the v*7, i.e., v"#7e C,(U). Also, by the maximum
principle, v*¥? > 0 on R" for all o, f, ye(0, 1). Therefore, going back to (4.1),
we obtain

Wy W) = w,, ™7 + LB pbr
= (W, W+ LEEY + (w,, LT — LT
< [, o {ID2v* o (I 6*[lo + &llo) 0% — &ll11
+ 1D o 16— bl + [0 [0 1€ — ¢ l1i}-

In view of (4.2) and (4.3), sending « |0, f}0 and y 0 in this order, we see
that <(w,, > <0 and hence w, <0 on U. This is a contradiction, which
completes the proof. W

§5 Proof of Theorems 4 and 5

In the spirit of being free from probabilistic techniques, it may be
important to prove Theorems 4 and 5 without using results based on probalistic
techniques.

It is well known (see, e.g., [8] and [3]) that Theorem 4 is valid. However
we give a proof for the reader’s convenience.

In what follows we use the notation: For a function u = (u;;): RY - R™*"
we write

n

N m n
lullo = ||(Z Z |uij 2)1/2““0’ lully = II( Z Z Z |uijxk|2)1/2 L

i=1j=1 k=1i=1j=1

N m n
lull, = |I( Z Z Z |uijxkxl|2)1/2 e -

k,l=1i=1j=1

In particular, we have
lullwio = lullo + llully and |ullpzeo = ullo + lull, + u],.

Proof of Theorem 4. Since ¢, > 0, the constants || f||,/co and — || fo/co
are a supersolution and a subsolution of (1.1), respectively. By the Perron
method, we find a viscosity solution u of (1.1) with

1 1
——Ifllo<u<—1Ifllo6 on RY
CO CO

The fact that ue UC(R"Y) follows from the comparison result for viscosity
solutions (see for instance [2] and [3]). M
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Proof of Theorem 5. Assume that ¢, > A,. Let ue BUC(RY) be a
viscosity solution of (1.1). Let ¢>0, 6 >0 and

1

co — 4o

(5.1) L> (el lullo + 1114,

and set
D(x, y) = u(x) = u(y) — L|x — y| — 6|x|* — ¢ for x, yeRN.

We will show tht @ <0 on RN for all ¢, >0. To this end, suppose that
supgey @ > 0 for some ¢ >0 and 6 = d, > 0. This will lead a contradiction.
Fix ¢ > 0 and 6, > 0 so that supg:~y @ >0 with this ¢ >0 and 6 = J,, and
0<d6<38, Note that supgan @ > 0. Let (£, ))eR" x RY be a maximum
point of @. Writing

Y(x)=Ix| and o¢(x, y)=Llx —y| for x, yeR",

and noting that

DY) = 5, D)= —F8F L
[ x| | x| | x| | x|

>

and

D*Y(x — ) —Dzw(x—y))< L <I —1>
—D*(x—y) DW(kx-y /) Ix—y\-I I}

we see by the maximum principle (see [2]) that for each 6§ > 1 there are
X, YeSY such that

D?op(x, y) < L(

(B, X)eJ> u(X) = 20(%, 1), (B, —Y)eJ> u()),

(5.2) (X O>< Lo (1 —I>
0 Y/ |x—p/\—-1 I )’

where p = L(X — y)/|X — J|. Therefore we have

—tra(®)X + <bR), p> + cEu) < £(¥) — 20 <b(R), *> + 28 tr a(%)

and
—tra® (= Y) + <b(), p> + c(Pu@®) = [ ().
Hence
¢(X) (w(X) — u(@) — tr (@(X)X + a(h)Y)
+ <b(X) — b(D), P < (c(I) — c(X))u(P)
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+f(X) = f() + 20 (tr a(x) — <{b(X), X))
< (llelly lullo + I £1)1% — PI + 26 (tr a(x) — <b(X), X>).
The latter of (5.2) yields

X K W (X 0 o(X)
tr(a (X)X +a()Y)=tr {(a(x)a(y))( 0 Y) ( () )}

Lo - . 1 —T o(X)
“%—5" {(“(x)a(y))< 11 Xo(ﬁ))}

tr (0(%) — o(§)*.

]
Thus, recalling that @(x, y) > 0, we have

2 A2 sy R
il 15 1t 5 OO A = GO b0, 2=

L LO- 1) tr (a(i%) —Aaz(yA))2
|x — Jl

+26(lltr allo + b 1lo1X1)-

+ (lelly lullo + LI I% — Pl

Since € > 1 is arbitrary, sending 6 | 1, we obtain
(co — A)LIX — Pl < (lclylullo + I fI)IX = 91 + 26(ltr allo + 160 IX]).

Since @ (%, ) > 0 and ue BUC (R"), it follows tht 6|%|*> < 2]/u|, and also that
y<|X — p| <y~ ! for some constant y > 0 independnet of 6 > 0. Therefore,
passing to the limit as ¢ |0, we see that

(co — A Lr < (llclyllullo + 1 fll)r

for some r > vy, and hence

1

L<
Co — Ao

(elly lullo + 1711)-

This contradicts our choice (5.1) of L. Thus we know that &(x, y) <0 for
all x, ye R and ¢, 6 > 0, which implies

< el lfullo + Il Ix

-y Vx, ye RN,
Co — 4o

u(x) — u(y)

and thus proves the assertion (i).

Next we prove (ii). We begin with preliminary calculations. Let L> 0,
and set
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p(x, y,2)=Llx —y> + (Ix = y[* + |x + y — 2z|*)'/2
=Llx —y* + ¢.(x, y, 2)

for x, y,ze RY. Let (x, y, z)e R* be an arbitrary point with ¢,(x, y, z) # 0.
We then have:

(5.3)
xX—y xX—y xX+y—2z
Dp=2L{y—x +i 2lx —yPP| y—x | + xX+y—2z
0 e 0 —2x — 2y + 4z
and
(5.4)
I —-I10 I —-10
D*¢o=2L| -1 I O L 20x—y?| =1 1 0
0o o o/ * 0 0 0
X—y X —y I I =2
+4l y—x|®| y—x |+ | I I =21 —— Do, ® Do,
0 0 —21 —2I 4l '
I =1 I —-10
<2L| —1I 0 |+—<(2x—yP| -1 I O
o o o/ # 0 0 0
I —I10 I -10 I I =2
+4ix—y* -1 I O |+| —I I 0] + I I =21
0 0 0 0 0 0 21 —2I 4l
I —I10 I 1 =2
s<2L+M> S S Y P R S ¥
1 o o0 o/ "\ -2 —21 4

Here and later ¢, denotes its value evaluated at (x, y, z). Now, setting

J =tr(c(x) + a(y) — 20(2))*> — <{b(x) + b(y) — 2b(2), x + y — 22,

£ =o(x) + a(y)—zo<x—¥>, n = 2[0(%”) —o(z)},

oc=b(x)+b(y)—2b<x;y>, ﬁ=2[b<x;y>—b(x)],
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and noting that for any ge CZ(R"),

2

xX+Yy
<[ D*gllo|x — yI?,

g(x) + g(y) — 2g<’“2’y) < |D%gll,

we calculate that
tr &2 < flofflx —y|* try?> < lolflx +y — 2z,
lo| < [|bllo1x — %, 1B < IIblly]1x + y — 2z],

and that

2
X*y +trE2+2trén—<Lo, x+y—2z)

<Aylx+y =22+ [lol3lx—yl* + 2ol ol 1x —yI*Ix +y —2z]|
+ bz Ix = y1* |x +y —2z]

s(il+c°;ll)1x+y—2z|2
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2
+[HGII§+ (“b||2+||GH1”UH2)2:||X—)’|4
Co_ll
Aq 2
=<C°; >IX+y—2Ziz+[HGH§+ (Ibll2+ 1ol !Iallz)z}lx—yl“-
Co— 4y

Therefore we have

(2L+ 6—'—’:1) tr (o (x) — o (y))?

?1

2
— J
_ 2(L+ x =yl ><b(x) b, x— vy 4
D1 (31
|x — yI? ¥ cot+ Ay

(5]

+[HUH%+

£2<L+_
251 ®q

(1Bl + ol nanz>2] x|

P4

2
co — Ay

< [AILJF Y +4ol? +
Co 1

2
7 (ol + Nl IIGIIz)ZJIX —y?

Co + 44

|x +y—2z|,

where 1] = max {1,,0}. We now choose L> 0 so that

)Ao|x—y|2+4nau%"‘_y + 2 S gy - 22
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A
C—O—Jr—l-Lz ML+ +40]? +

2
(bl + llally lall)?,
Co — Ay

ie.,

Co 1

2
L> [/l;“+4||a|1%+
Co— A4

2ol + ) |

Then we have

(5.5)
6]x — y|? —y?
<2L+ X =y )tr(a(x)—a(y))2—2<L+]x V| ><b(x)—b(y),x—y>
(51 P1
J A 4
+sc°;r LLix =y + x4y —22) < 2T Mg, y, o)
P41

for all x, y, ze RN.
Now, we observe that

56)  fO)+ 1) —2f@) =f(x) + () — 2f( X ; Y )

+ 2(]’(?) —f(2)> <Ufl2lx =y + 1 fllx +y— 22|

< IDf llwr.= @1(x, ¥, 2).
Noting that for any ge C}(RY),

g(x) — g(x;ry>‘ + \g(x er y> —9g(2)

|x — vl I>€+J/—2Z|>”2
2

lg(x) — g(2)| <

< gl

+<2||g||o||g||1

< lglw= @1(x, y, 2)''2,
we see that
(c(x) — c(2)) (u(x) — u(z)) + (c(y) — ¢(2)) (u(y) — u(2))|
<(lclo + el Uullo + lulldei(x, y, 2) < llcllwie lullw- @i(x, y, 2)
and hence

(5.7) c(x)u(x) + c(y)u(y) — 2¢c(2)u(z)
= c(2) (u(x) + u(y) — 2u(2)) + (c(x) + c(y) — 2¢(2))u(z)
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+ (c(x) — c(2)) (u(x) — u(2) + (c(y) — ¢(2)) u(y) — u(2))
> c(z) (u(x) + u(y) — 2u(z)) — llullo | D= @1 (x, ¥, 2)

= llellwio lullwo @i(x, y, 2)
> c(z)(u(x) + u(y) — 2u(2) = 2llcllwzw |ullwi= @1 (x, y; 2).

Now we are ready to go into the proof. We shall show that

2
7 (IDf lws.eo + el llcllwa.=) @(x, v, 2)

Co 1

(5.8)  u(x) + u(y) — 2u(z) <

for all x, y, ze RY. By linearity, we then have

lu(x) + u(y) — 2u(z)| < (IDf llws.eo + Nl [ ¢l =)@ (X, ¥, 2)

Co 1

for all x, y, ze RN, from which follows the assertion (ii) of Theorem 5.
Fix any

M >

2
p (IDf s + lullwseo [l llp2, )

Co— /41
For ¢ >0 and 6 > 0 we set
D(x, y, z) = u(x) + u(y) — 2u(z) — Mo(x, y, z) — o [x|*> —¢ for x, y, ze RY.

We shall show that @ < 0 on R*" for all ¢, 6 > 0. To this end, suppose that
sup @ >0 for some ¢ >0 and 6 =9, >0. Fix such ¢ >0 and é, >0, and
fix 0 < < J,, so that sup @ > 0.

Let (X, §, 2)e R®N be a maximum point of @. Set w(x, y, z) = u(x) — & |x|?
+ u(y) — 2u(z). Observe that ¢(X, y, Z) # 0. We have

M(Do(%, 9, 2), D* (%, §, £))eJ> T w(X, J, 2).
By (5.3) and (5.4), we see that if we set

) -7 f4 28

|'))<\:_y'2 A A M A A A
p=2M{L+ —— y=—x 1 +— X+y—2z ,

¢ 0 1\ —2g—2p+ a4
and
o I —1I0 L[ -
A=2M(L+3u) 7 1 ol+=| 1 1 =211,

P o o o ®\_a —2r aI
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(b, A)eJ =" w(k, , 2).
Here and hereafter ¢, also denotes its value at (X, y, Z). Let 6 > 1. By the
maximum principle for semicontinuous functions, there are X, Y, ZeSY such
that
A - A2 M » _
<2M<L+ '—X—L')(x P+ G+ P29, X)eJ2’+u(32) —26(%, 1),
21

Py

& 812 M _
<2M<L+ %= )l )(ﬁ—f)+(>€+ﬁ—2§), Y)er’“Lu(f/),

@y

M _
+ <—(— 2% — 25 + 42), z>e 272 u(h),

1
X 0 0 o 10
59 |0 vo|<om 2<L+3|x_y|2> S A
00 Z 1 0 0
I 1 2
L R
Pr\_or o1

From the first three we see that

—tra(®)(X + 1)+ { b(X), 26%+2M | L+ (X—P)+—(X+J—2%)
?y ?4q

+ c@)u(X) < f(X),

—tra()Y + <b(p), M <L+

X — 17

1

)(p_f)+—]‘f(>e+y—zz*)>

@y
+c(@Pu@) < SO,
. 1 WMo PR .
—tr a(z)(— 2Z> + <b(z), (p_ x+y— 22)> + cQu(2) = f(2).

From these we have

—tr(a(X)X +a(P) Y+ a(®)Z)+ 2M <L+

X — 17

><b(>3) —b(), X =)

1

+ M b@) + b) — 269, 2+ § - 26>

(25

< fX) + f()) — 2 (@) — (c(X)u(X) + c(P)u) — 2c(@)u(2))
125 tra(®) — 26<b(%), £D.
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From (5.9) we see that

X 0 0 o(x)
tr(@X)X +a(P)Y+a@)Z)=tr{ (c(X)o(P)a(2)) | 0O Y O a(P)
0 0 Z

a(2)

seM[4}+3m‘yp>uw@y—ﬁﬂf+1tﬂﬂﬂ+o@—adaf}
(R P1

Combining the above two inequalities, we obtain

0< oM [2<L+ 3 * ;W ) tr (6(X) — a(P))* + q)itr (6(X) + a(y) — 20(2))2}

% = pI?

—2M<L+ ><Mﬂ~b@Lﬁ—ﬁ>

(]

M
— —{(b(X + b)) —2b(2), x +y— 22>
41

+/(X) +f()) = 2/ () — (cE)u(X) + cQ)u) — 2¢(B)u(?))
+ 25 tr a(%) — 25 (b(%), £>.

Sending 6|1 and using (5.5), (5.6) and (5.7), we have

Co + A4

OSM QD(-)%: .)A}> ZA)+ HDf”Wl'OO(p()e’ JA}: 2)

— @) @X) +u@) — 2u@) + 2 lullpr» | cllwz= @, I, 2)
+ 20 tr a(X) — 20 {b(X), x).
Since @ (X, §, 2) > 0 and ue BUC(R"), we have
u(X) + u@) — 2u®) = Mo(x, y, 2) and y<o(%, 9, )<yt
where y is a positive constant independent of 6 > 0. Hence,

Co— A1

(5.10) 0< (— M + IDf lws.w + ]y HCIIWz,oo><P(>%, b, ) + Co12,
where C is a constant independent of 6. Moreover, sending 6 |0 and (5.10)
yield a contradiction. This proves that @ <0 on R3" for all ¢,6 > 0. It is
now easily concluded that (5.8) holds. W
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