
ON THE EQUIVALENCE OF VISCOSITY SOLUTIONS AND WEAK
SOLUTIONS FOR A QUASI-LINEAR EQUATION∗

PETRI JUUTINEN† , PETER LINDQVIST‡ , AND JUAN J. MANFREDI§

SIAM J. MATH. ANAL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 33, No. 3, pp. 699–717

Abstract. We discuss and compare various notions of weak solution for the p-Laplace equation

−div(|∇u|p−2∇u) = 0

and its parabolic counterpart

ut − div(|∇u|p−2∇u) = 0.

In addition to the usual Sobolev weak solutions based on integration by parts, we consider the
p-superharmonic (or p-superparabolic) functions from nonlinear potential theory and the viscosity
solutions based on generalized pointwise derivatives (jets). Our main result states that in both
the elliptic and the parabolic case, the viscosity supersolutions coincide with the potential-theoretic
supersolutions.
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1. Introduction. The objective of this paper is to prove that the viscosity so-
lutions of the p-Laplace equation

(1.1) −div
(|∇u|p−2∇u

)
= 0

and its parabolic analogue coincide with the usual weak solutions, defined with the
aid of test-functions under the integral sign. Our main result is that the viscosity
supersolutions are the same as the so-called p-superharmonic functions, which are
defined through a comparison principle in nonlinear potential theory. In the linear
case p = 2 the viscosity supersolutions of the Laplace equation −∆u = 0 are merely
the superharmonic functions in classical potential theory. This result and its parabolic
counterpart are due to Lions and can be found, for example, in [FIT]. For related
results for equations with measurable coefficients see [Je2], and for certain classes of
nonlinear equations see [CKSS].

The p-Laplace equation is the Euler–Lagrange equation for the variational integral
∫

Ω

|∇u(x)|p dx.
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Here 1 < p < ∞ is a fixed exponent, the function u is scalar valued, and Ω is a domain
in the n-dimensional Euclidean space. Notice that in the case p = 2 (the linear case)
we have the Dirichlet integral and the Laplace equation

−∆u = 0.

The p-harmonic equation is the prototype of a class of quasi-linear equations in the
form

− divAp(x,∇u(x)) = 0,

and it is fundamental in the nonlinear potential theory; cf. [HKM]. The p-harmonic
operator div(|∇u|p−2∇u) also appears in many contexts in physics: non-Newtonian
fluids (dilatant fluids have p > 2, and pseudoplastics have 1 < p < 2), reaction-
diffusion problems, nonlinear elasticity (torsional creep), glaceology (p = 4/3), and
the thermal radiation of a hydrogen bomb (see [B]), just to mention a few applications.

We will study the mere notion of solutions, subsolutions, and supersolutions.
There is something new to be said about this much-investigated basic topic in con-
nection with the so-called viscosity solutions, a modern concept originating in the
theory of Hamilton–Jacobi equations. The viscosity solutions have turned out to be
indispensable in the case p = ∞ (not treated here; see [Je], [JLM]) and quite useful for
p finite when it comes to the pointwise interpretation of expedient identities involv-
ing second derivatives; cf. [LMS]. We begin with a brief discussion about different
definitions of solution.

The solutions with continuous second derivatives (classical solutions) have the
advantage of being easy to define: the equation

|∇u|2∆u + (p− 2)
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0

has to hold at each point in the domain Ω. However, when p 6= 2 this class of solutions
is too restricted for the solvability of the Dirichlet problem. Roughly speaking, this
is due to the fact that solutions may not, in general, be of class C2 at points where
∇u = 0.

To assure the solvability of the Dirichlet boundary value problem, the p-harmonic
functions are usually defined as (continuous) weak solutions in the Sobolev space W 1,p.
This is the familiar situation with test-functions under the integral sign; see Definition
2.1 below. The uniqueness comes almost for free here. In other words, one has both
existence and uniqueness for the Dirichlet boundary value problem.

The definition of viscosity solutions is based on pointwise evaluation of the p-
harmonic operator

∆pu = div
(|∇u|p−2∇u

)
,

though only for smooth test-functions ϕ; see section 2 below. The underlying phe-
nomenon is that the classical (of class C2) sub- and supersolutions are enough to
determine the p-harmonic functions, although the latter often are less smooth. This
is the content of Corollary 2.6, which states that the viscosity solutions1 are the
p-harmonic functions. To the best of our knowledge, this is a new result.

1To indicate the dependence on the exponent p, they are called viscosity p-solutions below.



EQUIVALENCE OF VISCOSITY AND WEAK SOLUTIONS 701

We have also included a section on the so-called p-parabolic equation

ut − div(|∇u|p−2∇u) = 0.

According to Corollary 4.5, its viscosity solutions2 are the p-parabolic functions (con-
tinuous weak solutions in a parabolic Sobolev space). The interpretation of this result
requires some caution in the range 1 < p < 2n

n+2 , because discontinuous “solutions”
have to be ruled out. The proof of the equivalence of the parabolic definitions is
simpler than in the elliptic situation. We end the paper with a brief discussion of an
alternative definition, due to Ishii and Souganidis [IS], for parabolic viscosity solutions
in the singular case 1 < p < 2.

Finally, let us briefly indicate an application. It is to be expected that, at least
under suitable conditions, the limit

lim
t→∞

u(x, t)

of a p-parabolic function is p-harmonic. Such a theorem has been proved in [Ju]
with the viscosity technique, which is advantageous for convergence problems. Our
Corollary 2.6 complements the result, making it possible to conclude that the viscosity
p-solution, obtained as limit function, is p-harmonic.

2. Definitions. Let Ω denote a domain in Rn. The Sobolev space W 1,p(Ω)
consists of all functions u Ω → [−∞,∞] that together with their distributional first
derivatives

∇u =
(

∂u

∂x1
,

∂u

∂x2
, . . . ,

∂u

∂xn

)

are p-summable. The corresponding local space is denoted by W 1,p
loc (Ω).

Definition 2.1. We say that a continuous function u ∈ W 1,p
loc (Ω) is p-harmonic

in Ω if
∫

Ω

|∇u|p−2〈∇u,∇ϕ〉 dx = 0

for every ϕ ∈ C∞0 (Ω). Here 1 < p < ∞.
By elliptic regularity theory the continuity is redundant in the definition. Ac-

cording to a theorem of Ural’tseva, in the case p > 2, later extended by DiBenedetto
and Lewis to all p > 1, u ∈ C1,α

loc (Ω); cf. [Ur], [DB], [Le].
Next we will define the p-superharmonic functions via a comparison principle as

in [Li]. Notice immediately that the “fundamental solution”

V (x) = |x| p−n
p−1

if 1 < p < n and

V (x) = log
(

1
|x|

)

2To indicate the dependence on the exponent p, they are called parabolic viscosity p-solutions
later.
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if p = n is, indeed, p-superharmonic in Rn according to the definition below, although
∫

|x|<1

|∇V (x)|p dx = ∞.

Any reasonable definition has to include this example. This is taken into account in
the following potential-theoretic definition.

Definition 2.2. The function u Ω → (−∞,∞] is called p-superharmonic if
(i) u is lower semicontinuous,
(ii) u 6≡ ∞, and
(iii) u satisfies the comparison principle on each subdomain D b Ω: if h ∈ C(D)

is p-harmonic in D and u ≥ h on ∂D, then u ≥ h in D.
We have used the notation D b Ω to indicate that the closure of the domain D is

contained in Ω. For p = 2, this is the classical definition of superharmonic functions
due to Riesz. Note that there are no requirements for the gradient ∇u in Definition
2.2. However, a locally bounded p-superharmonic function u is actually in W 1,p

loc (Ω)
and satisfies the inequality

(2.1)
∫

Ω

|∇u|p−2〈∇u,∇ϕ〉 dx ≥ 0

for every nonnegative test-function ϕ ∈ C∞0 (Ω). Moreover, the converse is also true
for a lower semicontinuous function u in W 1,p

loc (Ω). We refer the reader to [Li] for this
fact and more information about the definition and properties of p-superharmonic
functions.

Needless to say, p-subharmonic functions are defined in an analogous way, so
that u is p-subharmonic if and only if −u is p-superharmonic. A function u is p-
harmonic if and only if it is both p-superharmonic and p-subharmonic. For the sake
of completeness, we mention the comparison principle in nonlinear potential theory;
see [HKM], [Li].

Comparison principle for p-subharmonic and p-superharmonic func-
tions. Suppose that Ω is a bounded domain, that u is p-subharmonic, and that v is
p-superharmonic in Ω. If

lim sup
x→z

u(x) ≤ lim inf
x→z

v(x)

for all z ∈ ∂Ω and if both sides of the inequality are not simultaneously +∞ or −∞,
then u ≤ v in Ω.

Let us now turn our attention to viscosity solutions. The notion of viscosity
solutions requires that the expression

∆pϕ = div
(|∇ϕ|p−2∇ϕ

)

= |∇ϕ|p−4


|∇ϕ|2∆ϕ + (p− 2)

n∑

i,j=1

∂ϕ

∂xi

∂ϕ

∂xj

∂2ϕ

∂xi∂xj




be evaluated pointwise for smooth functions ϕ. This is not a problem when ∇ϕ 6= 0,
but the critical points pose additional difficulties, especially in the range 1 < p < 2.
A standard way to deal with singular equations in the theory of viscosity solutions
is to use suitable semicontinuous extensions of the operator; cf. [CGG], [CIL]. For
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the p-Laplacian this approach would allow some false “solutions.” For example, u ≡
constant would then solve

−∆pu(x) = f(x)

in the viscosity sense for any continuous function f .
In the following definition, the pointwise evaluation of ∆pϕ is avoided when

∇ϕ = 0. This precaution has no bearing if p ≥ 2. (Observe that the difficulty
with critical points cannot be just defined away, and, in connection with the approxi-
mating equation −∆pv = ε, isolated critical points have to be dealt with; see Lemma
3.2 below.) To further motivate the definition, we remark that a function ϕ ∈ C2(Ω)
that satisfies −∆pϕ(x) = 0 when ∇ϕ(x) 6= 0 (nothing being said about the possible
critical points) is p-harmonic in Ω. This new result is an immediate consequence of
Corollary 2.6 below.

Definition 2.3. The function u Ω → (−∞,∞] is called a viscosity p-supersolu-
tion if

(i) u is lower semicontinuous,
(ii) u 6≡ ∞, and
(iv) whenever x0 ∈ Ω and ϕ ∈ C2(Ω) are such that u(x0) = ϕ(x0), u(x) > ϕ(x)

for x 6= x0, and ∇ϕ(x0) 6= 0, we have

−∆pϕ(x0) ≥ 0.

Each point x0 requires its own family of test-functions touching from below, which
may very well be empty. It is not difficult to see that condition (iv) can be replaced
by the following condition.

(v) The following comparison holds for each subdomain D b Ω: let ϕ ∈ C2(Ω)
be such that ∇ϕ(x) 6= 0 and −∆pϕ(x) < 0 in D. If u ≥ ϕ on ∂D, then u ≥ ϕ in D.

In other words, the comparison is with respect to “smooth strict subsolutions” in
Definition 2.3 and with respect to p-harmonic functions in Definition 2.2. Our main
result, Theorem 2.5 below, guarantees that both definitions yield the same class of
u’s. We have come to a fundamental issue about the difference between conditions
(iii) and (v). At first sight, condition (v) looks like (iii) in Definition 2.2, especially if
one replaces the strict inequality −∆pϕ(x) < 0 by −∆pϕ(x) ≤ 0, which is possible a
posteriori due to our results. The point is that the comparison in (iii) is with respect
to p-harmonic functions that are not necessarily of class C2, the regularity being
merely C1,α, while (v) is restricted to C2-functions. It is in doubt whether one can
further restrict the comparison in (iii) to p-harmonic functions h having continuous
second derivatives.

An upper semicontinuous function u is a viscosity p-subsolution if −u is a viscosity
p-supersolution. A viscosity solution of the equation −∆pu = 0 is both a viscosity
p-supersolution and p-subsolution.

Remark 2.4. If p ≥ 2, then −∆pϕ(x) is well defined also at the critical points of
ϕ, and there is no need to require in (iv) that the gradient of a test-function does not
vanish at the point of touching. However, since it turns out that both versions of the
definition give the same class of solutions, we have decided to use the one that works
also in the singular case 1 < p < 2.

Theorem 2.5. Let 1 < p < ∞. In a given domain the p-superharmonic functions
and the viscosity p-supersolutions are the same.

Corollary 2.6. Let 1 < p < ∞. A function is p-harmonic if and only if it is a
viscosity p-solution.
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The proof of Theorem 2.5 has two parts. First, we must prove that p-super-
harmonic functions are viscosity p-supersolutions. This is a rather immediate conse-
quence of the classical comparison principle for p-superharmonic and p-subharmonic
functions. Second, we must show that viscosity p-supersolutions are p-superharmonic,
that is, they satisfy the comparison principle with respect to p-harmonic functions.
This is more delicate since the points at which the gradient vanishes present difficul-
ties in the degenerate as well as in the singular case. Since this comparison principle
may be of independent interest, we have stated it by itself. The proof is presented in
section 3 below.

Theorem 2.7 (the comparison principle). Let Ω ⊂ Rn be a bounded domain,
and assume that u is a viscosity p-subsolution and v is a viscosity p-supersolution in
Ω. If

(2.2) lim sup
x→z

u(x) ≤ lim inf
x→z

v(x)

for all z ∈ ∂Ω and if both sides of (2.2) are not simultaneously ∞ or −∞, then u ≤ v
in Ω.

Proof of Theorem 2.5. Let us first assume that u is p-superharmonic. To show
that u is a viscosity p-supersolution, we argue by contradiction and assume that there
exists x0 ∈ Ω and ϕ ∈ C2(Ω) such that u(x0) = ϕ(x0), u(x) > ϕ(x) for all x 6= x0,
∇ϕ(x0) 6= 0, and

−∆pϕ(x0) < 0.

By continuity, there exists a radius r > 0 such that
{−∆pϕ(x) < 0,

∇ϕ(x) 6= 0

for every x ∈ Br(x0). Let

m = inf
|x−x0|=r

(u(x)− ϕ(x)) > 0,

and define ϕ̃ = ϕ + m. Then ϕ̃ is p-subharmonic in the open set Br(x0). Since
ϕ̃ ≤ u on ∂Br(x0), we obtain from the comparison principle for p-superharmonic and
p-subharmonic functions that ϕ̃ ≤ u in Br(x0). However,

ϕ̃(x0) = ϕ(x0) + m > u(x0),

which is a contradiction. Therefore, u must be a viscosity p-supersolution.
For the converse implication, it is enough to check that (iii) holds for viscos-

ity p-supersolutions. This, however, follows immediately from Theorem 2.7 after
noticing that by the first half of the proof, every p-harmonic function is a viscosity
p-solution.

3. Proof of the comparison principle. Let the functions u and v satisfy
the assumptions in Theorem 2.7. We begin with some simplifications of the general
situation.

First reduction (approximation by smooth domains). We may assume, without
loss of generality, that the bounded domain Ω is smooth, the function v ∈ C1,α(Ω) is
p-harmonic, and u ≤ v on ∂Ω.
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To see this, let us first observe that by (2.2) we can find for any ε > 0 a smooth
domain D b Ω such that u < v + ε in Ω \D. By semicontinuity there is a function
ϕ ∈ C∞(Ω) such that

u < ϕ < v + ε

on ∂D. Next, let h be the unique weak solution to the Dirichlet problem
{−∆ph = 0 in D,

h = ϕ on ∂D.

In other words, h ∈ C(D̄) ∩W 1,p(D) is p-harmonic in D. Since D is regular, h takes
its prescribed continuous boundary values ϕ in the classical sense.

We have

u ≤ h ≤ v + ε

on ∂D. In fact, it is known that h ∈ C1,α(D̄) (see [Lie]), but we prefer to give an
argument which avoids this difficult boundary regularity result. The weaker local
regularity h ∈ C1,α

loc (D) will suffice. To this end, we construct a regular domain
D1 b D such that

u− ε ≤ h ≤ v + 2ε

on ∂D1 and u < v + 2ε in Ω \D1. Notice that now we have h ∈ C1,α(D1), because
h ∈ C1,α

loc (D). If we assume the theorem for regular domains, we get

u− ε ≤ h ≤ v + 2ε

in the whole D1. Therefore, we conclude that u ≤ v + 3ε in Ω. Since ε > 0 was
arbitrary, this is the desired situation. Moreover, since the two cases u − ε ≤ h and
h ≤ v + 2ε are symmetric, it suffices to prove that u− ε ≤ h in D1.

Second reduction (approximation by “regularized” equations). It is enough to
prove the comparison principle in the case when v is a weak solution of the equation

(3.1) −∆pv = ε, ε > 0.

More precisely, suppose that v is a weak solution of (3.1) with smooth boundary
values (v−w ∈ W 1,p

0 (Ω) for some w ∈ C1,α(Ω)) and Ω is a bounded smooth domain.
If u is a viscosity p-subsolution in Ω such that u(x) ≤ v(x) for all x ∈ ∂Ω, then we
have u(x) ≤ v(x) for x ∈ Ω.

Indeed, let us assume that the comparison principle holds in the setting described
above, and let u and v be as in the first reduction. If vε is the unique weak solution
of (3.1) with the boundary condition vε = v on ∂Ω, then by the assumed comparison
u ≤ vε in Ω for every ε > 0. On the other hand, by Lemma 3.1 below, vε → v locally
uniformly. This, in turn, means that u ≤ v in Ω, which is exactly what we want to
prove.

Lemma 3.1. Let v ∈ W 1,p(Ω) be p-harmonic in a bounded domain Ω, and let vε

be the unique weak solution of the Dirichlet problem
{−∆pvε = ε in Ω,

vε = v on ∂Ω.

Then vε → v locally uniformly in Ω as ε → 0.
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Proof. Take v − vε ∈ W 1,p
0 (Ω) as a test-function in (1.1) and (3.1), and subtract

the resulting equations. This yields
∫

Ω

〈|∇v|p−2∇v − |∇vε|p−2∇vε,∇v −∇vε

〉
dx = ε

∫

Ω

(vε − v) dx

≤ ε|Ω| p−1
p

(∫

Ω

|v − vε|p dx

) 1
p

≤ Kε

(∫

Ω

|∇v −∇vε|p dx

) 1
p

,

where we have used the inequalities of Hölder and Sobolev, and K = K(p, n, Ω) is
some constant depending only on p, n, and Ω.

For p ≥ 2, it follows easily from the elementary vector inequality [DB, Chapter I]

|a− b|p ≤ 2p−1〈|a|p−2a− |b|p−2b, a− b〉

that

(3.2)
∫

Ω

|∇v −∇vε|p dx ≤ Kε
p

p−1 ,

where K = K(p, n, Ω). The singular case 1 < p < 2 is slightly more delicate. Start
with the vector inequality [DB, Chapter I]

|a− b|2
(|a|+ |b|)2−p

≤ γ〈|a|p−2a− |b|p−2b, a− b〉,

where γ depends only on p and n and a, b ∈ Rn. By Hölder’s inequality

∫

Ω

|∇v −∇vε|p dx ≤
(∫

Ω

|∇v −∇vε|2
(|∇v|+ |∇ε|)2−p

dx

) p
2

(∫

Ω

(|∇v|+ |∇vε|)p dx

) 2−p
2

,

and this time
∫

Ω

|∇v −∇vε|2
(|∇v|+ |∇ε|)2−p

dx ≤ γKε

(∫

Ω

|∇v −∇vε|p dx

) 1
p

.

Therefore, we have the inequality

∫

Ω

|∇v −∇vε|p dx ≤ Kεp

(∫

Ω

(|∇v|+ |∇vε|)p dx

)2−p

.

Since
∫
Ω
|∇vε|p dx, on the other hand, can be estimated in terms of

∫
Ω
|∇v|p dx inde-

pendently of ε for ε small, this implies

(3.3)
∫

Ω

|∇v −∇vε|p dx ≤ C εp

(
1 +

∫

Ω

|∇v|p dx

)2−p

.

By estimates (3.2), (3.3), it follows that we have a uniform bound for
∫

Ω

|∇vε|p dx
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independent of ε. It then follows from the interior regularity estimates for solutions
of (3.1) (cf. [Le], [DB2]) that if we fix a compact set K ⊂ Ω, we have a uniform
bound for ‖vε‖Cα(K) for any 1 < p < ∞. By Ascoli–Arzelà’s theorem, there exists a
subsequence εi → 0 for which vεi

→ w uniformly in K. It follows again from (3.2),
(3.3) that indeed w = v and that the full sequence vε → v locally uniformly in Ω as
ε → 0.

The weak solutions of (3.1) can be seen as strict supersolutions of (1.1), and
this property is of great importance in the proof below of the reduced version of
Theorem 2.7. A similar type of approximation argument has been used by Jensen [Je]
in connection with the ∞-Laplace equation.

We will need the following result on the “viscosity properties” of weak solutions
of (3.1).

Lemma 3.2. Let vε ∈ W 1,p(Ω) be a continuous weak solution of the equation
−∆pvε = ε in Ω, and let x0 ∈ Ω and ϕ ∈ C2(Ω) be such that vε − ϕ has a strict local
minimum at x0. Then

lim sup
x→x0
x 6=x0

(−∆pϕ(x)) ≥ ε,

provided that ∇ϕ(x0) 6= 0 or x0 is an isolated critical point.
Remark. We have come to a decisive point. In the case p ≥ 2 the proof yields

that −∆pϕ(x0) ≥ ε and that ∇ϕ(x) 6= 0 in some neighborhood of x0. It is the case
1 < p < 2 that requires caution, because −∆pϕ(x) is undetermined at the critical
points (which may be encountered).

Proof. Suppose that the assertion is not true, that is, there is r > 0 such that

∇ϕ(x) 6= 0 and −∆pϕ(x) < ε,

when 0 < |x − x0| < r. After a translation, we may assume that x0 = 0. Take any
nonnegative test-function φ ∈ C∞0 (Br), and integrate over the annulus ρ < |x| < r.
(The auxiliary ρ > 0 can be skipped if ∇ϕ(0) 6= 0.) According to Gauss’s theorem,

−
∮

|x|=ρ

φ|∇ϕ|p−2〈∇ϕ, x
ρ 〉 dS =

∫

ρ<|x|<r

div(φ|∇ϕ|p−2∇ϕ) dx

=
∫

ρ<|x|<r

|∇ϕ|p−2〈∇ϕ,∇φ〉 dx +
∫

ρ<|x|<r

φ(∆pϕ) dx.

The flux approaches 0 as ρ → 0+. Indeed,
∣∣∣∣∣
∮

|x|=ρ

φ|∇ϕ|p−2〈∇ϕ, x
ρ 〉 dS

∣∣∣∣∣ ≤ ‖φ‖∞‖∇ϕ‖p−1
∞ ωn−1ρ

n−1,

where ωn−1ρ
n−1 is the area of the sphere of radius ρ. By the antithesis we have

∫

ρ<|x|<r

φ(∆pϕ) dx ≥ −ε

∫

ρ<|x|<r

φ dx ≥ −ε

∫

Br

φdx.

Therefore, we obtain
∫

Br

|∇ϕ|p−2〈∇ϕ,∇φ〉 dx = lim
ρ→0

∫

ρ<|x|<r

|∇ϕ|p−2〈∇ϕ,∇φ〉 dx ≤ ε

∫

Br

φdx.
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Thus ϕ is a weak subsolution of (3.1). We finish by using the comparison principle as
in the proof of Theorem 2.5 presented in section 2.

After the reductions made above, it suffices to prove the following version of the
comparison principle [see (3.4) below]. In the proof we use the notation

(3.4) F (η,X) = −|η|p−2

[
trace(X) + (p− 2)

〈
X

η

|η| ,
η

|η|
〉]

when η 6= 0 is a vector in Rn and X ∈ Sn, where Sn denotes the class of real symmetric
n× n matrices. For a smooth function ϕ we clearly have

F (∇ϕ(x), D2ϕ(x)) = −div(|∇ϕ(x)|p−2∇ϕ(x))

when ∇ϕ(x) 6= 0. Here D2ϕ = ( ∂2ϕ
∂xi∂xj

)n×n is the Hessian matrix of ϕ.
Proposition 3.3. Suppose that Ω ⊂ Rn is a smoothly bounded domain, u is a

viscosity p-subsolution, and v ∈ C1,α(Ω) is a weak solution of −∆pv = ε in Ω such
that u ≤ v on ∂Ω. Then u ≤ v in Ω.

Proof. Without loss of generality, we may assume that ε = 1. We argue by
contradiction and assume that u− v has an interior maximum, that is,

(3.5) sup
Ω

(u− v) > sup
∂Ω

(u− v).

Consider the functions

wj(x, y) = u(x)− v(y)−Ψj(x, y), j = 1, 2, . . . ,

where

Ψj(x, y) = j
q |x− y|q, q > max

{
p

p− 1
, 2

}
,

and let (xj , yj) be a maximum of wj relative to Ω× Ω. By (3.5) and Proposition 3.7
in [CIL], we see that for j sufficiently large, (xj , yj) is an interior point. Since

u(x)− v(y)−Ψj(x, y) ≤ u(xj)− v(yj)−Ψj(xj , yj)

for all x, y ∈ Ω, we obtain by choosing x = xj that

v(y) ≥ −Ψj(xj , y) + v(yj) + Ψj(xj , yj)

for all y ∈ Ω. Let us denote

φj(y) = −Ψj(xj , y) + v(yj) + Ψj(xj , yj)− 1
q + 1

|y − yj |q+1.

Then, clearly, v − φj has a strict local minimum at yj , and thus

lim sup
y→yj

y 6=yj

(−∆pφj(y)) ≥ 1

by Lemma 3.2. This implies that xj 6= yj . Indeed, if xj = yj , then a direct computa-
tion shows that −∆pφj(y) → 0 as y → yj , which is a contradiction.
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The rest of the proof is now a rather standard application of the maximum princi-
ple for semicontinuous functions (also known as the theorem on sums) in [CIL]. Since
(xj , yj) is a local maximum point of wj(x, y), we conclude that there exist symmetric
n× n matrices Xj , Yj such that

(DxΨj(xj , yj), Xj) ∈ J
2,+

u(xj),

(−DyΨj(xj , yj), Yj) ∈ J
2,−

v(yj),

and

(3.6)
(

Xj 0
0 −Yj

)
≤ D2Ψj(xj , yj) +

1
j

[
D2Ψj(xj , yj)

]2
.

Here J
2,+

u(xj) and J
2,−

v(yj) are the closures of the second order superjet of u at xj

and the second order subjet of v at yj , respectively. We refer the reader to [C] and
[CIL] for the definition and properties of jets.

Observe that since D2Ψj annihilates vectors of the form ( ξ
ξ ), we obtain from (3.6)

that

Xj ≤ Yj

in the sense of matrices, that is, 〈(Yj −Xj)ξ, ξ〉 ≥ 0 for all ξ ∈ Rn.
Let us now finish the proof. It is well known (see [CIL]) that for equations that

are continuous in each variable, viscosity solutions can be defined using jets instead
of test-functions as in Definition 2.3. Since xj 6= yj , we have that

ηj ≡ DxΨj(xj , yj) = −DyΨj(xj , yj) 6= 0.

This means that

(η, X) 7→ F (η, X),

where F is given by (3.4) and is continuous in a neighborhood of the points (ηj , Xj)
and (ηj , Yj), and we may use the equivalent definition involving jets. Since u is a
subsolution of (1.1), we obtain that

−|ηj |p−2

[
trace(Xj) + (p− 2)

〈
Xj

ηj

|ηj | ,
ηj

|ηj |
〉]

≤ 0.

On the other hand, since ηj 6= 0, by the definition of J
2,−

Lemma 3.2 implies that

−|ηj |p−2

[
trace(Yj) + (p− 2)

〈
Yj

ηj

|ηj | ,
ηj

|ηj |
〉]

≥ 1.

Hence

0 < 1 ≤ − |ηj |p−2

[
trace(Yj) + (p− 2)

〈
Yj

ηj

|ηj | ,
ηj

|ηj |
〉]

+ |ηj |p−2

[
trace(Xj) + (p− 2)

〈
Xj

ηj

|ηj | ,
ηj

|ηj |
〉]

≤ 0,
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where the last inequality follows from the fact Xj ≤ Yj . This contradiction means
that our initial assumption (3.5) cannot hold, and, therefore,

sup
Ω

(u− v) = sup
∂Ω

(u− v) ≤ 0

as claimed.

4. The parabolic case. The p-parabolic equation

(4.1) ut − div
(|∇u|p−2∇u

)
= 0,

where u = u(x, t), has the p-harmonic equation as its stationary equation. Let us
introduce some notation. Let

Q = (a1, b1)× (a2, b2)× · · · × (an, bn)

denote a parallelepiped, and consider the “space-time box”

Qt1,t2 = Q× (t1, t2)

in the (x, t)-space. Its parabolic boundary is

∂parQ =
(
Q× {t1}

) ∪ (∂Q× (t1, t2]) .

It consists of the bottom and the lateral sides, but the interior points of the top are
excluded.

In order to describe the appropriate function space, we introduce the abbreviation

V p(t1, t2;Q) = C
(
t1, t2; L2(Q)

) ∩ Lp
(
t1, t2; W 1,p(Q)

)
.

Thus u ∈ V p(t1, t2; Q) implies that the mapping

t 7→
∫

Q

|u(x, t)|2 dx

is continuous in [t1, t2], the Sobolev derivative

∇u(x, t) =
(

∂u(x, t)
∂x1

, . . . ,
∂u(x, t)

∂xn

)

exists for almost every t in [t1, t2], and the integral
∫ t2

t1

∫

Q

(
u2 + |∇u|p) dt dx

is finite.
Definition 4.1. Let O be a domain in Rn × R, and suppose that the function

uO → R is continuous and belongs to V p(t1, t2;Q) whenever the closure of Qt1,t2 is
comprised in O. We say that u is p-parabolic in O if

(4.2)
∫ ∫

O
(−uϕt + |∇u|p−2〈∇u,∇ϕ〉) dt dx = 0

for all test-functions ϕ ∈ C∞0 (O).
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By parabolic regularity theory, the continuity is a redundant requirement in the
definition if p > 2n

n+2 . The case 1 < p ≤ 2n
n+2 is not fully understood. It is known that

there exist locally unbounded u’s satisfying (4.1) in a weaker sense than described
above. We refer to [DB, Chapter XII]. Such weak solutions cannot be viscosity so-
lutions, since the latter are both upper and lower semicontinuous by definition and
hence locally bounded. Thus our characterization of the p-parabolic viscosity solutions
discards such discontinuous weak solutions.

The definition below includes the celebrated Barenblatt solution, which for p > 2
is given as

Bp(x, t) =





t−
n
λ

{
C − p−2

2 λ
1

1−p

(
|x|

t1/λ

) p
p−1

} p−1
p−2

+

, t > 0,

0, t ≤ 0,

when (x, t) 6= (0, 0). Here λ = n(p − 2) + p, and C is a positive constant. With
the definition Bp(0, 0) = 0, the Barenblatt solution is p-superparabolic in the whole
Rn × R, although

∫ 1

−1

∫

|x|<1

|∇Bp(x, t)|p dx dt = ∞.

Definition 4.2. A function u : O → R ∪ {∞} is p-superparabolic if
(i) u is lower semicontinuous,
(ii′) u is finite in a dense subset of O, and
(iii) u satisfies the comparison principle on each box Qt1,t2 with closure in O: if

h ∈ C(Qt1,t2) is p-parabolic in Qt1,t2 such that h ≤ u on the parabolic boundary of
Qt1,t2 , then h ≤ u in Qt1,t2 .

We refer to [KL] for a detailed discussion on the properties of the p-superparabolic
functions.

Let us next turn to the definition of viscosity solutions of (4.1). Due to the
presence of the time derivative ut in the equation, we cannot exclude test-functions
with vanishing spatial gradient ∇ϕ(x, t) at the point of touching like we did with the
p-harmonic equation. As in the elliptic case, the equation is singular only in the range
1 < p < 2, but we have chosen again not to distinguish between the two cases.

Definition 4.3. A function u : O → R ∪ {∞} is a parabolic viscosity p-super-
solution if

(i) u is lower semicontinuous,
(ii′) u is finite in a dense subset of O, and
(iv) whenever (x0, t0) ∈ O and ϕ ∈ C2(O) are such that u(x0, t0) = ϕ(x0, t0),

u(x, t) > ϕ(x, t) for (x, t) ∈ O ∩ {t < t0}, and ∇ϕ(x, t) 6= 0 if x 6= x0, we have

lim sup
(x,t)→(x0,t0)

t<t0,x6=x0

(
ϕt(x, t)−∆pϕ(x, t)

)
≥ 0.

The concepts of parabolic viscosity p-subsolution and parabolic viscosity p-solution
are defined analogously. Notice that the parabolic viscosity p-solutions are continuous
by definition. As in the elliptic case, the precaution about ∇ϕ 6= 0 can be ignored for
p ≥ 2.

What is to happen in the future will have no influence on the present time. This
phenomenon, typical of parabolic equations, was taken into account in the definition
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above: the test-function is forced to be under the function u only up to the time t0 of
testing. This yields the same concept as a definition with no emphasis on the special
role of the time variable; cf. [Ju].

Theorem 4.4. Let 1 < p < ∞. In a given domain, the p-superparabolic functions
and the parabolic viscosity p-supersolutions are the same.

Corollary 4.5. Let 1 < p < ∞. A continuous function is a parabolic viscosity
p-solution if and only if it is p-parabolic.

The proof of Theorem 4.4 is virtually the same as its elliptic counterpart. To
show that a p-superparabolic function is a parabolic viscosity p-supersolution, one
needs to consider space-time boxes instead of balls and use the comparison principle
for p-superparabolic and p-subparabolic functions; see [KL]. For the converse, the
comparison principle for viscosity solutions is needed (Theorem 4.10 below).

Lemma 4.6. Every p-superparabolic function u is a parabolic viscosity p-superso-
lution.

Proof. We argue by contradiction and assume that there exist ϕ ∈ C2(O) and
r > 0 such that u(0, 0) = ϕ(0, 0), u(x, t) > ϕ(x, t) for all (x, t) ∈ O ∩ {t < 0},
∇ϕ(x, t) 6= 0 when x 6= 0, and

(4.3) ϕt(x, t)−∆pϕ(x, t) < 0

whenever (x, t) ∈ Qr ∪ {x 6= 0}, where Qr ≡ Br(0) × (−r, 0). Then for every non-
negative φ ∈ C∞0 (Qr), we obtain using (4.3) and Gauss’s theorem as in the proof of
Lemma 3.4 that

−
∫∫

Qr

|∇ϕ|p−2〈∇ϕ,∇φ〉 dx dt

= lim
ρ→0

[ ∫∫

Qr\{|x|≤ρ}
φ (∆pϕ) dx dt−

∫∫

Qr\{|x|≤ρ}
div(φ|∇ϕ|p−2∇ϕ) dx dt

]

≥ lim
ρ→0

[ ∫∫

Qr\{|x|≤ρ}
φϕt dx dt +

∫ 0

−r

∮

|x|=ρ

φ|∇ϕ|p−2〈∇ϕ, x
ρ 〉 dS dt

]

= −
∫∫

Qr

φtϕdx dt.

This implies that ϕ is p-subparabolic in Qr; see [KL]. To conclude, we proceed as
in the elliptic case, and apply the comparison principle for p-superparabolic and p-
subparabolic functions from [KL] to the functions u and ϕ + m, where

m = inf
∂parQr

(u− ϕ) > 0.

This gives the desired contradiction.
Due to the fact that the time derivative ut appears as a linear term in (4.1),

Theorem 4.7 below is easier to prove than the elliptic comparison principle, Theorem
2.7. In fact, the nonsingular case p ≥ 2 follows from a very general result in [C]. Since
the basic idea of the proof is quite similar to the one of the elliptic case, we will be
somewhat sketchy.

Theorem 4.7. Let ΩT = Ω × (0, T ), where Ω ⊂ Rn is a bounded domain,
and assume that u is a parabolic viscosity p-subsolution and v is a parabolic viscosity
p-supersolution in ΩT . If u ≤ v on the parabolic boundary of ΩT , then u ≤ v in ΩT .
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Proof. For simplicity, we assume that u is bounded from above and v is bounded
from below in Ω× [0, T ]. Since the proof is by contradiction, we assume that

(4.4) sup
ΩT

(u− v) > sup
∂parΩT

(u− v),

where ∂parΩT denotes the parabolic boundary of ΩT . By using the standard trick
of replacing v by v(x, t) + ε

T−t for small ε > 0, we may assume that v is a strict
supersolution of (4.1) and v(x, t) →∞ as t → T .

Let (xj , yj , tj , sj) be a maximum point of

wj(x, y, t, s) = u(x, t)− v(y, s)−Ψj(x, y, t, s)

relative to Ω× Ω× [0, T ]. Here

Ψj(x, y, t, s) =
j

q
|x− y|q +

j

2
(t− s)2, q > max

{
p

p− 1
, 2

}
.

By (4.4) and Proposition 3.7 in [CIL], we have that (xj , yj , tj , sj) ∈ Ω×Ω× (0, T )×
(0, T ) for j large enough. We distinguish between two cases.

Case 1. xj = yj .
By the choice of the point (xj , yj , tj , sj) we have

v(y, s) ≥ −Ψj(xj , y, tj , s) + Ψj(xj , yj , tj , sj) + v(yj , sj)

for all (y, s) ∈ Ω× [0, T ]; that is,

φ(y, s) ≡ −Ψj(xj , y, tj , s) + Ψj(xj , yj , tj , sj) + v(yj , sj)− 1
q + 1

|y − yj |q+1

is touching v from below at (yj , sj). Since v is a strict supersolution of (4.1) and
xj = yj , we obtain after straightforward computations

(4.5) 0 <
ε

(T − sj)2
≤ lim sup

(y,s)→(yj ,sj)
s<sj ,y 6=yj

(
φs(y, s)−∆pφ(y, s)

)
= j(tj − sj).

Similarly, we see that

θ(x, t) ≡ Ψj(x, yj , t, sj)−Ψj(xj , yj , tj , sj) + u(xj , tj) +
1

q + 1
|x− xj |q+1

is a good test-function for u at the point (xj , tj), and hence

(4.6) 0 ≥ lim inf
(x,t)→(xj ,tj)

t<tj ,x6=xj

(
θt(x, t)−∆pθ(x, t)

)
= j(tj − sj).

Subtracting (4.6) from (4.5) gives

0 <
ε

(T − sj)2
≤ j(tj − sj)− j(tj − sj) = 0,

which is a contradiction.
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Case 2. xj 6= yj .
As in the elliptic case, we may use the definition with jets. Using the maximum

principle for semicontinuous functions and Lemma 3.5 from [OS], we infer that there
exist Xj , Yj ∈ Sn such that

(DtΨj , DxΨj , Xj) ∈ P2,+
u(xj , tj),

(−DsΨj ,−DyΨj , Yj) ∈ P2,−
v(yj , sj),

and

(4.7) Xj ≤ Yj .

Here all the derivatives of Ψj are evaluated at the point (xj , yj , tj , sj). For the defini-
tion and properties of the parabolic jets P2,+u and P2,−v and their closures, we refer
the reader to [C] and [CIL].

Let us now finish the proof. Since u is a subsolution and v is a strict supersolution,
we obtain

0 <
ε

(T − sj)2
≤ −DsΨj + F (−DyΨj , Yj)−DtΨj − F (DxΨj , Xj) ≤ 0,

which is a contradiction. Here the last inequality follows from (4.7) after we notice
that

DtΨj(x, y, t, s) = −DsΨj(x, y, t, s),
DxΨj(x, y, t, s) = −DyΨj(x, y, t, s),

by the choice of Ψj . This shows that (4.4) cannot hold, and we are done.
Remark 4.8. In [CGG], Chen, Giga, and Goto obtained a general comparison

theorem for mean curvature flow-type equations. Those equations are singular at the
points where the spatial gradient vanishes, but the nature of the singularity is different
from that of the p-parabolic equation. Roughly speaking, the mean curvature flow
equation has a bounded discontinuity at the points of singularity, whereas the p-
parabolic equation behaves like O(|∇u|p−2) near those points.

We finish the paper with a brief discussion on another possible definition for
viscosity solutions of (4.1) in the singular case 1 < p < 2. This approach is due to
Ishii and Souganidis [IS], and in connection with the p-parabolic equation it has been
used by Ohnuma and Sato; cf. [OS].

Let us introduce some notation. We set

F =
{

f ∈ C2([0,∞)) f(0) = f ′(0) = f ′′(0) = 0, f ′′(r) > 0 for all r > 0, and

lim
x→0+

(−∆pf(|x|)) = 0
}

and

Σ =
{

σ ∈ C1(R) σ is even, σ(0) = σ′(0) = 0, and σ(r) > 0 for all r 6= 0
}

.

Definition 4.9. A function ϕ ∈ C2(O) is admissible if for any (x̂, t̂) ∈ O with
∇ϕ(x̂, t̂) = 0 there are δ > 0, f ∈ F , and σ ∈ Σ such that

|ϕ(x, t)− ϕ(x̂, t̂)− ϕt(x̂, t̂)(t− t̂)| ≤ f(|x− x̂|) + σ(t− t̂)

for all (x, t) ∈ Bδ(x̂)× (t̂− δ, t̂ + δ).
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Notice that if∇ϕ 6= 0, then ϕ is automatically admissible. The idea of introducing
the admissible class is, roughly speaking, to have a good a priori control on the
behavior of a test-function at the singular points. For lack of a better terminology, we
call the solutions defined using the class of admissible test-functions relaxed viscosity
solutions.

Definition 4.10. A function u : O → R ∪ {∞} is a relaxed viscosity p-super-
solution if

(i) u is lower semicontinuous,
(ii′) u is finite in a dense subset of O, and
(v) for all admissible ϕ ∈ C2(O) and all local minimum points (x, t) of u− ϕ in

O
{

ϕt(x, t)−∆pϕ(x, t) ≥ 0 if ∇ϕ(x, t) 6= 0,
ϕt(x, t) ≥ 0 if ∇ϕ(x, t) = 0.

We have taken the liberty to modify the definition given in [IS], [OS] in order to
make a comparison with Definition 4.3 easier. In particular, the original definition of
Ishii and Souganidis was formulated without the semicontinuity assumption (i), and
thus it does not imply continuity for the solutions.

Lemma 4.11. Every parabolic viscosity p-supersolution is a relaxed viscosity p-
supersolution.

Proof. We argue by contradiction and assume that there exist an admissible test-
function ϕ ∈ C2(O) and (x0, t0) ∈ O such that u−ϕ has a local minimum at (x0, t0),
∇ϕ(x0, t0) = 0, and

(4.8) ϕt(x0, t0) < 0.

Let f ∈ F , σ ∈ Σ, and δ > 0 be such that

(4.9) |ϕ(x, t)− ϕ(x0, t0)− ϕt(x0, t0)(t− t0)| ≤ f(|x− x0|) + σ(t− t0)

for all (x, t) ∈ Bδ(x0)× (t0 − δ, t0 + δ). Following the ideas in [IS], we approximate σ
by a sequence σk ∈ C2(R) satisfying

{
σk(0) = σ′k(0) = 0 for each k = 1, 2, . . . ,

σk(r) → σ(r), σ′k(r) → σ′(r) locally uniformly,

and we denote

φ(x, t) = u(x0, t0) + ϕt(x0, t0)(t− t0)− 2f(|x− x0|)− 2σ(t− t0),

φk(x, t) = u(x0, t0) + ϕt(x0, t0)(t− t0)− 2f(|x− x0|)− 2σk(t− t0).

Observe that (4.9) implies that u − φ has a strict local minimum at (x0, t0). Since
σk → σ locally uniformly, we can find a sequence (xk, tk) → (x0, t0) such that u− φk

has a local minimum at (xk, tk). Moreover, by modifying φk if necessary, we may
assume that this local minimum is, in fact, strict. Hence φk can be used as a test-
function in Definition 4.3, and we obtain

lim sup
(x,t)→(xk,tk)

t<tk, x 6=x0

(
(φk)t(x, t)−∆pφk(x, t)

)
≥ 0
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for each k ∈ N. However, a direct computation yields

(φk)t(x, t)−∆pφk(x, t) = ϕt(x0, t0)− 2σ′k(t− t0)− 2p−1∆pf(|x− x0|) < 0

if (x, t) is sufficiently close to (x0, t0) and x 6= x0. Here we used (4.8), the definition
of F , and the fact that σ′k(0) = 0. This contradiction shows that the antithesis was
wrong, and the lemma is now proved.

In [OS], Ohnuma and Sato proved a comparison principle for the relaxed viscosity
p-supersolutions and subsolutions. In the light of Lemmas 4.6 and 4.11, this means
that relaxed viscosity p-supersolutions satisfy (p-iii) in Definition 4.2, and hence they
are precisely the parabolic viscosity p-supersolutions.
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