
ISRAEL JOURNAL OF MATHEMATICS, VoL 36, Nos. 3--4, 1980 

ON SOLVING CERTAIN NONLINEAR 
PARTIAL DIFFERENTIAL EQUATIONS 
BY ACCRETIVE OPERATOR METHODS 

BY 

LAWRENCE C. EVANS* 

ABSTRACT 

We use similar functional analytic methods to solve (a) a fully nonlinear second 
order elliptic equation, (b) a Hamilton-Jacobi equation, and (c) a 
functional/partial differential equation from plasma physics. The technique in 
each case is to approximate by the solutions of simpler problems, and then to 
pass to limits using a modification of G. Minty's device to the space L ~. 

1. Introduction 

In this paper, a continuation of Evans [7], we solve three nonlinear problems: 

a second order  fully nonlinear elliptic equation, a first order Hamilton-Jacobi  

equation, and a second order  functional equation from plasma physics. In each 

case we solve a sequence of approximate problems, make estimates, and then 

pass to limits by means of a modification to L ® of G. Minty's Hilbert space 

method. This technique arose in our study of the Bellman p.d.e, of dynamic 

programming (see the end of this section for references). The theme of this paper 

is that these same procedures can be extended to cover several other quite 

different nonlinear problems. 

Only in the first application, solving a non-quasilinear elliptic equation, are 

our results new. However,  for the Hamilton-Jacobi  equation our  method is 

simpler than those earlier techniques using stochastic differential game theory; 

and for the plasma problem we do not rely on the quasi-variational formulation. 

In both situations our techniques should perhaps be extendable to include wider 

classes of similar problems. In any case, the point here is not so much the 

particular theorems, as it is the common plan of attack. We therefore defer the 
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detailed statements and proofs to later sections and instead present here an 

informal discussion of the method. 

Each of our problems can be written in form 

(P) a (u)  = f, 

where A is some nonlinear differential operator,  f is a given function, and the 

unknown is the function u. We attempt to find and then solve a sequence of 

simpler, approximate problems 

(P), As (ue) = [, e > 0, 

where the A~ are "nice"  operators which converge in some sense to A. Next we 

try to obtain estimates independent of e on the approximate solutions us, their 

derivatives, etc. Assuming success so far we now send e to zero and attempt to 

show the u, converge to a function u, which - -  we hope m solves (P). The major 

difficulty in this entire plan is that usually the nonlinearity is such that only 

relatively poor uniform estimates can be obtained for the u, : in practice it is 

often not too hard to show that the u~ (or a subsequence) converge to some limit 

u, but it is difficult to prove u solves problem (P). 

A method of G. Minty (of. [18]) circumvents this problem for certain operators 

A satisfying a monotonicity condition; i.e., 

(M) 0 _-< (u - ti, A (u) - A (ti)) 

for all u, a E D(A), the domain of A (( , ) denotes the inner product in L2). 

Choose any fixed ~b E D(A). Then if u, solves (P)~ and if the operators A, are 

also monotone,  we have 

O<-(u~ -ck, A~(ue)- a,(ck)) 

=(u,-ck, f-A~(6)) by (Pc). 

Suppose now that A~(4~)~A(4~), u,--*u as e",a0; then 

O<=(u -ok, f-A(6)).  

(Notice that the operators Ae pass to limits applied to  a fixed "test  function" 4~.) 

Now set 4~ = u - A0 for qJ E D(A ), A > 0, and substitute into the above to find 

O<=(O,I- A(u -)tO)). 

Let ~ "~0; if A (u - ~tO)~ A (u) (as is the case for many nonlinear differential 

operators),  we have 

O<=(O,f-A(u)) for all OED(A). 
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This implies 

a ( u ) =  f 

whenever D ( A )  is dense in L ~. 

The preceding argument has several variants and extensions, and applies to 

many nonlinear partial differential equations: see Lions [16, chap. 2], Browder 

[4], etc. Unfortunately the examples we have in mind fail to satisfy the 

monotonicity condition (M). Instead we observe that, formally at least, in each 

case a kind of maximum principle holds, namely 

(A (u) - A (ti)) (Xo) => 0 

at any point Xo where u - a attains the value II u - a ILL-. Therefore 

(A) 0 <= Iu - a, A ( u ) -  a (a)]÷ 

for all u, f~ E D ( A  ), where 

[f,g]÷--- sup g(Xo)sgn[(Xo) 
Xo 

I/(Xo)HIfn~. ® 

is a kind of "partial inner product" on L ® (or C). An operator satisfying (A) is 

called accretive in L®: see the appendix (§8) or Crandall [6], Evans [8], Barbu 

[11. 
The main idea of this paper (and of [7]) is to modify Minty's L 2 argument to 

L ®, with the bracket [ , ]+ playing the role of a true inner product. The 

technical difficulties we must still face are these: 

(a) we must discover approximations A,  which are nice enough that (P~) is 

solvable, and which are themselves accretive in L ®, 

(b) we must obtain estimates on the u~, 

(c) we must pass to limits as e ~0 .  

Difficulty (c) is the worst. We note in particular that [ , ]+ is only upper 

semicontinuous with respect to uniform convergence in each argument (it 

behaves badly with respect to weak convergence) and that D ( A )  is not dense in 

L ® for the applications mentioned above. Nevertheless we will be able to mimic 

Minty's argument at least to the point of asserting 

O = [ u  - ¢ , [ - A ( ¢ ) ] ÷  

for all sufficiently nice "test functions" ~. Then we show that for a.e. Xo, there 

exist smooth functions 4 , "  such that u - ~"  attains its norm precisely at Xo, and 

A(,k")(x0)--*A(u)(xo). Hence the definition of [ , ]+ implies 



228 L.C.  EVANS Israel J. Math. 

f(xo) >= A (u) (Xo). 

The reverse inequality follows from a similar argument, whence 

A ( u ) = f  a.e. 

Concrete realizations of this scheme involve of course considerable technical 

difficulties, and we delay our discussion of these until later. For the reader's 

convenience we include an appendix (§8) of the key facts about accretive 

operator theory; various technical lemmas ensuring that the class of test 

functions ~# is large enough are collected in the second appendix (§9). 

We close by noting that another application of our convergence method 

appears in Evans-Friedman [9] and P. L. Lions [17]; here we follow the general 

scheme outlined above to solve the Bellman p.d.e, of dynamic programming (cf. 
Fleming-Rishel [10]) 

max {L~u} = f, 
l - a k  "am 

when the L k are second order linear elliptic operators. 

where 

Part 1. A Nonlinear Emptic Equation 

2. Statement of the problem; preliminaries 

For the rest of the paper f~ will denote a bounded, smooth domain in R ~ 
(n => 2). Let us assume that F:Rn2---,R satisfies these hypotheses: 

(F1) F is continuously differentiable, with bounded gradient, 
(F2) for each x E R n2 the matrix ((,gF(x)/,gx,j)) is nonnegative definite, 

and 

(F3) limr,,r_®lF(x )l /Ix I = O. 
Here and afterwards the components of x E R "2 are denoted by xij (1 =< i, ] _-< n); 

i.e., 

X ~-~ ( X l l  , ° ° ° ,  Xln, X 2 1 ,  ° " " ,  X2n, X 3 1 ,  ° " ° ,  Xnn). 

Consider now the elliptic partial differential equation 

A u ( x ) + F ( D 2 u ( x ) ) = f ( x )  a.e. x EI~, 

u(x)  = O, x ~ 01~, 

F(D~u ) -~ F(u,, .... " ", u,,~,, " " ", ux.:,.), 
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f E C((I) is given and u is the unknown. Hypothesis (F2) is an ellipticity 

assumption, whereas (F3) ensures that F grows less rapidly than linearly at 
infinity (el. Remark 3.3). 

Our  existence result is this: 

THEOREM 2.1. Assume that F satisfies (F1)-(F3). Then for each f ~ C((I) 
there exists a unique u E WZ'~(fl) N W~'~(I)) (for all 1 <= p < ~) solving (E). 

This proposition extends theorem 2 in [7], a similar assertion for the case that 
F depends only on the pure second order derivatives of u. The new idea here is a 

more sophisticated approximation scheme to take care of mixed partial deriva- 
tives. Note  that in light of (F3) a priori W 2"~ estimates are easy: the entire 

difficulty is therefore the devising of a procedure to exploit these estimates (see 
Remark 3.2). 

Our  method depends upon a "quasilinearization" representation of F:  

LEMMA 2.2. Suppose that (F1) holds. Then 

(2.1) F ( x ) = m a x  min ~-~-x~j((l-A)y+Az))dA ( x , j - y , j ) + F ( y )  
y E R  n2 zEI I I  "2 

]'or each x ~ R "~. (Here we employ the implicit summation convention.) 

PROOF. Fix x ~ R "'. 

Now for any given y ~ R : ,  set z = x in the expression within the brackets 
}. Then 

m,n, ,<lifo ] / ~ ((1 - A )y + Ax )dA (x,, - y,/) + F ( y )  

fo I d = ~- F((I - A)y + Ax)d;~ + F(y) 

= F(x) ;  
therefore 

m a x m i n {  }_-<F(x). 
y z 

On the other hand, for y = x and any z, 

[fo ~ ~OF ((1 - A )x + Az )dA]j (x,, - x,,)+ F(x) { }= = F ( x ) ;  

so that 

max rain { } _-> F(x). • 
y z 
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Now define 

P ( x )  --- - F (  - x ), x n "2. 

t ~ satisfies (F1)-(F3), and (E) may be rewritten to read 

- Au (x)  + F (  - D 2u (x))  = - / ( x )  f 
(E) l u(x) = O, x E On. 

Define also for each (y, z )  E R "2 x R "', 

(2.2) 

and 

(2.3) 

L 
1 aF 

a,i (y, z ) -- ~ ((1 - A )y + Az)dA 

fo I OF = ~ ( -  (1 - A)y - AZ)dA 

a.e. x G fl, 

[Io ] ]'(y, z ) --- F (y )  - ~ ((1 - A )y + Az )dA Yo 

= - F (  - y )  - a ,  i (y, z )yq ; 

by Lemma 2.2 (applied to P instead of F )  

(2.4) F ( -  u . . . .  " " ", - ux,x,, " " ", - u .... ) = max min { -  ao (Y, z)ux,x~ +.f(y, z)}. 
y z 

Hypothesis (F2) implies 

(2.5) 0 <ali (y, z)¢iCj for each ¢ = (¢1, • • ", ¢,) G R". 

According now to (2.4) and (2.5) P is the max-rain of afline elliptic operators. 

This representation is at the heart of the proof of Theorem 2.1 in the next 

section. The idea is to replace each operator  -a,i(y,z)ux~ by its Yosida 

approximation. The resulting approximations are Lipschitz and yet are still 

accretive with respect to the supremum norm topology. As such we can both 

obtain estimates and then eventually pass to limits. 

3. Proof of Theorem 2.1 

The proof consists of four parts: 

(a) approximation, 

(b) first passage to limits, 

(c) second passage to limits, 

(d) uniqueness. 



Vol. 36, 1980 ACCRETIVE OPERATOR METHODS 231 

(a) Approximation 
Let 0 < r / <  ~ be a small fixed number (to be selected later). We define for each 

(y, z) ~ R ~ x R "~ the uniformly elliptic operator 

(3.1) 

for 

A Y'~u =- - rl Au - a0(Y, z)u~,~, 

u E D ( A Y ' Z ) = { u  E W2"P(fl)N W~'P(I'I)(1 _--- p <oo)[Ar'Zu E C(fi)}. 

According to standard elliptic theory the operator A "z is m-accretive in C(I~) 

(see the appendix (§8) for definitions of technical terms below). 

Fix A > 0 and let A ~'z denote the A th Yosida approximation of A Y'~ ; according 

to (8.6) and (8.7) each A~ '~ is an everywhere defined, Lipschitz, accretive 

operator on C(fl). 

Next choose M > 1 and select some smooth function /3 =/3~ such that 

(3.2) 

/3(x) = x, [ x l < - M - 1 ,  

/3(x)  = M, fxl---  M, 

0__</3'____1. 

(3.3) 

Since 

We intend eventually to send M to infinity (in part (c) below); but for the 

moment it is fixed, and so we suppress any reference to M in the notation. 

Finally define the nonlinear operator 

B ~ ( u ) - / 3 ( m a x  min (A~'Z(u)+ f (y , z ) ) )  . \ ,y lg  _ 1 z 

< C  < 1  
[ f ( y , z ) l=-~  for [y [ = ~ - ,  anyz ,  

BA is defined on all of C(I~). Furthermore B~ is Lipschitz (since each A~ 'z is 

Lipschitz with the same constant 2/h by (8.7)); and according to Lemma 8.2 Bx is 

accretive on C(~).  

Hence the Perturbation Lemma 8.1 (applied to A = - (1 - ~)A and B = B ~) 

from the appendix implies the existence of a unique ux ~ W 2'p A W0 ~'p solving 

(3.4) hu~ - (1 - ~)Au~ + B~(u~) = - f  in ~.  

Since [B~f < sup[/31_- < M by (3.2) and (3.3), we have 

(3,5) II IIw-(°)=< c q , ,  M )  for each 1 _-< p < oo; 

the constant depends on p and M, but not on A. 
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(b) First Passage to Limi ts  

Owing to (3.5) there exists a sequence h~ ".a0 and a function u E W 2.p n W I'p 

such that 

(3.6) 

u,, ~ u weakly in W 2,p (1 =< p < oo), 

Du~j ~ D u  uniformly on 1~, 

u,, ---, u uniformly on ~.  

Consider now some given 4' E Co(fl). We claim 

(3.7) B* (4 , ) - - , /3( -  ~7A4, + F ( -  D24,)) 

uni formly on 12 as h ",a0. Indeed, for any y, z 

[[a ~'~4, - a Y'~4, [Icon)= [[JYA"'4, - AY'~4, [[c(n, ( J r  "= (I + AA"')-I)  

(3.8) _-< A II(m ,.~)24, [[c¢a) by (8.8) 

- A c  II 4, [l~'---< ;~c, ,  

does not depend on y and the constant C1 
sup[D24, 1, 

(3.9) 

or z. Furthermore for h-~_- > 

to see this note that 

max min{ }--<ff'(-D24,), 
l y l z x  -3  z 

by (2.4), whereas substituting y = (4,x .... "" ", 4,x.x.) yields equality. Therefore for 
A small enough 

I max rain {A i"4 ,  + f(y, z ) } -  ( -  r/A4, + # ( -  D24,)) I 
I l y l~x  - t  z I 

_-< max min [A ~"4, - A Y"4, [ _-< AC1 on l'l, by (3.8). 
jy j~X-1  z 

Since fl is continuous, this proves (3.7). 

Now according to the accretiveness of - ( 1 -  ~7)A + B* we have 

0 ~ [u~ - 4,, - ( 1 -  ~)Au~ + B * ( u ~ ) -  ( -  (1 - ~ )A4 ,  + B~(4 , ) ) ]÷  

for any 4, ~ C~(N); (3.4) then implies 

max min { -  aij (y, z)4,x~, +f (y ,  z)} = F ( -  D24,); 
jy l~  A - t  z 
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o = [u~  - 4,, - x u ~  - f +  (1  - n ) a 4 ,  - B * ( 4 , ) ] + .  

Let  A = Aj",a0. By (3.6), (3.7), and the upper-semicont inui ty  of [ , ]+ with 

respect  to uni form convergence ,  

(3.10) 0=<[u - 4 , , -  f + ( 1 -  r/)A4, - / 3 ( -  7/A4, + P ( -  D24,))]+ 

for  all 4, E Co(l)).  

By L e m m a  9.1 for  a.e. x0 ~ I/,  there  exists a sequence  4,k E Co( i / ) such  that 

(i) 4,k (xo) - u (Xo) = tt 4,~ - u IlcCa, > 14,* (x)  - u (x)l  for  all x ~ •, x ~ xo, 

and 

(ii) D24,~(Xo) --, D2u(xo ) ,  D 4 , ~ ( X o ) ~  D u ( x o ) ,  4 , ~ ( X o ) ~  4,(Xo). 

Fix such a point  xo. By the character izat ion (8.14) of [ , ]+ and by (i), we have 

- f (Xo) + (1 - r/)A4, k (Xo) - / 3  ( - 7/A4, k (Xo) + F (  - D 2 6  ~ (Xo)) = 0. 

Let  k ---, oo and use (ii) to find 

(3.11) - f (Xo) <= - (1 - r/)A u (x0) +/3 ( - r/A u (Xo) + F (  - D 2u (Xo)) for  a.e. Xo E I/.  

In the same way we can find for  a.e. Xo a sequence  6k E Co(I/)  satisfying (ii) and 

(i)' u (xo) - ~b k (Xo) - I1 u - d/~ Ilc¢a) > I u ( x )  - ~k  (X)I for  all x U I), x ~ x0. 

Substi tut ing 4, = ~k in (3.10) and then letting k ---, oo yields the reverse  inequali ty 

to (3.11). The re fo r e  

( 3 . 1 2 )  - ( 1 - n ) a u + / 3 ( - n a u + P ( - D 2 u ) )  = - f  a.e. 

(c) S e c o n d  Pas sage  to L i m i t s  

Next  we r emove  the /3 f rom (3.12). Recall  (3.2) and now deno te  by u M the 

solution of (3.12) ( fo r /3  =/3M) const ructed above.  

Since I/3,~(x)l_-<lxl for  all x, we have 

(1-  n)]lu~ Ilw~.~ =< Cll(1- m)Au" II,_~ 

-< CllfllL. + cII/3(  )ll~. 

_-< c + Ell,7 Au M II,_, + C l i P ( -  O2u M)I[~ 

<= c + nClluMIl~. + ,  ltu M IIw~ + c ( ~ ) ,  

for  any e > 0, by hypothesis  (F3). For  fixed r/, e > 0 small enough,  we obtain the 

bounds  

(3.13) Ilu'l lw,.,  _-< C ( p )  (1 =<p <oo), 

the constant  depending  on p, but  not  on M. 
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Es t ima te  (3.13) implies the exis tence of a subsequence  (also deno ted  " u  ~ ' ' )  

and a funct ion u such that  

u ~ ~ u weakly  in W 2'~ 

Du M ~ Du uniformly on l) ,  

u"l  .._, u uniformly on ~ .  

(1 -<p <oo), 

F u r t h e r m o r e  for  e a c h / 3  = / 3 u  the differential  o p e r a t o r  on the left hand  side of 

(3.12) is accret ive in L~(I'l): see L e m m a  8.2 and the m a x i m u m  principle of  Bony  

[3]. H e n c e  for  each tb E Co(f~) 

0 =< luM - ~b, - (1 - r /)Au M + / 3 M ( -  "0Au ~ + F (  - D2u~)) 

- ( -  (1 - r / )A6  + / 3 ~ ( -  T/Ark + F ( -  D2~b))]+ 

= [u~ - 4~, - f +  (1 - "0)A6 - t i M ( -  r / A ,  + F ( -  D26))]÷.  

Let  M - - ~ ;  since /3u(x)--->x for  all x and ~b is smoo th  we have  

0 =< [u - 6, - f + A6  - F ( -  DZ~b)]+ 

for  all ~b E Co(~) .  Exact ly  as in section (b) above  this implies  

Au + F(D2u)= f a.e. in 12, 
(E) [ u = 0 o n  01L 

(d) Uniqueness 
A s s u m e  now that  u, a E W2"~(12) (1 =< p < oo) are two solut ions of  (E). Def ine  

for  a.e. x, 

Then  

fo ~ OF ao(x) = ~ (ADZ•(x) + (1 - A)D2u(x))dA. 

Av + t~ijvx,xj = 0 a.e. for  v - u - t1 E W 2'p f3 Wo TM. 

By the m a x i m u m  principle of  Bony  [3] v - 0. 

REMARK 3.1. Var ious  extens ions  of T h e o r e m  2.1 - -  to al low for  examp le  

lower  o rde r  nonl inear i t ies  - -  are clearly possible.  W e  do not  pursue  this, except  

to no te  that  the hypothes ized  ((F1)) bound  on the gradient  of F, or  even its 

existence,  is not essential  and can be  r e m o v e d  by approx ima t ing  F with smoo th  

functions,  un i formly  on compac t  sets. • 
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REMARK 3.2. The rather elaborate scheme (3.3) and (3.4) is the only 

approximation the author could devise to obtain well behaved, accretive 

operators converging formally to - Au + F ( -  D 2 u ) .  It is not very hard to invent 

various other plausible procedures (e.g. replace the derivatives in F by differ- 

ence quotients, mollify each derivative in F, try successive guesses, add on e A2u, 

etc.); but for none of these are the approximation operators accretive in C(fl). 

This failing, we do not know how to justify the limiting procedure with just W 2'p 

estimates, implying only weak and not a.e. convergence of the second deriva- 

tives. • 

REMARK 3.3. Hypothesis (F3) can be replaced with a somewhat weaker 

assumption as follows. Select n < po < ~ and suppose that 

(F3)' lim IF(x)l =< e(p0), 
j,j-~ Ixl 

where e (Po) is an appropriate small positive constant, which depends only on po 
and l'~. Under (F1), (F2), and (F3)' the proof of Theorem 3.1 still works, except 

that in section (c) above we obtain estimates only in the space W2"p0(II). • 

Part II. The Hamiiton--Jacobi Equation 

4. Statement of the problem; preliminaries 

This and the next section study the solvability of the Cauchy problem for the 

Hamilton-Jacobi equation: 

u, (x, t)  + H ( x ,  t, u (x, t),  D u  (x, t ))  = 0 

(H J) u (x, 0) = uo(x), x E R". 

a.e. (x, t) E R" x (0, T), 

(aJ)~ 
{ u~- eAu ~ + H(x,t,u',Du ~)= 0 

u ~ (x,  O) = Uo(X), x ~ R", 

in R" × (0, T), 

In this problem T > 0, H : R" x [0, T] x R x R" ---, R and uo : R" ---, R are given; 

and the unknown is u. D u  = ( u x , , "  ", ux,). 

There is of course a wide literature concerning (HJ); see, for example, Benton 

[2] for a readable discussion of various techniques and for references. Here we 

intend only to demonstrate the applicability of our convergence methods to 

justifying the "vanishing viscosity" method (and hence impose convenient, but 

excessive, restrictions on H).  Following Kruzkov [15], Fleming [10], and 

Friedman [13], we consider for each e > 0 the approximate problem 
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and will prove that a subsequence of the u ~ converges as e --> 0 to a solution of 

(HJ). In [10] and [13] this follows from rather complicated considerations 

involving stochastic differential game theory. Tamburro [24] and Burch [5] 

directly pass to limits (for a time independent version of (HJ)), but under the 

assumption that H is convex with respect to Du, in which case there is an extra 

estimate on the second derivatives of the u~ (implying a.e. convergence of the 

Du~). (The papers [24] and [5] use accretive operator methods to construct a 

semigroup solution of (H J).) 

We will assume 

(HI) 

and 

H is continuously differentiable 

there exists a constant M such that 

(a2)  I F I + [ F , I + I F ,  I+]F,I+[F~I<- M 

for all (x, t, u, p) E R" x [0, T] x R x R". 

THEOREM 4.1. Suppose that H satisfies conditions (HI) and (H2), and that 

uo : R" --* R is Lipschitz, bounded. Then there is a sequence e i ~ 0  such that 

lim u*,(x, t ) =  u(x, t) 
e i ~ 0  

exists, uniformly on compact sets of R" × [0, T]. Furthermore u is Lipschitz and is 

a solution of (HJ). 

REMARK 4.2. Examples show that the solution of (HJ) need not be unique: 

see Benton [2]. According to the stochastic differential game method of Fleming 

[10], in fact lime.,0 u ~ = u ; we do not know a direct proof of this. • 

We continue by quoting Theorem 2.1 of Friedman [13], which implies the 

solvability of (HJ)~ : 

LEMMA 4.3. Assume (HI) and (H2). Then for each 0 < e < 1, there exists a 

unique bounded [unction u" E C~1+~/2(R" x (0, T)) (0 < a < 1) solving (HJ),. 

Furthermore there exists a constant K, independent of e > O, such that 

lu~(x,t)l<-_-K 

(4.I) [Du' (x ,  t)l <-- K 

lu : (x , t ) l<-K  

for all (x, t) E R" × (0, T). 
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5. Proof of Theorem 4.1 

According to (4.1) there  

C°"(R n x [0, T])  such that 

N ~j "'~ /A 

D u  ~J ~ D u  

~j 
U t ~ lg t  

A C C R E T I V E  O P E R A T O R  METHODS 

exists a subsequence  es xaO 

uniformly on compact  sets, 

weak * in L ®, on compact  sets, 

weak * in L ~, on compact  sets. 

237 

and a funct ion u E 

L e m m a  9.2 implies that,  for  a.e. (Xo, to) E R n x (0, T), u is different iable at (Xo, to) 

and there  exists a C t funct ion ~b, with compact  support  (1, satisfying 

(i) ck(xo, t o ) - U ( X o ,  t o ) = l l c k - u H c t a ~ > l c k ( x , t ) - u ( x , t ) l  for  all ( x , t ) E f l ,  

(x, t) ¢ (Xo, to). 
(ii) ~b(xo, to)=> 4K  (K is the constant  in (4.1)). 

Choose  {q,k} C Co(R x (0, T))  so that 

(5.1) d/k----~Ck, D ~ - - - ~ D c k ,  qs,k---~b, uniformly on R" x [0, T]. 

Now (i) and (ii) imply that 4' - u attains its L~-norm over  all of R n x [0, T] at 

(Xo, to); and so, for  K large enough and e small enough,  

(5.2) ~O ~ - u ~ must attain its L~-norm over  R n x [0, T] in fL 

Hence  by (8.I6) and the max imum principle 

0 <= [qs k - u ' ,  $ k  _ eAqsk + H ( x ,  t, u ~, D O  k ) - (u7 - e A u  ~ + H ( x ,  t, u ~, Du*) ) ] .  

= [qs k - u ' ,  qs k, - eAqs  k + H ( x ,  t, u ~, Dqsk)]+ 

by (HJ)~. Now according to (5.2) and (8.16), the behav ior  of qs k - u ~ off 1~ does 

not affect the bracket  [ , ]+, whereas  uE ~ u uniformly on fl.  

Since [ , ]+ is upper  semicont inuous,  we there fore  may conclude,  af ter  

sending e ~ O, 

O < - [ q J k - - U , ~ O k , + H ( x , t , u ,  Dq~k)]+ (k  = 1 , 2 , . . . ) .  

Now let k ---)~ and recall (5.1): 

0 <= [ 6  - u, ok, + H ( x ,  t, u, D~b)]+; 

by (i) and the character izat ion (8.16) we find 

(5.3) u, (Xo, to) + H (xo, to, u (xo, to), D u  (Xo, to)) --- 0, 

since DO = D u ,  ok, = u, at (x0, to) (where ~b - u attains its maximum).  In a similar 
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way we can find a C ~ function 4' so that u - 4' attains its maximum at (Xo, to). 

Then after approximating by Co functions ~k k as above and passing to limits, we 

conclude 

(5.4) u, (Xo, to) + H(xo, to, u (Xo, to), Du (Xo, to)) =< 0. 

Since (5.3) and (5.4) hold for a.e. (Xo, to), u solves (HJ). • 

REMARK 5.1. We note that in contrast to the difficulties discussed in Remark 

3.2 that the "vanishing viscosity" approach to (HJ) has the important property 

that the approximations still satisfy the maximum principle and, more precisely, 

still correspond to accretive operators. • 

Part III. A Functional/Differential Equation 

6. Statement of the problem; preliminaries 

J. Mossino in [19], [20], and [21] has studied this nonlinear functional p.d.e., a 

simplified form of the Grad-Mercier  equations in plasma physics ([14]): 

{ - - A u ( x ) + ~ ( u ) ( x ) ~ f ( x )  a.e. x E l ' l  

(P) u(x)  = 0 x ~ ark 

Here ft is a bounded smooth domain in R", f E C(~I) is given, and 

(6.1) ~(u) (x )  =-[meas{y l u ( y ) <  u(x)}, meas{y lu(y)-<_ u (x)}l 

is a multivalued functional defined on C(I~); the unknown is u. 
Mossino solved (P) in [20] by means of a certain quasi-variational formulation 

of the problem. As a further and simpler example of accretive operator methods 

we present here a new existence proof: 

THEOREM 6.1. For each [ E  C(h)  there exists u E W2'p(II)f'I W~'P(fl) 

(l _--< p < ~) solving (P). 

REMARK 6.2. Mossino [20] has constructed examples showing nonunique- 

ness is possible. The solution we construct is maximal. • 

Our idea - -  following the general plan outlined in §1 - -  is to approximate (P) 

by a sequence of simpler problems (P),. To define these first select, for each 

e > 0, a smooth function /3, satisfying 

~ , ( x ) =  0, x_-< -~ ,  

(6.1) /3, (x) = 1, x =>0, 

/3',=>0. 
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We suppose in addition that 

(6.2) /3, (x) <_-/3,.(x ) 

so that 

(6.3) 

Consider now the approximate problems 

f o r x E / R ,  0 < e < e ' ,  

/3, (x)' , ,  0 x <0 .  

(P), 

f 

{ eu" (x)  - Au" (x)  + J .  /3. (u~ (x)  - u. (y))dy = f ( x ) ,  

u, (x) = O, x ~ af t .  

x ~ f t ,  

PROOF. We claim first that the operator B, defined by 

B , ( u ) ( x ) - f a  /3 , (u(x) -  u(y))dy, x 

is Lipschitz, everywhere defined, and accretive on C(~).  The first two statements 

are clear. To prove the last assume that u, a E C(~), (u - a)(xo) = l lu - a lie,,, 

for some Xo • ~ .  Then 

u ( x o ) -  u(y)_-> a(xo)- a(y) ,  y ~ f i ,  

and so 
/3, (u (Xo) - u (y)) _->/3, (a (Xo) - a (y)) for all y E •. 

Integration over ft  implies 

(B~(u)-  B,(a))(Xo)>= 0; 

that is, BE is accretive on C(~)  (by (8.12) and (8.14)). 
According to the Perturbation Lemma 8.1 (applied to B, and A = - A), (P)e 

has a unique solution u,. • 

REMARK 6.4. This lemma, as well as the remainder of the theory in §6-7, 

works for f E  L®(ft); but since the characterization of [ , ]÷ (cf. (8.17)) in 

L®(f/) is somewhat more complicated than in C(I)), we do not discuss this 

extension. The observation that accretive operator methods apply to (P) is due to 

Ph. Benilan. • 

LEMMA 6.3. For each e >0 ,  there exists a unique u ~ E W2'P(ft)O W~'~(ft) 
(1 =< p < oo) solving (P),. 
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7. Proof of Theorem 6.1 

Since IB~(u~)I <= meas(~),  we have the estimate 

l_-__p 

the constant does not depend on e. Hence there exists a subsequence ej ~ 0  and a 

function u E W2'P(fl) N Wo~'P(12) (1 =< p < oo) such that 

(7.1) 

u ~i ~ u weakly in W 2'p 

Du ~, --* Du uniformly on [~, 

u ~J --* u uniformly on 1~. 

(1 =<p < ~ ) ,  

We claim u solves (P), and this fact is easier to prove than the corresponding 

assertions in §3, 5 since the nonlinearity here does not involve the highest order 

derivatives. 

Fix x ~ 1) for the moment and consider any point y E ~ so that 

(7.2) u(x)  > u(y).  

Then 

u ' , ( x ) >  u ' , (y )  
and hence 

(7.3) /3~, (u ' , (x) - u~,(y)) = 1 

for ej small enough. Similarly, suppose 

(7.4) u(x)  < u(y);  

then 

(7.5) - = 0 

for ei small enough. 

In view of (7.3), (7.5), and Fatou's lemma we have 

meas{y E 1~1 u(y)  < u(x)} < lim inf B,,(ui)(x)  
el-*0 

(7.6) =< lira sup B,j(u'O(x ) 
~--.,o 

-< meas{y E 1~1 u(y)  <=,u(x)} 

for each x E I~. 
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Next we note from (7.1) that 

-Au*J ~ - A u  

(7.7) eju ~J --> 0 

B~,(u~,) ~ B 

weakly in W 2.p, 

uniformly on 1), 

weakly in L p, 

for some function B. According to (7.6) 

meas{y I u(y)< u (x )} <- B (x ) <= meas {y I u (Y )=  < u(x)} 

for a.e. x E f~; that is, 

(7.8) B ( x ) E  f l ( u ) ( x )  a.e. 

Passing to limits as ej ~ 0 in (P)~j, we find that u solves (P). 

8. Appendix 1: Basic theory of accretive operators 

The book of Barbu [1] and the survey article of Crandall [6] contain proofs 

and more explanation concerning the results in this appendix. 

Let X be a real Banach space with norm I1 It. A (possibly nonlinear) operator  

A : D (A)  C X --* X is accretive if 

(8.1) I [ x - ~ [ [ < = [ [ x - ~ + A ( A ( x ) - A ( ~ ) ) H  f o r a l l x , ~ E D ( A ) ,  A > 0 .  

If in addition R (I + hA ) = X for some X > 0, A is m -accretive, in which case 

R ( I + A A ) = X  for a l i A > 0 .  

For an m-accretive operator  A, we define 

(8.2) J~ = (I + AA)-'  (A > 0), 

the (nonlinear) resolvents of A, and 

(8.3) A, = I - J~ (A > 0), 
A 

the Yosida approximations of A. We note here some simple properties of the J~ 

and An : 

(8.4) 

(8.5) 

(8.6) 

ItJ (x)-Jn( )ll llx- ll, A>0,  

JA(x)---,x as h%0,  f o r x E D ( A ) ;  

An is an everywhere defined, accretive operator  on X;  
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(8.7) 

(8.8) [IJ, x - x II <= A I[Ax II, 

(8.9) if A is linear, A , x  = J~Ax, 

For x, y ~ X, we define the pairings 

(8.1o) 

We note at once that 

( 8 . l l )  [ , 

and 

(8.12) 

2 
t l A , ( x ) - A ^ ( x ) l l < = ~ l l  x - x l l ,  x , $ E X ,  A > 0 ;  

x E D ( A ) ,  A > 0 ;  

x E D ( A ) ,  A >0.  

Ix, y]+ ~ inf IIx + Ay II- IIx II 
A > 0  /~ 

IIx + II-IIx II [x, y ]_ -= sup 
A<O /~ 

]+ : X x X ~ R is upper semicontinuous 

A is accretive if and only if 0 =< [x - ~, A (x) - A (.~)]+, x, Yc @ D ( A  ). 

PERTURaAT~ON LEMMA 8.1. Assume that A is an m-accretive operator on X 

and that B is accretive, Lipschitz continuous, everywhere defined on X. 

Then A + B is m-accretive on X. 

(Here D ( A  + B )  = D ( A  ).) 

PROOF. By (8.13) B is strongly accretive, and from this it follows that A + AB 

is accretive for all A ->0. Now let r E X  be given. If R ( I + A  + AoB)= X for 

some Ao> 0, then we can solve 

x + A x  + ABx = f 

for any )to- 1/K < A < Ao + 1/K, by rewriting this equation to read 

x = J , (A  + AoB)0r + ()to- A)Bx), 

An operator A is called strongly (or Browder) accretive if 

O < = [ x - ~ , A ( x ) - A ( ~ ) ] _  x , ~ E D ( A ) ;  

see Crandall [6] for a simple proof that 

(8.13) a continuous, everywhere defined accretive operator is strongly accretive. 

To solve various approximate problems in §2-7 we make use of this: 
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(J,(A + AoB)=-(I + A + AoB)-'), recalling (8.4), and using the Banach fixed 

point theorem. Since R (I + A )  = X we can start at ;to = 0 and then proceed in 
steps of size 1/2K, say, to prove R (I  + A + B)  = X. • 

We now note that for the case X = C(i')) the brackets [ , ]_. have these 

characterizations (cf. Sato [22, p. 431] and Sinestrari [23]): 

(8.14) If, g ]÷ = max g (Xo)" sgn f(xo), f~  O, 
x o E ~  

If(xo)l =l//'llc(tb 

(8.15) [f, g]_ = min g(xo) • sgn f(xo), f ~  O. 
tf(xo)l =[Ifllc(~) 

(8.16) If ~ is unbounded,  but l f t  < llf Ilcta)off some compact  set, (8.14) still holds. 

If X = L=(f~) this analogous, but more complicated representat ion holds: 

(8.17) [f, g l÷ = lim ess sup f ( x ) .  sgn f (x) ,  f ~  O, 
E x.0 NO, ~ ) 

where fl(f, e)  is defined (up to a set of measure zero) by 

~(f, e)=--{x E a I If(x)] > IlfllL-,, ,- e}. 

In view of (8.14) and (8.15) the class of accretive operators  on C ( ~ )  has certain 
nice properties (cf. [8]): 

LEMMA 8.2. (i) Let A ~ (~/ E F) be any collection of strongly accretive operators 
on C(fi).  Then 

A u  =- sup A ~u 
~,EF 

resp. Bu -- inf A ~u) , 
"yEF 

defined for D ( A  )=-{u E C(~) l  u E / " ) ~ r D ( A  ~) and sup,  A ~u E C(I~)} (resp. 

D ( B )  =-{u E C ( l l ) l u  E A ~ r D ( A  ~) and inf~A*u E C(I))}), is strongly accre- 
live o n  C(f i ) .  

(ii) I r A  is accretive on C(h)  and ~ : R---~ R is continuous and nondecreasing 

Bu =-13(Au ), 

defined for u ~ D ( B )  = D ( A  ), is accretive on C([I). 

PROOF. (i) Choose u, ti E D ( A )  and let Xo be any point where 

(u - a ) ( x 0 ) =  Ilu - a Ilc<,~,. 
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Then, since the A ~ are strongly accretive, 

(A ~ ( u ) -  A"  (ti ))(x,,) => 0, 

hence 

y E F ;  

sup "(u) sup ~(u)} (x,,)= 
\ 

A A 0. 
~'EI" "fEEl" / 

Hence A is strongly accretive by (8.12) and (8.15); the proof for B is similar. 

(ii) Again select u, f4 E D ( B ) .  Since A is accretive, there exists some xoE f) 

such that 

( u  - a ) ( X o ) - - I l u  - a ]lc,., 
and 

Hence 

so that B is accretive. 

(A (u) - A (•)) (xo) => 0. 

(/3 (A (u)) - / 3  (A (ti))) (Xo) => 0, 

9. Appendix 2: Technical lemmas 

In each of the convergence proofs in §3, 5 we prove inequalities of the form 

0_-<[u - ~b , f -  A (~b)]+ 

for all sufficiently nice " test"  functions qb. That this implies A ( u ) =  f follows 
from these various assertions concerning the richness of the class of such ~b: 

LEMMA 9.1. Let 12 be a smooth bounded domain of R". Assume  that 

u E  W2"~(12)N W~'P(12) for some p > n .  Then for a.e. XoEf l  there exists a 

sequence {~k k } C Co(O) such that 

(i) ~bk(xo) - U(Xo) = lick ~ - u Ilcta)> Ickk(x) - u (x ) l  for all x ~ f), x J  Xo, 

(ii) D2ck k(Xo)---~ D2u(xo), D 6  ~(xo)---~ Du(xo),  ck k(Xo)---~ U(Xo) as k ---~oo. 

This is lemma 2.2 in Evans [7]. 

LEMMA 9.2. Assume  that l~ is a bounded, smooth domain of R" and 

u : ~--~ R is Lipschitz. Then for a.e. Xo E 12 and each M > 0 there exists 

¢k E C~(12) satisfying 

(i) 4~(xo)- U(Xo) = lick - u IIcta) > lob (x ) -  u (x  )l for all x ~ ~ ,  x J Xo, 
(ii) ~b(xo) ---- M. 
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PROOF. Choose  xoE~l) to be any point  where  u is differentiable;  by 

Rademache r ' s  t heorem (Fr iedman [12, p. 122]) a.e. x,, satisfies this. The re  is no 

restriction in supposing xo = 0. Thus  

(9.1) 

where  

I , ( x ) -  u(0)-  u, (0)x, I<_- p(Ix I), 

(9.2) lim ~ -  O. 
,_o l,,I - 
x E f l  

Fur the rmore  we may assume p > 0 for Ix ] > 0 and 

p ([ x [) is a C '  function of x. (9.3) 

(For  if not,  define 

p , ( t )  - sup p ( s )  >= p ( t ) ,  

and replace p by 

1o-  y, 2' 82(0 - p , ( s )  ,is >-_ re( t )  >= #( t ) ,  
S 

p , ( Ix [ )  is clearly C '  for  I x J > 0 ,  p, 

a x~ 
e~ p,(Ix I)= p;(Ix I) 

I (p2(~ l)p2(lx 
= ~Xl p3(0)' 

Now choose a C 1 function Og with compact support in ~ so that 

Og(x) = . ( 0 ) +  ux, (0)x, + 1 - 2 p ( i x  I) 

for  all x near  0, say Ix I =  < eo. 

t ' , ( ' ) -  ~ . 1 ,  s as >- p(t); 

(i = 1, 2, 3) satisfies (9.2), and there fore  

as I" I--' 0.) 

We claim Og - u has a strict local max imum at 0. Indeed  Og(0) - u(0) = 1, whereas  

for  0 < I x  l <  eo, 

lOg(x)- u(x)[ <= 1-2p(lx J)+ [u(x)- u(O)- u~, (0)x, [=< 1 - p([x I ) <  1 by (9.1). 
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Finally choose a smooth function s r satisfying 

support s r C B (0, eo), 

l = ~ ' (0)  = max ~'; 

then 

0 ~ ¢ ~ 1  

4~ --" K~" + # 

for large enough K meets the requirements of the lemma. 
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