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USER’S GUIDE TO VISCOSITY SOLUTIONS

OF SECOND ORDER

PARTIAL DIFFERENTIAL EQUATIONS

Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions

Abstract. The notion of viscosity solutions of scalar fully nonlinear partial differ-
ential equations of second order provides a framework in which startling comparison
and uniqueness theorems, existence theorems, and theorems about continuous de-
pendence may now be proved by very efficient and striking arguments. The range of
important applications of these results is enormous. This article is a self-contained
exposition of the basic theory of viscosity solutions.

Introduction

The theory of viscosity solutions applies to certain partial differential equations
of the form F (x, u,Du,D2u) = 0 where F : RN ×R×RN ×S(N) → R and S(N) is
the set of symmetric N ×N matrices. The primary virtues of this theory are that
it allows merely continuous functions to be solutions of fully nonlinear equations
of second order, that it provides very general existence and uniqueness theorems
and that it yields precise formulations of general boundary conditions. Moreover,
these features go hand-in-hand with a great flexibility in passing to limits in various
settings and relatively simple proofs. In the expression F (x, u,Du,D2u) u will be
a real-valued function defined on some subset O of RN , Du corresponds to the
gradient of u and D2u corresponds to the matrix of second derivatives of u. How-
ever, as explained below, Du and D2u will not have classical meanings and, in fact,
the examples exhibited in §1 will convince the reader that the theory encompasses
classes of equations that have no solutions that are differentiable in the classical
sense.
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In order that the theory apply to a given equation F = 0, we will require F to
satisfy a fundamental monotonicity condition

(0.1) F (x, r, p,X) ≤ F (x, s, p, Y ) whenever r ≤ s and Y ≤ X ;

where r, s ∈ R, x, p ∈ RN , X,Y ∈ S(N) and S(N) is equipped with its usual order.
Regarding (0.1) as made up of the two conditions

(0.2) F (x, r, p,X) ≤ F (x, s, p,X) whenever r ≤ s,

and

(0.3) F (x, r, p,X) ≤ F (x, r, p, Y ) whenever Y ≤ X,

we will give the name “degenerate ellipticity” to the second. That is, F is said
to be degenerate elliptic if (0.3) holds. When (0.2) also holds (equivalently, (0.1)
holds), we will say that F is proper.

The examples given in §1 will illustrate the fact that the antimonotonicity in
X is indeed an “ellipticity” condition. The possibility of “degeneracies” is clearly
exhibited by considering the case in which F (x, r, p,X) does not depend on X—
it is then degenerate elliptic. The monotonicity in r, while easier to understand,
is a slightly subtle selection criterion that, in particular, excludes the use of the
viscosity theory for first order equations of the form b(u)ux = f(x) in R when b is
not a constant function, since then F (x, r, p) = b(r)p − f(x) is not nondecreasing
in r for all choices of p (scalar conservation laws are outside of the scope of this
theory).

The presentation begins with §1, which, as already mentioned, provides a list of
examples. This rather long list is offered to meet several objectives. First, we seek
to bring the reader to our conviction that the scope of the theory is quite broad while
providing a spectrum of meaningful applications and, at the same time, generating
some insight as regards the fundamental structural assumption (0.1). Finally, in
the presentation of examples involving famous second order equations, the very
act of writing the equations in a form compatible with the theory will induce an
interesting modification of the classical viewpoint concerning them.

In §2 we begin an introductory presentation of the basic facts of the theory. The
style is initially leisurely and expository and technicalities are minimized, although
complete discussions of various key points are given and some simple arguments in-
conveniently scattered in the literature are presented. Results are illustrated with
simple examples making clear their general nature. Section 2 presents the basic no-
tions of solution used in the theory, the analytical heart of which lies in comparison
results. Accordingly, §3 is devoted to explaining comparison results in the simple
setting of the Dirichlet problem; roughly speaking, they are proved by methods
involving extensions of the maximum principle to semicontinuous functions. Once
these comparison results are established, existence assertions can be established by
Perron’s method, a rather striking tale that is told in §4. With this background
in hand, the reader will have an almost complete (sub)story and with some effort
(but not too much!) should be able to absorb in an efficient way some of the more
technical features of the theory that are outlined in the rest of the paper.

Other important ideas are to be found in §6, which is concerned with the is-
sue of taking limits of viscosity solutions and applications of this and in §7, which
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describes the adaptation of the theory to accommodate problems with other bound-
ary conditions and problems in which the boundary condition cannot be strictly
satisfied. In the later case, the entire problem has a generalized interpretation for
which there is often existence and uniqueness. While the description of these re-
sults is deferred to §7, they are fundamental and dramatic. For example, if G(p,X)
is uniformly continuous, degenerate elliptic, and independent of x and Ω ⊂ RN is
open and bounded, n(x) is the unit exterior normal at the point x in its smooth
boundary ∂Ω and f ∈ C(Ω), then the Neumann problem

u+G(Du,D2u) − f(x) = 0 in Ω, un = 0 on ∂Ω

has a unique properly interpreted solution (which may not satisfy un = 0 on ∂Ω).
Sections 5, 8, 9 discuss variations of the basic material and need not be read in

sequence. Section 10 is devoted to a commentary about applications (which are not
treated in the main text), references, and possible lines of future development of the
subject. We conclude with an appendix where the reader will find a self-contained
presentation of the proof of the analytical heart on the presentation we have chosen.

References are not given in the main text (with the exception of §10), but are
to be found at the end of each section. In particular, the reader should look to the
end of a section for further comments, references that contain details ommitted in
the main text, and technical generality, historical comments, etc. The references,
while numerous, are not intended to be complete, except that we have sought
to represent all the major directions of research and areas of application. There
are original aspects of the current presentation and the reader will note differences
between the flavor and clarity of our presentation and that of many of the citations.
However, equipped with the view presented here, we hope and expect that perusing
the amazing literature that has so quickly matured will be a much more rewarding
and efficient endeavor.

We are grateful to R. Dorroh, M. Kocan and A. Swiech for their kind help in
reducing the number of errors herein.
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1. Examples

We will record here many examples of degenerate elliptic equations mentioning,
when appropriate, areas in which they arise. The reader is invited to scan the list
and pause where interested—it is possible to proceed to §2 at any stage. Below we
will say either that a function F (x, r, p,X) is degenerate elliptic or that the equation
F (x, u,Du,D2u) = 0 is degenerate elliptic or that the “operator” or expression
F (x, u,Du,D2u) is degenerate elliptic and always mean the same thing, i.e., (0.3)
holds; the term “proper” is used in a similar fashion.

Example 1.1. Laplace’s equation. We revisit an old friend, the equation

(1.1) −∆u+ c(x)u = f(x)

—note the sign in front of the Laplacian. The corresponding F is naturally given
by F (x, r, p,X) = − trace(X) + c(x)r − f(x), which is proper if c ≥ 0.

Example 1.2. Degenerate elliptic linear equations. Example 1.1 immediately ex-
tends to the more general linear equation

(1.2) −
N∑

i,j=1

ai,j(x)
∂2u

∂xi∂xj
+

N∑

i=1

bi(x)
∂u

∂xi
+ c(x)u(x) = f(x)

where the matrix A(x) = {ai,j(x)} is symmetric; the corresponding F is

(1.3) F (x, r, p,X) = − trace(A(x)X) +

N∑

i=1

bi(x)pi + c(x)r − f(x).

In this case, F is degenerate elliptic if and only if A(x) ≥ 0 and it is proper if also
c(x) ≥ 0. In the event that there are constants λ,Λ > 0 such that λI ≤ A(x) ≤ ΛI
for all x where I is the identity matrix, F is said to be uniformly elliptic.

Of course, the linear equation in divergence form

−
N∑

i,j=1

∂

∂xi

(
ai,j(x)

∂u

∂xj

)
+

N∑

j=1

bj(x)
∂u

∂xi
+ c(x)u(x) = f(x)

can be written as above with

F (x, r, p,X) = − trace(A(x)X) +

N∑

j=1

(
bj(x) −

N∑

i=1

∂ai,j

∂xi
(x)

)
pj + c(x)r − f(x)

provided that the indicated derivatives of the ai,j exist.

We leave the interesting class of linear equations to turn to the totally degenerate
case of first order equations.
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Example 1.3. First order equations. The main point is that a first order oper-
ator F (x, u,Du) is always degenerate elliptic and thus it is proper if and only if
F (x, r, p) is nondecreasing in r ∈ R. Proper equations of the form F (x, u,Du) = 0
play a fundamental role in the classical Calculus of Variations and in Optimal Con-
trol Theory of ordinary differential equations; in this context they are often called
Bellman or Hamilton-Jacobi equations and then F (x, r, p) is convex in (r, p). These
equations, in the full generality of nearly arbitrary proper functions F , are also
crucial in Differential Games Theory where they are known as Isaacs’s equations.

Example 1.4. Quasilinear elliptic equations in divergence form. The usual notion
of ellipticity for equations of the form

(1.4) −
N∑

i=1

∂

∂xi
(ai(x,Du)) + b(x, u,Du) = 0

is the monotonicity of the vector field a(x, p) in p as a mapping from RN to RN . If
enough regularity is available to carry out the differentiation, we write (1.4) as

(1.5) −
N∑

i,j=1

∂ai

∂pj
(x,Du)

∂2u

∂xi∂xj
+ b(x, u,Du) −

N∑

i=1

∂ai

∂xi
(x,Du) = 0

and correspondingly set

(1.6) F (x, r, p,X) = − trace((Dpa(x, p))X) + b(x, r, p) −
N∑

i=1

∂ai

∂xi
(x, p).

The monotonicity of a in p is precisely the condition that guarantees that F is
degenerate elliptic, and then it is proper provided we ask that b be nondecreasing
in r.

Two well-known instances are provided by the equation of minimal surfaces in
nonparametric form and the “m-Laplace’s” equation that are given, respectively,
by a(x, p) = (1 + |p|2)−1/2p, b = b(x, u) and a(x, p) = |p|m−2p, b = b(x, r) where
m ∈ (1,∞). Computations show that the corresponding F ’s are, respectively,

F (x, r, p,X) = −(1 + |p|2)−
1
2 trace(X) + (1 + |p|2)−

3
2 trace((p⊗ p)X) + b(x, r)

and

F (x, r, p,X) = −|p|m−2 trace(X) − (m− 2)|p|m−4 trace((p⊗ p)X) + b(x, r).

Example 1.5. Quasilinear elliptic equations in nondivergence form. The equation

(1.7) −
N∑

i,j=1

ai,j(x, p)
∂2u

∂xi∂xj
+ b(x, u,Du) = 0,

where A(x, p) = {ai,j(x, p)} ∈ S(N), contains all of the above as special cases and
corresponds to

F (x, r, p,X) = − trace(A(x, p)X) + b(x, r, p),
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which is proper if A ≥ 0 and b is nondecreasing with respect to r. Two relevant
special cases are

−ν∆u+ f(x, u,Du) = 0

with ν > 0 and f nondecreasing in u, which may be regarded as a first-order
Hamilton-Jacobi equation perturbed by an additional “viscosity” term −ν∆u (equa-
tions of this type arise in optimal stochastic control), and the Lévi’s equation

−

(
∂2u

∂x2
1

+
∂2u

∂x2
2

)(
1 +

(
∂u

∂x3

)2
)

−
∂2u

∂x2
3

((
∂u

∂x1

)2

+

(
∂u

∂x2

)2
)

+ 2
∂2u

∂x1∂x3

(
∂u

∂x3

∂u

∂x1
−

∂u

∂x2

)
+ 2

∂2u

∂x2∂x3

(
∂u

∂x3

∂u

∂x2
+

∂u

∂x1

)
= 0,

which is the nonparametric formulation for a hypersurface in C2 with vanishing
Lévi’s form. Note that in this example F = − trace(A(p)X) where

A(p) =




1 + p2

3 0 p3p1 − p2

0 1 + p2
3 p3p2 + p1

p3p1 − p2 p3p2 + p1 p2
1 + p2

2





so that A ≥ 0 but det(A(p)) = 0 for all p.

Example 1.6. Hamilton-Jacobi-Bellman and Isaacs equations. Hamilton-Jacobi-
Bellman and Isaacs equations are, respectively, the fundamental partial differential
equations for stochastic control and stochastic differential games. The natural
setting involves a collection of elliptic operators of second-order depending either
on one parameter α (in the Hamilton-Jacobi-Bellman case) or two parameters α, β
(in the case of Isaacs’s equations). These parameters lie in index sets we will not
display in the discussion. Thus we take as ingredients proper expressions of the
form

(1.8) Lαu = −
N∑

i,j=1

aα
i,j(x)

∂2u

∂xi∂xj
+

N∑

i=1

bαi (x)
∂u

∂xi
+ cα(x)u(x) − f α(x)

or

(1.9) Lα,βu = −
N∑

i,j=1

aα,β
i,j (x)

∂2u

∂xi∂xj
+

N∑

i=1

bα,β
i (x)

∂u

∂xi
+ cα,β(x)u(x) − f α,β(x)

where all the coefficients are bounded with respect to α or α, β. Hamilton-Jacobi-
Bellman equations include those of the form

(1.10) sup
α

{Lαu} = 0

while

(1.11) sup
α

inf
β

{
Lα,βu

}
= 0
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is a typical Isaacs’s equation. The corresponding nonlinearities F have the form

F (x, r, p,X) = sup
α

[− trace(Aα(x)X) + 〈bα(x), p〉 + cα(x)r − f α(x)]

and

F (x, r, p,X) = sup
α

inf
β

[ − trace(Aα,β(x)X)

+ 〈bα,β(x), p〉 + cα,β(x)r − f α,β(x)],

each of which is clearly also proper. Notice that in the first case F is convex in
(r, p,X) while in the second case this is not so; indeed, if one allows for “unbounded
envelopes” (i.e., coefficients that are unbounded in the parameters), one can show
that essentially any proper F satisfying minor regularity assumptions can be rep-
resented as a “sup inf” of linear expressions as above.

Indeed, the above process is quite general and does not require linear ingredients.
Suppose Fα,β is proper for each α, β. Then F (x, r, p,X) = supα infβ F

α,β(x, r, p,X)
and F (x, r, p,X) = infα supβ F

α,β(x, r, p,X) are also evidently proper (for the mo-
ment, we set aside considerations of finiteness and continuity).

Example 1.7. Obstacle and gradient constraint problems. A special case of the
last remarks above is met in the consideration of “obstacle problems.” Very general
forms of such problems may be written

(1.12) max{F (x, u,Du,D2u), u− f(x)} = 0

or

(1.13) min{F (x, u,Du,D2u), u− f(x)} = 0

or even

(1.14) max{min{F (x, u,Du,D2u), u− f(x)}, u− g(x)} = 0.

In accordance with remarks made in the previous example, if F is proper then so
are (1.12)–(1.14).

Likewise, “gradient constraints” may be imposed in this way. A typical example
corresponds to max{F (x, u,Du,D2u), |Du| − g(x)} = 0.

Example 1.8. Functions of the eigenvalues. ForX ∈ S(N) we let λ1(X), . . . , λN (X)
be its eigenvalues arranged in increasing order, λi(X) ≤ λi+1(X). If g(x, r, p, s1, . . . , sN )
is defined on R3N+1 and is nondecreasing in r and each si, then F (x, r, p,X) =
g(x, r, p,−λ1(X), . . . ,−λN (X)) is proper. For instance, F (X) = −max{λ1(X), . . . , λN (X)} =
−λN (X), F (X) = −min{λ1(X), . . . , λN (X)} = −λ1(X) and F (X) = −(λ2(X))3

are degenerate elliptic. Another example is

F (x, r, p,X) = −| trace(X)|m−1 trace(X) + |p|q + c(x)r − f(x)

where c ≥ 0 and m, q > 0. The corresponding equation is

−|∆u|m−1∆u+ |Du|q + c(x)u = f(x),

which provides another example of the generality we are dealing with, even if we
have no interpretation of this equation in mind.
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Example 1.9. Sums and increasing functions of proper functions. If Fi is proper
for i = 1, . . . ,M , then so is F1 + · · · + FM . More generally, if g(s1, . . . , sM ) is
nondecreasing in each variable, then g(F1, . . . , FM ) is proper. One may build very
complex examples using the cases discussed above and these remarks.

Example 1.10. Parabolic problems. We just observe that if (x, r, p,X) → F (t, x, r,
p,X) is proper for fixed t ∈ [0, T ], then so is the associated “parabolic” problem

(1.15) ut + F (t, x, u,Du,D2u) = 0

when considered as an equation in the N + 1 independent variables (t, x). We
mention only one example (there are, of course, infinitely many) that has some
geometrical interest since it describes the evolution of a surface (given by a level set
of the initial condition) with a motion along its normal with a speed proportional
to the mean curvature

(1.16) ut − |Du| div

(
Du

|Du|

)
= 0.

Carrying out the differentiations yields

(1.17) ut − ∆u+

N∑

i,j=1

∂2u

∂xi∂xj

∂u

∂xi

∂u

∂xj
|Du|−2 = 0.

This may be written in the form (1.15) with

F (x, p,X) = − trace

((
I −

p⊗ p

|p|2

)
X

)
.

Example 1.11. Monge Ampère equations. The Monge-Ampère equation may be
written as

(1.18) u is convex, det(D2u) = f(x, u,Du)

where f(x, r, p) ≥ 0. We are dealing here with the real Monge-Ampère equation,
but everything that will be said adapts to the complex case and to other curvature
equations. Allowing F to be discontinuous (even more, to become infinite), we may
write (1.18) in our form by putting

F (x, r, p,X) =

{
− det(X) + f(x, r, p) if X ≥ 0,

+∞ otherwise;

F is then degenerate elliptic. This follows from the fact that

g(s1, · · · , sN ) =

{ ∏N
i=1 si if si ≥ 0, i = 1, . . . , N ,

−∞ otherwise,

is nondecreasing in each of its arguments and Example 1.8.
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Example 1.12. Uniformly elliptic functions. This “example” is really a definition.
One says that F (x, r, p,X) is uniformly elliptic if there are constants λ,Λ > 0 for
which

λ trace(P ) ≤ F (x, r, p,X − P ) − F (x, r, p,X) ≤ Λ trace(P ) for P ≥ 0

and all x, r, p,X and then calls the constants λ, Λ ellipticity constants. We note
that L in Example 1.2 is uniformly elliptic with constants λ, Λ exactly when λ ≤
λ1(A(x)) and λN (A(x)) ≤ Λ. One notes that sums of uniformly elliptic functions
are again uniformly elliptic and that the sup inf process over a family of uniformly
elliptic functions with common ellipticity constants produces another such function.

Notes on §1. We will disappoint the reader in the following sections by not ap-
plying the theory developed therein to the many examples given above. The goal of
this section was to exhibit clearly the breadth and importance of the class of proper
equations. We simply do not have enough space here to develop applications of the
theory of these equations beyond that which follows immediately from the general
results presented.

Most of the examples listed have been considered via classical approaches. We
give some references containing classical presentations: D. Gilbarg and N. S. Trudinger
[81] is a basic source concerning linear and quasi-linear uniformly elliptic equations;
O. A. Olĕınik and E. V. Radkevic [139], J. J. Kohn and L. Nirenberg [106], and A. V.
Ivanov [98] treat degenerate elliptic equations; W. H. Fleming and R. Rishel [75], P.
L. Lions [117], and N. V. Krylov [108, 109] are sources for Hamilton-Jacobi-Bellman
equations; S. Benton [36] and P. L. Lions [116] discuss first-order Hamilton-Jacobi
equations. Most of these references present some of the ways these equations arise.

2. The notion of viscosity solutions

It is always assumed that F satisfies (0.1) (i.e., F is proper) and, unless otherwise

said, is continuous. To motivate the notions, we begin by supposing that u is C2

(i.e., twice continuously differentiable) on RN and

F (x, u(x), Du(x), D2u(x)) ≤ 0

holds for all x (that is, u is a classical subsolution of F = 0 or, equivalently, a
classical solution of F ≤ 0 in RN ). Suppose that ϕ is also C2 and x̂ is a local
maximum of u− ϕ. Then calculus implies Du(x̂) = Dϕ(x̂) and D2u(x̂) ≤ D2ϕ(x̂)
and so, by degenerate ellipticity,

(2.1) F (x̂, u(x̂), Dϕ(x̂), D2ϕ(x̂)) ≤ F (x̂, u(x̂), Du(x̂), D2u(x̂)) ≤ 0.

The extremes of this inequality do not depend on the derivatives of u and so we
may consider defining an arbitrary function u to be (some kind of generalized)
subsolution of F = 0 if

(2.2) F (x̂, u(x̂), Dϕ(x̂), D2ϕ(x̂)) ≤ 0

whenever ϕ is C2 and x̂ is a local maximum of u − ϕ. Before making any formal
definitions, let us also note that u(x) ≤ u(x̂) − ϕ(x̂) + ϕ(x) for x near x̂, ϕ ∈ C2

and Taylor approximation imply

(2.3) u(x) ≤ u(x̂) + 〈p, x− x̂〉 + 1
2 〈X(x− x̂), x− x̂〉 + o(|x − x̂|2) as x→ x̂
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where p = Dϕ(x̂) and X = D2ϕ(x̂). Moreover, if (2.3) holds for some (p,X) ∈
RN × S(N) and u is twice differentiable at x̂, then p = Du(x̂) and D2u(x̂) ≤ X .
Thus if u is a classical solution of F ≤ 0 it follows that F (x̂, u(x̂), p,X) ≤ 0 whenever
(2.3) holds; we may also consider basing a definition of nondifferentiable solutions
u of F ≤ 0 on this fact. Roughly speaking, pursuing (2.2) leads to notions based
upon test functions ϕ but does not immediately lead us, as will pursuing (2.3), to
define “(Du,D2u)” for nondifferentiable functions u, which will turn out to be a
good idea. For this reason, we begin by developing the line suggested by (2.3). Next
we introduce a set O ⊂ RN on which F ≤ 0 is to hold and the appropriate notation
to deal with inequalities like (2.3) “on O.” At the moment, O is arbitrary; later we
require it to be locally compact. Taking off from (2.3), if u : O → R, x̂ ∈ O, and

(2.3) holds as O ∋ x → x̂, we say (p,X) ∈ J2,+
O u(x̂) (the second-order “superjet”

of u at x̂). This defines a mapping J2,+
O u from O to the subsets of RN × S(N).

Example 2.1. By way of illustration, if u is defined on R by

u(x) =

{
0 for x ≤ 0,

ax+ b
2x

2 for x ≥ 0,

then J2,+
[−1,0]u(0) = ((−∞, 0) × R) ∪ ({0} × [0,∞)), while

J2,+
R

u(0) =





∅ if a > 0,

{0} × [max{0, b},∞) if a = 0,

((a, 0) × R) ∪ ({0} × [0,∞)) ∪ ({a} × [b,∞)) if a < 0.

Having thought through this example, the reader will see that J2,+
O u(x) depends

on O but realize it is the same for all sets O for which x is an interior point;
we let J2,+u(x) denote this common value. If we repeat the above discussion after
switching the inequality sign in (2.3), we arrive at the definitions of the second-order

“subjets” J2,−
O u, J2,−u; equivalently, J2,−

O u(x) = −J2,+
O (−u)(x), etc.

We are ready to define the notions of viscosity subsolutions, supersolutions, and
solutions. It will be useful to have the notations

USC(O) = { upper semicontinuous functions u : O → R},

LSC(O) = { lower semicontinuous functions u : O → R}.

Definition 2.2. Let F satisfy (0.1) and O ⊂ RN . A viscosity subsolution of F = 0
(equivalently, a viscosity solution of F ≤ 0) on O is a function u ∈ USC(O) such
that

(2.4) F (x, u(x), p,X) ≤ 0 for all x ∈ O and (p,X) ∈ J2,+
O u(x).

Similarly, a viscosity supersolution of F = 0 on O is a function u ∈ LSC(O) such
that

(2.5) F (x, u(x), p,X) ≥ 0 for all x ∈ O and (p,X) ∈ J2,−
O u(x).

Finally, u is a viscosity solution of F = 0 in O if it is both a viscosity subsolution
and a viscosity supersolution of F = 0 in O.
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Remarks 2.3. Since these “viscosity notions” are the primary ones for the current
discussion, we immediately agree (at least, we hope you agree) to drop the term
“viscosity” and hereafter simply refer to subsolutions, supersolutions, and solutions.
This is a happy idea, as the term “viscosity,” which lacks elegance, is an artifact of
the origin of this theory in the study of first-order equations and the name was then
motivated by the consistency of the notion with the method of “vanishing viscosity,”
which is irrelevant for many second-order equations. It follows from the discussion
preceding the definition that, for example, if u is a solution of F ≤ 0 in O, ϕ is C2 in
a neighborhood of O, and u−ϕ has a local maximum (relative to O) at x̂ ∈ O, then
(2.2) holds. Analogous remarks hold for supersolutions. These remarks motivate
the requirement that a subsolution be upper semicontinuous, etc., in the sense that
producing maxima of upper semicontinous functions is straightforward. Solutions,
being both upper semicontinuous and lower semicontinuous, are continuous. One
might ask if the validity of (2.2) for all ϕ ∈ C2 (with the maxima relative to O) for
an upper semicontinuous function u is equivalent to u being a subsolution. This is
so. In fact, if x̂ ∈ O then

J2,+
O u(x̂) = {(Dϕ(x̂), D2ϕ(x̂)) : ϕ is C2 and u− ϕ has a local maximum at x̂};

we leave the proof as an interesting exercise.
We next record the definitions of the closures of the set-valued mappings needed

in the next section.
With the above notation, for x ∈ O, we set

(2.6)

J
2,+

O u(x) = {(p,X) ∈ R
N × S(N) : ∃(xn, pn, Xn) ∈ O × R

N × S(N) ∋

(pn, Xn) ∈ J2,+
O u(xn) and (xn, u(xn), pn, Xn)→(x, u(x), p,X)}

and
(2.7)

J
2,−

O u(x) = {(p,X) ∈ R
N × S(N) : ∃(xn, pn, Xn) ∈ O × R

N × S(N) ∋

(pn, Xn) ∈ J2,−
O u(xn) and (xn, u(xn), pn, Xn)→(x, u(x), p,X)};

we are abusing standard practice as regards defining closures of set-valued mappings
a bit in that we put the extra condition u(xn) → u(x) in the definitions while the

graphs of the multifunctions J2,+
O u, J2,−

O u do not themselves record the values of
u. The reader may note the use of expressions like “xn → x” as an abbreviation
for “the sequence xn satisfies limn→∞ xn = x,” etc. If x ∈ interior(O), we define

J
2,+
u(x), J

2,−
u(x) in the obvious way.

Remark 2.4. If u is a solution of F ≤ 0 on O, then F (x, u(x), p,X) ≤ 0 for

x ∈ O and (p,X) ∈ J2,+
O u(x). This remains true, for reasons of continuity, if

(p,X) ∈ J
2,+

O u(x) and F is continuous (or even lower semicontinuous). Similar
remarks apply to supersolutions and solutions.

Advice. We advise the reader to either skip the following material or to scan it
lightly at the present time and proceed directly to the next section. The comments
collected below can be referred to as needed.

Remark 2.5. While the definitions above may seem reasonable, they contain sub-
tleties. In particular, they do not define “operators” on domains in a familiar way.
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For example, let N = 1 and consider the equation (u′)2 − 1 = 0. The functions |x|
and −|x| both satisfy this equation classically on R\{0}. However, the semijets of
the function u(x) = −|x| are given by

J2,+u(x) =






{(−1, X) : X ≥ 0} if x > 0,

((−1, 1)× R) ∪ ({−1, 1} × [0,∞)) if x = 0,

{(1, X) : X ≥ 0} if x < 0

and

J2,−u(x) =






{(−1, X) : X ≤ 0} if x > 0,

∅ if x = 0,

{(1, X) : X ≤ 0} if x < 0,

so −|x| is a solution of the equation, while if v(x) = |x| then (0, 0) ∈ J2,−v(0) and
v is not a solution. Similarly, one sees that v does solve −(v′)2 + 1 = 0. Hence a
solution of F = 0 need not be a solution of −F = 0 (of course, if −F is not proper,
as is typical when F depends on u,X , this is meaningless). It is also unknown if
the information H,u, f, g ∈ C(RN ) and u is a solution of H(Du)− f(x) = 0 as well
as H(Du)−g(x) = 0 in RN implies f = g (although it is known that f = g if either
H is uniformly continuous or N = 1).

We do not mention these things to disturb the reader; indeed, they will not
explicitly appear in the theory. Our purpose is to emphasize that the theory to
follow is not a variant of more classical developments.

Remark 2.6. If we consider one of the simplest examples of a discontinuous upper
semicontinuous function, namely, the function given by u(x) = 0 for x 6= 0, u(0) =
1, we have J2,+u(0) = R × R. The relation F (0, 1, p,X) ≤ 0 for (p,X) ∈ J2,+u(0)
is then very restrictive. In fact, a primary role played by allowing semicontinuous
subsolutions and supersolutons in the basic theory is only as a technical device to
produce continuous solutions via Perron’s method as described in §4. If solutions
are produced by other methods (e.g., via numerical or other approximations) there
may be no need to invoke results on semicontinuous functions. However, one of
the simplest ways to show uniform convergence of approximation schemes, involves
comparison of semicontinuous subsolutions and supersolutions. Thus one often
deals with semicontinuity mainly as a device in proofs—as such, it is a powerful
labor saving device.

Remarks 2.7. We point out some facts concerning second-order semijets.
(i) It is clear that J2,+

O u(x) is a convex subset of RN ×S(N); Example 2.1 shows
that it is not necessarily closed. However, a little thought shows that if p ∈ RN ,
then {X : (p,X) ∈ J2,+

O u(x)} is closed.

(ii) If ϕ ∈ C2 in some neighborhood of O, then J2,+
O (u−ϕ)(x) = {(p−Dϕ(x), X−

D2ϕ(x)) : (p,X) ∈ J2,+
O u(x)}. As a consequence, the same statement holds if J2,+

O

is replaced everywhere by J2,−
O , J

2,+

O , or J
2,−

O . Indeed, if (q, Y ) ∈ J2,+
O (u − ϕ)(x̂),

then
(2.8)
u(x)−ϕ(x) ≤ u(x̂)−ϕ(x̂)+ 〈q, x− x̂〉+ 1

2 〈Y (x− x̂), x− x̂〉+ o(|x− x̂|2) as x→ x̂

and

ϕ(x) − ϕ(x̂) = 〈Dϕ(x̂), (x − x̂)〉 + 1
2 〈D

2ϕ(x̂)(x− x̂), x− x̂〉 + o(|x − x̂|2)
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imply that (q + Dϕ(x̂), Y + D2ϕ(x̂)) ∈ J2,+
O u(x̂) and so J2,+

O (u − ϕ)(x̂) ⊂ {(p −

Dϕ(x̂), X −D2ϕ(x)) : (p,X) ∈ J2,+
O u(x)}. The other inclusion follows from this as

well, since J2,+
O u(x̂) = J2,+

O ((u − ϕ) + ϕ)(x̂). It is also clear that one always has

J2,+
O (u+ v)(x) ⊃ J2,+

O u(x) + J2,+
O v(x).

(iii) We consider J2,+
O ϕ(x̂) when ϕ ∈ C2(RN ) and will end up with a general

statement corresponding to Example 2.1. In view of (ii), we may as well assume
that ϕ ≡ 0, and we will write “Zero” for the zero function. We know that if
x̂ ∈ interior(O), then J2,+

O Zero(x̂) = J2,+Zero(x̂) = {(0, X)} : X ≥ 0}. In general,

(p,X) ∈ J2,+
O Zero(x̂) if

(2.9) 0 ≤ 〈p, x− x̂〉 + 1
2 〈X(x− x̂), x− x̂〉 + o(|x− x̂|2) as O ∋ x→ x̂.

Assuming that xn ∈ O, 0 < |xn − x̂| → 0, and (xn − x̂)/|xn − x̂| → q, we may put
x = xn in (2.9), divide the result by |xn − x̂| and pass to the limit to conclude that

(2.10) 0 ≤ 〈p, q〉 for q ∈ UTO(x̂)

where UTO(x̂) is the set of “generalized unit tangents” to O at x̂; it is given by

(2.11) UTO(x̂) =

{
q : ∃xn ∈ O\{x̂}, xn → x̂, and

xn − x̂

|xn − x̂|
→ q

}
.

If O is a smooth N -submanifold of RN with boundary and x̂ ∈ ∂O, then the
generalized tangent cone

TO(x̂) = convex hull(UTO(x̂))

is a halfspace and O has an exterior normal ~n at x̂. In this event, (2.10) says that
p = −λ~n for some λ ≥ 0. Moreover, if p = 0, (2.9) then implies that 0 ≤ 〈Xq, q〉
for q ∈ UTO(x̂), and we conclude that

(2.12) (0, X) ∈ J2,+
O Zero(x̂) if and only if 0 ≤ X

provided TO(x̂) is a halfspace.
Life is more complex if p = −λ~n and λ > 0. In this case, (2.9) reads

(2.13) λ〈~n, x− x̂〉 − 1
2 〈X(x− x̂), x− x̂〉 ≤ o(|x − x̂|2) as O ∋ x→ x̂.

We study (2.13) when x̂ = 0 and we can represent O near 0 in the form

(2.14) {(x̃, xN ) : xN ≤ g(x̃)}

where x̃ = (x1, . . . , xN−1), g(x̃) = 1
2 〈Zx̃, x̃〉+ o(|x̃|2)}, and Z ∈ S(N − 1). That is,

we assume that the boundary of O is twice differentiable at 0 and rotate so that the
normal is ~n = eN = (0, . . . , 0, 1). With these normalizations, we put (x̃, g(x̃)) into

(2.13) to find λ〈Zx̃, x̃〉 − 〈X(x̃, 0), (x̃, 0)〉 ≤ o(|x̃|2) or λZ̃ ≤ PN−1XPN−1 where

Z̃(x̃, xn) = (Zx̃, 0) and PN−1 is the projection on the first N − 1 coordinates. It is
not hard to see that this is also sufficient.
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When unraveled, the above considerations lead to the following conclusion. Let
O be an N -submanifold of RN with boundary, x̂ ∈ ∂O, ∂O be twice differentiable
at x̂, ~n be the outward normal, T∂O(x̂) be the tangent plane to ∂O at x̂, and
P ∈ S(N) be orthogonal projection on T∂O(x̂) (which we regard as a subspace
of RN ). Finally, let S be the symmetric operator in T∂O(x̂) corresponding to the
second fundamental form of ∂O at x̂ (oriented with the exterior normal to O)
extended to R

N by S~n = 0. Then
(2.15){

(p,X) ∈ J2,+
O ϕ(x̂) if and only if either p = Dϕ(x̂) and D2ϕ(x̂) ≤ X, or

p = Dϕ(x̂) − λ~n, λ > 0 and PD2ϕ(x̂)P ≤ PXP − λS.

Noting that P~n⊗~nP = 0, we see that if (p,X) ∈ J2,+
O u(x̂), S ≤ 0, and λ > 0, then

(p − λ~n,X + µ~n ⊗ ~n) ∈ J2,+
O u(x̂) for µ ∈ R. For later use, we denote by Xλ the

particular choice of X such that (Dϕ(x̂) − λ~n,X) ∈ J2,+
O ϕ(x̂) given by

(2.16) Xλ(ξ + β~n) = D2ϕ(x̂)(ξ + β~n) + λSξ for ξ ∈ T∂O(x̂), β ∈ R.

Before leaving this topic, we note that the set of exterior “normals”

(2.17) N(x̂) = (~n ∈ R
N : 〈~n, q〉 ≤ 0 for q ∈ TO(x̂))

can also be described by

(2.18) N(x̂) =
(
~n ∈ R

N : 〈~n, x− x̂〉 ≤ o(|x − x̂|) as O ∋ x→ x̂
)

no matter how regular ∂O is at x̂ and that we showed above that

(2.19) J2,+
O ϕ(x̂) ⊂ (Dϕ(x̂) −N(x̂)) × S(N).

Notes on §2. Viscosity solutions were introduced by M. G. Crandall and P. L.
Lions [51] (following an announcement in [50]); analogies with S. N. Kruzkov’s
theory of scalar conservation laws [107] provided guidance for the notion and its
presentation. The presentation of [51] emphasized the first-order case, owing to
the fact that uniqueness results were only obtainable for this case at the time. It
was also pointed out in [51] that there were several equivalent ways to formulate
the notion of viscosity solutions; one of these was intimately connected with earlier
work by L. C. Evans [64, 65] concerning “weak passages to the limit” in equations
satisfying the maximum principle. In these developments, directions were indicated
by aspects of nonlinear functional analysis and nonlinear semigroup theory.

It became apparent that working with these alternative formulations was superior
to the approach taken in [50], and perhaps M. G. Crandall, L. C. Evans, and P.
L. Lions [47] is the first readable account of the early theory. (We note that the
definition most emphasized in [47] is not the one put foremost here.)

The necessity of defining the semijets on closed sets became apparent with the
investigation of boundary value problems. We return to this issue in §7, but a couple
of significant papers here are P. L. Lions [121] and H. M. Soner [149] (see also M.
G. Crandall and R. Newcomb [58]). The closure of the semijets was introduced in
H. Ishii and P. L. Lions [96] and was fully exploited in M. G. Crandall [50] and M.
G. Crandall and H. Ishii [48]. Analogous operations have long been employed by
“nonsmooth analysts.”
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The fact that the theory required only appropriate semicontinuity was realized
earlier on, but the first striking applications of the fact (to existence, stability,
optimal control, . . . ) were given in H. Ishii [86, 90], G. Barles and B. Perthame [25,
26].

Let us finally mention that some structural properties of viscosity solutions were
and will be ommitted from our presentation and, in addition to the above references,
some can be found in P. L. Lions [124], R. Jensen and P. E. Souganidis [105], and
H. Frankowska [78].

3. The maximum principle for semicontinuous functions

and comparison for the Dirichlet problem

Let Ω be a bounded open subset of RN , Ω be its closure, and ∂Ω be its boundary.
Suppose u ∈ USC(Ω) is a solution of F ≤ 0 in Ω, v ∈ LSC(Ω) is a solution of F ≥ 0,
and u ≤ v on ∂Ω. We seek to show that u ≤ v on Ω.

In the event u and v are classical sub and supersolutions, we could employ the
classical “maximum principle.” Let us recall some elementary facts in this regard.
Let w be defined in a neighborhood of x̂ ∈ R

N . If there exists (p,X) ∈ R
N ×S(N)

such that

(3.1) w(x) = w(x̂) + 〈p, x− x̂〉 + 1
2 〈X(x− x̂), x− x̂〉 + o(|x − x̂|2) as x→ x̂,

we say that w is twice differentiable at x̂ and Dw(x̂) = p, D2w(x̂) = X (it being
obvious that p and X are unique if they exist). It is clear that w is twice differ-
entiable at x̂ if and only if J2w(x̂) ≡ J2,+w(x̂) ∩ J2,−w(x̂) is nonempty (in which
case J2w(x̂) = {(Dw(x̂), D2w(x̂))}). Classical implementations of the maximum
principle are based on the fact, already used above, that if w is twice differentiable
at a local maximum x̂, then Dw(x̂) = 0 and D2w(x̂) ≤ 0. Thus, if u and v are
twice differentiable everywhere and w = u − v has a local maximum x̂ ∈ Ω, we
would have Du(x̂) = Dv(x̂) and D2u(x̂) ≤ D2v(x̂) and then, in view of (0.1),

F (x̂, u(x̂), Du(x̂), D2u(x̂)) ≤ 0 ≤ F (x̂, v(x̂), Dv(x̂), D2v(x̂))

≤ F (x̂, v(x̂), Du(x̂), D2u(x̂)).

In the event that F (x, r, p,X) is strictly nondecreasing in r (a simple but illustrative
case), it follows that u− v is nonpositive at an interior maximum and so u ≤ v in
Ω since u ≤ v holds on ∂Ω.

We seek to extend this argument to the case u ∈ USC(Ω), v ∈ LSC(Ω). We
are unable to simply plug (Du(x̂), D2u(x̂)) and (Dv(x̂), D2v(x̂)) into F since these
expressions must be replaced by the set-valued functions J2,+u and J2,−v (and
their values may well be empty at many points, including maximum points of
u(x)−v(x)). To use J2,+u and J2,−v, we employ a device that doubles the number
of variables and then penalizes this doubling. More precisely, we maximize the
function u(x) − v(y) − (α/2)|x − y|2 over Ω × Ω; here α > 0 is a parameter. As
α → ∞, we closely approximate maximizing u(x) − v(x) over Ω. More precisely,
we have

Lemma 3.1. Let O be a subset of RN , u ∈ USC(O), v ∈ LSC(O) and

(3.2) Mα = sup
O×O

(u(x) − v(y) − α
2 |x− y|2)
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for α > 0. Let Mα <∞ for large α and (xα, yα) be such that

(3.3) lim
α→∞

(Mα − (u(xα) − v(yα) − α
2 |xα − yα|

2)) = 0.

Then the following holds:

(3.4)





(i) limα→∞ α|xα − yα|
2 = 0 and

(ii) limα→∞Mα = u(x̂) − v(x̂) = supO(u(x) − v(x))

whenever x̂ ∈ O is a limit point of xα as α→ ∞.

Deferring the elementary proof of the lemma and returning to our sub and su-
persolutions u ∈ USC(Ω), v ∈ LSC(Ω) satisfying u ≤ v on ∂Ω, we note that
Mα = supΩ×Ω(u(x) − v(y) − (α/2)|x − y|2) is finite since u(x) − v(y) is upper

semicontinuous and Ω is compact. Since we seek to prove u ≤ v, we assume to the
contrary that u(z) > v(z) for some z ∈ Ω; it follows that

(3.5) Mα ≥ u(z) − v(z) = δ > 0 for α > 0.

Choosing (xα, yα) so that Mα = u(xα)− v(yα)− (α/2)|xα − yα|2 (the maximum is
achieved in view of upper semicontinuity and compactness), it follows from (3.4)(i),
(ii) and u ≤ v on ∂Ω that (xα, yα) ∈ Ω×Ω for α large. The next step is to use the
equations to estimate Mα and contradict (3.5) for large α. This requires producing
suitable values of J2,+u and J2,−v, and we turn to this question.

To know what to look for, let us proceed more generally and assume that u, v are
defined in neighborhoods of x̂, ŷ ∈ RN and twice differentiable at x̂, ŷ respectively.
Assume, moreover, that ϕ is C2 near (x̂, ŷ) in RN×RN and (x̂, ŷ) is a local maximum
of u(x)−v(y)−ϕ(x, y). Applying the classical maximum principle to this situation
(in the 2N variables (x, y)), we learn thatDu(x̂) = Dxϕ(x̂, ŷ), Dv(ŷ) = −Dyϕ(x̂, ŷ),
and

(3.6)

(
X 0
0 −Y

)
≤ D2ϕ(x̂, ŷ)

where X = D2u(x̂), Y = D2v(ŷ). Note that with the choice ϕ(x, y) = (α/2)|x−y|2

the above reads

(3.7)

(
X 0
0 −Y

)
≤ α

(
I −I

−I I

)

where I will stand for the identity matrix in any dimension and, since the right-

hand side annihilates vectors of the form (
ξ

ξ
) (also written t(ξ, ξ) where tZ denotes

the transpose of a matrix Z), (3.7) implies X ≤ Y , making further contact with
the maximum principle.

It is a remarkable fact that perturbations of the above results may be obtained
in the class of semicontinuous functions. The main result we use in this direction
is the following theorem, which is formulated in a useful but distracting generality.
(See (2.6) and (2.7) regarding notation below.)
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Theorem 3.2. Let Oi be a locally compact subset of RNi for i = 1, . . . , k,

O = O1 × · · · × Ok,

ui ∈ USC(Oi), and ϕ be twice continuously differentiable in a neighborhood of O.

Set

w(x) = u1(x1) + · · · + uk(xk) for x = (x1, · · · , xk) ∈ O,

and suppose x̂ = (x̂1, . . . , x̂k) ∈ O is a local maximum of w−ϕ relative to O. Then

for each ε > 0 there exists Xi ∈ S(Ni) such that

(Dxi
ϕ(x̂), Xi) ∈ J

2,+

Oi
ui(x̂i) for i = 1, . . . , k,

and the block diagonal matrix with entries Xi satisfies

(3.8) −

(
1

ε
+ ‖A‖

)
I ≤



X1 . . . 0
...

. . .
...

0 . . . Xk


 ≤ A+ εA2

where A = D2ϕ(x̂) ∈ S(N), N = N1 + · · · +Nk.

The norm of the symmetric matrix A used in (3.8) is

‖A‖ = sup{|λ| : λ is an eigenvalue of A} = sup{|〈Aξ, ξ〉| : |ξ| ≤ 1}.

We caution the reader that this result is an efficient summarization of the analytical
heart of the theory suitable for the presentation we have chosen and its proof, which
is outlined in the appendix, is deeper and more difficult than its applications that
we give in the main text. See also the notes to this section.

In order to apply Theorem 3.2 in the above situation, we put k = 2, O1 = O2 =

Ω, u1 = u, u2 = −v, ϕ(x, y) = (α/2)|x − y|2, and recall that J
2,−

Ω v = −J
2,+

Ω (−v).
In this case

Dxϕ(x̂, ŷ) = −Dyϕ(x̂, ŷ) = α(x̂− ŷ), A = α

(
I −I

−I I

)
,

A2 = 2αA, ‖A‖ = 2α,

and we conclude that for every ε > 0 there exists X, Y ∈ S(N) such that

(3.9) (α(x̂ − ŷ), X) ∈ J
2,+

Ω u(x̂), (α(x̂ − ŷ), Y ) ∈ J
2,−

Ω v(ŷ)

and

−

(
1

ε
+ 2α

)(
I 0
0 I

)
≤

(
X 0
0 −Y

)
≤ α(1 + 2εα)

(
I −I

−I I

)
.

Choosing ε = 1/α yields the elegant relations

(3.10) −3α

(
I 0
0 I

)
≤

(
X 0
0 −Y

)
≤ 3α

(
I −I

−I I

)
;
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in all, we conclude that at a maximum (x̂, ŷ) of u(x)−v(y)−(α/2)|x−y|2 there exists
X,−Y ∈ S(N) such that (3.9) and (3.10) hold. Observe that, in comparison with
(3.7), we have worsened the upper bound by a factor of 3 (but can still conclude from
(3.10) that X ≤ Y ) and obtained a lower bound. We will not actually use the lower
bound in what follows, but its presence corresponds to an essential compactness
issue in the proof of the theorem.

Let us finish this chapter of the story. Writing (x̂, ŷ) in place of (xα, yα) for
simplicity, we only need to assume that

(3.11) F (x̂, u(x̂), α(x̂ − ŷ), X) ≤ 0 ≤ F (ŷ, v(ŷ), α(x̂ − ŷ), Y )

is inconsistent with the other information we have in hand, which includes

(3.12)

{
0 < δ ≤Mα = u(x̂) − v(ŷ) − (α/2)|x̂− ŷ|2 ≤ u(x̂) − v(ŷ) and

α|x̂ − ŷ|2 → 0 as α→ ∞

(the second assertion follows from (3.4)(i)) and (3.10). For example, assume that
there exists γ > 0 such that

(3.13) γ(r− s) ≤ F (x,r,p,X)−F (x,s,p,X) for r ≥ s, (x,p,X) ∈ Ω×R
N ×S(N)

and there is a function ω : [0,∞] → [0,∞] that satisfies ω(0+) = 0 such that

(3.14)

{
F (y, r, α(x− y), Y ) − F (x, r, α(x − y), X) ≤ ω(α|x− y|2 + |x− y|)

whenever x, y ∈ Ω, r ∈ R, X, Y ∈ S(N), and (3.10) holds.

Proceding, we deduce from (3.12), (3.13), (3.11), and (3.14) that

(3.15)

γδ ≤ γ(u(x̂) − v(ŷ)) ≤ F (x̂, u(x̂), α(x̂ − ŷ), X) − F (x̂, v(ŷ), α(x̂ − ŷ), X)

= (F (x̂, u(x̂), α(x̂ − ŷ), X) − F (ŷ, v(ŷ), α(x̂ − ŷ), Y ))

+ (F (ŷ, v(ŷ), α(x̂ − ŷ), Y ) − F (x̂, v(ŷ), α(x̂− ŷ), X))

≤ ω(α|x̂− ŷ|2 + |x̂− ŷ|);

here we used (3.11) to estimate the first term on the right by 0 and (3.14) on the
second term. Since ω(α|x̂ − ŷ|2 + |x̂ − ŷ|) → 0 as α → ∞ by (3.12), we have a
contradiction. We have proved

Theorem 3.3. Let Ω be a bounded open subset of RN , F ∈ C(Ω×R×RN ×S(N))
be proper and satisfy (3.13), (3.14). Let u ∈ USC(Ω) (respectively, v ∈ LSC(Ω)) be

a subsolution (respectively, supersolution) of F = 0 in Ω and u ≤ v on ∂Ω. Then

u ≤ v in Ω.

Remark 3.4. We motivated the structure condition (3.14) by the natural way it
arose in the course of analysis and (3.14) was used in the proof and not degenerate
ellipticity. However, (3.14) implies degenerate ellipticity. To see this, suppose that
(3.14) holds, X,Y ∈ S(N) and X ≤ Y . Observe that then for ξ, η ∈ R

N , and ε > 0

〈Xξ, ξ〉 − 〈Y η, η〉 ≤ 〈Y ξ, ξ〉 − 〈Y η, η〉 = 2〈Y η, ξ − η〉 + 〈Y (ξ − η), ξ − η〉

≤ ε|η|2 +

(
1 +

‖Y ‖

ε

)
‖Y ‖|ξ − η|2.
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The last inequality may be written

(
X 0
0 −(Y + εI)

)
≤

(
1 +

‖Y ‖

ε

)
‖Y ‖

(
I −I

−I I

)
.

Thus if α > (1/3)max{‖X‖, ‖Y ‖, (1 + ‖Y ‖/ε)‖Y ‖} and ε is sufficiently small, the
pair X,Y + εI satisfy (3.10). Next we fix x, r, and p, and put y = x− p/α in (3.14)
so that by (3.14)

F
(
x−

p

α
, r, p, Y + εI

)
− F (x, r, p,X) ≤ ω

(
1

α
(|p|2 + |p|)

)

and then we let α→ ∞ and ε ↓ 0 and conclude that F is degenerate elliptic.

Remark 3.5. The proof of Theorem 3.3 adapts to provide modulus of continuity
estimates on solutions of F = 0.

Example 3.6. We turn to some examples in which (3.14) is satisfied. First
notice that (3.14) evidently holds (with ω the modulus of continuity for f) for
F (x, r, p,X) = G(r, p,X)− f(x) if G is degenerate elliptic and f is continuous; this
is because (3.10) implies X ≤ Y .

Secondly, the linear first order expression 〈b(x), p〉 satisfies (3.14) if

α〈b(y) − b(x), x − y〉 ≤ ω(α|x− y|2 + |x− y|)

for some ω and this holds with ω(r) = cr if there is a constant c > 0 such that
〈b(x)− b(y), x− y〉 ≥ −c|x− y|2, i.e., the vector field b+ cI is “monotone.” In fact,
it is not hard to see that this is a necessary condition as well.

Next, the linear expression

(3.16) G(x,X) = − trace(tΣ(x)Σ(x)X),

where Σ maps Ω into the N ×N real matrices, is degenerate elliptic (it is a special
case of Example 1.2) with A(x) = tΣ(x)Σ(x)). We seek to estimate G(y, Y ) −
G(x,X) when (3.10) holds. Multiplying the rightmost inequality in (3.10) by the
nonnegative symmetric matrix

(
tΣ(x)Σ(x) tΣ(y)Σ(x))
tΣ(x)Σ(y) tΣ(y)Σ(y)

)

and taking traces preserves the inequality and yields

(3.17)
G(y, Y ) −G(x,X) = trace(tΣ(x)Σ(x)X − tΣ(y)Σ(y)Y )

≤ 3α trace((tΣ(x) − tΣ(y))(Σ(x) − Σ(y)),

so if Σ is Lipschitz continuous with constant L then

G(y, Y ) −G(x,X) ≤ 3L2α|x− y|2

and we may choose ω(r) = 3L2r. We note that if Γ(x) : Ω → S(N) is Lipschitz
continuous and Γ(x) > 0 in Ω, then

− trace(Γ(x)X) = − trace(Γ(x)1/2Γ(x)1/2X)
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is an example of the sort just discussed since Γ(x)1/2 is also Lipschitz continu-
ous. Finally, it is known that it Γ(x) ≥ 0 and Γ ∈ W 2,∞, then Γ1/2 is Lipschitz
continuous.

Now we note that the processes of forming sums or sups or sup infs, etc., above
produce examples obeying (3.14) if the ingredients obey (3.14) with a common ω.

Finally, we may produce examples satisfying (3.13) and (3.14) by putting

F (x, r, p,X) = γr +G(x, r, p,X)

whenever G is degenerate elliptic and satisfies (3.14).

We deferred discussion of the elementary Lemma 3.1 since it is better presented
in a generality not required above. Indeed, Lemma 3.1 may be obtained from the
following proposition via the correspondences 2N → M, O × O → O, (x, y) →
x, u(x) − v(y) → Φ(x), (1/2)|x− y|2 → Ψ(x).

Proposition 3.7. Let O be a subset of RM , Φ ∈ USC(O), Ψ ∈ LSC(O), Ψ ≥ 0,
and

(3.18) Mα = sup
O

(Φ(x) − αΨ(x))

for α > 0. Let −∞ < limα→∞Mα <∞ and xα ∈ O be chosen so that

(3.19) lim
α→∞

(Mα − (Φ(xα) − αΨ(xα)) = 0.

Then the following hold:

(3.20)






(i) limα→∞ αΨ(xα) = 0,

(ii) Ψ(x̂) = 0 and limα→∞Mα = Φ(x̂) = sup{Ψ(x)=0} Φ(x)

whenever x̂ ∈ O is a limit point of xα as α→ ∞.

Proof. Put
δα = Mα − (Φ(xα) − αΨ(xα))

so that δα → 0 as α → ∞. Since Ψ ≥ 0, Mα decreases as α increases and
limα→∞Mα exists; it is finite by assumption. Moreover,

Mα/2 ≥ Φ(xα) −
α

2
Ψ(xα) ≥ Φ(xα) − αΨ(xα) +

α

2
Ψ(xα) ≥Mα − δα +

α

2
Ψ(xα),

so 2(Mα/2 − Mα + δα) ≥ αΨ(xα), which shows that αΨ(xα) → 0 as α → ∞.
Suppose now that αn → ∞ and xαn

→ x̂ ∈ O. Then Ψ(xαn
) → 0 and by the lower

semicontinuity Ψ(x̂) = 0. Since

Φ(xαn
) − αnΨ(xαn

) ≥Mαn
− δαn

≥ sup
{Ψ=0}

Φ(x) − δαn

and Φ is upper semicontinuous, (3.20) holds.

Remark 3.8. We record, for later use, some observations concerning maximum
points (x̂, ŷ) of u(x) − v(y) − ϕ(x − y) over O × O for other choices of ϕ besides
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(α/2)|x|2 and the implications of Theorem 3.2. We are assuming that u is upper
semicontinuous, v is lower semicontinuous, and ϕ ∈ C2. In this application, the
matrix A of Theorem 3.2 has the form

(3.21) A =

(
Z −Z

−Z Z

)
, where Z = (D2ϕ)(x̂ − ŷ),

so

(3.22) A2 =

(
2Z2 −2Z2

−2Z2 2Z2

)

and ‖A‖ = 2‖Z‖.
Choosing ε = 1

‖A‖ in (3.8), we conclude that there are X, Y ∈ S(N) such that

(3.23) (Dϕ(x̂ − ŷ), X) ∈ J2,+
O u(x̂), (Dϕ(x̂ − ŷ), Y ) ∈ J2,−

Ω v(ŷ),

and

(3.24) −2‖A‖

(
I 0
0 I

)
≤

(
X 0
0 −Y

)
≤

(
Z + 1

‖A‖Z
2 −(Z + 1

‖A‖Z
2)

−(Z + 1
‖A‖Z

2) Z + 1
‖A‖Z

2

)
;

in particular,

(3.25) ‖X‖, ‖Y ‖ ≤ 2‖A‖ and X ≤ Y.

Notes on §3. This section is self-contained except for the proof of Theorem 3.2,
which is due to M. G. Crandall and H. Ishii [48]. This result distills and sharpens
the essence of a line of development that runs through several of the references
listed below; the proof is explained in the appendix for the reader’s convenience.
We want to emphasize at the outset that our presentation of the proof of the
comparison theorem, based as it is on Theorem 3.2, is but one among several
possibilities. Moreover, other approaches may be useful in other situations. For
example, one may use elements of the proof of Theorem 3.2 directly and look at
corresponding manipulations on solutions—this approach seems to be the leading
presentation for the infinite-dimensional extensions of the theory and allows for
adaptations on the test functions and the notion itself and avoids the “semijets”
or generalized derivatives. Another presentation selects another building block,
namely, regularization by supconvolutions (which occur in the proof of Theorem
3.2) and its effect on viscosity solutions; this procedure is especially helpful in some
particular problems (integrodifferential equations, regularity issues) and stresses
the regularization procedure. This procedure has some analogues with the use of
mollification in the study of linear partial differential equations. With apologies for
confusing the reader, we are saying that a full grasp of all the elements of the proof
of Theorem 3.2 and exposure to other presentations (e.g., R. Jensen [102] and H.
Ishii and P. L. Lions [96]) may prove valuable.

The first uniqueness proofs for viscosity solutions were given for first-order equa-
tions in M. G. Crandall and P. L. Lions [51] and then M. G. Crandall, L. C. Evans,
and P. L. Lions [47]. The second-order case remained open for quite a while during
which the only evidence that a general theory could be developed was in results for
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Hamilton-Jacobi-Bellman equations obtained by P. L. Lions [119, 118]. The proof
in these works involved ad hoc stochastic control verification arguments.

A breakthrough was achieved in the second-order theory by R. Jensen [101]
with the introduction of several key arguments; some of these were simplified in R.
Jensen, P. L. Lions, and P. E. Souganidis [104], P. L. Lions and P. E. Souganidis
[132], and R. Jensen [102]. In particular, the use of the “supconvolution” regu-
larization (see the appendix), which is a standard tool in convex and nonsmooth
analysis, was somewhat “remise au goût dujour” by J. M. Lasry and P. L. Lions
[110].

Progress in understanding these proofs so as to be able to handle more examples
was made by H. Ishii [89] who introduced matrix inequalities of the general form
(3.7). This work contains an example (following [89, Theorem 3.3]) showing the
optimality of condition (3.14) in the sense that we cannot replace the right-hand side
of (3.14) by, for example, ω(α|x−y|θ+|x−y|) with θ < 2 (but see §5.A). Estimating
the left-hand side of (3.14) differently, for example in the form αg(|x−y|)+|x−y|, it
is possible to prove uniqueness in cases in which g(r)/r2 is unbounded near r = 0 by
refining the arguments of [49]. A more complete understanding together with the
sharpest structure conditions (up to the present) were achieved in [96], which also
contains many examples. We mention that the structure condition (3.14) exhibited
in this section pays no attention to whether the equation is of first order or possess
stronger ellipticity properties. In the case of uniformly ellipitic F , much more can
be done [96]. See also Jensen [102] as regards structure conditions.

A useful sharpening and improved organization of the analytical essence of the
theory were contributed by [46]. The presentation here was based on Theorem 3.2;
as remarked above, it follows from [48] and the generality and proofs presented
there represent the current state of the art (see the appendix).

4. Perron’s method and existence

Let Ω be an arbitrary open subset of RN . By a solution (respectively, subsolution,
etc.) of the Dirichlet problem

(DP)

{
F (x, u,Du,D2u) = 0 in Ω,

u = 0 on ∂Ω

we mean a function u ∈ C(Ω) (respectively, u ∈ USC(Ω), etc.) that is a (viscosity)
solution (respectively, subsolution, etc.) of F = 0 in Ω and satisfies u(x) = 0
(respectively, u(x) ≤ 0, etc.) for x ∈ ∂Ω. (We note that this formulation imposes
the boundary condition in a strict sense that will be relaxed in §7.)

Recall that we always assume that F is proper and, unless otherwise said , con-
tinuous . To discuss Perron’s method, we will use the following notations: if
u : O → [−∞,∞] where O ⊂ RN , then

(4.1)

{
u∗(x) = limr↓0 sup{u(y) : y ∈ O and |y − x| ≤ r},

u∗(x) = limr↓0 inf{u(y) : y ∈ O and |y − x| ≤ r}.

One calls u∗ the upper semicontinuous envelope of u; it is the smallest upper semi-
continuous function (with values in [−∞,∞]) satisfying u ≤ u∗. Similarly, u∗ is
the lower semicontinuous envelope of u.
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Theorem 4.1. (Perron’s Method). Let comparison hold for (DP); i.e., if w is a

subsolution of (DP) and v is a supersolution of (DP), then w ≤ v. Suppose also

that there is a subsolution u and a supersolution u of (DP) that satisfy the boundary

condition u∗(x) = u∗(x) = 0 for x ∈ ∂Ω. Then

(4.2) W (x) = sup{w(x) : u ≤ w ≤ u and w is a subsolution of (DP)}

is a solution of (DP).

Theorem 3.3 provides conditions under which comparison holds for (DP). The
proof consists of two steps. The first one is

Lemma 4.2. Let O ⊂ R
N be locally compact, F ∈ LSC(O × R × R

N × S(N)),
and F be a family of solutions of F ≤ 0 in O. Let w(x) = sup{u(x) : u ∈ F} and

assume that w∗(x) <∞ for x ∈ O. Then w∗ is a solution of F ≤ 0 in O.

Allowing F to be merely lower semicontinuous does not affect the proof and is
used later. The information produced while proving this lemma is needed later as
well, so we isolate the essential point in another result.

Proposition 4.3. Let O ⊂ RN be locally compact, v ∈ USC(O), z ∈ O, and

(p,X) ∈ J2,+
O v(z). Suppose also that un is a sequence of upper semicontinuous

functions on O such that

(4.3)

{
(i) there exists xn ∈ O such that (xn, un(xn)) → (z, v(z)),
(ii) if zn ∈ O and zn → x ∈ O, then lim supn→∞ un(zn) ≤ v(x).

Then

(4.4)

{
there exists x̂n ∈ O, (pn, Xn) ∈ J2,+

O un(x̂n)

such that (x̂n, un(x̂n), pn, Xn) → (z, v(z), p,X).

Proof. Without loss of generality we put z = 0. By the assumptions, for every
δ > 0 there is an r > 0 such that Nr = {x ∈ O : |x| ≤ r} is compact and

(4.5) v(x) ≤ v(0) + 〈p, x〉 + 1
2 〈Xx, x〉 + δ|x|2 for x ∈ Nr.

By the assumption (4.3)(i), there exists xn ∈ O such that (xn, un(xn)) → (0, v(0)).
Let x̂n ∈ Nr be a maximum point of the function un(x)−(〈p, x〉+ 1

2 〈Xx, x〉+2δ|x|2)
over Nr so that

(4.6)
un(x) ≤ un(x̂n) + 〈p, x− x̂n〉 + 1

2 (〈Xx, x〉 − 〈Xx̂n, x̂n〉) + 2δ(|x|2 − |x̂n|
2)

for x ∈ Nr.

Suppose that (passing to a subsequence if necessary) x̂n → y as n → ∞. Putting
x = xn in (4.6) and taking the limit inferior as n→ ∞, we find

v(0) ≤ lim inf
n→∞

un(x̂n) − 〈p, y〉 − 1
2 〈Xy, y〉 − 2δ|y|2;

on the other hand, by (4.3)(ii) lim inf un(x̂n) ≤ v(y) while (4.5) implies v(y) −
〈p, y〉 − 1

2 〈Xy, y〉 − 2δ|y|2 ≤ v(0) − δ|y|2. We conclude that

v(0) ≤ lim inf
n→∞

un(x̂n) − 〈p, y〉 − 1
2 〈Xy, y〉 − 2δ|y|2

≤ v(y) − 〈p, y〉 − 1
2 〈Xy, y〉 − 2δ|y|2 ≤ v(0) − δ|y|2.
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From the extreme inequalities we learn y = 0, so x̂n → 0 (without passing to
a subsequence), and then from the first inequality and (4.3)(ii) one sees that

v(0) = limn→∞ un(x̂n). Since we have (p + 4δx̂n + Xx̂n, X + 4δI) ∈ J2,+
O un(x̂n)

for large n, we are nearly done. To conclude, we merely note that the set of
(q, Y ) ∈ RN × S(N) such that there exists zn ∈ O, (pn, Xn) ∈ J2,+

O un(zn) such
that (zn, un(zn), pn, Xn) → (0, v(0), q, Y ) is closed and contains (p,X + 4δI) for
δ > 0 by the above.

Proof of Lemma 4.2. With the notation of the lemma, suppose that z ∈ O and
(p,X) ∈ J2,+

O w∗(z). We seek to show that F (z, w∗(z), p,X) ≤ 0. It is clear that we
may choose a sequence (xn, un) ∈ O × F such that (xn, un(xn)) → (z, w∗(z)) and
that (4.3) then holds with v = w∗. Hence, by the existence of data satisfying (4.4)
and the fact that each un is a subsolution, we may pass to the limit in the relation
F (x̂n, un(x̂n), pn, Xn) ≤ 0 to find F (z, w∗(z), p,X) ≤ 0 as desired.

The second step in the proof of Theorem 4.1 is a simple construction that we
now describe. Suppose that Ω is open, u is a solution of F ≤ 0, and u∗ is not a
solution of F ≥ 0; in particular, assume 0 ∈ Ω and we have

(4.7) F (0, u∗(0), p,X) < 0 for some (p,X) ∈ J2,−
Ω u∗(0).

Then, by continuity, uδ,γ(x) = u∗(0) + δ + 〈p, x〉 + 1
2 〈Xx, x〉 − γ|x|2 is a classical

solution of F ≤ 0 in Br = {x : |x| < r} for all small r, δ, γ > 0. Since

u(x) ≥ u∗(x) ≥ u∗(0) + 〈p, x〉 + 1
2 〈Xx, x〉 + o(|x|2),

if we choose δ = (r2/8)γ then u(x) > uδ,γ(x) for r/2 ≤ |x| ≤ r if r is sufficiently
small and then, by Lemma 4.2, the function

U(x) =

{
max{u(x), uδ,γ(x)} if|x| < r,

u(x) otherwise,

is a solution of F ≤ 0 in Ω. The last observation is that in every neighborhood of
0 there are points such that U(x) > u(x); indeed, by definition, there is a sequence
(xn, u(xn)) convergent to (0, u∗(0)) and then

lim
n→∞

(U(xn) − u(xn)) = uδ,γ(0) − u∗(0) = u∗(0) + δ − u∗(0) > 0.

We summarize what this “bump” construction provides in the following lemma, the
proof of which consists only of choosing r, γ sufficiently small.

Lemma 4.4. Let Ω be open and u be solution of F ≤ 0 in Ω. If u∗ fails to be

a supersolution at some point x̂, i.e., there exists (p,X) ∈ J2,−
Ω u∗(x̂) for which

F (x̂, u∗(x̂), p,X) < 0, then for any small κ > 0 there is a subsolution Uκ of F ≤ 0
in Ω satisfying

(4.8)

{
Uκ(x) ≥ u(x) and supΩ(Uκ − u) > 0,

Uκ(x) = u(x) for x ∈ Ω, |x− x̂| ≥ κ.

Proof of Theorem 4.1. With the notation of the theorem observe that u∗ ≤W∗ ≤
W ≤ W ∗ ≤ u∗ and, in particular, W∗ = W = W ∗ = 0 on ∂Ω. By Lemma 4.2
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W ∗ is a subsolution of (DP) and hence, by comparison, W ∗ ≤ u. It then follows
from the definition of W that W = W ∗ (so W is a subsolution). If W∗ fails to be
a supersolution at some point x̂ ∈ Ω, let Wκ be provided by Lemma 4.4. Clearly
u ≤ Wκ and Wκ = 0 on ∂Ω for sufficiently small κ. By comparison, Wκ ≤ u and
since W is the maximal subsolution between u and u, we arrive at the contradiction
Wκ ≤W . Hence W∗ is a supersolution of (DP) and then, by comparison for (DP),
W ∗ = W ≤W∗, showing that W is continuous and is a solution.

Remarks 4.5. The assumption that Ω was open in Lemma 4.4 was used only to
know that classical subsolutions in small relative neighborhoods of points of Ω were
subsolutions in our sense. In order to generalize this and to formulate the version
of Theorem 4.1 we will need in §7 (which we did not do above for pedagogical
reasons), we now make some remarks and invite the reader to ignore them until
they are called for later. Suppose O is locally compact, G+, G− are defined on O×
R×RN ×S(N) and have the following properties: G+ is upper semicontinous, G−

is lower semicontinuous, and classical solutions (twice continuously differentiable
solutions in the pointwise sense) of G+ ≤ 0 on relatively open subsets of O are
solutions of G− ≤ 0. Suppose, moreover, that whenever u is a solution of G− ≤ 0
on O and v is a solution of G+ ≥ 0 on O we have u ≤ v on O. Then we conclude
that the existence of such a subsolution and supersolution guarantees that there is
a unique function u, obtained by the Perron construction, that is a solution of both
G+ ≥ 0 and G− ≤ 0 on O. The proof is unchanged except in trivial ways.

Example 4.6. Theorem 4.1 leaves open the question of when a subsolution u and
a supersolution u of (DP) that vanish on ∂Ω can be found. Let us consider this
problem for the equation

(4.9)

{
u+G(x,Du,D2u) = 0 in Ω,

u = 0 on ∂Ω

where G is degenerate elliptic. Sometimes there may be an obvious choice for u or
u; e.g., if

(4.10) G(x, 0, 0) ≤ 0 for x ∈ Ω,

then u ≡ 0 is a subsolution. We assume (4.10) and seek a supersolution “near ∂Ω”
in the form

(4.11) u1(x) = M(1 − e−λd(x))

where M,λ > 0 are parameters to be chosen later and

d(x) = inf
y∈∂Ω

|y − x|

is the distance to ∂Ω. For γ > 0 set

Ωγ =

{
x ∈ Ω : d(x) <

1

γ

}
;

if ∂Ω is of class C2 and γ is large, then d ∈ C2(Ωγ). We have

u1 +G(x,Du1(x), D
2u1(x))

≥G(x, λMe−λd(x)Dd(x),λMe−λd(x)D2d(x) − λ2Me−λd(x)Dd(x) ⊗Dd(x))
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in Ωγ , where p⊗ q is the matrix with entries piqj . If x ∈ Ωλ, then λd(x) ≤ 1 and
so

(4.12) e−1 ≤ e−λd(x) ≤ 1 in Ωλ.

Choose M > 0 so that

(4.13) M(1 − e−1) +G(x, 0, 0) > 1 in Ω.

Then we assume that there is a large λ > 0 so that

(4.14)
G(x, λcDd(x), λcD2d(x) − λ2cDd(x) ⊗Dd(x)) ≥ 0

for x ∈ Ωλ, Me−1 ≤ c ≤M.

Then, by assumption, u1 is a classical solution of u+G(x,Du,D2u) ≥ 0 in Ωλ and
u1 = 0 holds (continuously) on ∂Ω.

To complete the construction, choose C > 0 so that

(4.15) C +G(x, 0, 0) ≥ 0 in Ω

and

(4.16) 0 < C < M(1 − e−1);

this is possible in view of (4.13). We claim that if u is defined by

u =

{
u1 ∧ C in Ωλ,

C in Ω \ Ωλ,

then it is a supersolution as desired. Indeed, u = 0 on ∂Ω is evident. The constant
C is a supersolution of the equation in Ω by (4.15) and the subset of Ωλ on which
u1 = C does not meet ∂(Ωλ) (because of (4.16) and u1 = 0 on ∂Ω and u1 =
M(1 − e−1) when λd(x) = 1). Since the property of being a supersolution is local
and closed under finite minimums, we are done.

We have left the sufficient condition for our construction, (4.14), in a “raw form.”
It is not useful to refine it further without specializing G further. For example, if
G has the form G(x, p,X) = G0(p,X) − f(x) where f ∈ C(Ω), in which the x-
dependence is “separated,” the condition that

lim
λ→∞

G0(λcDd(x), λcD
2d(x) − λ2cDd(x) ⊗Dd(x)) = ∞

uniformly in c in each interval ε ≤ c ≤ 1/ε, ε > 0, and x in some neighborhood of
∂Ω in Ω will certainly allow us to satisfy (4.14). In particular, if G0 depends only
on p,

lim
|p|→∞

G0(p) = ∞

and G0(0)−f(x) ≤ 0, we can uniquely solve the Dirichlet problem for u+G0(Du)−
f(x) = 0. Here we rely on the fact that |Dd(x)| = 1 at points of differentiability of
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d; near ∂Ω (which is all we need) this follows from the obvious fact that Dd(x) =
−n(x) on ∂Ω where n(x) is the exterior normal to Ω at x ∈ ∂Ω.

In other cases, second-order terms dominate. If

G(x, p,X) = − trace(A(x)X) + 〈b(x), p〉 − f(x)

where A, b, f are continuous, and

〈A(x)n(x), n(x)〉 > 0 on ∂Ω,

then the left-hand side of (4.14) has the form

cλ2〈A(x)Dd(x), Dd(x)〉 +O(λ) as λ→ ∞.

Since Dd(x) = −n(x) on ∂Ω, the coefficient of λ2 is positive near ∂Ω and it is easy
to achieve (4.14) by taking λ large. Note that we are thus able to assert the unique
existence of a solution to (4.9) in this case (provided comparison holds) even though
A may be completely degenerate inside Ω.

The reader can invent an unlimited array of examples. It should be noted that
one may often produce both a subsolution and a supersolution by constructions
like the above and then one need not assume u ≡ 0 is a subsolution. One may also
usually take maximums and minimums of operators for which (4.14) can be verified
and stay within this class. Thus, for example, if

G(x, p,X) = max{−|p|2θ−ε − | traceX |θ−1 traceX − f(x), |p|α − g(x)}

and 0 < ε ≤ 2θ, α > 0, f, g ∈ C(Ω), and f, g ≥ 0, then (4.9) has a unique solution.

Notes on §4. The combination of Perron’s method and viscosity solutions was
introduced by H. Ishii [86]. The definition of a viscosity subsolution (respectively,
supersolution) u in [86] was that u∗ is a subsolution (respectively, u∗ is a supersolu-
tion) in the current sense. Solutions are then functions that are both a subsolution
and a supersolution and continuity is not required. (Note that then the character-
istic function of the rationals is a solution of u′ = 0). With this setup, Perron’s
method does not require the comparison assumption and the statements become
more elegant (see [86]).

We mention some other approaches to existence, for even if they are in general
much more complicated and of a more limited scope, they can be useful in some
delicate situations. For example, one can use formulas from control and differential
games to write explicit solutions for approximate equations and then use limiting
arguments; this approach is used in M. G. Crandall and P. L. Lions [55, Parts III
and V] and D. Tataru [157].

Two other approximations that have been used are discretization and elliptic
regularization (for first-order equations; this is the method of “vanishing viscosity”
and its relation to the theory accounts for the term “viscosity solutions”). Having
solved an approximate problem, one then needs to pass to the limit (with some a
priori estimates—but see §6!). Existence schemes of this sort have been used in P.
L. Lions [116], M. G. Crandall and P. L. Lions [53], G. Barles [14, 15], H. Ishii [82,
85], P. E. Souganidis [154], and I. Capuzzo-Dolcetta and P. L. Lions [44].
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5. Comparison and Perron’s method: Variations

5.A. Comparison with more regularity. Suppose that the supersolution u in
Theorem 3.3 is more regular; for example, u ∈ Cγ(Ω) where Cγ(Ω) denotes the set
of functions that are Hölder continuous with exponent γ ∈ (0, 1] on each compact
subset of Ω. Then the assertions of Theorem 3.3 remain valid if (3.14) is weakened
to

(5.1)

{
F (y, r, α(x− y), Y ) − F (x, r, α(x − y), X) ≤ ω(α|x− y|θ + |x− y|)

whenever x, y ∈ Ω, r ∈ R, X, Y ∈ S(N), and (3.10) holds

for some θ > 2 − γ. Indeed, in the notation of the proof of Theorem 3.3,

u(x) − v(y) −
α

2
|x− y|2 ≤ u(x̂) − v(ŷ) −

α

2
|x̂− ŷ|2

implies, upon putting x = y = ŷ and recalling that x̂ will remain in a compact subset
of Ω as α→ ∞, α|x̂− ŷ|2 ≤ 2(u(x̂)− u(ŷ)) ≤ C|x̂− ŷ|γ and then α|x̂− ŷ|θ → 0 as
α→ ∞ provided only θ > 2 − γ, so the rest of the proof is unchanged.

More generally and precisely, if u is uniformly continuous with the modulus ρ/2,
i.e., |u(x) − u(y)| ≤ ρ(|x − y|)/2, we have α|x̂ − ŷ|2 − ρ(|x̂ − ŷ|) ≤ 0. Defining
h(α) = sup{r : αr2 − ρ(r) ≤ 0}, we will succeed if ω(α|x − y|θ + |x − y|) in (5.1)
is replaced by ω(αk(|x − y|) + |x − y|) where αk(h(α)) → 0 as α → ∞. Since the
best possible modulus for nonconstant functions behaves like ρ(r) = cr, in which
case h(α) = c/α and k(r) = o(r) succeeds, the Lipschitz continuous case is limiting
with respect to these arguments (however, see below for the C1 case).

If we assume still more regularity of u, e.g., Du ∈ Cγ(Ω) where 0 ≤ γ ≤ 1 (with
γ=0 meaning continuity and γ=1 meaning Lipschitz continuity of Du), we need to
adapt our strategy to obtain further results.

Let K ⊂ Ω be a compact neighborhood of the set of maximum points of u − v
in Ω. If Du ∈ Cγ there exists a sequence ψn in C(Ω) ∩ C2(K) with the properties

(5.2) u− ψn → 0 as n→ ∞ uniformly on Ω

and

(5.3)





|Du−Dψn| ≤ Cn−γ on K,

|D2ψn| ≤ Cn1−γ on K,

|D2ψn(x) −D2ψn(y)| ≤ Cn2−γ |x− y| for x, y ∈ K

as n→ ∞ where C is a constant. The ψn may then be constructed by mollification
of u near K and then extended.

Let (x̂, ŷ) be a maximum point of

(5.4) (u(x) − ψn(x)) − (v(y) − ψn(y)) −
α

2
|x− y|2;

as before, we may assume that x̂, ŷ ∈ K for large α and n. Since Du(x̂)−Dψn(x̂) =
α(x̂ − ŷ) and (5.3) holds, we have

(5.5) α|x̂ − ŷ| ≤ Cn−γ as n→ ∞.
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Modifying the arguments in the proof of Theorem 3.3 in an obvious way, we will
still be able to establish comparison if we can show that

(5.6)
(F (ŷ, r, α(x̂− ŷ) +Dψn(ŷ), Y +D2ψn(ŷ))

− F (x̂, r, α(x̂− ŷ) +Dψn(x̂), X +D2ψn(x̂)))+ → 0

as n, α → ∞ in some appropriate fashion when r remains bounded and (3.10),
(5.3), (5.5) hold.

It is not very informative to try and analyze this condition in general. Instead,
let us note that in the linear case (see Remark 3.6)

F (x, r, p,X) = − trace(tΣ(x)Σ(x)X) + 〈b(x), p〉 + r − f(x)

with f ∈ C(Ω), the first-order terms are harmless from the point of view of verifying
(5.6) if b is continuous. Via Remark 3.6, the second-order terms contribute at most

3α trace(t(Σ(x̂) − Σ(ŷ))(Σ(x̂) − Σ(ŷ)) + trace(−A(ŷ)D2ψn(ŷ) +A(x̂)D2ψn(x̂))

when estimating (5.6) above. Here we have put A(x) = tΣ(x)Σ(x). Assuming
Σ ∈ Cλ(Ω) (so A ∈ Cλ(Ω)), we invoke (5.3) and estimate the above expression by
a constant times

α|x̂− ŷ|2λ + n1−γ |x̂− ŷ|λ + n2−γ |x̂− ŷ|.

By (5.5), this expression may, in turn, be estimated above in the form

(5.7)

(
α

(
n−γ

α

)2λ

+ n1−γ

(
n−γ

α

)λ

+ n2−γ

(
n−γ

α

))
as n→ ∞.

Putting α = nβ, this becomes

(
nβ−2λ(γ+β) + n−λ(γ+β)+1−γ + n2(1−γ)−β

)
as n→ ∞.

Regarding λ as fixed so as to see what we require of γ, we note that we may make all
of the exponents above vanish by the choices γ = (1− 2λ)/(1−λ), β = 2λ/(1−λ).
(The case λ > 1

2 was treated above, so here we are concerned with λ ≤ 1
2 .) If we

increase γ from this value, so that γ > (1− 2λ)/(1− λ), it follows that comparison
holds.

Comparison is thus assured if Σ ∈ Cλ and Du ∈ Cγ under the relation γ >
(1− 2λ)/(1− λ). The limit cases λ = 1

2 and λ = 0 need to be discussed separately,

for γ = 0 suffices if λ = 1
2 and γ = 1 suffices if λ = 0. In the event that γ = 0,

the first relation in (5.3) should be replaced by |u − ψn| ≤ o(1) and (5.5) by
α|x̂ − ŷ| ≤ o(1) and then the proof runs as before for γ = 0 but with the constant
o(1) appearing everywhere. To treat the other limiting case, λ = 0, γ = 1, note
that if ρ is a modulus of continuity of Σ and A, (5.7) should be replaced by

αρ(|x̂ − ŷ|)2 + ρ(|x̂ − ŷ|) + n|x̂− ŷ|

and (5.5) should read α|x̂ − ŷ| ≤ C/n. We conclude upon letting n, α → ∞ in a
manner so that αρ(C/(nα))2 → 0.
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It is worthwhile to compare the uniqueness results above with those that may
be obtained when solutions are more nearly classical in the sense that they possess
second derivatives in a strong enough sense. To simplify the exposition, we will
always assume that (3.13) holds. Then, of course, if we assume that one of u or v is
C2 (or even everywhere twice differentiable), the comparison result holds without
other structure conditions on F beyond properness, since we can work directly with
maxima of u−v. Unfortunately, this regularity is rarely available, even for uniformly
elliptic fully nonlinear equations. If we require less regularity of u and v—but still
much more than assumed in Theorem 3.3—different structure conditions suffice to
guarantee the comparison result via finer considerations about the pointwise twice
differentiability of functions.

We present below a strategy that establishes comparison without further as-
sumptions on F if both u+ c|x|2 and −v+ c|x|2 are convex for some c > 0. It also

shows that comparison holds if u, v ∈ W 2,N
loc (Ω) and one of u or v lies in W 2,p

loc (Ω)
for some p > N and the structure condition

{
F (x, t, p,X) is uniformly continuous in p

uniformly for x ∈ Ω, X ∈ S(N), and r, p bounded

holds.
In both of these cases, the argument runs as follows: we may assume, without

loss of generality, that all maxima of u − v lie in Ω and then general optimization
results imply that there exists a sequence pn → 0 such that u(x) − v(x) − 〈pn, x〉
has a strict maximum at x̂n and x̂n → x̂ where x̂ is a maximum point of u − v
over Ω. Then one knows (cf. Lemma A.3) that if r > 0 is small enough, the set of
maximum points of u(x) − v(x) − 〈pn, x〉 − 〈q, x〉 in |x − x̂n| < r as q ranges over
the ball Bδ contains a set of positive measure if δ < r−1εn where

εn = inf
|y−x̂n|=r

[(u(x̂n) − v(x̂n)) − 〈pn, x̂n − y〉 − (u(y) − v(y))] .

Furthermore, either u or v is twice differentiable a.e. (cf. Theorem A.2) and
therefore we can find maxima z with |x̂n − z| < r for some q ∈ Bδ that is a point
where, in the first case, u and v are twice differentiable and in the second case v or
u is twice differentiable. In the first case we have

F (z, u(z), Dv(z) + pn + q,D2v(z)) ≤ 0 ≤ F (z, v(z), Dv(z), D2v(z)).

In the second case, if v is twice differentiable the same inequality holds and otherwise
we have

F (z, u(z), Du(z), D2u(z)) ≤ 0 ≤ F (z, v(z), Du(z) − pn − q,D2u(z)).

The conclusions are easily reached upon sending δ, r to 0+ and then n→ ∞.

5.B. Estimates from comparison. We make some simple remarks that hold
as soon as one has comparison by any means; there are many variants of these
(including parabolic ones). For example, suppose K > 0 and u − v ≤ K on ∂Ω

instead of u ≤ v on ∂Ω. Then u−K is also a subsolution since J2,+
Ω (u−K) = J2,+

Ω u

and F (x, u − K, p,X) ≤ F (x, u, p,X) by properness. Thus u − v ≤ K in Ω. In
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particular, the variant of Theorem 3.3 in which u ≤ v on ∂Ω is dropped and the
conclusion is changed to u− v ≤ sup∂Ω(u− v)+ holds.

In a similar spirit, suppose we have solutions u and v of F (x, u,Du,D2u) ≤ 0,

and F̂ (x, u,Du,D2u) ≥ 0 in Ω where F is proper, satisfies (3.14) and (3.13), K > 0,

and F (x, r, p,X) +K ≥ F̂ (x, r, p,X). Then w = v+ max(sup∂Ω(u− v)+,K/γ) is a
solution of F (x,w,Dw,D2w) ≥ 0 in Ω. Since we have comparison for F , we then
conclude u − w ≤ sup∂Ω(u − w)+ = 0 or u − v ≤ max(sup∂Ω(u − v)+,K/γ). In
particular, if

u+G(x, u,Du,D2u) − f(x) ≤ 0 and v +G(x, v,Dv,D2v) − g(x) ≥ 0 in Ω,

G is proper and satisfies (3.14), and f, g ∈ C(Ω), then

u− v ≤ max(sup
∂Ω

(u− v)+, sup
Ω

(f − g)+).

5.C. Comparison with strict inequalities and without coercivity in u. The
condition (3.13) was used in the proof of Theorem 3.3 in order to have (3.15).
If we simply assume there is a δ > 0 such that either F (x, u,Du,D2u) ≤ −δ
or F (x, v,Dv,D2v) ≥ δ we are in the same situation and do not need (3.13) to
hold. Moreover, if only F (x, u,Du,D2u) ≤ 0 and F (x, v,Dv,D2v) ≥ 0 but for
ε > 0 we can find ψε ∈ C2, δε > 0 such that |ψε| ≤ ε and F (x, u + ψε, D(u +
ψε), D

2(u + ψε)) ≤ −δε, we conclude that (u + ψε) − v ≤ sup∂Ω(u + ψε − v) and
then u−v ≤ sup∂Ω(u−v)+2ε and we recover the result as ε ↓ 0. This construction
can be carried out in some cases.

5.D. Comparison and existence of unbounded solutions on unbounded

domains. We first illustrate a method to establish comparison of unbounded solu-
tions in unbounded domains by showing that if u and v grow at most linearly and
solve

(5.8) u+ F (Du,D2u) − f(x) ≤ 0 and v + F (Dv,D2v) − f(x) ≥ 0 in R
N

where f is uniformly continuous on RN (i.e., f ∈ UC(RN )), then u ≤ v. After this,
we will prove that if u is a solution of u + F (Du,D2u) = 0 of linear growth, then
u ∈ UC(RN ) and finally that Perron’s method supplies existence. Thus we will
prove

Theorem 5.1. If f ∈ UC(RN ), then u + F (Du,D2u) − f(x) = 0 has a unique

solution u that grows at most linearly and u ∈ UC(RN ).

Proof of comparison. The proof proceeds in two steps. First we note that f ∈
UC(RN ) implies that there is a constant K such that

(5.9) sup
RN×RN

(f(x) − f(y) −K|x− y|) <∞

and then we show that

(5.10) sup
RN×RN

(u(x) − v(y) − 2K|x− y|) <∞.
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By the assumed linear growth, we have

(5.11) u(x) − v(y) ≤ L(1 + |x| + |y|) on R
N × R

N

for some L > 0. We choose a family βR of C2 functions on RN parameterized by
R ≥ 1 with the properties

(5.12)






(i) βR ≥ 0,

(ii) lim inf |x|→∞ βR(x)/|x| ≥ 2L,

(iii) |DβR(x)| + ‖D2βR(x)‖ ≤ C for R ≥ 1, x ∈ R
N ,

(iv) limR→∞ βR(x) = 0 for x ∈ R
N ,

where C is some constant. In view of (5.11) and (5.12)(ii), the function

Φ(x, y) = u(x) − v(y) − 2K(1 + |x− y|2)1/2 − (βR(x) + βR(y))

attains its maximum at some point (x̂, ŷ). Now either (5.10) holds or for large R
we have Φ(x̂, ŷ) > 0, which implies

(5.13) 2K|x̂− ŷ| ≤ u(x̂) − v(ŷ).

Noting that
(p̂+DβR(x̂), Ẑ +D2βR(x̂)) ∈ J2,+u(x̂),

(p̂−DβR(ŷ),−Ẑ −D2βR(ŷ)) ∈ J2,−v(ŷ),

where

p̂ = (2KDz(1 + |z|2)1/2)|z=x̂−ŷ, Ẑ = (2KD2
z(1 + |z|2)1/2)|z=x̂−ŷ,

we see that
u(x̂) + F (p̂+DβR(x̂), Ẑ +D2βR(x̂)) ≤ f(x̂),

v(ŷ) + F (p̂−DβR(ŷ),−Ẑ −D2βR(ŷ)) ≥ f(ŷ).

From this, using (5.13) and observing that p̂ and Ẑ are bounded independently of
R ≥ 1, we have

(5.14)

u(x̂) − v(ŷ) ≤ f(x̂) − f(ŷ) + F (p̂−DβR(ŷ),−Ẑ −D2βR(ŷ))

− F (p̂+DβR(x̂), Ẑ +D2βR(x̂))

≤ K|x̂− ŷ| + C ≤ 1
2 (u(x̂) − v(ŷ)) + C

where C is a constant independent of R ≥ 1. Therefore, u(x̂) − v(ŷ) is bounded
independently of R ≥ 1.

Since Φ(x, y) ≤ Φ(x̂, ŷ) ≤ u(x̂) − v(ŷ), we may then send R → ∞ to conclude
that u(x)− v(y)− 2K(1+ |x− y|2)1/2 is bounded and thus that (5.10) holds. With
the information (5.10) in hand, we repeat the above line of argument, this time
assuming u(x) − v(x) = 2δ > 0 holds for some x and putting

(5.15) Φ(x, y) = u(x) − v(y) −
α

2
|x− y|2 − ε(|x|2 + |y|2)
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where ε, α are positive parameters. For small ε we have Φ(x, x) ≥ δ and by (5.10)
Φ will have a maximum (x̂, ŷ) at which
(5.16)

α

2
|x̂− ŷ|2 + ε(|x̂|2 + |ŷ|2) ≤ u(x̂)− v(ŷ) ≤ 2K|x̂− ŷ|+C ≤

α

4
|x̂− ŷ|2 + 4K2/α+C

for some C. Moreover, there are X, Y ∈ S(N) such that

(α(x̂ − ŷ) + 2εx̂,X + 2εI) ∈ J
2,+
u(x̂), (α(x̂ − ŷ) − 2εŷ, Y − 2εI) ∈ J

2,−
v(ŷ)

and

(5.17) −3α

(
I 0
0 I

)
≤

(
X 0
0 −Y

)
≤ 3α

(
I −I

−I I

)
.

As usual, we have

(5.18)
u(x̂) − v(ŷ) ≤ f(x̂) − f(ŷ) + F (α(x̂ − ŷ) − 2εŷ, Y − 2εI)

− F ((α(x̂ − ŷ) + 2εx̂,X + 2εI).

Since δ ≤ Φ(x, x) ≤ u(x̂) − v(ŷ), and since X ≤ Y by (5.17),

δ ≤ ωf(|x̂− ŷ|) + F (α(x̂ − ŷ) − 2εŷ,X − 2εI) − F (α(x̂ − ŷ) + 2εx̂,X + 2εI),

where ωf is the modulus of continuity of f , and we will obtain a contradiction if
we show that the iterated limit inferior of the right-hand side as ε ↓ 0 and then
α → ∞ is nonpositive. This information is deduced from (5.16), first using the
extreme inequalities, which imply that α|x̂ − ŷ|2 and ε(|x̂|2 + |ŷ|2) are bounded
independently of α ≥ 1 and 0 < ε ≤ 1. Thus εx̂, εŷ → 0 and α(x̂ − ŷ) remains
bounded as ε ↓ 0, while |x̂− ŷ| → 0 as α→ ∞ uniformly in ε > 0. Therefore, using
(5.17) and the uniform continuity of F on bounded sets,

δ ≤ lim inf
α→∞

lim inf
ε↓0

ωf (|x̂− ŷ|) = 0,

which is a contradiction.

Proof that solutions lie in UC(RN ). We take the easy way here, using that F is
independent of x, and note that if y ∈ RN and u solves u+F (Du,D2u)−f(x) = 0,
then w(x) = u(x+ y) solves w+F (Dw,D2w)− f(x+ y) = 0, so that |u(x)−u(x+
y)| ≤ supz∈RN |f(z + y) − f(z)| by 5.B; thus u ∈ UC(RN ).

Proof of existence. We need only to produce a linearly growing subsolution and
supersolution and invoke Perron’s method. Letting u(x) = A+B(1 + |x|2)1/2, we
note that Du and D2u are bounded so long as B is bounded. By (5.9), |f(x)| ≤
C +K|x| for some C. If we put B = K and A = sup

RN |F (Du,D2u)| + C, u is a
supersolution and u = −u is a subsolution.
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Notes on §5. The discussion of §5.A regarding regularity of Du is new in this
framework, but such results were first obtained by R. Jensen [102] in a more com-
plicated presentation. The assertions of §5.A regarding twice differentiable solutions
(classical or W 2,p, etc.) rely on various versions of the maximum principle as it
evolved through the works of Aleksandrov [2, 3], Y. Bakelman [6], C. Pucci [143],
J. M. Bony [37], and P. L. Lions [120].

Section 5.C recalls a classical strategy and corresponds to remarks used in M. G.
Crandall and P. L. Lions [51], H. Ishii [87], H. Ishii and P. L. Lions [96], . . . . More
sophisticated uses of estimates from comparison arguments occur in the study of
regularity questions—see §10 for references.

Section 5.D is concerned with the growth of solutions at infinity and its influence
on comparison-uniqueness results. The relevance of the class UC(RN ) for general
results of this sort was progressively understood in a series of papers by the authors
and we refer to M. G. Crandall and P. L. Lions [55, Part II] for a few examples
showing how natural this class is and how it interacts with structure conditions
on the nonlinearity. Of course, if one restricts the nonlinearity further, other as-
ymptotic behaviors can be allowed. See H. Ishii [83, 89], M. G. Crandall and P.
L. Lions [54, 56], and M. G. Crandall, R. Newcomb, and Y. Tomita [59] for more
information in this direction; in particular, general functions F (x, r, p,X) can be
used in place of F (p,X) − f(x) (although subtleties concerning existence arise).

6. Limit operations with viscosity solutions

Suppose we have a sequence un, n = 1, 2, . . . , of subsolutions of an equation
F = 0 on the locally compact set O. It turns out that the following “limit”

(6.1) U(z) = lim sup
n→∞

∗un(z) = lim
j→∞

sup{un(x) : n ≥ j, x ∈ O, and |z − x| ≤ 1
j }

in which, roughly speaking, the “lim sup” operation and the ∗ operations are per-
formed simultaneously, will also be a solution of F ≤ 0 in O. Indeed, since U(x) < r
only if there are ε, j > 0 such that un(z) < r − ε for n ≥ j and z ∈ O with
|z−x| ≤ 1/j, it is clear that {x ∈ O : U(x) < r} is open in O and thus U ∈ USC(O).
We have

Lemma 6.1. Let un ∈ USC(O) for n = 1, 2, . . . and U be given by (6.1), z ∈ O
and U(z) <∞. If (p,X) ∈ J2,+

O U(z), then there exist sequences

(6.2) nj → ∞, x̂j ∈ O, (pj , Xj) ∈ J2,+
O unj

(x̂j)

such that

(6.3) (x̂j , unj
(x̂j), pj , Xj) → (z, U(z), p,X).

In particular, if each un is a solution of F ≤ 0 and U < ∞ on O, then U is a

solution of F ≤ 0 on O.

Proof. By definition, there are sequences

nj → ∞, xj ∈ O such that xj → z and unj
(xj) → U(z);
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it is also clear that if zj → x in O, then lim supunj
(zj) ≤ U(x). The result now

follows at once from Proposition 4.3.

Remark 6.2. If the assumptions of the lemma are altered to assume instead that
un ∈ LSC(O) and (p,X) ∈ J2,−

O v(z), then the assertions are changed by replacing

U by

(6.4) U(z) = lim inf
n→∞

∗un(z) = lim
j→∞

inf{un(x) : n ≥ j, x ∈ O, and |z − x| ≤ 1
j },

putting J2,−
O in place of J2,+

O in (6.2) and supersolutions in place of subsolutions.

Remark 6.3. In fact, the above proof shows more—suppose un is a solution of a
proper equation Fn ≤ 0 that varies with n. Then the conclusion is that U is a
solution of G ≤ 0 where

(6.5) G(x, r, p,X) = lim inf
n→∞

∗Fn(x, r, p,X);

note that Fn need not be continuous and that if Fn = F is independent of n but
discontinuous, then G = F∗ is the lower semicontinuous envelope of F . Analogous
remarks hold for supersolutions.

Remark 6.4. The above results are related to uniform convergence as explained
next. Let un be a sequence of functions on O and

(6.6) U(x) = lim sup
n→∞

∗un(x), U(x) = lim inf
n→∞

∗un(x).

Suppose U(x) = U(x) on O, let U(x) denote this common value and assume that
−∞ < U(x) < ∞ on O. Then U is continuous (since it is both upper and lower
semicontinuous) and limn→∞ un(x) = U(x) uniformly on compact sets. Indeed, if
this were not the case and uniform convergence failed on some compact set K, there
would be an ε > 0 and sequences nj → ∞, xj ∈ K such that unj

(xj)−U(xj) > ε or
unj

(xj) − U(xj) < −ε. Assuming xj → x and using the continuity of U , we would

conclude that |U(x) − U(x)| ≥ ε, a contradiction. In order to prove that U = U
one notes that U ≤ U by definition and typically uses comparison results to prove
the other inequality. The next result provides a simple example; a typical case in
which the hypotheses of this result are easily verified is mentioned after the short
proof.

Theorem 6.5. Let Ω be a bounded open set in RN , H ∈ C(RN ), and f ∈ C(Ω).
Consider the problem

(DP)ε u+H(Du) − ε∆u = f(x) in Ω, u = 0 on ∂Ω,

and assume that (DP)ε has a subsolution u ∈ C(Ω) and a supersolution u ∈ C(Ω)
independent of ε ∈ [0, 1] that vanish on ∂Ω. Then (DP)ε has a solution uε for

ε ∈ [0, 1] and limε↓0 uε(x) = u0(x) uniformly for x ∈ Ω.

Proof. We know that (DP)ε has a solution uε for ε ∈ [0, 1] by Perron’s method and
the assumptions. Moreover, U(x) = lim supε↓0

∗uε(x) and U(x) = lim infε↓0∗uε(x)

are a subsolution and a supersolution of (DP)0 by the above and then U ≤ U by
comparison while U ≥ U by definition. Thus u0 = U = U and the convergence is
uniform.

Harking back to the discussion of Example 4.6, the reader may easily verify the
hypotheses of Theorem 6.5 when ∂Ω is of class C2, H satisfies lim|p|→∞H(p) = ∞
and H(0) − f ≤ 0. To do so, set u ≡ 0 and u(x) = (λd(x)) ∧ C where λ is first
chosen sufficiently large and then C is chosen in a suitable manner.
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Notes on §6. The fact that viscosity solutions pass to the limit under uniform
convergence is an immediate consequence of the definition. This consistency and
stability property can also be seen as the analogue (in the space of continuous
functions) of Minty’s device for monotone operators as developed by L. C. Evans
[64, 65].

The idea of using only “half-relaxed” limits like Ū in (6.1) arises naturally when
attempting to pass to limits with maxima and minima and has been used extensively
in the calculus of variations and homogenization theory. The use of this concept
in the area of viscosity solutions was introduced by G. Barles and B. Perthame
[25, 26] and H. Ishii [90]. This passage to the limit and the associated a posteriori
uniform convergence through comparison of semicontinuous functions has become
one of the main features of the theory. Viscosity solutions were first used to prove
theorems analogous to Theorem 3.2 (but more complicated) with applications by L.
C. Evans and H. Ishii [68]; they were motivated by questions arising in probability
(see also §10). Proofs in the spirit we have presented are much simpler.

7. General and generalized boundary conditions

7.A. Boundary conditions in the viscosity sense. In this section we consider
more general boundary value problems of the form

(BVP)

{
(E) F (x, u,Du,D2u) = 0 in Ω

(BC) B(x, u,Du,D2u) = 0 on ∂Ω

where (E) denotes the equation and (BC) the boundary condition. Here F is proper,
as always, and B is a given function on ∂Ω×R×RN×S(N) that is also to be proper.
While it is convenient to allow B to depend on D2u at this stage, as the reader
will see, when we turn to existence and uniqueness theorems B = B(x, r, p) will
be of first order. For example, the Dirichlet condition u = f(x) on ∂Ω arises from
the choice B(x, r, p,X) = B(x, r, p) = r − f(x) of B while the Neumann condition
un = f(x) (here and later, n(x) denotes the outward unit normal to x ∈ ∂Ω)
arises if B(x, r, p) = 〈n(x), p〉− f(x). The Neumann condition is generalized by the
“oblique derivative” problem, in which B has the form B(x, r, p) = 〈ν(x), p〉− f(x)
where ν(x) is a vector field on ∂Ω satisfying 〈ν(x), n(x)〉 > 0 on ∂Ω.

We have already given a meaning to statements like (BC) in Definition 2.2, which
is, however, clearly inappropriate here since it would only involve the behavior of
u on ∂Ω. The simplest viscosity definition of (BC) we might try is

Definition 7.1. A function u ∈ USC(Ω) is a subsolution of (BC) in the strong
(viscosity) sense if

(7.1) B(x, u(x), p,X) ≤ 0 for x ∈ ∂Ω, (p,X) ∈ J
2,+

Ω u(x)

and v ∈ LSC(Ω) is a supersolution of (BC) in the strong (viscosity) sense if

(7.2) B(x, v(x), p,X) ≥ 0 for x ∈ ∂Ω, and (p,X) ∈ J
2,−

Ω v(x).

Finally, u ∈ C(Ω) satisfies (BC) in the strong (viscosity) sense if it is both a
subsolution and a supersolution in the strong sense.
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Interpreting (E) in the usual way and (BC) in the strong sense, we obtain notions
of subsolutions (which will lie in USC(Ω)), supersolutions (which will lie in LSC(Ω))
and solutions (which lie in C(Ω)).

As indicated by the appearance of the modifier “the strong sense,” it will be
necessary to relax this interpretation to obtain full generality. Before explaining
this, however, we pause to relate “the strong sense” to the “classical sense.”

It is important to recognize early on that if u ∈ C2(Ω) (i.e., u extends to a twice
continuously differentiable function in a neighborhood of Ω) and

B(x, u(x), Du(x), D2u(x)) ≤ 0 for x ∈ ∂Ω,

then it is not necessarily true that u is a subsolution of (BC). Indeed, in Remark

2.7 we determined J2,+
O u(x) in the situation where O is an N-submanifold of RN

with boundary, x ∈ ∂Ω, and ∂Ω is twice differentiable at x. In particular, it follows
from Remark 2.7 that if S ≤ 0 and Xλ is given by (2.16) with u in place of ϕ, then

(Du(x)−λn(x), Xλ +µn(x)⊗n(x)) ∈ J2,+
O u(x) for λ = µ = 0 and for λ > 0, µ ∈ R.

Thus, assuming that B is lower semicontinuous, u will not be a subsolution unless

(7.3) B(x, u(x), Du(x) − λn(x), Xλ + µn(x) ⊗ n(x)) ≤ 0 for λ ≥ 0, µ ∈ R

(to see that (7.3) holds with λ = 0 and µ arbitrary, just let λ ↓ 0 with µ arbitrary
but fixed).

Notice, however, that ifB(x, r, p) is first order and n ∈ RN , thenB(x, u(x), Du(x)) ≤
0 implies B(x, u(x), Du(x) − λn) ≤ 0 for λ ≥ 0 provided

(7.4) λ→ B(x, r, p− λn) is nonincreasing in λ ≥ 0.

Moreover, by Remark 2.7, if u is differentiable at x and (p,X) ∈ J2,+
O u(x), then

Du(x)− p is a “generalized normal” to O at x. Since analogous remarks evidently
hold for supersolutions, we have found a case in which classical satisfaction of (BC)
implies (BC) in the strong sense. More precisely, we have

proved

Proposition 7.2. If B ∈ C(∂Ω × R × RN ) satisfies (7.4) for every x ∈ ∂Ω, r ∈
R, p ∈ RN and n is a generalized normal to O at x, u ∈ C1(Ω) and B(x, u(x), Du(x)) ≤
0 (respectively, ≥ 0) for x ∈ ∂Ω, then u is a subsolution (respectively, supersolution)
of (BC) in the strong sense.

This result will be needed in the construction of subsolutions and supersolutions
below.

As mentioned above, it will be necessary to relax the interpretation of the bound-
ary condition “in the strong sense;” one way to motivate this is to consider what
happens when we try to pass to the limit in the following situation, which is an
analogue of Remark 6.3 “with boundary:” Suppose Fn ∈ C(Ω × R × RN × S(N)),
Bn ∈ C(∂Ω × R × RN × S(N)) for n = 1, 2, . . . and un be a subsolution of Fn = 0
in Ω, Bn = 0 on ∂Ω in the strong sense. Let Fn → F , Bn → B uniformly on
compact sets as n → ∞ and u = lim sup∗

n→∞ un be bounded. What problem does
u solve? Of course, we know from Remark 6.3 that u is a solution of F ≤ 0 in Ω.
However, when we attempt to check the boundary condition B(x, u(x), p,X) ≤ 0

for x ∈ ∂Ω and (p,X) ∈ J
2,+

Ω u(x), the proof fails. We know, from Proposition 4.3,
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that (passing to a subsequence if necessary), there exists (pn, Xn) ∈ J
2,+

Ω un(xn)
such that (xn, un(xn), pn, Xn) → (x, u(x), p,X), but we do not know xn ∈ ∂Ω (and
the example below shows this cannot be achieved in general). If xn ∈ Ω, we have
Fn(xn, un(xn), pn, Xn) ≤ 0 (rather than Bn(xn, un(xn), pn, Xn) ≤ 0). However, in
this way we can conclude that either

B(x, u(x), p,X) ≤ 0 or F (x, u(x), p,X) ≤ 0;

in other words, u is a subsolution for the boundary condition

F (x, u,Du,D2u) ∧B(x, u,Du,D2u) = 0

in the strong sense (where a∧ b = min{a, b} and a∨ b = max{a, b}). The following
example, in the context of a Neumann problem, shows that this is the best that
can be expected.

Example 7.3. The linear problem

(7.5) −εu′′ + u′ + u = x+ 1

on (0, 1) ⊂ R with the homogeneous Neumann conditions

(7.6) u′(0) = u′(1) = 0

has a unique classical solution uε for ε > 0 and it follows from Proposition 7.2 that
uε satisfies (7.6) in the strong sense when we chose the function B that defines the
boundary condition (7.6) to be given by B(1, r, p) = p and B(0, r, p) = −p; note
the monotonicity in the direction of the exterior normals to (0, 1). We will see that
the limit limε↓0 uε = u exists uniformly on [0, 1] and the limit u does not satisfy
(7.6) in the strong sense.

It is elementary to compute

uε(x) = x+
eλ

− − 1

λ+ (eλ+ − eλ
−)
eλ+x +

1 − eλ+

λ− (eλ+ − eλ
−)
eλ

−
x,

where λ± = (1/2ε)
(
1 ± (1 + 4ε)1/2

)
. Noting that λ+ → ∞ and λ− → −1 as ε ↓ 0,

one sees that

uε(x) → u(x) ≡ x+ e−x uniformly on [0, 1] as ε ↓ 0.

The function u(x) = x+ e−x satisfies

u′ + u = x+ 1 in (0, 1) and u′(0) = 0

in the classical sense. However, u′(1) = 1 − 1/e > 0 and therefore u is not a
subsolution of B(1, u′(1)) = 0 in the strong sense. Note, however, that (u′ + u −
(x+ 1)) ∧ u′ ≤ 0 does hold at x = 1, in agreement with the above discussion.

These considerations suggest the appropriate definitions regarding solutions of
(BVP).
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Definition 7.4. Let Ω be an open subset of RN , F ∈ C(Ω × R × RN × S(N)),
and B ∈ C(∂Ω × R × RN × S(N)) be proper. Then u is a (viscosity) subsolution
of (BVP) if u ∈ USC(Ω) and

(7.7)

{
F (x, u(x), p,X) ≤ 0 for x ∈ Ω, (p,X) ∈ J

2,+

Ω u(x),

F (x, u(x), p,X) ∧B(x, u(x), p,X) ≤ 0 for x ∈ ∂Ω, (p,X) ∈ J
2,+

Ω u(x).

Similarly, u is a supersolution of (BVP) if u ∈ LSC(Ω) and

(7.8)

{
F (x, u(x), p,X) ≥ 0 for x ∈ Ω, (p,X) ∈ J

2,−

Ω u(x),

F (x, u(x), p,X) ∨B(x, u(x), p,X) ≥ 0 for x ∈ ∂Ω, (p,X) ∈ J
2,−

Ω u(x).

Finally, u is a solution of (BVP) if it is both a subsolution and a supersolution.

Another way to express these definitions is to introduce the functions

(7.9) G−(x, r, p,X) =

{
F (x, r, p,X) if x ∈ Ω,

F (x, r, p,X) ∧B(x, r, p,X) if x ∈ ∂Ω

and

(7.10) G+(x, r, p,X) =

{
F (x, r, p,X) if x ∈ Ω,

F (x, r, p,X) ∨B(x, r, p,X) if x ∈ ∂Ω,

and note that “u is a subsolution of (BVP)” means exactly that u is a solution
of G− ≤ 0 in Ω, etc. Observe that G− is lower semicontinuous and G+ is upper
semicontinuous. In fact, G− is precisely the lower semicontinuous envelope of the
function

G(x, r, p,X) =

{
F (x, r, p,X) if x ∈ Ω,

B(x, r, p,X) if x ∈ ∂Ω,

while G+ is the upper semicontinuous envelope of G.

7.B Existence and uniqueness for the Neumann problem. We are con-
cerned here with the following choice B = B(x, r, p) of the boundary condition
B,

(7.11) B(x, r, p) = 〈n(x), p〉 + f(x, r)

where f ∈ C(∂Ω×R). With appropriate restrictions on Ω, F , and f , we prove that
(BVP) has a unique solution by a program analogous to that developed in §§3 and
4. Regarding Ω we will always assume that

(7.12) Ω is a compact C1 N -submanifold with boundary of R
N .

In addition, we impose the uniform exterior sphere condition

(7.13) ∃r > 0 such that b(x+ rn(x), r) ∩ Ω = ∅ for x ∈ ∂Ω
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where b(x, r) denotes the closed ball of radius r centered at x. For F we will require
(3.13), restated here for convenience,

(7.14)
γ(r − s) ≤ F (x, r, p,X) − F (x, s, p,X)

for r ≥ s, (x, p,X) ∈ Ω × R
N × S(N)

as well as uniform continuity in (p,X) near ∂Ω; more precisely, we require that
there be a neighborhood V of ∂Ω relative to Ω such that

(7.15)

{
|F (x, r, p,X) − F (x, r, q, Y )| ≤ ω(|p− q| + ‖X − Y ‖)

for x ∈ V, p, q ∈ RN , X, Y ∈ S(N)

for some ω : [0,∞) → [0,∞] satisfying ω(0+) = 0. In addition, we strengthen (3.14)
to the condition

(7.16)

{
F (y, r, p, Y )−F (x, r, p,X) ≤ ω(α|x−y|2 + |x−y|(|p|+1)) when-
ever x, y ∈ Ω, r ∈ R, p ∈ RN , X, Y ∈ S(N), and (3.10) holds

where we may use the same ω as in (7.15). Observe that (7.16) implies (3.14). For
f we assume that

(7.17) f(x, r) is nondecreasing in r for x ∈ ∂Ω.

We have:

Theorem 7.5. Let (7.11)–(7.17) hold. If u is a subsolution of (BVP) and v is a

supersolution of (BVP), then u ≤ v in Ω. Moreover, (BVP) has a unique solution.

The proof consists of verifying the comparison assertion, then producing a sub-
solution and a supersolution, and invoking Perron’s method. We begin with the
comparison proof.

Proof of comparison. The strategy involves two types of approximations. As a first
step, we produce approximations uε, vε such that uε → u, vε → v uniformly as
ε ↓ 0 and uε, vε are a subsolution and a supersolution of (BVP) with B(x, r, p)
replaced by B(x, r, p) + ε and B(x, r, p) − ε respectively. (Please note that B itself

will retain its meaning below.) If we then can prove uε ≤ vε we find u ≤ v in the
limit ε ↓ 0. After this, we arrange to deal only with the inequalities involving F
(and not B) via another perturbation built into the “test functions” we will use.

Let us proceed with the first step. We need the following elementary lemma

Lemma 7.6. Let (7.12) hold and ν ∈ C(∂Ω,RN ) satisfy 〈n(x), ν(x)〉 > 0 on ∂Ω.

Then there is a function ϕ ∈ C2(Ω) such that

(7.18) 〈ν(x), Dϕ(x)〉 ≥ 1 for x ∈ ∂Ω and ϕ ≥ 0 on Ω.

The proof of the lemma is deferred until the theorem is established. Choosing
ν = n in Lemma 7.6, let ϕ be provided by the lemma; we may assume that the
support of ϕ lies in V . Let u be a solution of G− ≤ 0 in Ω (that is, a subsolution
of (BVP)) and v a solution of G+ ≥ 0, and put

(7.19) uε(x) = u(x) − εϕ(x) − C and vε(x) = v(x) + εϕ(x) + C
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where C = C(ε) will be chosen later on. Using (7.14) and (7.15), for x ∈ V and

(p,X) ∈ J
2,+

Ω uε(x) we have

F (x, uε(x), p,X) ≤ F (x, u(x), p+ εDϕ(x), X + εD2ϕ(x)) − γC + ω(εM),

where M = maxΩ(|Dϕ(x)| + ‖D2ϕ(x)‖) and, if x ∈ ∂Ω,

B(x, uε(x), p) = B(x, uε(x), p+ εDϕ(x)) − ε〈Dϕ(x), n(x)〉

≤ B(x, u(x), p + εDϕ(x)) − ε.

Using next that J
2,+

Ω uε(x) + (εDϕ(x), εD2ϕ(x)) = J
2,+

Ω u(x) (see Remarks 2.7), we
conclude that if C = ω(εM)/γ, then uε is a subsolution of (BVP) with B + ε in
place of B. Similarly, vε is a supersolution of (BVP) with B replaced by B − ε.

We are reduced to proving that if u is a subsolution and v is a supersolution of
(BVP) with B replaced by B + ε and B − ε respectively, then u ≤ v. Assume, to
the contrary, that maxΩ(u − v) > 0. We know that max∂Ω(u − v) ≥ maxΩ(u − v)
by §5.B, so there must exist z ∈ ∂Ω such that u(z)− v(z) = maxΩ(u− v) > 0. Put

Φ(x, y) = u(x) − v(y) −
α

2
|x− y|2 + f(z, u(z))〈n(z), x− y〉 − |x− z|4 on Ω × Ω,

and let (xα, yα) be a maximum point of Φ. By Proposition 3.7, since u(x)− v(x)−
|x− z|4 has x = z as a unique maximum point,

(7.20) xα → z, α|xα − yα|
2 → 0, u(xα) → u(z), v(xα) → v(z)

as α→ ∞. For simplicity, we now write (x̂, ŷ) for (xα, yα) and put

ψ(x, y) =
α

2
|x− y|2 − f(z, u(z))〈n(z), x− y〉 + |x− z|4.

We have not yet invoked the exterior sphere condition (7.13) and do so now. Re-
stating (7.13) as

|y − x− rn(x)|2 > r2 for x ∈ ∂Ω and y ∈ Ω,

we see it is equivalent to

(7.21) 〈n(x), y − x〉 <
1

2r
|y − x|2 for x ∈ ∂Ω and y ∈ Ω.

Using (7.21) we compute that if x̂ ∈ ∂Ω then

B(x̂, u(x̂), Dxψ(x̂, ŷ)) = B(x̂, u(x̂), α(x̂− ŷ)

− f(z, u(z))n(z) + 4|x̂− z|2(x̂− z))

≥ −
α

2r
|x̂− ŷ|2 − f(z, u(z))〈n(x̂), n(z)〉

+O(|x̂ − z|3) + f(x̂, u(x̂))

and in view of (7.20) this implies

B(x̂, u(x̂), Dxψ(x̂, ŷ)) ≥ o(1) as α→ ∞ if x̂ ∈ ∂Ω.
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A similar computation (this time involving (7.17)) shows that

B(ŷ, v(ŷ),−Dyψ(x̂, ŷ)) ≤ o(1) as α→ ∞ if ŷ ∈ ∂Ω.

Recalling that u is a subsolution with respect to B + ε, etc., and the definition of
subsolutions and supersolutions, we conclude

(7.22)




F (x̂, u(x̂), Dxψ(x̂, ŷ), X) ≤ 0 for (Dxψ(x̂, ŷ), X) ∈ J

2,+

Ω u(x̂),

F (ŷ, v(ŷ),−Dyψ(x̂, ŷ), Y ) ≥ 0 for (−Dyψ(x̂, ŷ), Y ) ∈ J
2,−

Ω v(ŷ),

provided α is large.
The remaining arguments are very close to those given in the proof of Theorem

3.3. We apply Theorem 3.2 with k = 2, O1 = O2 = Ω, u1 = u, u2 = −v, and
ε = 1/α to find X,Y ∈ S(N) such that

(Dxψ(x̂, ŷ), X) ∈ J
2,+

Ω , (−Dyψ(x̂, ŷ), Y ) ∈ J
2,−

Ω v(ŷ)

and

(7.23) −(α+ ‖A‖)

(
I 0
0 I

)
≤

(
X 0
0 −Y

)
≤ A+

1

α
A2,

where A = D2ψ(x̂, ŷ). Observing that

A = α

(
I −I
−I I

)
+O(|x̂− z|2), A2 = 2α2

(
I −I
−I I

)
+O(α|x̂− z|2 + |x̂− z|4),

we see from (7.23) that

−3α

(
I 0
0 I

)
+ o(1) ≤

(
X 0
0 −Y

)
≤ 3α

(
I −I
−I I

)
+ o(1) as α→ ∞.

We want to use this information in conjunction with (7.22); to this end, we formulate
the next lemma (which will be used later as well).

Lemma 7.7. Let (7.15) and (7.16) hold. Let δ > 0, x, y ∈ V , r ∈ R, p ∈ RN ,

X,Y ∈ S(N), and

−(3α+ δ)

(
I 0
0 I

)
≤

(
X 0
0 −Y

)
≤ 3α

(
I −I
−I I

)
+ δ

(
I 0
0 I

)

hold. Then

F (y, r, p, Y ) − F (x, r, p,X) ≤ ω((α+ 2
3δ)|x− y|2 + |x− y|(|p| + 1)) + 2ω(δ).

Proof. By assumption,

−(3α+ 2δ)

(
I 0
0 I

)
≤

(
X − δI 0

0 −Y − δI

)
≤ 3α

(
I −I
−I I

)
.



USER’S GUIDE TO VISCOSITY SOLUTIONS 43

Using (7.16) we therefore have

F (y, r, p, Y + δI) − F (x, r, p,X − δI) ≤ ω((α + 2
3δ)|x− y|2 + |x− y|(|p| + 1)).

Next, (7.15) implies

F (y, r, p, Y + δI) − F (x, r, p,X − δI) ≥ F (y, r, p, Y ) − F (x, r, p,X) − 2ω(δ)

and the result follows.
We complete the proof of comparison. From the lemma and the developments

above,

0 ≤ F (ŷ, v(ŷ),−Dyψ(x̂, ŷ), Y ) − F (x̂, u(x̂), Dxψ(x̂, ŷ), X)

≤ F (ŷ, u(x̂),−Dyψ(x̂, ŷ), Y ) − F (x̂, u(x̂),−Dyψ(x̂, ŷ), X)

− γ(u(x̂) − v(ŷ)) + ω(4|x̂− z|3)

≤ ω(α|x̂− ŷ|2 + |x̂− ŷ|(|Dyψ(x̂, ŷ)| + 1)) − γ(u(x̂) − v(ŷ)) + o(1)

as α→ ∞. From this we obtain a contradiction as in the proof of Theorem 3.3.

Proof of existence. In order to establish existence, we may use Perron’s Method
from Theorem 4.1 as supplemented by Remark 4.5 to deduce that it suffices to
produce a subsolution and a supersolution. Using Proposition 7.2, we see it suffices
to produce a classical subsolution and supersolution. Let ϕ ∈ C2(Ω) be as in
Lemma 7.6. Put

u(x) = −Aϕ(x) −B, u(x) = Aϕ(x) +B

where A, B are constants to be determined. Observing that

B(x, u(x), Du(x)) ≥ A〈n(x), Dϕ(x)〉 + f(x, 0) ≥ A+ f(x, 0)

for x ∈ ∂Ω and

F (x, u(x), Du(x), D2u(x)) ≥ F (x, 0, ADϕ(x), AD2ϕ(x)) + γB

for x ∈ Ω we see that if we first choose A and then B by

A = sup
∂Ω

|f(x, 0)|, B =
1

γ
sup

Ω,|p|+‖X‖≤AM

|F (x, 0, p,X |,

where M = supΩ(|Dϕ(x) + ‖D2ϕ(x)‖), then u is a supersolution. Likewise, u will
be a subsolution. It remains to prove Lemma 7.6.

Proof of Lemma 7.6. In view of (7.12), there is a C1 function ψ on RN such that
ψ ≥ 0 on RN\Ω, ψ < 0 on Ω, and |Dψ| > 0 on ∂Ω. Multiplying by a constant
if necessary, we may also assume that |Dψ(x)| > 〈ν(x), n(x)〉−1 for x ∈ ∂Ω. By
standard approximation theorems, we see that there is a sequence of C2 functions
ψk such that ψk → ψ in C1(Ω) as k → ∞. In particular, we have

〈ν(x), Dψk(x)〉 → 〈ν(x), Dψ(x)〉 uniformly on ∂Ω as k → ∞.

Since n(x) = Dψ(x)/|Dψ(x)| and |Dψ(x)|〈ν(x), n(x)〉 > 1 for x ∈ ∂Ω, if k and
then C are sufficiently large, ϕ = ψk + C has the desired properties.
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7.C. The generalized Dirichlet problem. We turn to the Dirichlet problem

(7.24)

{
F (x, u,Du,D2u) = 0 in Ω,

u− f(x) = 0 on ∂Ω

where f ∈ C(∂Ω).
The simplest example of this problem with a unique solution that does not

satisfy boundary conditions in the strong sense is the following: F (x, u,Du,D2u) =
u − h(x) and f(x) ≡ 0. If h is continuous on Ω, then u ≡ h is evidently the only
solution of this problem and it does not satisfy u = 0 on ∂Ω in the strong sense
unless h = 0 on ∂Ω.

We will provide a comparison theorem, Theorem 7.9 below, with this example
as a special case. This comparison theorem, however will be different in character
from those we have obtained so far in that it will assert comparison for a continuous

subsolution and supersolution. As we know, the ability to compare semicontinuous
subsolutions and supersolutions allows us to prove existence. Thus the following
counterexample to existence indicates that the restriction to continuous functions
(or some other assumption) is necessary in Theorem 7.9.

Example 7.8. Let N = 2 and Ω = {(x, y) : −1 < x < 1, 0 < y < 1}. Let
f ∈ C(∂Ω) satisfy 0 ≤ f ≤ 1, f(x, 0) = 0, and f(x, 1) = 1 for |x| < 1. We claim
that the problem

(7.25)

{
u+ xuy = 0 in Ω,

u = f on ∂Ω

does not have a solution. To see this, suppose the contrary and let u(x, y) be a
solution. We claim that then for fixed |x| < 1, v(y) = u(x, y) is a solution of

(7.26) v + xv′ = 0 in (0, 1), v(0) = 0, v(1) = 1.

Assume for the moment that this is the case. Then we remark that Theorem 7.9
below shows that v is uniquely determined by (7.26), v ≡ 0 is a solution of (7.26)
if x > 0 and v(y) = e(1−y)/x is a solution of (7.26) if x < 0 (these last assertions
the reader can check by computations). Thus we see that u(x, y) = 0 if x > 0 and
u(x, y) = e(1−y)/x if x < 0; however, u cannot then be continuous at (0, 1) and we
conclude that (7.25) does not have a solution.

It remains to verify that if u is a solution of (7.25), then v is a solution of
(7.26). One way to check this is as follows: Fix x ∈ (−1, 1) and set v(y) =
u(x, y). Let ϕ ∈ C2([0, 1]) and assume that v − ϕ has a unique maximum at
some point y ∈ [0, 1]. For α > 0 let (x̂, ŷ) be a maximum point of the function
u(x, y) − ϕ(y) − α|x− x|2. It follows from Proposition 3.7 that then x̂→ x, ŷ → y
as α → ∞; moreover, we have u(x̂, ŷ) + x̂ϕ′(ŷ) ≤ 0. From this information we
deduce that v(y) + xϕ′(y) ≤ 0 and conclude that v is a subsolution of (7.26) with
x = x. In a similar way, one shows that v is a supersolution. Finally we remark
that u ≡ 1, u ≡ 0 are, respectively, a supersolution and a subsolution of (7.25).
Thus comparison of semicontinuous semisolutions of (7.25) must fail. (If the reader
is concerned about regularity questions and the “corners,” note that the corners
can be smoothed up without changing the essential points of the discussion.)

We turn to the comparison result for continuous solutions.
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Theorem 7.9. Let (7.12), (7.14), (7.15), and (7.16) hold. If u, v ∈ C(Ω), u is a

subsolution of (7.24) and v is a supersolution of (7.24), then u ≤ v.

Proof. As before, we argue by contradiction and so suppose that maxΩ(u− v) >0.
We may assume that maxΩ(u − v) = u(z) − v(z) > 0 for some z ∈ ∂Ω. We divide
our considerations into two cases.

First, we consider the case when v(z) < f(z). For α > 1 and 0 < ε < 1, we
define the function

Φ(x, y) = u(x) − v(y) − |α(x− y) + εn(z)|2 − ε|y − z|2 on Ω × Ω.

Let (x̂, ŷ) be a maximum point of Φ. We assume α is so large that z−(ε/α)n(z) ∈ Ω.
The inequality Φ(x̂, ŷ) ≥ Φ(z − (ε/α)n(z), z) reads

|α(x̂ − ŷ) + εn(z)|2 + ε|ŷ − z|2 ≤ u(x̂) − v(ŷ) − u
(
z −

ε

α
n(z)

)
+ v(z)

from which it follows (using the continuity of u!) that if ε is fixed, x̂, ŷ → z and
α(x̂− ŷ) + εn(z) → 0 as α→ ∞. Indeed, it is clear that α(x̂− ŷ) remains bounded
as α → ∞, so assuming that α(x̂ − ŷ) → w, x̂, ŷ → z̃ (along a subsequence) as
α→ ∞, one finds

|w + εn(z)|2 + ε|z̃ − z|2 ≤ u(z̃) − v(z̃) − u(z) + v(z) ≤ 0,

where the last inequality follows from the definition of z, whence the claim is im-
mediate. From this we see that x̂ = ŷ− (εn(z)+ o(1))/α as α→ ∞ and hence that
x̂ ∈ Ω if α is large enough. Since v(z) < f(z), we have (using the continuity of v)
v(ŷ) < f(ŷ) if α is large enough. Thus, if α is large enough, we have

F (x̂, u(x̂), p,X) ≤ 0 for (p,X) ∈ J
2,+

Ω u(x̂)

and
F (ŷ, v(ŷ), q, Y ) ≥ 0 for (q, Y ) ∈ J

2,−

Ω v(ŷ).

Observe that if we set ϕ(x, y) = |α(x − y) + εn(z)|2 + ε|y − z|2, then

Dxϕ(x, y) = 2α(α(x − y) + εn(z)),

−Dyϕ(x, y) = 2α(α(x − y) + εn(z)) − 2ε(y − z),

and

D2ϕ(x, y) = 2α2

(
I −I

−I I

)
+ 2ε

(
0 0
0 I

)
.

Now, using Theorem 3.2 together with Lemma 7.7, calculating as usual, sending
α→ ∞ and then ε ↓ 0, we obtain a contradiction.

It remains to treat the case when v(z) ≥ f(z). Since u(z) > v(z) this entails
u(z) > f(z). Replacing the above Φ by

Φ(x, y) = u(x) − v(y) − |α(x− y) − εn(z)|2 − ε|x− z|2,

we argue as above and obtain a contradiction.
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7.C′. The state constraints problem. The problem

(7.27)

{
F (x, u,Du,D2u) ≤ 0 in Ω,

F (x, u,Du,D2u) ≥ 0 in Ω

corresponds to an important problem in optimal control, the so-called state con-
straints problem provided F has the form of the left member of (1.10). This is,
indeed, the extreme form of (7.24) where f(x) ≡ −∞. To make this clear, we give
the definitions precisely. A function u ∈ USC(Ω) (respectively, v ∈ LSC(Ω)) is
called a subsolution (supersolution) of (7.27) if

F (x, u(x), p,X) ≤ 0 for x ∈ Ω and (p,X) ∈ J
2,+
u(x)

(respectively,

F (x, v(x), p,X) ≥ 0 for x ∈ Ω and (p,X) ∈ J
2,−

Ω v(x)).

An application of Theorem 7.9 immediately yields

Theorem 7.10. Let (7.12), (7.14), (7.15), and (7.16) hold. If u, v ∈ C(Ω), u is a

subsolution of (7.27) and v is a supersolution of (7.27), then u ≤ v on Ω.

Indeed, v is a supersolution and u is a subsolution of (7.24) with f(x) ≥ u(x) on
∂Ω.

In fact, a subsolution v of (7.27) is a supersolution of (7.24) for any f ∈ C(∂Ω)
and hence a “universal bound” on all solutions. This implies that solutions of (7.27)
do not exist in general. For example, if F is a linear uniformly elliptic operator,
(7.24) is uniquely solvable for arbitrary f ∈ C(∂Ω) and then there can be no uni-
versal bound that is continuous in Ω. On the other hand, if F is suitably degenerate
in the normal direction at ∂Ω, one can sometimes find such a supersolution.

7.D. A remark (BC) in the classical sense. The reader will have noticed by
now that we gave some examples of solutions of (BC) that were smooth but did
not satisfy the boundary condition in the classical sense. In these examples, the
equation (E) is rather degenerate. In fact, “degeneracy” of a sort is necessary for
this to happen, as we now establish.

Proposition 7.11. Let B ∈ C(∂Ω × R × RN ), F be proper, and u ∈ C2(Ω) be a

subsolution (respectively, supersolution) of (BVP). If

(7.28)

{
lim supµ→∞ F (x, r, p,X − µn⊗ n) > 0

for (x, r, p,X) ∈ ∂Ω × R × RN × S(N), n ∈ RN\{0}

(respectively,

(7.29)

{
lim infµ→∞ F (x, r, p,X + µn⊗ n) < 0

for (x, r, p,X) ∈ ∂Ω × R × RN × S(N), n ∈ RN\{0}),

then u is a classical subsolution (respectively, supersolution) of (BC).
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Proof. It will suffice to treat the subsolution case. We rely again on Remarks
2.7(iii). Let y ∈ RN\Ω and z ∈ ∂Ω be a nearest point to y in Ω. It is clear
that the set of such nearest points (as y varies) is dense in ∂Ω. Then Ω ⊂ {x ∈
RN : |x − y| ≥ |y − z|} = O where the last equality is the definition of O; now

this inclusion evidently implies J2,+
O Zero ⊂ J

2,+

Ω Zero(z). On the other hand, we

computed J2,+
O Zero(z) in Remark 2.7—with the notations n = (y − z)/|y − z| and

r = |y − z|, this computation shows that

(
−λn,

λ

r
I + µn⊗ n

)
∈ J2,+

O Zero(z)

for λ > 0 and µ ∈ R. Thus the assumption that u is a supersolution implies that

B(z, u(z), Du(z)− λn) ∧ F

(
z, u(z), Du(z)− λn,D2u(z) +

λ

r
I + µn⊗ n

)
≤ 0

for λ > 0 and µ ∈ R. Taking the limit superior as µ→ −∞ and using the fact that
assumption (7.28) implies B(z, u(z), Du(z) − λn) ≤ 0 for λ > 0 and then letting
λ ↓ 0 we find B(z, u(z), Du(z)) ≤ 0. Since z was an arbitrary “nearest point” and
these are dense in ∂Ω, the proof is complete. The reader will notice that it suffices
to choose n in (7.28) and (7.29) from NΩ(x).

7.E. Fully nonlinear boundary conditions. We conclude this section by de-
scribing an extremely general existence and uniqueness result for a fully nonlinear
first-order boundary operator of the form B = B(x, p), B ∈ C(∂Ω × RN ). We will
require that B satisfies

(7.30) B is uniformly continuous in p uniformly in x ∈ ∂Ω

and

(7.31) |B(x, p) −B(y, p)| ≤ ω(|x− y|(1 + |p|))

for some ω : [0,∞) → [0,∞) satisfying ω(0+) = 0 and for some ν > 0

(7.32) B(x, p+ λn(x)) ≥ B(x, p) + νλ for x ∈ ∂Ω, λ ≥ 0, p ∈ R
N .

We will also need to strengthen a bit the regularity of Ω by assuming that

(7.33) ∂Ω is of class C1,1.

Observe that (7.33) is stronger than (7.12) and (7.13) since Ω is bounded. The
loss of generality, however, is not really more restrictive for applications, since Ω
typically is either smooth or has “corners,” and corners are not allowed by (7.12)
in any case. (Corners typically require some ad hoc analysis.)

We have

Theorem 7.12. Let (7.30)–(7.33) and (7.14)–(7.16) hold. If u is a subsolution of

(BVP) and v is a supersolution of (BVP), then u ≤ v in Ω. Moreover, (BVP) has

a unique solution.
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Example 7.13. The Neumann boundary conditions of (7.11) are special cases of
those considered above; note that (7.31) holds since n is Lipschitz continuous on ∂Ω
because of (7.33). Similarly, this setting includes the more general linear oblique
derivative boundary condition corresponding to

(7.34) B(x, p) = 〈γ(x), p〉 + f(x)

where γ is Lipschitz and satisfies

(7.35) 〈γ(x), n(x)〉 ≥ ν > 0 for x ∈ ∂Ω;

note that f is merely required to be continuous on ∂Ω.

Nonlinear examples arising in optimal control and differential games are typically
written in the form

(7.36) B(x, p) = sup
α

(〈γα(x), p〉 + fα(x))

and

(7.37) B(x, p) = inf
β

sup
α

(〈γα,β(x), p〉 + fα,β(x))

where γα, fα, γα,β , fα,β are functions that satisfy the conditions (including conti-
nuity) laid on γ, f above uniformly in the parameters α, β.

As a last example, we offer the famous capillarity boundary condition that cor-
responds to

(7.38) B(x, p) = 〈n(x), p〉 − κ(x)(1 + |p|2)1/2

where κ ∈ C(∂Ω) and sup∂Ω |κ| < 1.
We will not prove Theorem 7.12 since its proof, while based on the strategies

presented above, requires some rather complex adaptations of them. We remark
that the form of the boundary operator B(x, p) could be generalized to B(x, r, p)
above, provided that B is nondecreasing with respect to r ∈ R and (7.30)–(7.32)
hold uniformly in bounded r.

Notes on §7. Boundary conditions in the viscosity sense first appeared in P.
L. Lions [121] and B. Perthame and R. Sanders [142] for Neumann or oblique
derivative problems for first order equations, making this problem well posed! A
general formulation was given later by H. Ishii [90]. Existence and uniqueness
was shown in P. L. Lions [121] (for the first-order case), H. Ishii and P. L. Lions
[96] (second-order case), and P. Dupuis and H. Ishii [60, 61] (second-order and
nonsmooth domains). However, it is worth emphasizing that the presentation we
give using Theorem 3.2 simplifies the arguments substantially (even in this special
case).

Concerning the Dirichlet problem, most of the works required (and often still
require) continuous solutions up to the boundary and prescribed data on the entire
boundary. It was first noted in P. L. Lions [116], G. Barles [14, 15] and H. Ishii
[86] that this can be achieved for special classes of equations by imposing compat-
ibility conditions on the boundary data or, in general, by assuming the existence



USER’S GUIDE TO VISCOSITY SOLUTIONS 49

of appropriate super and subsolutions. It was also noted in M. G. Crandall and R.
Newcomb [58] and P. E. Souganidis [156] that some part of the boundary may be
irrelevant (in the case of a first-order equation).

Progress on the understanding of Dirichlet boundary conditions was stimulated
by the “state constraints” problems studied first by M. Soner [149, 150] and later
by I. Capuzzo-Dolcetta and P. L. Lions [44]. This led to the “true” viscosity for-
mulation of Dirichlet conditions as considered in H. Ishii [90] and G. Barles and
B. Perthame [25, 26]. This formulation, in some sense, automatically selects the
relevant part of the boundary for degenerate problems and yields uniqueness for
continuous solutions. However, the existence of a continuous solution fails in gen-
eral (Example 7.8), and the situation is not entirely clear except for first-order
optimal control problems [25, 26, 90].

We also mention at this stage that some uniqueness results for semicontinuous
solutions have begun to emerge (G. Barles and B. Perthame [25, 26] and E. N.
Barron and R. Jensen [33, 34]) for optimal control problems and the study of some
second-order nondegenerate state constraints problems (J. M. Lasry and P. L. Lions
[111]).

Finally, the possibility of solving general equations with general fully nonlinear
oblique derivative type boundary conditions—a rather startling fact—was illus-
trated in G. Barles and P. L. Lions [24] for first-order equations. The full second-
order result of Theorem 7.12 is a generalization by G. Barles [21] of a similar result
of H. Ishii [91].

8. Parabolic problems

In this section we indicate how to extend the results of the preceeding sections
to problems involving the parabolic equation

(PE) ut + F (t, x, u,Du,D2u) = 0

where now u is to be a function of (t, x) andDu,D2u mean Dxu(t, x) and D2
xu(t, x).

We do this by discussing comparison for the Cauchy-Dirichlet problem on a bounded
domain; it will then be clear how to modify other proofs as well. Let O be a locally
compact subset of RN , T > 0, and OT = (0, T ) × O. We denote by P2,+

O , P2,−
O

the “parabolic” variants of the semijets J2,+
O , J2,−

O ; for example, if u : OT → R then

P2,+
O u is defined by (a, p,X) ∈ R × R

N × S(N) lies in P2,+
O u(s, z) if (s, z) ∈ OT

and

(8.1)
u(t, x) ≤u(s, z) + a(t− s) + 〈p, x− z〉 + 1

2 〈X(x− z), x− z〉

+ o(|t− s| + |x− z|2) as OT ∋ (t, x) → (s, z);

similarly, P2,−
O u = −P2,+

O (−u). The corresponding definitions of P
2,+

O , P
2,−

O are
then clear.

A subsolution of (PE) on OT is a function u ∈ USC(OT ) such that

(8.2) a+ F (t, x, u(t, x), p,X) ≤ 0 for (t, x) ∈ OT and (a, p,X) ∈ P2,+
O u(t, x);

likewise, a supersolution is a function v ∈ LSC(OT ) such that

(8.3) a+ F (t, x, v(t, x), p,X) ≥ 0 for (t, x) ∈ OT and (a, p,X) ∈ P2,−
O v(t, x);
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and a solution is a function that is simultaneously a subsolution and a supersolution.

Remark 8.1. Suppose we set x0 = t and x̃ = (x0, x). Then (PE) is an equation of the

form F̂ (x̃, u,Dx̃u,D
2
x̃u) = ux0

+ · · · that is proper if and only if F (t, x, u,Du,D2u)
is proper when t is held fixed. The definition of subsolutions, etc., of (PE), which
takes into account that only the first derivative with respect to t appears, does not
coincide with the definition of subsolutions, etc., of F̂ = 0 under this correspon-
dence. However, it is not hard to see that the two notions are equivalent.

We will illustrate the additional considerations that arise in dealing with the
Cauchy-Dirichlet problem for (PE) as opposed to the pure Dirichlet problem in the
elliptic case. The problem of interest has the form

(8.4)






(E) ut + F (t, x, u,Du,D2u) = 0 in (0, T ) × Ω,

(BC) u(t, x) = 0 for 0 ≤ t < T and x ∈ ∂Ω,

(IC) u(0, x) = ψ(x) for x ∈ Ω,

where Ω ⊂ RN is open and T > 0 and ψ ∈ C(Ω) are given. By a subsolution
of (8.4) on [0, T ) × Ω we mean a function u ∈ USC([0, T ) × Ω) such that u is a
subsolution of (E), u(t, x) ≤ 0 for 0 ≤ t < T and x ∈ ∂Ω and u(0, x) ≤ ψ(x) for
x ∈ Ω–the appropriate notions of supersolutions and solutions are then obvious.

Theorem 8.2. Let Ω ⊂ RN be open and bounded. Let F ∈ C([0, T ] × Ω × R ×
RN ×S(N)) be continuous, proper, and satisfy (3.14) for each fixed t ∈ [0, T ), with

the same function ω. If u is a subsolution of (8.4) and v is a supersolution of (8.4),
then u ≤ v on [0, T )× Ω.

To continue, we require the parabolic analogue of Theorem 3.2. It takes the
following form

Theorem 8.3. Let ui ∈ USC((0, T ) × Oi) for i = 1, . . . , k where Oi is a locally

compact subset of RNi . Let ϕ be defined on an open neighborhood of (0, T ) ×
O1 × · · · ×Ok and such that (t, x1, · · · , xk) → ϕ(t, x1, · · · , xk) is once continuously

differentiable in t and twice continuously differentiable in (x1, · · · , xk) ∈ O1 × · · ·×
Ok. Suppose that t̂ ∈ (0, T ), x̂i ∈ Oi for i = 1, . . . , k and

w(t, x1, . . . , xk) ≡ u1(t, x1) + · · · + uk(t, xk) − ϕ(t, x1, . . . , xk)

≤ w(t̂, x̂1, . . . , x̂k)

for 0 < t < T and xi ∈ O. Assume, moreover, that there is an r > 0 such that for

every M > 0 there is a C such that for i = 1, . . . , k

(8.5)
bi ≤ C whenever (bi, qi, Xi) ∈ P2,+

O ui(t, xi),

|xi − x̂i| + |t− t̂| ≤ r and |ui(t, xi)| + |qi| + ‖Xi‖ ≤M.

Then for each ε > 0 there are Xi ∈ S(Ni) such that

(8.6)





(i) (bi, Dxi
ϕ(t̂, x̂1, . . . , x̂k), Xi) ∈ P

2,+

Oi
ui(t̂, x̂i) for i = 1, . . . , k,

(ii) −

(
1

ε
+ ‖A‖

)
I ≤




X1 . . . 0
...

. . .
...

0 . . . Xk



 ≤ A+ εA2,

(iii) b1 + · · · + bk = ϕt(t̂, x̂1, . . . , x̂k),

where A = (D2
xϕ)(t̂, x̂1, . . . , x̂k).
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Observe that the condition (8.5) is guaranteed by having each ui be a subsolution
of a parabolic equation.

Proof of Theorem 8.2. We first observe that for ε > 0, ũ = u − ε/(T − t) is also a
subsolution of (8.4) and satisfies (PE) with a strict inequality; in fact,

ũt + F (t, x, ũ,Dũ,D2ũ) ≤ −
ε

(T − t)2
.

Since u ≤ v follows from ũ ≤ v in the limit ε ↓ 0, it will simply suffice to prove the
comparison under the additional assumptions

(8.7)





(i) ut + F (t, x, u,Du,D2u) ≤ −ε/T 2 < 0 and

(ii) lim
t↑T

u(t, x) = −∞ uniformly on Ω.

We will assume

(8.8) (s, z) ∈ (0, T ) × Ω and u(s, z) − v(s, z) = δ > 0

and then contradict this assumption. We may assume that u,−v are bounded
above. Let (t̂, x̂, ŷ) be a maximum point of u(t, x) − v(t, y) − (α/2)|x − y|2 over
[0, T )× Ω× Ω where α > 0; such a maximum exists in view of the assumed bound
above on u, −v, the compactness of Ω, and (8.7)(ii). The purpose of the term
(α/2)|x− y|2 is as in the elliptic case. Set

(8.9) Mα = u(t̂, x̂) − v(t̂, ŷ) −
α

2
|x̂− ŷ|2.

By (8.8), Mα ≥ δ. If t̂ = 0, we have

0 < δ ≤Mα ≤ sup
Ω×Ω

(
ψ(x) − ψ(y) −

α

2
|x− y|2

)
;

however, the right-hand side above tends to zero as α→ ∞ by Lemma 3.1, so t̂ > 0
if α is large. Likewise, x̂, ŷ ∈ Ω if α is large by u ≤ v on [0, T )× ∂Ω. Thus we may
apply Theorem 8.3 at (t̂, x̂, ŷ) to learn that there are numbers a, b and X,Y ∈ S(N)
such that

(a, α(x̂ − ŷ), X) ∈ P
2,+

O u(t̂, x̂), (b, α(x̂− ŷ), Y ) ∈ P
2,−

O v(t̂, ŷ)

such that

(8.10) a− b = 0 and − 3α

(
I 0
0 I

)
≤

(
X 0
0 −Y

)
≤ 3α

(
I −I

−I I

)
.

The relations
a+ F (t̂, x̂, u(t̂, x̂), α(x̂ − ŷ), X) ≤ −c,

b+ F (t̂, ŷ, v(t̂, ŷ), α(x̂ − ŷ), Y ) ≥ 0,

and (8.10) imply

c ≤ F (t̂, ŷ, v(t̂, ŷ), α(x̂ − ŷ), Y ) − F (t̂, x̂, u(t̂, x̂), α(x̂ − ŷ), X)

≤ ω(α|x̂ − ŷ| + |x̂− ŷ|)
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which leads to a contradiction as in the proof of Theorem 3.3.
Let us mention a couple of other adaptations of results above to parabolic prob-

lems. Section 5.B may be regarded as establishing continuity of solutions with
respect to boundary data and the equation itself. In the parabolic case, there is the
initial data, the boundary data, and the equation to consider. In the above context,
we may consider a solution of ut +F (t, x,Du,D2u) ≤ 0 in (0, T )×Ω and a solution
of vt + G(t, x,Dv,D2v) ≥ 0 in (0, T ) × Ω with the continuity and boundedness
properties assumed in Theorem 8.2. Suppose g(t) ≥ (G(t, x, p,X)− F (t, x, p,X))+

where g is continuous and (u(t, x) − v(t, x))+ ≤ K1 for (t, x) ∈ (0, T ) × ∂Ω,
(u(0, x) − v(0, x))+ ≤ K2 for x ∈ Ω. Then the function w(x, t) = v(x, t) +

max(K1,K2) +
∫ t

0
g(s) ds is a solution of wt + F (t, x,Dw,D2w) ≥ 0. In this way,

if we have comparison, we conclude that

u(t, x) ≤ v(t, x) + max

(
sup

(0,T )×∂Ω

(u− v)+, sup
{0}×Ω

(u− v)+

)
+

∫ t

0

g(s) ds.

In many cases we may put

g(t) = sup
RN×RN×S(N)

(G(t, ·) − F (t, ·))+,

and a simple example is G(t, x, p,X) = F (t, x, p,X) + f(t, x).

Notes on §8. The presentation follows M. G. Crandall and H. Ishii [48]. Let
us also mention that it is well recognized that most results concerning stationary
equations have straightforward parabolic analogues; indeed, the parabolic situation
is often better, since

ut + F (x, u,Du,D2u) = 0

more or less corresponds to λu+F (x, u,Du,D2u) = 0 with large λ > 0. Moreover,
the special linear dependence on ut in the parabolic case allows one to let F depend
on t in a merely measurable manner; see, e.g., H. Ishii [84], B. Perthame and P. L.
Lions [129], N. Barron and R. Jensen [32], and D. Nunziante [137, 138]. Another
special feature of the parabolic case is that, owing to the special structure, one
can often allow rather singular initial data. For example, infinite values may be
allowed and semicontinuity may suffice, depending on the situation (see, e.g., M.
G. Crandall, P. L. Lions, and P. E. Souganidis [57] and E. N. Barron and R. Jensen
[33, 34]).

9. Singular equations: an example from geometry

Let p⊗ q = {piqj}, the matrix with entries piqj . It can be shown that if ψ is a
smooth function and Dψ does not vanish on the level set Γ = {ψ = c} and u is a
classical solution of the Cauchy problem

(9.1) ut − trace

((
I −

Du⊗Du

|Du|2

)
D2u

)
= 0, u(0, x) = ψ(x)

on some strip (0, T )×RN , then Γt = {u(t, ·) = c} represents the result of evolving Γ
according to its mean curvature to the time t, whence there is geometrical interest
in (9.1). Indeed, in less regular situations where we have viscosity solutions, Γt has
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been proposed as a definition of the result of evolving Γ in this way. The nonlinearity
involved, which we hereafter denote F (p,X) = − trace((I − (p ⊗ p)/|p|2)X), is
degenerate elliptic on the set p 6= 0 and undefined at p = 0. Thus the results of
the preceeding sections do not apply immediately. However, this is easy to remedy
using the special form of the equation. The extensions of F to (0, X) given by

(9.2) F (p,X) =

{
F (p,X) if p 6= 0,

−2‖X‖ if p = 0,
F (p,X) =

{
F (p,X) if p 6= 0,

2‖X‖ if p = 0

are lower semicontinuous and upper semicontinuous respectively. We define u to
be a subsolution (respectively, supersolution) of ut + F (Du,D2u) = 0 if it is a
subsolution of ut + F (Du,D2u) = 0 (respectively, of ut + F (Du,D2u) = 0) and a
solution if it is both a subsolution and a supersolution. The reason that this will
succeed is roughly that, in the analysis, we will need only to insert X = 0 when we
have to deal with p = 0, so what one does with p = 0 is not important so long as
it is consistent. To illustrate matters in a slightly simpler setting, let us consider
instead the stationary problem

(9.3) u+ F (Du,D2u) − f(x) = 0 in R
N ,

where we use the corresponding definitions of subsolutions, etc. Theorem 5.1 re-
mains valid for the current F .

Theorem 9.1. Let f ∈ UC(RN ). Then ((9.3) has a unique solution u ∈ UC(RN ).

We sketch the proof, which proceeds according to the outline given in the proof
of Theorem 5.1 with slight twists.

Proof of comparison. The comparison proof is a slight modification of that of §5.D.
We begin assuming that u, v are a subsolution and a supersolution of (9.3) and
u(x) − v(y) ≤ L(1 + |x| + |y|) (which is (5.11), and then proceed as before, ending
up with

(9.4)
u(x̂) − v(ŷ) ≤ f(x̂) − f(ŷ) + F (p̂−DβR(ŷ),−Ẑ −D2βR(ŷ))

−F (p̂+DβR(x̂), Ẑ +D2βR(x̂))

in place of (5.14). This still implies a bound on u(x) − v(y) − 2K|x− y| as before.
Then proceeding still further with the proof, we adapt slightly and consider a
maximum point (x̂, ŷ) of

Φ(x, y) = u(x) − v(y) − (α|x − y|4 + ε(|x|2 + |y|2)),

which will exist by virtue of the bound already obtained. We assume, without loss
of generality for what follows, that Φ(x̂, ŷ) ≥ 0 so that for some C

(9.5) α|x̂− ŷ|4 + ε(|x̂|2 + |ŷ|2) ≤ u(x̂) − v(ŷ) ≤ 2K|x̂− ŷ| + C.

Using Remark 3.8, we then have the existence of X,Y ∈ S(N) such that

(9.6) (p̂+ 2εx̂,X + 2εI) ∈ J
2,+
u(x̂), (p̂− 2εŷ, Y − 2εI) ∈ J

2,−
v(ŷ)
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where

(9.7)
p̂ = 4α|x̂− ŷ|2(x̂− ŷ),

‖X‖, ‖Y ‖ ≤ C1α|x̂− ŷ|2 and X ≤ Y.

Now (9.5) implies that ε(|x̂|2 + |ŷ|2) and α|x̂ − ŷ|3, and hence p̂, are bounded
independently of ε ≤ 1 for fixed α ≥ 1 while α|x̂− ŷ|4 is also bounded independently
of α. Hence, εx̂, εŷ → 0 as ε ↓ 0. We have the following analogue of (5.18)

u(x̂) − v(ŷ) ≤ (F (p̂− 2εŷ, Y − 2εI) − F (p̂+ 2εx̂,X + 2εI)) + f(ŷ) − f(x̂)

that leads, by use of the estimates above, to

lim sup
ε↓0

(u(x̂) − v(ŷ)) ≤ F (p, Y0) − F (p,X0) + κ(C/(α)1/4)

where C is some constant and (p,X0, Y0) is a limit point of (p̂, X, Y ) as ε ↓ 0. If
p 6= 0, we are done since

F (p, Y0) − F (p,X0) = F (p, Y0) − F (p,X0) ≤ 0

because X0 ≤ Y0. If p = 0, we use the information 4α|x̂ − ŷ|2(x̂ − ŷ) → p = 0
and (9.7) (recall α is fixed) to conclude that X0 = Y0 = 0, and then F (p, Y0) =
F (p,X0) = 0, and we are still done.

Proof that solutions lie in UC(RN ). This is exactly as in §5.D.

Proof of existence. A supersolution and subsolution are produced exactly as in
§5.D. Perron’s method still applies here, since F is lower semicontinuous and, we
may use Lemma 4.4 as is with F replaced by F and the variant of Lemma 4.4 given
in Remark 4.5 with G− = F and G+ = F .

Notes on §9. As shown in §1, a number of equations arising from geometrical
considerations present singularities at p = 0. The fact that this can easily be
circumvented was shown independently by L. C. Evans and J. Spruck [72] and Y.
Chen, Y. Giga, and S. Goto [45]. We also mention the work of H. M. Soner [152]
on the equation (9.1) and the papers by G. Barles [16] and S. Osher and J. Sethian
[140], which showed how various geometrical questions about “moving fronts” could
be reduced to equations that can be handled by viscosity theory. A general class
of singular equations is treated in Y. Giga, S. Goto, H. Ishii, and M. H. Sato [80]
and M. H. Sato [146]; these works establish existence and uniqueness as well as
convexity properties of solutions.

10. Applications and perspectives

In this section we list some applications of the theory of viscosity solutions and
indicate some of the promising directions for development of the theory in the next
few years. We give some important references but they are not exhaustive.

To begin this rather long list of applications, we recall that perhaps the main
motivation for developing the theory was its relevance for the theories of Optimal
Control and Differential Games. Indeed, as is well known, in the theory of optimal
control of ordinary differential equations or stochastic differential equations (with
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complete observations) or in the theory of zero sum, two player deterministic or
stochastic differential games, the Dynamic Programming Principle (DPP for short)
states that the associated value functions should be characterized as the solutions
of associated partial differential equations. These equations are called Bellman or
or Hamilton-Jacobi-Bellman (HJB for short) equations in control theory or Isaacs
equations in differential games. The DPP was, however, heuristic and proofs of
it required more regularity of the value functions than they usually enjoy. The
flexibility of the theory of viscosity solutions has completely filled this regularity
gap: roughly speaking, value functions are viscosity solutions and are uniquely
determined by this fact (via the uniqueness of viscosity solutions). See, e.g., [70,
116, 118, 119, 153]. This basic theoretical fact allows a spectacular simplification
of the theory of deterministic differential games [70, 153] and also provided the
possibility of creating sound mathematical foundations for stochastic differential
games [77]. See also [88, 136] in addition to [29, 30].

The generalization of the definition of viscosity solutions to systems in diag-
onal form is rather straightforward and has applications to optimal control and
differential games. For these topics see, e.g., [43, 63, 92, 95, 114, 147]. In the
case of systems, a combination of viscosity solutions and weak solutions based on
distribution theory may define a natural notion of weak solutions [80].

More generally, as usual, a better understanding of existence-uniqueness issues
for classes of equations leads to a better understanding of more specific issues.
Typical examples here are perturbation questions, asymptotic problems, and a more
detailed solution of some specific applications to Engineering or Finance problems
[35, 161, 162]. Also, the part of the theory concerned with boundary conditions
has led to a rather complete theory for problems with state-constraints (at least for
deterministic problems) that are enforced by cost or boundary mechanisms [149,
150, 44, 90, 25, 26, 33, 34]. Let us also mention that an interesting link between
viscosity solutions and the other main argument of Control Theory, the Pontryagin
principle, has been shown [31, 9]. Of course, last but not least, these results have
led to numerical approaches to Control or Differential Games problems via the
resolution of the HJB (or Isaacs) equation.

Indeed, the viscosity solutions theory is intimately connected with numerical
analysis and scientific computing. First of all, it provides efficient tools to per-
form convergence analyses (e.g., [52, 28, 133, 155]). It also indicates how to build
discretization methods or schemes for other general boundary conditions and in
particular for classical boundary conditions when working with rather degenerate
equations [73, 144].

Another consequence of efficient existence, uniqueness, approximation, and con-
vergence results is the possibility of establishing or discovering various qualitative
properties of solutions (formulae, representations, singularities, geometrical prop-
erties, characterizations and properties of semigroups, . . .—[12, 40, 41, 54, 56, 70,
88, 124, 131]). Of course, one of the most important qualitative properties is the
regularity of solutions. Viscosity solutions, because of their flexibility and their
pointwise definition, have led to regularity results that are spectacular either in
their generality (regularizing effects, Lipschitz regularity, or semicontinuity—[122,
116, 57, 20, 18, 17]) or by their originality (C1,α, C2,α or pointwise Lp estimates—
[39, 96, 158, 159, 160, 103]).

The uniqueness and convergence parts of the theory have made possible partial
differential equations approaches to various asymptotic problems like large devia-
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tions [68, 76, 11, 141], geometrical optics [71, 23, 22, 13, 69], or homogenization
problems [66, 123, 128] by arguments that are both powerful and simple.

More specific applications concern the interplay between the behavior of so-
lutions at infinity and structure conditions [83, 54, 56, 134] or the treatment of
integrodifferential operators [112, 148]. Other applications concern some particular
classes of equations arising in Engineering like some models of the propagation of
fronts in Combustion Theory [16, 140], or the so-called shapes from shading models
in Vision Theory [144].

Finally, a large part of the theory (but not yet all of it) has been “raised”
to infinite-dimensional equations both for first-order and second-order equations
[55, 125–127]. In addition to “standard” extensions to infinite-dimensional spaces,
specific applications like the optimal control of partial differential equations or
even stochastic partial differential equations—this last topic being motivated in
particular by the optimal control of the so-called Zakai’s operation, a well-known
formulation of optimal control problems of finite-dimensional diffusion processing
with partial observations—require some new developments of the viscosity solutions
theory in order to accommodate unbounded terms in the equations [55, Parts IV
and V; 126, 8, 7, 151, 42, 157].

The above rather vague and general comments on applications already contain
many hints concerning promising directions the theory of viscosity solutions may
take in the near future. In particular, the infinite-dimensional part of the theory
will most probably explode in view of the unbounded possible avenues of inves-
tigation. Much more progress is also to be expected for degenerate second-order
equations and boundary conditions. In particular, progress is to be made on ex-
istence questions for Dirichlet (and state constraints) boundary conditions—this
might have a considerable impact on various applications like models in Finance.
Similarly, we expect progress on uniqueness and regularity questions for uniformly
elliptic second-order equations.

It is also reasonable to hope that the insight gained by viscosity solutions will
help to devise efficient high-order schemes for numerical approximations and prove
their convergence.

More specific developments should (and will) concern questions of behavior at
infinity, geometrical optics problems, the use and the theory of discontinuous solu-
tions, and the investigation of “second-order” integrodifferential operators . . . .

Of course, the reader should not restrict his imagination to the borders we drew
above.

Appendix. The proof of Theorem 3.2

In this section we sketch the proof of Theorem 3.2, which we reproduce here for
convenience.

Theorem 3.2. Let Oi be a locally compact subset of RNi for i = 1, . . . , k,

O = O1 × · · · × Ok,

ui ∈ USC(Oi), and ϕ be twice continuously differentiable in a neighborhood of O.

Set

w(x) = u1(x1) + · · · + uk(xk) for x = (x1, · · · , xk) ∈ O,
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and suppose x̂ = (x̂1, . . . , x̂k) ∈ O is a local maximum of w−ϕ relative to O. Then

for each ε > 0 there exists Xi ∈ S(Ni) such that

(Dxi
ϕ(x̂), Xi) ∈ J

2,+

O ui(x̂i) for i = 1, . . . , k

and the block diagonal matrix with entries Xi satisfies

(A.1) −

(
1

ε
+ ‖A‖

)
I ≤




X1 . . . 0
...

. . .
...

0 . . . Xk



 ≤ A+ εA2

where A = D2ϕ(x̂) ∈ S(N), N = N1 + · · · +Nk.

The sketch we give below will be somewhat abbreviated, but the main points
are all displayed and the reader should be able to provide any omitted details from
the indications given.

As defined and used in the main text, USC(O) consisted of the upper semicon-
tinuous functions mapping O into R; however, at this point it is convenient to allow
the value “ −∞,” so we hereafter set

USC(O) = { upper semicontinuous functions u : O → R ∪ {−∞}} .

The convenience is well illustrated by the following reduction. Below, conditions
written for the index i are understood to hold for i = 1, . . . , k.

First Reduction. We may as well assume that Oi = RNi . Indeed, if not, we
first restrict ui to a compact neighborhood Ki of x̂i in Oi and then extend the
restriction to RNi by ui(xi) = −∞ if xi 6∈ Ki (abusing notation and still writing
ui). The compactness of Ki guarantees that ui ∈ USC(RNi); one then checks that

J
2,+

O ui(x̂i) = J
2,+
ui(x̂i) (provided −∞ < ui(x̂i)). It is clear that x̂ is still a local

maximum of w − ϕ relative to RN = RN1+···+Nk . This device of putting functions
equal to −∞ on unimportant sets will be used several times below to localize
considerations to any compact neighborhood of a point under consideration.

Second Reduction. We may as well assume that x̂ = 0, ui(0) = 0, ϕ(x) =
1
2 〈Ax, x〉 for some A ∈ S(N) is a pure quadratic, and 0 is a global maximum of
w−ϕ. Indeed, a translation puts x̂ at the origin and then by replacing ϕ(x), ui(xi)
by ϕ(x)− (ϕ(0)+ 〈Dϕ(0), x〉) and ui(xi)− (ui(0)+ 〈Dxi

ϕ(0), xi〉), we reduce to the
situation x̂ = Dϕ(0) = 0, and ϕ(0) = ui(0) = 0. Then, since ϕ(x) = 1

2 〈Ax, x〉 +

o(|x|2) where A = D2ϕ(0) and w(x)− ϕ(x) ≤ w(0)− ϕ(0) = 0 for small x, if η > 0
we will have w(x) − 1

2 〈(A + ηI)x, x〉 < 0 for small x 6= 0. Globality of the (strict)
maximum at 0 may be achieved by localizing via the first reduction. If the result
holds in this case, we may use the bounds asserted in Theorem 3.2 to pass to the
limit as η ↓ 0 to obtain the full result.

Thus we have to prove the following

Theorem 3.2′. Let ui ∈ USC(RNi), ui(0) = 0, for i = 1, 2, . . . , k, N = N1 + · · ·+
Nk, A ∈ S(N), and

(A.2) w(x) = u1(x1) + · · · + uk(xk) ≤ 1
2 〈Ax, x〉 for x = (x1, · · · , xk) ∈ R

N .
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Then for each ε > 0, there exists Xi ∈ S(Ni) such that

(0, Xi) ∈ J
2,+

O ui(x̂i) for i = 1, . . . , k,

and the block diagonal matrix with entries Xi satisfies

(A.3) −

(
1

ε
+ ‖A‖

)
I ≤



X1 . . . 0
...

. . .
...

0 . . . Xk


 ≤ A+ εA2.

Here are the main steps in the proof:
Step 1. Introduction of the sup convolutions. If ε > 0, the Cauchy-Schwarz
inequality yields

(A.4) 〈Ax, x〉 ≤ 〈(A+ εA2)ξ, ξ〉 +

(
1

ε
+ ‖A‖

)
|x− ξ|2 for , x, ξ ∈ R

N .

Putting

(A.5) λ =
1

ε
+ ‖A‖

and using (A.2) and (A.5) we find

(A.6)

(
u1(x1) −

λ

2
|x1 − ξ1|

2

)
+ · · ·+

(
uk(xk) −

λ

2
|xk − ξk|

2

)
≤

1

2
〈(A+εA2)ξ, ξ〉

or w(x)−(λ/2)|x−ξ|2 ≤ (1/2)〈(A+εA2)ξ, ξ〉. If necessary, we modify the definition
of the ui off a neighborhood of 0 to assure that they are bounded above. Put

(A.7) ŵ(ξ) = sup
x∈RN

(
w(x) −

λ

2
|x− ξ|2

)
, ûi(ξi) = sup

xi∈R
Ni

(
ui(xi) −

λ

2
|xi − ξi|

2

)

so that ŵ(ξ) = û1(ξ1)+ · · ·+ ûk(ξk). Observe that, choosing xi = 0, ûi(0) ≥ ui(0) =
0 while û1(0) + · · · + ûk(0) ≤ 0, so ûi(0) = 0.
Step 2. Two results on semiconvex functions: Aleksandrov’s Theorem

and Jensen’s Lemma. The functions ŵ and ûi are semiconvex; more precisely,
since the supremum of convex functions is convex, ŵ(ξ) + (λ/2)|ξ|2 and ûi(ξ) +
(λ/2)|ξi|2 are convex. We then call λ a semiconvexity constant for ŵ and ûi. This
is the reason we will employ two nontrivial facts about semiconvex functions. The
first assertion is a classical result of Aleksandrov:

Theorem A.2. Let ϕ : R
N → R be semiconvex. Then ϕ is twice differentiable

almost everywhere on RN .

Proof. Since we assume that the members of our audience who are not functional
analytically oriented have already seen a proof of this result, we will give one for
those who are so oriented. In the course of proof we assume certain facts about
convex and Lipschitz functions that are known to most readers. References will be
given in the notes.
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We may as well assume that ϕ is convex; a convex function on RN is locally
Lipschitz and hence once differentiable almost everywhere. We let

F1 = {x ∈ R
N : Dϕ(x) exists};

the letter F being used to indicate that F1 has full measure (i.e., its complement
is a null set). The subdifferential ∂ϕ of ϕ is the set-valued function given by

ŷ ∈ ∂ϕ(x̂) if ϕ(x) ≥ ϕ(x̂) + 〈ŷ, x− x̂〉 for x ∈ R
N .

It is clear that ∂ϕ(x) = {Dϕ(x)} whenever ϕ is differentiable at x. In particular,
∂ϕ is single valued almost everywhere. By convex analysis, J = (I + ∂ϕ)−1 is a
single-valued mapping of RN into itself and is nonexpansive (has Lipschitz constant
1). (Given x ∈ R

N , the solution z of z + ∂ϕ(z) ∋ x is the value of J at x; z is
the minimum of q → ϕ(q) + 1

2 |x − q|2.) Since ϕ is defined on all of RN , ∂ϕ(z) is

nonempty for every z. We claim that for almost all x ∈ RN Dϕ is differentiable at
x, i.e., there exists A ∈ S(N) such that

Dϕ(y) = Dϕ(x) +A(y − x) + o(|y − x|) for y ∈ F1

for almost all x ∈ RN .
To establish this, let

F2 = {J(x) : J is differentiable at x and DJ(x) is nonsingular}.

Since J is Lipschitz continuous and onto RN (because ∂ϕ(z) is nonempty for every
z), F2 has full measure. We use here the facts that {x : DJ(x) exists } is a set of
full measure, J maps null sets to null sets and J({x : DJ(x) exists and is singular})
is null. It is to be shown that Dϕ is differentiable on F3 = F1 ∩ F2, which is a set
of full measure. By the definition of J ,

Dϕ(J(x)) = x− J(x) for J(x) ∈ F3 ⊂ F1.

Thus assume J(x) + δy ∈ F1 where δy is small. By assumption, Dϕ(J(x) + δy)
exists. Since J is Lipschitz andDJ(x) is nonsingular, if δy is sufficiently small, there
is a δx solving J(x+δx) = J(x)+δy, and we may choose δx to satisfy |δx| ≤ K|δy|
for some constant K. Since J is a contraction, we also have |δy| ≤ |δx| and thus
|δx| and |δy| are comparable. Then

Dϕ(J(x) + δy) = Dϕ(J(x + δx)) = x+ δx− J(x+ δx)

= Dϕ(Jx) + (δx−DJ(x)δx) + o(δx)

= Dϕ(Jx) + (I −DJ(x))δx + o(δy).

It remains to see that δx = (DJ(x))−1δy + o(δy); however, this follows from the
fact that |δx| and |δy| are comparable and the relation J(x) +DJ(x)δx + o(δx) =
J(x) + δy. We conclude that D(Dϕ)(J(x)) exists and is DJ(x)−1 − I.

It remains to establish that

ϕ(J(x) + δy) = ϕ(J(x)) +Dϕ(J(x))δy + 1
2 〈(DJ(x)−1 − I)δy, δy〉 + o(|δy|2)
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for J(x) ∈ F3. However, if we let ψ(δy) = ϕ(J(x) + δy) and ψ̃(δy) = ϕ(J(x)) +

Dϕ(Jx)δy+ 1
2 〈(DJ(x)−1 − I)δy, δy〉, we have ψ(0) = ψ̃(0) and for almost all small

δy
Dψ(δy) = Dϕ(J(x) + δy) = Dϕ(J(x)) + (DJ(x))−1δy − δy + o(δy)

= Dψ̃(δy) + o(δy);

thus Ψ(δy) = ψ(δy) − ψ̃(δy) is locally Lipschitz continuous and satisfies Ψ(0) = 0
and DΨ(δy) = o(δy) for almost all small δy. It is clear that then Ψ(δy) = o(|δy|2),
whence the result.

The next result we will need concerning semiconvex functions, which we call
Jensen’s lemma, follows. In the statement, B(x, r) is the closed ball of radius r
centered at x and Br is the ball centered at the origin.

Lemma A.3. Let ϕ : RN → R be semiconvex and x̂ be a strict local maximum

point of ϕ. For p ∈ RN , set ϕp(x) = ϕ(x) + 〈p, x〉. Then for r, δ > 0,

K = {x ∈ B(x̂, r) : there exists p ∈ Bδ for which ϕp has a local maximum at x}

has positive measure.

Proof. We assume that r is so small that ϕ has x̂ as a unique maximum point in
B(x̂, r) and assume for the moment that ϕ is C2. It follows from this that if δ is
sufficiently small and p ∈ Bδ, then every maximum of ϕp with respect to B(x̂, r)
lies in the interior of B(x̂, r). Since Dϕ + p = 0 holds at maximum points of ϕp,
Dϕ(K) ⊃ Bδ. Let λ ≥ 0 and ϕ(x)+(λ/2)|x|2 be convex; we then have −λI ≤ D2ϕ;
moreover, on K, D2ϕ ≤ 0 and then

−λI ≤ D2ϕ(x) ≤ 0 for x ∈ K.

In particular, | detD2ϕ(x)| ≤ λN for x ∈ K. Thus

meas(Bδ) ≤ meas(Dϕ(K)) ≤

∫

K

| detD2ϕ(x)|dx ≤ meas(K)|λ|N

(see the notes) and we have a lower bound on the measure of K depending only on
λ.

In the general case, in which ϕ need not be smooth, we approximate it via
mollification with smooth functions ϕε that have the same semiconvexity constant
λ and that converge uniformly to ϕ on B(x̂, r). The corresponding sets Kε obey
the above estimates for small ε and

K ⊃
∞⋂

n=1

∞⋃

m=n

K1/m

is evident. The result now follows.

Step 3. A consequence of Step 2 and magic properties of sup convolution.

Lemma A.4 below applies to ŵ of Step 1 and we shall see it provides us with matrices

Xi ∈ S(Ni) such that (0, Xi) ∈ J
2,+
ûi(0) and (A.3) holds.

We use the notation

(A.8) J2f(z) = J2,+f(z) ∩ J2,−f(z)

from which one defines J
2

analogously to J
2,+
, J

2,−
. Note that (p,X) ∈ J2f(x)

amounts to

f(y) = f(x) + 〈p, y − x〉 + 1
2 〈X(y − x), y − x〉 + o(|x− y|2) as y → x;

i.e., f is twice differentiable at x and p = Df(x), X = D2f(x).
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Lemma A.4. If f ∈ C(RN ), B ∈ S(N), f(ξ)+(λ/2)|ξ|2 is convex and maxRN (f(ξ)−
1
2 〈Bξ, ξ〉) = f(0), then there is an X ∈ S(N) such that (0, X) ∈ J

2
f(0) and

−λI ≤ X ≤ B.

Proof. Clearly f(ξ) − 1
2 〈Bξ, ξ〉 − |ξ|4 has a strict maximum at ξ = 0. By Aleksan-

drov’s Theorem and the convexity assumption, f is twice differentiable a.e. and
then by Jensen’s Lemma, for every δ > 0 there exists qδ ∈ RN with |qδ| ≤ δ such
that f(ξ) + 〈qδ, ξ〉 −

1
2 〈Bξ, ξ〉 − |ξ|4 has a maximum at a point ξδ with |ξδ| ≤ δ and

f(ξ) is twice differentiable at ξδ. From calculus, |qδ|, |ξδ| ≤ δ, and the convexity of
f(ξ) + (λ/2)|ξ|2,

Df(ξδ) = O(δ), −λI ≤ D2f(ξδ) ≤ B +O(δ2).

Observing that (Df(ξδ), D
2f(ξδ)) ∈ J2f(xδ), we conclude the proof upon passing

to a subsequential limit (selected so that D2f(ξδ) is convergent) as δ ↓ 0.
Applying Lemma A.4 to ŵ from (A.7) with B = A + εA2 and noting that the

values of J2ŵ are formed as one expects given the representation ŵ = û1 + · · ·+ ûk,

we obtain (0, Xi) ∈ J
2
ûi(0), i = 1, . . . , k such that (A.3) holds. The final step in

the proof of Theorem 3.2′ is provided by applying the next lemma to each ui to

conclude that (0, Xi) ∈ J
2,+
ui(0).

Here are magical properties of the sup convolution.

Lemma A.5. Let λ > 0, v ∈ USC(RM ) bounded above, and

v̂(ξ) = sup
x∈RM

(v(x) − (λ/2)|x− ξ|2).

If η, q ∈ RM, Y ∈ S(M), and (q, Y ) ∈ J2,+v̂(η), then

(q, Y ) ∈ J2,+v(η + q/λ) and v̂(η) + (1/2λ)|q|2 = v(η + q/λ).

In consequence, if (0, Y ) ∈ J
2,+
v̂(0), then (0, Y ) ∈ J

2,+
v(0).

Proof. We assume (q, Y ) ∈ J2,+v̂(η), and let y ∈ RN be a point such that v̂(η) =
v(y) − (λ/2)|y − η|2. Then for any x, ξ ∈ R

N

(A.9)

v(x) −
λ

2
|ξ − x|2 ≤ v̂(ξ)

≤ v̂(η) + 〈q, ξ − η〉

+
1

2
〈Y (ξ − η), ξ − η〉 + o(|ξ − η|2)

= v(y) −
λ

2
|y − η|2 + 〈q, ξ − η〉

+
1

2
〈Y (ξ − η)ξ − η〉 + o(|ξ − η|2)

= v(y) −
λ

2
|y − η|2 + 〈q, ξ − η〉 +O(|ξ − η|2).

Putting ξ = x− y + η in the appropriate one of these relations yields

(A.10) v(x) ≤ v(y) + 〈q, x− y〉 +
1

2
〈Y (x− y), x− y〉 + o(|x− y|2),
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while substituting x = y and ξ = η + α(λ(η − y) + q) yields

(A.11) 0 ≤ α|λ(η − y) + q|2 +O(α2).

The former simply says that (q, Y ) ∈ J2,+v(y) while the latter with small α < 0
implies that λ(η − y) + q = 0 or y = η + q/λ as claimed. The relation v̂(η) +
(1/2λ)|q|2 = v(η+ q/λ) follows at once. Assume now that (qn, Yn) ∈ J2,+v̂(ξn) and
(ξn, v̂(ξ), qn, Yn) → (0, 0, 0, Y ); by the foregoing, (qn, Yn) ∈ J2,+v(ξn + qn/λ) and
v(ξn + qn/λ) = v̂(ξn) + (1/2λ)|qn|2. By the definitions, v(0) ≤ v̂(0) and from this,
the upper semicontinuity and the foregoing, we have

v(0) ≥ lim sup
n→∞

v(ξn +
qn
λ

) = lim sup
n→∞

(v̂(ξn) +
1

2λ
|qn|

2) = v̂(0) ≥ v(0),

which provides the final piece of information we needed to conclude that (0, Y ) ∈

J
2,+
v(0).

Remark A.6. We close with a final and more elegant reformulation of what was
proved above: if the ui satisfy the conditions of Theorem 3.2, w(x) = u1(x1) +

· · · + uk(xk) and ((p1, . . . , pk), A) ∈ J
2,+

Ω w(x̂), then for each ε > 0, there exists

Xi ∈ S(Ni) such that (pi, Xi) ∈ J
2,+

O ui(x̂i) and (A.1) holds.

Notes on the appendix. Above, we provided (for the first time) a self-contained
proof of Theorem 3.2. Except for the two auxiliary results on semiconvex functions,
the main tool is the so-called sup convolution. This approximation procedure (more
often in the guise of inf convolution) is well known in functional analysis and, in
particular, in convex analysis and the theory of maximal monotone operators (see,
for example, the text [38] of H. Brezis). It was noticed in [110] that it may provide
an efficient regularization procedure for (even degenerate) elliptic equations; some
of its properties are given there. See also [104]. Its “magical properties” can be
seen as related to the Lax formula for the solution of

∂w

∂t
−

1

2
|∇w|2 = 0 for x ∈ R

N , t ≥ 0, w|t=0 = v on R
N ,

which is

w(x, t) = sup
y

{
v(y) −

1

2t
|x− y|2

}
.

Indeed, the coincidence of this solution formula and solutions produced by the
method of charteristics leads to the properties used. Of course, this is a heuristic
connection, since characteristic methods require too much regularity to be rigorous
here.

The inf convolution can also be seen as a nonlinear analogue of the standard
mollification when replacing the “linear structure of L2 and its duality” by the
“nonlinear structure of L∞ or C.” One can also interpret this analogy in terms of
the so-called exotic algebra (R, max, +).

Theorem A.2 is a classical result of A. D. Aleksandrov [1]. The proof given here
is in fact a slightly stronger form of this result (Dϕ is differentiable a.e.) and our
proof follows F. Mignot [135] (although we have made his proof more complicated
for pedagogical reasons). In the proof we used the fact that Lipschitz functions are
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differentiable a.e., which is called Rademacher’s Theorem. A proof may be found in
L. C. Evans and R. Gariepy [67] and F. Mignot [135]. We also used that Lipschitz
functions map null sets to null sets and the solvability of J(x + δy) = J(x) + δx
when DJ(x) exists and is nonsingular. These are proved in, respectively, Lemma
7.25 and the proof of Theorem 7.24 in W. Rudin [145]; see also [135]. We also
used the fact that J({x : DJ(x) exists and is singular}) is null. This follows from
the general formula

∫

RN

#(A ∩ J−1(y)) dy =

∫

A

| detDJ(x)| dx

where # is counting measure. This formula holds for Lipschitz continuous func-
tions and measurable sets A ⊂ RN and is a special case of the Area Formula for
Lipschitzian maps between Euclidean spaces. The Area Formula may be found in
L. C. Evans and R. Gariepy [67] and H. Federer [74].

Jensen’s Lemma (Lemma A.3) is a variation on an aspect of the theme known
as “Aleksandrov’s maximum principle” (see [2, 3, 6, 37, 120, 143]).
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time problems, Modèl. Math. Anal. Num. 21 (1987), 557–579.

26. , Exist time problems in optimal control and the vanishing viscosity method, SIAM
J. Control Optim. 26 (1988), 1133–1148.

27. , Comparison principle for Dirichlet-type H. J. equations and singular perturbations

of degenerate elliptic equations, Appl. Math. Optim. 21 (1990), 21–44.

28. G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear

second order equations, Asymp. Anal. 4 (1991), 271–283.

29. E. N. Barron, Differential games with maximum cost, Nonlinear Anal. Theory Methods
Appl. 14 (1990), 971–989.

30. E. N. Barron and H. Ishii, The Bellman equation for minimizing the maximum cost,
Nonlinear Anal. Theory Methods Appl. 13 (1989), 1067–1090.

31. E. N. Barron and R. Jensen, The Pontryagin maximum principle from dynamic pro-

gramming and viscosity solutions to first-order partial differential equations, Trans. Amer.
Math. Soc. 298 (1986), 635–641.

32. , Generalized viscosity solutions for Hamilton-Jacobi equations with time-measurable

Hamiltonians, J. Differential Equations 68 (1987), 10–21.

33. , Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex

Hamiltonians, Comm. Partial Differential Equations 15 (1990), 1713–1742.

34. , Optimal control and semicontinuous viscosity solutions, Proc. Amer. Math. Soc.
113 (1991), 397–402.

35. , A stochastic control approach to the pricing of options, Math. Operations Research
15 (1990), 49–79.

36. S. Benton, The Hamilton-Jacobi equation: A global approach, Academic Press, New York,
1977.

37. A. D. Bony, Principe du maximum dans les espaces de Sobolev, C. R. Acad. Sci. Paris Ser.
A 265 (1967), 333–336.

38. H. Brezis, Operateurs Maximaux Monotones et semigroupes de contractions dans les es-

paces de Hilbert, North-Holland, Amsterdam, 1973.

39. L. Caffarelli, Interior a priori estimates for solutions of fully non-linear equations, Ann.
of Math. (2) 130 (1989), 180–213.

40. P. Cannarsa and M. Soner, On the singularities of the viscosity solutions to Hamilton-

Jacobi-Bellman equations, Indiana Univ. Math. J. 46 (1987), 501–524.

41. , Generalized one-sided estimates for solutions of Hamilton-Jacobi equations and

applications, Nonlinear Anal. Theory Methods Appl. 13 (1989), 305–323.

42. P. Cannarsa, F. Gozzi, and M. Soner, A boundary value problem for Hamilton-Jacobi

equations in Hilbert spaces, Appl. Math. Opt. 24 (1991), 197–220.

43. I. Cappuzzo-Dolcetta and L. C. Evans, Optimal switching for ordinary differential equa-

tions, SIAM J. Optim. Control 22 (1988), 1133–1148.

44. I. Cappuzzo-Dolcetta and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations

and state constraints, Trans. Amer. Math. Soc. 318 (1990), 643–683.

45. Y. G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of

generalized mean curvature flow equations, J. Differential Geom. 33 (1991), 749–786.

46. M. G. Crandall, Quadratic forms, semidifferential and viscosity solutions of fully nonlinear

elliptic equations, Ann. I. H. Poincaré Anal. Non Linéaire 6 (1989), 419–435.
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