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1. Fully nonlinear equations and viscosity solutions

For general background, some textbooks on fully nonlinear equations are Caffarelli-
Cabré [4], Gutiérrez [17], Pogorelov [31] and [33] and Chapter 17 of Gilbarg-Trudinger
[16]. The first two books also include aspects of the viscosity theory. For the viscosity
theory, we have made much use of the two survey papers Crandall-Ishii-Lions [10] and
Crandall [8]. The notion of viscosity solutions originates for first order equations in
Crandall-Lions [11]. The basic idea to put derivatives on test functions by way of the
maximum principle originated in the work of Evans [12] and [13]. The notion of viscosity
solutions was extended to second order equations by Lions in [30].

2. Existence of viscosity solutions by the method of Perron

Again, while we have mainly followed the survey papers of Crandall-Ishii-Lions [10]
and Crandall [8], much more should be said. The Perron method was first used by Ishii
[19] for first order Hamilton-Jacobi equations and then extended by him to second order
equations in [20]. The key observation of Ishii was that a “good” uniqueness theory (in
particular, suitable maximum or comparison principles) allows for a completely nonlinear
adaptation of the method of Perron for existence (see the paper of Ishii-Lions [21] for
this discussion and numerous extensions of the Ishii program). The literature is rich
with extensions and variants of this method. See for example the work of Bardi and
collaborators [1] and [3].

3. Comparison principles, maximum principles and uniqueness

As we have noted, it is the comparison principle that presents the greatest challenge
in establishing uniqueness and sets the table for existence. A major breakthrough was
the work of Jensen [22] and [23] which freed the theory from its dependence on the
convexity (or concavity) in F (x, r, q, A) with respect to A ∈ Sym2(Rn) and makes use
of regularizations by way of the sup and inf convolutions . This was refined in Jensen-
Lions-Souganidis [24]. The analytical underpinnings of the comparison principle were
further reformulated making use of the technique of doubling variables and penalization
and culminates in the Theorem on Sums of Crandall and Ishii [9] which in turn had
its origins in Ishii [20] and Ishii-Lions [21] and Crandall [8]. For additional progress on
maximum and comparison principles for equations with degenerate ellipticity see the
papers of Bardi-Da Lio [2] Bardi-Mannucci [3] and Kawohl-Kutev [25], [26] and [27]. On
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the other hand, for uniformly elliptic equations (and with more regularity) there is older
work of Evans [14] and Trudinger [35].

4. Elliptic branches and duality

An important alternative to the viscosity theory begins with the paper of Krylov [29]
on the general notion of ellipticity in which the notion of elliptic branches associated
to fully nonlinear equations is introduced. This concept led Harvey-Lawson [18] to
intoduce a suitable notion of duality which reformulates the notion of viscosity solutions
in a precise topological framework.

5. Regularity of viscosity solutions

We have not had time to touch the important topic of regularity for viscosity solutions.
A nice survey in the case F (D2u) = f(x) is provided in Part I of the lectures by Evans
[15] and a more complete picture is given in Chapter 17 of Gilbarg-Trudinger [16]. In
particular, important points along this road is the method of Pogorelov [32] , [31], [33],
the work of Cheng-Yau [6] and [7], the landmark paper of Caffarelli-Nirenberg-Spruck
[5] and the papers of Krylov [28] and Trudinger [34] just to name a few.
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