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Introduction

These lecture notes are an abridged version of the book written for a course in
the 27th Brazilian Mathematics Colloquium, and correspond to the lectures given
at the Universidade Federal Fluminense, Niterói, Brazil in 2011.

This course covered basic notions in viscosity solutions and its applications to
deterministic optimal control and differential games. This books is partially based
on a course on Calculus of Variations and Partial Differential Equations that I
have taught over the years at the Mathematics Department of Instituto Superior
Técnico. I would like to thank my students: Tiago Alcaria, Patŕıcia Engrácia, Śılvia
Guerra, Igor Kravchenko, Anabela Pelicano, Ana Rita Pires, Verónica Qúıtalo, Lu-
cian Radu, Joana Santos, Ana Santos, and Vitor Saraiva, which took my courses
and suggested me several corrections and improvements. Also my post-docs An-
drey Byriuk, Filippo Cagnetti, and Milena Chermisi, and my colleagues Pedro
Girão, Cláudia Nunes Philipart, and António Serra have suggested numerous im-
provements on the original text. I would like to thank Artur Lopes that challenged
me to present the proposal of the original course at IMPA. I would like to thank
Max Souza for the invitation to give these lectures to a very interested and engaging
audience.

The structure of this text is the following: we start with a survey of classical
mechanics and classical calculus of variations. Then we present the basic tools in
classical optimal control. We continue with a discussion of viscosity solutions for the
terminal value problem. We follow with a brief discussion of zero sum differential
games. We ended the course with an introduction to games based upon the author’s
joint work with Joana Mohr and Rafael Souza from the Universidade Federal do
Rio Grande do Sul.

For additional material, the reader should consult the bibliographical refer-
ences. In each chapter we have a section on bibliographical notes that lists the
main references on the material of that chapter.
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Classical calculus of variations

This chapter is dedicated to the study of classical mechanics and calculus of
variations. We start by discussing the minimum action principle, Euler-Lagrange
equations and some applications to Classical Mechanics. In section 2 we establish
further necessary conditions for minimizers. The following section is dedicated to
the Hamiltonian formalism. We end the chapter with some bibliographical notes.

1. Euler-Lagrange Equations

In classical mechanics, the trajectories x : [0, T ]→ Rn of a mechanical system
are determined by a variational principle called the minimal action principle. This
principle asserts that the trajectories are minimizers (or at least critical points) of
an integral functional. In this section we study this problem and discuss several
examples.

Consider a mechanical system on Rn with kinetic energy K(x, v) and potential
energy U(x, v). We define the Lagrangian, L(x, v) : Rn × Rn → R to be difference
between the kinetic energy K and potential energy U of the system, that is, L =
K −U . The variational formulation of classical mechanics asserts that trajectories
of this mechanical system minimize (or are at least critical points) of the action
functional

S[x] =
∫ T

0

L(x(t), ẋ(t))dt,

under fixed boundary conditions. More precisely, a C1 trajectory x : [0, T ]→ Rn is
a minimizer S under fixed boundary conditions if for any C1 trajectory y : [0, T ]→
Rn such that x(0) = y(0) and x(T ) = y(T ) we have

S[x] ≤ S[y].

In particular, for any C1 function ϕ : [0, T ]→ Rn with compact support in (0, T ),
and any ε ∈ R we have

i(ε) = S[x + εϕ] ≥ S[x] = i(0).

9



10 2. CLASSICAL CALCULUS OF VARIATIONS

Thus i(ε) has a minimum at ε = 0. So, if i is differentiable, i′(0) = 0. A trajectory
x is a critical point of S, if for any C1 function ϕ : [0, T ] → Rn with compact
support in (0, T ) we have

i′(0) =
d

dε
S[x + εϕ]

∣∣∣∣
ε=0

= 0.

The critical points of the action which are of class C2 are solutions to an
ordinary differential equation, the Euler-Lagrange equation, that we derive in what
follows. Any minimizer of the action functional satisfies further necessary conditions
which will be discussed in section 2.

Theorem 1 (Euler-Lagrange equation). Let L(x, v) : Rn × Rn → R be a C2

function. Suppose that x : [0, T ]→ Rn is a C2 critical point of the action S under
fixed boundary conditions x(0) and x(T ). Then

(1)
d

dt
DvL(x, ẋ)−DxL(x, ẋ) = 0.

Proof. Let x be as in the statement. Then for any ϕ : [0, T ] → Rn with
compact support on (0, T ), the function

i(ε) = S[x + εϕ]

has a minimum at ε = 0. Thus
i′(0) = 0,

that is, ∫ T

0

DxL(x, ẋ)ϕ+DvL(x, ẋ)ϕ̇ = 0.

Integrating by parts, we conclude that∫ T

0

[
d

dt
DvL(x, ẋ)−DxL(x, ẋ)

]
ϕ = 0,

for all ϕ : [0, T ] → Rn with compact support in (0, T ). This implies (1) and ends
the proof of the theorem. �

Example 1. In classical mechanics, the kinetic energy K of a particle with
mass m with trajectory x(t) is:

K = m
|ẋ|2

2
.

Suppose that the potential energy U(x) depends only on the position x. Assume
also that U is smooth. Then the Lagrangian for this mechanical system is then

L = K − U.

and the corresponding Euler-Lagrange equation is

mẍ = −U ′(x),
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which is the Newton’s law. J

Exercise 1. Let P ∈ Rn, and consider the Lagrangian L(x, v) : Rn ×Rn → R
defined by L(x, v) = g(x)|v|2 + P · v − U(x), where g and U are C2 functions.
Determine the Euler-Lagrange equation and show that it does not depend on P .

Exercise 2. Suppose we form a surface of revolution by connecting a point
(x0, y0) with a point (x1, y1) by a curve (x, y(x)), x ∈ [0, 1], and then revolving it
around the y axis. The area of this surface is∫ x1

x0

x
√

1 + ẏ2dx.

Compute the Euler-Lagrange equation and study its solutions.

To understand the behavior of the Euler-Lagrange equation it is sometimes
useful to change coordinates. The following proposition shows how this is achieved:

Proposition 2. Let x : [0, T ]→ Rn be a critical point of the action∫ T

0

L(x, ẋ)dt.

Let g : Rn → Rn be a C2 diffeomorphism and L̂ given by

L̂(y, w) = L(g(y), Dg(y)w).

Then y = g−1 ◦ x is a critical point of∫ T

0

L̂(y, ẏ)dt.

Proof. This is a simple computation and is left as an exercise to the reader.
�

Before proceeding, we will discuss some applications of variational methods to
classical mechanics. As mentioned before, the trajectories of a mechanical system
with kinetic energy K and potential energy U are critical points of the action
corresponding to the Lagrangian L = K−U . In the following examples we use this
variational principle to study the motion of a particle in a central field, and the
planar two body problem.

Example 2 (Central field motion). Consider the Lagrangian of a particle in
the plane subjected to a radial potential field.

L(x,y, ẋ, ẏ) =
ẋ2 + ẏ2

2
− U(

√
x2 + y2).
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Consider polar coordinates, (r, θ), that is (x, y) = (r cos θ, r sin θ) = g(r, θ), We
can change coordinates (see proposition 2) and obtain the Lagragian in these new
coordinates

L̂(r, θ, ṙ, θ̇) =
r2θ̇2 + ṙ2

2
− U(r).

Then the Euler-Lagrange equations can be written as

d

dt
r2θ̇ = 0

d

dt
ṙ = −U ′(r) + rθ̇2.

The first equation implies that r2θ̇ ≡ η is conserved. Therefore, rθ̇2 = η2

r3 . Multi-
plying the second equation by ṙ we get

d

dt

[
ṙ2

2
+ U(r) +

η2

2r2

]
= 0.

Consequently

Eη =
ṙ2

2
+ U(r) +

η2

2r2

is a conserved quantity. Thus, we can solve for ṙ as a function of r (given the
values of the conserved quantities Eη and η) and so obtain a first-order differential
equation for the trajectories. J

Example 3 (Planar two-body problem). Consider now the problem of two
point bodies in the plane, with trajectories (x1,y1) and (x2,y2). Suppose that the
interaction potential energy U depends only on the distance

√
(x1 − x2)2 + (y1 − y2)2

between them. We will show how to reduce this problem to the one of a single body
under a radial field.

The Lagrangian of this system is

L = m1
ẋ2

1 + ẏ2
1

2
+m2

ẋ2
2 + ẏ2

2

2
− U(

√
(x1 − x2)2 + (y1 − y2)2).

Consider new coordinates (X,Y, x, y), where (X,Y ) is the center of mass

X =
m1x1 +m2x2

m1 +m2
, Y =

m1y1 +m2y2

m1 +m2
,

and (x, y) the relative position of the two bodies

x = x1 − x2, y = y1 − y2.

In these new coordinates the Lagrangian, using proposition 2, is

L̂ = L̂1(Ẋ, Ẏ) + L̂2(x,y, ẋ, ẏ).

Therefore, the equations for the variables X and Y are decoupled from the ones for
x,y. Elementary computations show that

d2

dt2
X =

d2

dt2
Y = 0.
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Thus X(t) = X0 +VXt and Y(t) = Y0 +VY t, for suitable constants X0, Y0, VX and
VY .

Since

L2 =
m1m2

m1 +m2

ẋ2 + ẏ2

2
− U(

√
x2 + y2),

the problem now is reduced to the previous example. J

Exercise 3 (Two body problem). Consider a system of two point bodies in
R3 with masses m1 and m2, whose relative location is given by the vector r ∈ R3.
Assume that the interaction depends only on the distance between the bodies. Show
that by choosing appropriate coordinates, the motion can be reduced to the one of
a single point particle with mass M = m1m2

m1+m2
under a radial potential. Show, by

proving that r× ṙ is conserved, that the orbit of a particle under a radial field lies
in a fixed plane for all times.

Exercise 4. Let x : [0, T ]→ Rn be a solution to the Euler-Lagrange equation
associated to a C2 Lagrangian L : Rn × Rn → R. Show that

E(t) = −L(x, ẋ) + ẋ ·DvL(x, ẋ)

is constant in time. For mechanical systems this is simply the conservation of
energy. Occasionally, the identity d

dtE(t) = 0 is also called the Beltrami identity.

Exercise 5. Consider a system of n point bodies of mass mi, and positions
ri ∈ R3, 1 ≤ i ≤ n. Suppose the kinetic energy is T =

∑
i
mi
2 |ṙ|

2 and the potential
energy is U = −

∑
i,j 6=i

mimj
2|ri−rj | . Let I =

∑
imi|ri|2. Show that

d2

dt2
I = 4T + 2U,

which is strictly positive if the energy T + U is positive. What implications does
this identity have for the stability of planetary systems?

Exercise 6 (Jacobi metric). Let L(x, v) : Rn × Rn → R be a C2 Lagrangian.
Let x : [0, T ]→ Rn be a solution to the corresponding Euler-Lagrange

(2)
d

dt
DvL−DxL = 0,

for the Lagrangian

L(x, v) =
|v|2

2
− V (x).

Let E(t) = |ẋ(t)|2
2 + V (x(t)).

1. Show that Ė = 0.
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2. Let E0 = E(0). Show that x is a solution to the Euler-Lagrange equation

(3)
d

dt
DvLJ −DxLJ = 0

associated to LJ =
√
E0 − V (x)|ẋ|.

3. Show that any reparametrization in time of x is also a solution to (3) and
observe that the functional∫ T

0

√
E0 − V (x)|ẋ|

represents the lenght of the path between x(0) and x(T ) using the Jacobi
metric g =

√
E0 − V (x).

4. Show that the solutions to the Euler-Lagrange (3) when reparametrized in
time in such a way that the energy of the reparametrized trajectory is E0

satisfy (2).

Exercise 7 (Braquistochrone problem). Let (x1, y1) be a point in a (vertical)
plane. Show that the curve y = u(x) that connects (0, 0) to (x1, y1) in such a way
that a particle with unit mass moving under the influence a unit gravity field reaches
(x1, y1) in the minimum amount of time minimizes∫ x1

0

√
1 + u̇2

−2u
dx.

Hint: use the fact that the sum of kinetic and potential energy is constant.

Determine the Euler-Lagrange equation and study its solutions, using exercise
4.

Exercise 8. Consider a second-order variational problem:

(4) min
x

∫ T

0

L(x, ẋ, ẍ)

where the minimum is taken over all trajectories x : [0, T ]→ Rn with fixed boundary
data x(0),x(T ), ẋ(0), ẋ(T ). Determine the Euler-Lagrange equation corresponding
to .

2. Further necessary conditions

A classical strategy in the study of variational problems consists in establishing
necessary conditions for minimizers. If there exists a minimizer and if the necessary
conditions have a unique solution, then this solution has to be the unique minimizer
and thus the problem is solved. In addition to Euler-Lagrange equations, several
other necessary conditions can be derived. In this section we discuss boundary
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conditions which arise, for instance when the end-points are not fixed, and second-
order conditions.

2.1. Boundary conditions. In certain problems, the boundary conditions,
such as end point values are not prescribed a-priori. In this case, it is possible to
prove that the minimizers satisfy certain boundary conditions automatically. These
are called natural boundary conditions.

Example 4. Consider the problem of minimizing the integral

(5)
∫ T

0

L(x, ẋ)dt,

over all C2 curves x : [0, T ]→ Rn. Note that the boundary values for the trajectory
x at t = 0, T are not prescribed a-priori.

Let x be a minimizer of (5) (with free endpoints). Then for all ϕ : [0, T ]→ Rn,
not necessarily compactly supported,∫ T

0

DxL(x, ẋ)ϕ+DvL(x, ẋ)ϕ̇dt = 0.

Integrating by parts and using the fact that x is a solution to the Euler-Lagrange
equation, we conclude that

DvL(x(0), ẋ(0)) = DvL(x(T ), ẋ(T )) = 0.

J

Exercise 9. Consider the problem of minimizing the integral∫ T

0

L(x, ẋ)dt,

over all C2 curves x : [0, T ]→ Rn such that x(0) = x(T ). Deduce that

DvL(x(0), ẋ(0)) = DvL(x(T ), ẋ(T )).

Use the previous identity to show that any periodic (smooth) minimizer is in fact a
periodic solutions to the Euler-Lagrange equations.

Exercise 10. Consider the problem of minimizing∫ T

0

L(x, ẋ)dt+ ψ(x(T )),

with x(0) fixed and x(T ) free. Derive a boundary condition at t = T for the mini-
mizers.

Exercise 11 (Free boundary).
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Consider the problem of minimizing∫ T

0

L(x, ẋ),

over all terminal times T and all C2 curves x : [0, T ] → Rn. Show that x is a
solution to the Euler-Lagrange equation and that

L(x(T ), ẋ(T )) = 0,

DxL(x(T ), ẋ(T ))ẋ(T ) +DvL(x(T ), ẋ(T ))ẍ(T ) ≥ 0,

DvL(x(T ), ẋ(T )) = 0.

Let q ∈ R and L : R2 → R given by

L(x, v) =
(v − q)2

2
+
x2

2
− 1

If possible, determine T and x : [0, T ]→ R that are (local) minimizers of∫ T

0

L(x, ẋ)ds,

with x(0) = 0.

2.2. Second-order conditions. If f : R → R is a C2 function which has a
minimum at a point x0 then f ′(x0) = 0 and f ′′(x0) ≥ 0. For the minimal action
problem, the analog of the vanishing of the first derivative is the Euler-Lagrange
equation. We will now consider the analog to the second derivative being non-
negative.

The next theorem concerns second-order conditions for minimizers:

Theorem 3 (Jacobi’s test). Let L(x, v) : Rn×Rn → R be a C2 Lagrangian. Let
x : [0, T ] → Rn be a C1 minimizer of the action under fixed boundary conditions.
Then, for each η : [0, T ]→ Rn, with compact support in (0, T ), we have

(6)
∫ T

0

1
2
ηTD2

xxL(x, ẋ)η + ηTD2
xvL(x, ẋ)η̇ +

1
2
η̇TD2

vvL(x, ẋ)η̇ ≥ 0.

Proof. If x is a minimizer, the function ε 7→ I[x+εη] has a minimum at ε = 0.
By computing d2

dε2 I[x + εη] at ε = 0 we obtain (6). �

A corollary of the previous theorem is Lagrange’s test that we state next:

Corollary 4 (Lagrange’s test). Let L(x, v) : Rn × Rn → R be a C2 La-
grangian. Suppose x : [0, T ] → Rn is a C1 minimizer of the action under fixed
boundary conditions. Then

D2
vvL(x, ẋ) ≥ 0.
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Proof. Use Theorem 3 with η = εξ(t) sin t
ε , for ξ : [0, T ]→ Rn, with compact

support in (0, T ), and let ε→ 0. �

Exercise 12. Let L : R2n → R be a continuous Lagrangian and let x : [0, T ]→
Rn be a continuous piecewise C1 trajectory. Show that for each δ > 0 there exists
a trajectory yδ : [0, T ]→ Rn of class C1 such that∣∣∣∣∣

∫ T

0

L(x, ẋ)−
∫ T

0

L(yδ, ẏδ)

∣∣∣∣∣ < δ.

As a corollary, show that the value of the infimum of the action over piecewise C1

trajectories is the same as the infimum over trajectories globally C1. Note, however,
that a minimizer may not be C1.

Exercise 13 (Weierstrass test). Let x : [0, T ] → Rn be a C1 minimum of the
action corresponding to a Lagrangian L. Let v, w ∈ Rn and 0 ≤ λ ≤ 1 be such that
λv + (1− λ)w = 0. Show that

λL(x, ẋ + v) + (1− λ)L(x, ẋ + w) ≥ L(x, ẋ).

Hint: To prove the inequality at a point t0, choose η such that

η̇(t) =


v if t0 ≤ t ≤ t+ λε

w if t+ λε < t ≤ t0 + ε

0 otherwise

and consider I[x + η], as ε→ 0.

3. Hamiltonian dynamics

In this section we introduce the Hamiltonian formalism of Classical Mechanics.
We start by discussing the main properties of the Legendre transform. Then we
derive Hamilton’s equations. Afterwards we discuss briefly the classical theory
of canonical transformations. The section ends with a discussion of additional
variational principles.

3.1. Legendre transform. Before we proceed, we need to discuss the Le-
gendre transform of convex functions. The Legendre transform is used to define
the Hamiltonian of a mechanical system and it plays an essential role in many
problems in calculus of variations. Additionally, it illustrates many of the tools
associated with convexity.
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Let L(v) : Rn → R be a convex function, satisfying the following superlinear
growth condition:

lim
|v|→∞

L(v)
|v|

= +∞.

The Legendre transform L∗ of L is

L∗(p) = sup
v∈Rn

[−v · p− L(v)] .

This is the usual definition of Legendre transform in optimal control, see [FS06] or
[BCD97]. However, it differs by a sign from the Legendre transform traditionally
used in classical mechanics:

L](p) = sup
v∈Rn

[v · p− L(v)] ,

as it is defined, for instance, in [AKN97] or [Eva98]. They are related by the
elementary identity

L∗(p) = L](−p).

We will frequently denote L∗(p) by H(p). The Legendre transform of H is denoted
by H∗ and is

H∗(v) = sup
p∈Rn

[−p · v −H(p)] .

In classical mechanics, the Lagrangian L can depend also on a position coor-
dinate x ∈ Rn, L(x, v), but for purposes of the Legendre transform x is taken as a
fixed parameter. In this case we write also H(p, x) = L∗(p, x).

Proposition 5. Let L(x, v) be a C2 function, which for each x fixed is strictly
convex and superlinear in v. Let H = L∗. Then

1. H(p, x) is convex in p;
2. H∗ = L;
3. for each x

lim
|p|→∞

H(p, x)
|p|

=∞;

4. let v∗ be defined by p = −DvL(x, v∗), then

H(p, x) = −v∗ · p− L(x, v∗);

5. in a similar way, let p∗ be given by v = −DpH(p∗, x), then

L(x, v) = −v · p∗ −H(p∗, x);

6. if p = −DvL(x, v) or v = −DpH(p, x), then

DxL(x, v) = −DxH(p, x).
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Proof. The first statement follows from the fact that the supremum of convex
functions is a convex function. To prove the second point, observe that

H∗(x,w) = sup
p

[−w · p−H(p, x)]

= sup
p

inf
v

[(v − w) · p+ L(x, v)] .

For v = w we conclude that

H∗(x,w) ≤ L(x,w).

The opposite inequality is obtained by observing, since L is convex in v, that for
each w ∈ Rn there exists s ∈ Rn such that

L(x, v) ≥ L(x,w) + s · (v − w).

Therefore,

H∗(x,w) ≥ sup
p

inf
v

[(p+ s) · (v − w) + L(x,w)] ≥ L(x,w),

by letting p = −s.

To prove the third point observe that

H(p, x)
|p|

≥ λ−
L(x,−λ p

|p| )

|p|
,

by choosing v = −λ p
|p| . Thus, we conclude

lim inf
|p|→∞

H(p, x)
|p|

≥ λ.

Since λ is arbitrary, we have

lim inf
|p|→∞

H(p, x)
|p|

=∞.

To establish the fourth point, note that for fixed p the function

v 7→ v · p+ L(x, v)

is differentiable and strictly convex. Consequently, its minimum, which exists by
coercivity and is unique by the strict convexity, is achieved for

−p−DvL(x, v) = 0.

Note also that v as function of p is a differentiable function by the inverse function
theorem.

The proof of the fifth point is similar.

Finally, to prove the last item, observe that for

p(x, v) = −DvL(x, v),
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we have

H(p(x, v), x) = −v · p(x, v)− L(x, v).

Differentiating this last equation with respect to x and using

v = −DpH(p(x, v), x),

we obtain

DxH = −DxL.

�

Exercise 14. Compute the Legendre transform of the following functions:

1.

L(x, v) =
1
2
aij(x)vivj + hi(x)vi − U(x),

where aij is a positive definite matrix and h(x) an arbitrary vector field.
2.

L(x, v) =
√
aij(x)vivj ,

where aij is a positive definite matrix.
3.

L(x, v) =
1
2
|v|λ − U(x),

with λ > 1.

Exercise 15. By allowing the Lagrangian and its Legendre transform to as-
sume the values ±∞ comute the Legendre transforms of

1. for ω ∈ Rn

L(v) =

0 if v = ω

+∞ otherwise.

2. for ω ∈ Rn set

L(v) = ω · v.

3. for R > 0

L(v) =

0 if |v| ≤ R

+∞ otherwise.
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3.2. Hamiltonian formalism. To motivate the Hamiltonian formalism, we
consider the following alternative problem. Rather than looking for curves x :
[0, T ]→ Rn, which minimize the action∫ T

0

L(x, ẋ)dt

we can consider extended curves (x,v) : [0, T ]→ R2n which minimize the action

(7)
∫ T

0

L(x,v)dt

and that satisfy the additional constraint ẋ = v. Obviously, this problem is equiva-
lent to the original one, however it motivates the introduction of a Lagrange multi-
plier p in order to enforce the constraint. Therefore, we will look for critical points
of

(8)
∫ T

0

L(x,v) + p · (v − ẋ)dt.

Proposition 6. Let L : Rn × Rn → R be a smooth Lagrangian. Let (x,v) :
[0, T ] → R2n be a critical point of (7) under fixed boundary conditions and under
the constraint ẋ = v (the choice of p is irrelevant since the corresponding term
always vanishes). Let

p = −DvL(x,v).

Then the curve (x,v,p) is a critical point of (8) under fixed boundary conditions.
Additionally, any critical point (x,v,p) of (8) satisfies

ẋ = v

p = −DvL(x,v)

ṗ = DxL(x,v).

In particular, x is a critical point of (7). Furthermore, the Euler-Lagrange equation
can be rewritten as

ṗ = DxH(p,x) ẋ = −DpH(p,x).

Proof. Let φ, ψ and η be C2([0, T ],Rn) with compact support in (0, T ). Then,
at ε = 0

d

dε

∫ T

0

L(x + εφ,v + εψ) + (p + εη) · (v − ẋ) + ε(p + εη) · (ψ − φ̇)

=
∫ T

0

DxL(x, ẋ)φ+DvLψ + p · (ψ − φ̇) + η · (v − ẋ)

=
∫ T

0

[DxL(x, ẋ) + ṗ]φ = 0.
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If p = −DvL(x, v), then v maximizes

−p · v − L(x, v).

Let
H(p, x) = max

v
[−p · v − L(x, v)] .

By proposition 5 we have

DxH(p, x) = −DxL(x, v)

whenever
p = −DvL(x, v).

Additionally, we also have
v = −DpH(p, x).

Therefore, the Euler-Lagrange equation can be rewritten as

ṗ = DxH(p,x) ẋ = −DpH(p,x).

These are the Hamilton equations. �

Exercise 16. Suppose H(p, x) : Rn×Rn → R is a C1 function. Show that the
energy, which coincides with H, is conserved by the Hamiltonian flow since

d

dt
H(p,x) = 0.

4. Bibliographical notes

There is a very large literature on the topics of this chapter. The main references
we have used were [Arn95] and [AKN97]. Two classical physics books on this
subject are [Gol80] and [LL76]. On the more geometrical perspective, the reader
may want to look at [dC92] (see also [dC79]) and [Oli02]. Additional material
on classical calculus of variations can be found in [Dac09] and the classical book
[Bol61]. A very good reference in Portuguese is [Lop06].
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3

Classical optimal control

In this chapter we consider deterministic optimal control problems and its con-
nection with Hamilton-Jacobi equations. We start the discussion, in the next sec-
tion, with the set up of the problem. Then we present some elementary properties
and examples. The dynamic programming principle and Pontryangin maximum
principles are discussed in sections 3 and 5, respectively. The Pontryagin max-
imum principle is the analog of the Euler-Lagrange equation for optimal control
problems. Then, in section 6 we will show that if the value function V is differen-
tiable, it satisfies the Hamilton-Jacobi partial differential equation

−Vt +H(DxV, x, t) = 0,

in which H(p, x), the Hamiltonian, is the (generalized) Legendre transform of the
Lagrangian L

(9) H(p, x, t) = sup
v∈U
−p · f(x, v)− L(x, v, t).

We end this chapter with a verification theorem, section 7 that establishes that a
sufficiently smooth solution to the Hamilton-Jacobi equation is the value function.

1. Optimal Control

A typical problem in optimal control, whose study we begin now is the terminal
value optimal control problem. For that let the control space be a closed convex
subset U of Rm. A control on an interval I ⊂ R is a measurable function u : I → U .
Let f : Rn × U → Rn be a continuous function, Lipschitz in x. For each control u
we can consider the controlled dynamics

(10) ẋ = f(x,u).

We could of course consider control laws depending on time without any problem
whatsoever. We consider integral solutions of (10), i.e., x is a solution of (10) with
initial condition x(t) = x0 if

x(T ) = x0 +
∫ T

t

f(x(s),u(s))ds,

25
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for all T > t. It is well known from ODE theory that, at least locally in time,
equation (10) admits a unique integral solution, for any (bounded) control u.

We are given a running cost L : Rn × U → R and a terminal cost ψ : Rn → R.
To avoid technical problems we assume that both L and ψ are bounded below and,
without loss of generality (by adding suitable constants), we suppose for definite-
ness, L,ψ ≥ 0. Furthermore, we require ψ ∈ L∞ and L to satisfy the following
bound: there exists u0 ∈ U and a constant C such that

(11) L(x, u0) ≤ C.

Given a terminal time T , the terminal value optimal control problem consists in
determining the optimal trajectories x(·) which minimize

J [u;x, t] =
∫ T

t

L(x,u)ds+ ψ(x(t1)),

among all bounded controls u(·) : [t, t1]→ Rn and all solutions x of (10) satisfying
the initial condition x(t) = x.

The value function V is

(12) V (x, t) = inf J [u;x, t]

in which the infimum is taken over all controls on [t, T ].

An important example is the ”calculus of variations setting”, where, f(x, u) =
u, and the optimal trajectories x(·), as we have shown, are solutions to the Euler-
Lagrange equation

d

dt

∂L

∂v
(x, ẋ)− ∂L

∂x
(x, ẋ) = 0.

Furthermore, p = −DvL(x, ẋ) is a solution of Hamilton’s equations:

ẋ = −DpH(p,x), ṗ = DxH(p,x).

In the next chapter we will consider this problem under the light of optimal control
and generalize the previous results.

In section 4, before considering the ”calculus of variations setting”, we study
a simpler but important situation, the bounded control case. In this the control
space U is a compact convex set.

Furthermore, in that section we suppose additionally that L(x, u) is a bounded
continuous function, convex in u. We assume further that the function f(x, u)
satisfies the following Lipschitz condition

|f(x, u)− f(y, u)| ≤ C|x− y|.
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To establish existence of optimal solutions we simplify even more by assuming that
f(x, u) has the form

(13) f(x, u) = A(x)u+B(x),

where A and B are Lipschitz continuous functions.

2. Elementary properties

In this section we establish some elementary properties of the terminal value
problem.

Proposition 7. The value function V satisfies the following inequalities

−‖ψ‖∞ ≤ V ≤ c1|T − t|+ ‖ψ‖∞.

Proof. The first inequality follows from L ≥ 0. To obtain the second inequal-
ity it is enough to observe that

V ≤ J(x, t; 0) ≤ c1|T − t|+ ‖ψ‖∞.

�

Example 5 (Lax-Hopf formula). Suppose that L(x, v) ≡ L(v), L convex in v

and coercive. Assume further that f(x, v) = v. By Jensen’s inequality

1
T − t

∫ T

t

L(ẋ(s)) ≥ L

(
1

T − t

∫ T

t

ẋ(s)

)
= L

(
y − x
T − t

)
,

where y = x(T ). Therefore, to solve the terminal value optimal control problem, it
is enough to consider constant controls of the form u(s) = y−x

T−t . Thus

V (x, t) = inf
y∈Rn

[
(T − t)L

(
y − x
T − t

)
+ ψ(y)

]
,

and, consequently, the infimum is a minimum. Thus Lax-Hopf formula gives an
explicit solution to the optimal control problem. J

Exercise 17. Let Q and A be n× n constant, positive definite, matrices. Let
L(v) = 1

2v
TQv and ψ(y) = 1

2y
TAy. Use Lax-Hopf formula to determine V (x, t).

Proposition 8. Let ψ1(x) and ψ2(x) be continuous functions such that

ψ1 ≤ ψ2.

Let V1(x, t) and V2(x, t) be the corresponding value functions. Then

V1(x, t) ≤ V2(x, t).
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Proof. Fix ε > 0. Then there exists an almost optimal control uε and corre-
sponding trajectory xε such that

V2(x, t) >
∫ T

t

L(xε(s),uε(s), s)ds+ ψ2(xε(T ))− ε.

Clearly

V1(x, t) ≤
∫ T

t

L(xε(s),uε(s), s)ds+ ψ1(xε(T )),

and therefore

V1(x, t)− V2(x, t) ≤ ψ1(xε(t1))− ψ2(xε(t1)) + ε ≤ ε.

Since ε is arbitrary, this ends the proof. �

An important corollary is the continuity of the value function on the terminal
value, with respect to the L∞ norm.

Corollary 9. Let ψ1(x) and ψ2(x) be continuous functions and V1(x, t) and
V2(x, t) the corresponding value functions. Then

sup
x
|V1(x, t)− V2(x, t)| ≤ sup

x
|ψ1(x)− ψ2(x)|.

Proof. Note that

ψ1 ≤ ψ̃2 ≡ ψ2 + sup
y
|ψ1(y)− ψ2(y)|.

Let Ṽ2 be the value function corresponding to ψ̃2. Clearly,

Ṽ2 = V2 + sup
y
|ψ1(y)− ψ2(y)|.

By the previous proposition,

V1 − Ṽ2 ≤ 0,

which implies

V1 − V2 ≤ sup
y
|ψ1(y)− ψ2(y)|.

By reverting the roles of V1 and V2 we obtain the other inequality. �

3. Dynamic programming principle

The dynamic programming principle, that we prove in the next theorem, is
simply a semigroup property that the evolution of the value function satisfies.
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Theorem 10 (Dynamic programming principle). Suppose that t ≤ t′ ≤ T .
Then

(14) V (x, t) = inf
u

[∫ t′

t

L(x(s),u(s), s)ds+ V (y, t′)

]
,

where x(t) = x and ẋ = f(x,u).

Proof. Denote by Ṽ (x, t) the right hand side of (14). For fixed ε > 0, let uε

be an almost optimal control for V (x, t). Let xε(s) be the corresponding trajectory
trajectory, i.e., assume that

J(x, t; uε) ≤ V (x, t) + ε.

We claim that Ṽ (x, t) ≤ V (x, t) + ε. To check this, let x(·) = xε(·) and y = xε(t′).
Then

Ṽ (x, t) ≤
∫ t′

t

L(xε(s),uε(s), s)ds+ V (y, t′).

Additionally,

V (y, t′) ≤ J(y, t′; uε).

Therefore

Ṽ (x, t) ≤ J(x, t; uε) ≤ V (x, t) + ε,

and, since ε is arbitrary, Ṽ (x, t) ≤ V (x, t).

To prove the opposite inequality, we will proceed by contradiction. Therefore,
if Ṽ (x, t) < V (x, t), we could choose ε > 0 and a control u] such that∫ t′

t

L(x](s),u](s), s)ds+ V (y, t′) < V (x, t)− ε,

where ẋ] = f(x],u]), x](t) = x, and y = x](t′). Choose u[ such that

J(y, t′; u[) ≤ V (y, t′) +
ε

2
Define u? as u?(s) = u](s) for s < t′

u?(s) = u[(s) for t′ < s.

So, we would have

V (x, t)− ε >
∫ t′

t

L(x](s),u](s), s)ds+ V (y, t′) ≥

≥
∫ t′

t

L(x](s),u](s), s)ds+ J(y, t′; u[)− ε

2
=

= J(x, t; u?)− ε

2
≥ V (x, t)− ε

2
,

which is a contradiction. �
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4. Optimal controls - bounded control space

We now give a proof of the existence of optimal controls for bounded control
space. The unbounded case will be addressed in §3.

Lemma 11. Let f is as in (13) a linear control law. Then J is weakly lower
semicontinuous, with respect to weak-* convergence in L∞.

Proof. Let un be a sequence of controls such that un
∗
⇀u in L∞[t, t1]. Then,

by using Ascoli-Arzela theorem, we can extract a subsequence of xn(·) converging
uniformly to x(·). Furthermore, because the control law (13) is linear we have

ẋ = f(x,u).

We have

J(x, t; un) =
∫ t1

t

[L(xn(s),un(s), s)− L(x(s),un(s), s)] ds+

+
∫ t1

t

L(x(s),un(s), s)ds+ ψ(xn(t1)).

The first term,
∫ t1
t

[L(xn(s),un(s), s)− L(x(s),un(s), s)] ds, converges to zero. Sim-
ilarly, ψ(xn(t1))→ ψ(x(t1)). Finally, the convexity of L implies

L(x(s),un(s), s) ≥ L(x(s),u(s), s) +DvL(x(s),u(s), s)(un(s)− u(s)).

Since un ⇀ u, ∫ t1

t

DvL(x(s),u(s), s)(un(s)− u(s))ds→ 0.

Hence
lim inf J(x, t; un) ≥ J(x, t; u),

that is, J is weakly lower semicontinuous. �

Using the previous result we can now state and prove our first existence result.

Lemma 12. Suppose the control set U is bounded, closed and convex. There
exists a minimizer u∗ of J .

Proof. Let un be a minimizing sequence, that is, such that

J(x, t; un)→ inf
u∈UR

J(x, t; u).

Because this sequence is bounded in L∞, by Banach-Alaoglu theorem we can extract
a sequence un

∗
⇀u∗. Clearly, we have u∗ ∈ U , by closeness and convexity. We claim

now that
J(x, t; u∗) = inf

u
J(x, t; u).
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This just follows from the weak lower semicontinuity:

inf
u
J(x, t; u) ≤ J(x, t; u∗) ≤ lim inf J(x, t; un) = inf

u
J(x, t; u),

which ends the proof. �

Example 6 (Bang-Bang principle). Consider the case of a bounded closed con-
vex control space U and suppose the Lagrangian L is constant. Suppose f(x, u) =
Au+ B, for suitable constant matrices A and B, and that the terminal value ψ is
convex.

In this setting we first observe that the set of all optimal controls is convex. As
such it admits an extreme point u∗. We claim that u∗ takes values on ∂U .

To see this, choose a time r and suppose that for some ε there is a set of positive
measure in [r, r + ε] for which u∗ is in the interior of U . Then there exists an L∞

function ν supported on this set such that
∫ r+ε
r

dν = 0, and such that u∗ ± ν is
an admissible control. By our assumptions it is also an optimal control. It is clear
then that u∗ is not an extreme point, which is a contradiction. J

5. Pontryagin maximum principle

In this section we assume the control space U is bounded and that we can apply
the results of the previous section to establish existence of an optimal control u∗

and corresponding optimal trajectory x∗. We assume also that the terminal data
ψ is differentiable.

Let r ∈ [t, t1) be a point where u∗ is strongly approximately continuous, i.e.,

ϕ(u∗(r)) = lim
δ→0

1
δ

∫ r+δ

r

ϕ(u∗(s))ds,

for all continuous functions ϕ (note that in the limit δ can take both positive and
negative values). Note that almost any r is a point of approximate continuity, see
[EG92]. Denote by Ξ0 the fundamental solution of

(15) ξ̇0 = Dxf(x∗,u∗)ξ0,

with Ξ0(r) = I.

Let p∗ be given by

(16) p∗(r) = Dxψ(xR(t1))Ξ0(t1) +
∫ t1

r

DxL(x∗(s),u∗(s), s)Ξ0(s)ds.
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Lemma 13 (Pontryagin maximum principle). Suppose that ψ is differentiable.
Let u∗ be an optimal control for initial data (x, t) and x∗ the corresponding optimal
trajectory. Then, for almost all r ∈ (t, T ),

f(x∗(r),u∗(r)) · p∗(r) + L(x∗(r),u∗(r), r)(17)

= min
v∈U

[f(x∗, v) · p∗(r) + L(x∗(r), v, r)] .

Proof. Let v ∈ U . For almost all r ∈ (t, T ) u∗ is strongly approximately
continuous (see [EG92]). Let r be one of these points. Let δ ≥ 0 Define

uδ(s) =

v if r − δ < s < r

u∗(s) otherwise.

Let

xδ(s) =


x∗(s) if t < s < r − δ

x∗(r) +
∫ s
r−δ f(x∗δ , v) if r − δ < s < r

x∗(s) + δξδ(s) if r − δ < s < T,

where

ξδ(r) =
1
δ

∫ r

r−δ
[f(x∗δ(s), v)− f(x∗(s),u∗(s))] ds,

and yδ ≡ x∗(s) + δξδ(s) solves, for r < s < t1,

ẏδ = f(yδ,u∗).

Observe that

(18) ξ0(r) = lim
δ→0

ξδ(r + δ) = f(x∗(r), v)− f(x∗(r),u∗(r)).

By a standard ODE result we have that ξδ converges, as δ → 0, to a solution ξ0 of
(15) with initial data given by (18). Thus ξ0(s) = Ξ0(s) (f(x∗(r), v)− f(x∗(r),u∗(r))).

Clearly

J(t, x; u∗) ≤
∫ T

t

L(xδ(s),uδ(s), s)ds+ ψ(x∗(T ) + δξδ).

This last inequality implies

1
δ

∫ r

r−δ
[L(xδ(s), v, s)− L(x∗(s),u∗(s), s)] ds+

+
1
δ

∫ T

r

[L(x∗(s) + δξδ,u∗(s), s)− L(x∗(s),u∗(s), s)] ds+

+
1
δ

[ψ(x∗(T ) + δξδ)− ψ(x∗(T ))] ≥ 0.

When δ → 0, the first term converges to

L(x∗(r), v, r)− L(x∗(r),u∗(r), r),
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since u∗ is strongly approximately continuous. The second term converges to∫ T

r

DxL(x∗(s),u∗(s), s)ξ0(s)ds,

whereas the third one has the following limit:

Dxψ(xR(T )) · ξ0(T )).

This implies that for almost all r ∈ (t, T ),

L(x∗(r), v, r)− L(x∗(r),u∗(r), r)

+ p∗(r) · (f(x∗(r), v)− f(x∗(r),u∗(r))) ≥ 0.

Consequently

f(x∗(r),u∗(r)) · p∗(r) + L(x∗(r),u∗(r), r)

= min
v∈U

[f(x∗(r), v) · p∗(r) + L(xR(r), v, r)] ,

as required. �

6. The Hamilton-Jacobi equation

We now show that if the value function is differentiable then it is a solution to
the Hamilton-Jacobi equation.

Theorem 14. Let V be the value function to the terminal value problem. Sup-
pose V is C1. Then it solves the Hamilton-Jacobi equation

−Vt +H(DxV, x) = 0.

Proof. Fix any constant control u∗. Then, by the dynamic programming
principle

V (x, t) ≤
∫ t+h

t

L(x(s), u∗) + V (x(t+ h), t+ h).

By using Taylor’s formula, dividing by h we obtain, as h→ 0,

0 ≤ Vt + L(x, u∗) + f(x, u∗) ·DxV

≤ Vt −H(DxV, x),

that is

−Vt +H(DxV, x) ≤ 0.

Suppose now that in fact the previous inequality were strict at a point (x0, t0), that
is

−Vt(x0, t0) +H(DxV (x0, t0), x0) = −δ < 0.
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Then in a neighborhood N of (x0, t0) we have

−Vt(x, t) +H(DxV (x, t), x) < −δ
2
.

Let u∗ be an optimal control, and let τ be the exit time of N of the corresponding
trajectory. Then, by Taylor’s formula,

V (x(τ), τ)− V (x0, t0) =
∫ τ

t0

Vt + f ·DxV

and, by the dynamic programming principle

V (x0, t0) =
∫ τ

t0

L(x,u∗)dt+ V (x(τ), τ).

Thus

0 =
∫ τ

t0

L(x,u∗) + Vt + f ·DxV dt

≥
∫ τ

t0

Vt −H(DxV (x, t),x) ≥ δ

2
(τ − t0),

which is a contradiction. �

Exercise 18. Let M(t), N(t) be n×n matrices with time-differentiable coeffi-
cients. Suppose that is N invertible. Let D be a n × n constant matrix. Consider
the Lagrangian

L(x, v) =
1
2
xTM(t)x+

1
2
vTN(t)v

and the terminal condition ψ = 1
2x

TDx. Show that there exists a solution to the
Hamilton-Jacobi with terminal condition ψ at t = T (at least for t close to T ) of
the form

V =
1
2
xTP (t)x,

where P (t) satisfies the Ricatti equation

Ṗ = PTN−1P −M

and P (T ) = D.

7. Verification theorem

Now we will show that any sufficiently smooth solution to the Hamilton-Jacobi
equation is the value function and it can be used to compute an optimal control.

Theorem 15. Let L(x, v) be a C1 Lagrangian, strictly convex in v, and let
f(x, u) be a linear control law as in (13), and H be the generalized Legendre trans-
form (9) of L. Let Φ(x, t) be a classical solution to the Hamilton-Jacobi equation

(19) −Φt +H(DxΦ, x) = 0
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on the time interval [0, T ], with terminal data Φ(x, T ) = ψ(x). Then, for all 0 ≤
t ≤ T ,

Φ(x, t) = V (x, t),

where V is the value function.

Proof. Let u be a control on [t, T ] and x be the corresponding solution to

ẋ = f(x,u),

with x(t) = x. Then, using Φ(x(T ), T ) = ψ(x(T )) we have

ψ(x(T ))− Φ(x(t), t) =
∫ T

t

d

ds
Φ(x(s), s)ds

=
∫ T

t

DxΦ(x(s), s) · f(x,u) + Φs(x(s), s)ds.

Adding
∫ T
t
L(x(s),u(s))ds+Φ(x(t), t) to the above equality and taking the infimum

over all controls u, we obtain

inf

(∫ T

t

L(x(s),u(s))ds+ ψ
(
x(T )

))
= Φ(x(t), t)

+ inf

(∫ T

t

Φs(x(s), s) + L(x(s),u(s)) +DxΦ(x(s), s) · f(x,u)ds

)
.

Now recall that for any v,

−H(p, x) ≤ L(x, v) + p · f(x, v),

therefore

V (x, t) = inf

(∫ T

t

L(x(s), ẋ(s))ds+ ϕ
(
x(T )

))

≥ Φ(x(t), t) + inf

(∫ T

t

(
Φs(x(s), s)−H(DxΦ(x(s), s),x(s))

)
ds

)
= Φ(x(t), t).

Let r(x, t) be uniquely defined (uniqueness follows from convexity) as

(20) r(x, t) ∈ argminv∈U L(x, v) +DxΦ(x, t) · f(x, v).

A simple argument shows that r is a continuous function.

Now consider the trajectory x obtained by solving the following differential
equation

ẋ(s) = f(x, r(x(s), s)),
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with initial condition x(t) = x. Note that since the right-hand side is continuous
there is a solution, although it may not be unique. Then

V (x, t) = inf

(∫ T

t

L(x(s), ẋ(s))ds+ ψ
(
x(T )

))

≤ Φ(x(t), t) +
∫ T

t

(
Φs
(
x(s), s

)
−H

(
DxΦ(x(s), s),x(s)

))
ds

= Φ(x(t), t),

which ends the proof. �

We should observe from the proof that (20) gives an optimal feedback law
for the optimal control, provided we can find a solution to the Hamilton-Jacobi
equation (19).

8. Bibliographical notes

The main references we have used on optimal control are [BCD97], [FS06],
[Lio82], [Bar94], and [Eva98].
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Viscosity solutions

In this chapter we build upon the theory developed previously to study the
terminal value problem. In section 2 we give some technical results concerning
subdifferentials and semiconcavity. Then, in section 3 we consider the issue of
existence of controls and regularity of the value function in the calculus of variations
setting. It is well known that first order partial differential equations such as the
Hamilton-Jacobi equation may not admit classical solutions. Using the method
of characteristics, the next exercise gives an example of non-existence of smooth
solutions:

Exercise 19. Solve, using the method of characteristics, the equationut + u2
x = 0 x ∈ R, t > 0

u(x, 0) = ±x2.

It is therefore necessary to consider weak solutions to the Hamilton-Jacobi
equation: viscosity solutions. In section §4 we develop the theory of viscosity
solutions for Hamilton-Jacobi equations, and show that the value function is the
unique viscosity solution of the Hamilton-Jacobi equation.

1. Viscosity Solutions

A bounded uniformly continuous function V is a viscosity subsolution (resp.
supersolution) of the Hamilton-Jacobi equation (27) if for any C1 function φ and
any interior point (x, t) ∈ argmax V − φ (resp. argmin) then

−Dtφ+H(Dxφ, x, t) ≤ 0

(resp. ≥ 0) at (x, t). A bounded uniformly continuous function V is a viscosity
solution of the Hamilton-Jacobi equation if it is both a sub and supersolution.

The value function is a viscosity solution of (27), although it may not be a
classical solution. The motivation behind the definition of viscosity solution is
the following: if V is differentiable and (x, t) ∈ argmaxV − φ (or argmin) then

37
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DxV = Dxφ and DtV = Dtφ, therefore we should have both inequalities. The
specific choice of inequalities is related with the following parabolic approximation
of the Hamilton-Jacobi equation

(21) −Dtu
ε +H(Dxu

ε, x, t) = ε∆uε.

This equation arises naturally in optimal stochastic control. The limit ε → 0
corresponds to the case in which the diffusion coefficient vanishes.

Proposition 16. Let uε be a family of solutions of (21) such that, as ε → 0,
the sequence uε → u uniformly. Then u is a viscosity solution of (27).

Proof. Suppose that φ(x, t) is a C2 function such that u−φ has a strict local
maximum at (x, t). We must show that

−Dtφ+H(Dxφ, x, t) ≤ 0.

By hypothesis, uε → u uniformly. Therefore we can find sequences (xε, tε)→ (x, t)
such that uε − φ has a local maximum at (xε, tε). Therefore,

Duε(xε, tε) = Dφ(xε, tε)

and

∆uε(xε, tε) ≤ ∆φ(xε, tε).

Consequently,

−Dtφ(xε, tε) +H(Dxφ(xε, tε), xε, tε) ≤ ε∆φ(xε, tε).

It is therefore enough to take ε→ 0 to end the proof. �

Theorem 17. Assume we are in the bounded control case. The value function
is a viscosity solution to

−Vt +H(DV, x) = 0.

Proof. Let ϕ(x, t) be a smooth function and let (x0, t0) ∈ argminV − ϕ.
Without loss of generality we may assume V (x0, t0) = ϕ(x0, t0), and so V (x, t) ≥
ϕ(x, t) for all (x, t).

By the dynamic programming principle, there exists uh and xh such that

ϕ(x0, t0) = V (x0, t0) ≥
∫ t0+h

t0

L(xh,uh)dt+ V (xh(t0 + h), t0 + h)− h2

≥
∫ t0+h

t0

L(xh,uh)dt+ ϕ(xh(t0 + h), t0 + h)− h2.
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Using Taylor’s formula we then conclude that

0 ≥
∫ t0+h

t0

(L(x,u) + ϕt + fDxϕ) dt− h2

≥
∫ t0+h

t0

(ϕt −H(Dϕ(x),x)) dt− h2.

Dividing by h and sending h→ 0, we conclude that

−ϕt(x0, t0) +H(Dxϕ(x0, t0), x0) ≥ 0,

since supt0≤s≤t0+h |xh(s)− x0| → 0, since we are in the bounded control setting.

To obtain the second inequality, suppose (x0, t0) ∈ argmaxV − ϕ. As before,
without loss of generality we may assume V (x0, t0) = ϕ(x0, t0), and so V (x, t) ≤
ϕ(x, t) for all (x, t).

Let u∗ be a constant control. Then, by the dynamic programming principle

ϕ(x0, t0) = V (x0, t0) ≤
∫ t0+h

t0

L(x,u∗)dt+ V (x(t0 + h), t0 + h)

≤
∫ t0+h

t0

L(x,u∗)dt+ ϕ(x(t0 + h), t0 + h).

This then implies, by sending h→ 0,

0 ≤ L(x0,u∗) + ϕt + fDxϕdt,

and so

−ϕt(x0, t0) +H(Dxϕ(x0, t0), x0) ≤ 0.

�

2. Sub and superdifferentials

Before proceeding with the general case of unbounded control spaces we will
need to discuss some technical results concerning sub-differentials and semiconcav-
ity.

Let ψ : Rn → R be a continuous function. The superdifferential D+
x ψ(x) of ψ

at x is the set of vectors p ∈ Rn such that

lim sup
|v|→0

ψ(x+ v)− ψ(x)− p · v
|v|

≤ 0.

Consequently, p ∈ D+
x ψ(x) if and only if

ψ(x+ v) ≤ ψ(x) + p · v + o(|v|),
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as |v| → 0. Similarly, the subdifferential, D−x ψ(x), of ψ at x is the set of vectors p
such that

lim inf
|v|→0

ψ(x+ v)− ψ(x)− p · v
|v|

≥ 0.

Exercise 20. Show that if u : Rn → R has a maximum (resp. minimum) at
x0 then 0 ∈ D+u(x0) (resp. D−u(x0)).

We can regard these sets as one-sided derivatives. In fact, ψ is differentiable
then

D−x ψ(x) = D+
x ψ(x) = {Dxψ(x)}.

More precisely,

Proposition 18. If both D−x ψ(x) and D+
x ψ(x) are non-empty then

D−x ψ(x) = D+
x ψ(x) = {p},

furthermore ψ is differentiable at x with Dxψ = p. Conversely, if ψ is differentiable
at x then

D−x ψ(x) = D+
x ψ(x) = {Dxψ(x)}.

Proof. Suppose that D−x ψ(x) and D+
x ψ(x) are both non-empty. Then we

claim that these two sets agree and have a single point p. To see this, take p− ∈
D−x ψ(x) and p+ ∈ D+

x ψ(x). Then

lim inf
|v|→0

ψ(x+ v)− ψ(x)− p− · v
|v|

≥ 0

lim sup
|v|→0

ψ(x+ v)− ψ(x)− p+ · v
|v|

≤ 0.

By subtracting these two identities

lim inf
|v|→0

(p+ − p−) · v
|v|

≥ 0.

In particular, by choosing v = −ε p
+−p−
|p−−p+| , we obtain

−|p− − p+| ≥ 0,

which implies p− = p+ ≡ p. Consequently

lim
|v|→0

ψ(x+ v)− ψ(x)− p · v
|v|

= 0,

and so Dxψ = p.

To prove the converse it suffices to observe that if ψ is differentiable then

ψ(x+ v) = ψ(x) +Dxψ(x) · v + o(|v|).

�
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Exercise 21. Let ψ be a continuous function. Show that if x0 is a local max-
imum of ψ then 0 ∈ D+ψ(x0).

Proposition 19. Let

ψ : Rn → R

be a continuous function. Then, if

p ∈ D+
x ψ(x0) (resp. p ∈ D−x ψ(x0)),

there exists a C1 function φ such that

ψ(x)− φ(x)

has a local strict maximum (resp. minimum) at x0 and such that

p = Dxφ(x0).

On the other hand, if φ is a C1 function such that

ψ(x)− φ(x)

has a local maximum (resp. minimum) at x0 then

Dxφ(x0) ∈ D+
x ψ(x0) (resp. D−x ψ(x0)).

Proof. By subtracting p · (x− x0) +ψ(x0) to ψ, we can assume, without loss
of generality, that ψ(x0) = 0 and p = 0. By changing coordinates, if necessary, we
can also assume that x0 = 0. Because 0 ∈ D+

x ψ(0) we have

lim sup
|x|→0

ψ(x)
|x|
≤ 0.

Therefore there exists a continuous function ρ(x), with ρ(0) = 0, such that

ψ(x) ≤ |x|ρ(x).

More precisely we can choose

ρ(x) = max{ ψ
|x|
, 0}.

Let η(r) = max|x|≤r{ρ(x)}. Then η is continuous, non decreasing and η(0) = 0.
Let

φ(x) =
∫ 2|x|

|x|
η(r)dr + |x|2.

The function φ is C1 and satisfies φ(0) = Dxφ(0) = 0. Additionally, if x 6= 0,

ψ(x)− φ(x) ≤ |x|ρ(x)−
∫ 2|x|

|x|
η(r)dr − |x|2 < 0.

Thus ψ − φ has a strict local maximum at 0.
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To prove the second part of the proposition, suppose that the difference ψ(x)−
φ(x) has a strict local maximum at 0. Without loss of generality, we can assume
ψ(0)− φ(0) = 0 and φ(0) = 0. Then ψ(x)− φ(x) ≤ 0 or, equivalently,

ψ(x) ≤ p · x+ (φ(x)− p · x).

Thus, by setting p = Dxφ(0), and using the fact that

lim
|x|→0

φ(x)− p · x
|x|

= 0,

we conclude that Dxφ(0) ∈ D+
x ψ(0). The case of a minimum is similar. �

A continuous function f is semiconcave if there exists C such that

f(x+ y) + f(x− y)− 2f (x) ≤ C|y|2.

Similarly, a function f is semiconvex if there exists a constant such that

f(x+ y) + f(x− y)− 2f (x) ≥ −C|y|2.

Proposition 20. The following statements are equivalent:

1. f is semiconcave;
2. f̃(x) = f(x)− C

2 |x|
2 is concave;

3. for all λ, 0 ≤ λ ≤ 1, and any y, z such that λy + (1− λ)z = 0 we have

λf(x+ y) + (1− λ)f(x+ z)− f(x) ≤ C

2
(λ|y|2 + (1− λ)|z|2).

Additionally, if f is semiconcave, then

a. D+
x f(x) 6= ∅;

b. if D−x f(x) 6= ∅ then f is differentiable at x;
c. there exists C such that, for each pi ∈ D+

x f(xi) (i = 0, 1),

(x0 − x1) · (p0 − p1) ≤ C|x0 − x1|2.

Remark. Of course analogous results hold for semiconvex functions.

Proof. Clearly 2 =⇒ 3 =⇒ 1. Therefore, to prove the equivalence, it is
enough to show that 1 =⇒ 2. Subtracting C|x|2 to f , we may assume C = 0.
Also, by changing coordinates if necessary, it suffices to prove that for all x, y such
that λx+ (1− λ)y = 0, for some λ ∈ [0, 1], we have:

(22) λf(x) + (1− λ)f(y)− f(0) ≤ 0.

We claim now that the previous equation holds for each λ = k
2j , with 0 ≤ k ≤ 2j .

Clearly (22) holds for j = 1. We will proceed by induction on j. Suppose that



2. SUB AND SUPERDIFFERENTIALS 43

(22) if valid for λ = k
2j . We will show that it also holds for λ = k

2j+1 . If k is even,
we can reduce the fraction and, therefore, we assume that k is odd, λ = k

2j+1 and
λx+ (1− λ)y = 0. Note that

0 =
1
2

[
k − 1
2j+1

x+
(

1− k − 1
2j+1

)
y

]
+

1
2

[
k + 1
2j+1

x+
(

1− k + 1
2j+1

y

)]
.

consequently,

f(0) ≥1
2
f

(
k − 1
2j+1

x+
(

1− k − 1
2j+1

)
y

)
+

+
1
2
f

(
k + 1
2j+1

x+
(

1− k + 1
2j+1

)
y

)
but, since k− 1 and k+ 1 are even, k̃0 = k−1

2 and k̃1 = k+1
2 are integers. Therefore

f(0) ≥ 1
2
f

(
k̃0

2j
x+

(
1− k̃0

2j

)
y

)
+

1
2
f

(
k̃1

2j
x+

(
1− k̃1

2j

)
y

)
But this implies

f(0) ≥ k̃0 + k̃1

2j+1
f(x) +

(
1− k̃0 + k̃1

2j+1

)
f(y).

From k̃0 + k̃1 = k we obtain

f(0) ≥ k

2j+1
f(x) +

(
1− k

2j+1

)
f(y).

Since the function f is continuous and the rationals of the form k
2j are dense in R,

we conclude that
f(0) ≥ λf(x) + (1− λ)f(y),

for each real λ, with 0 ≤ λ ≤ 1.

To prove the second part of the proposition, observe that by proposition 18,
a =⇒ b. To check a, i.e., that D+

x f(x) 6= ∅, it is enough to observe that if f is
concave then D+

x f(x) 6= ∅. By subtracting C|x|2 to f , we can reduce the problem
to concave functions. Finally, if pi ∈ D+

x f(xi) (i = 0, 1) then

f(x0)− C

2
|x0|2 ≤ f(x1)− C

2
|x1|2 + (p1 − Cx1) · (x0 − x1),

and

f(x1)− C

2
|x1|2 ≤ f(x0)− C

2
|x0|2 + (p0 − Cx0) · (x1 − x0).

Therefore,
0 ≤ (p1 − p0) · (x0 − x1) + C|x0 − x1|2,

and so (p0 − p1) · (x0 − x1) ≤ C|x0 − x1|2. �

Exercise 22. Let f : Rn → R be a continuous function. Show that if x0 is a
local maximum then 0 ∈ D+f(x0).
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3. Calculus of variations setting

We now consider the calculus of variations setting and prove the existence of
optimal controls. The main technical issue is the fact that the control space U = Rn

is unbounded and therefore compactness arguments do not work directly. We will
consider the calculus of variations setting, that is f(x, u) = u and we will work
under the following assumptions:

L(x, v) : R2n → R,

x ∈ Rn, v ∈ Rn, is a C∞ function, strictly convex em v, i.e., D2
vvL is positive

definite, and satisfying the coercivity condition

lim
|v|→∞

L(x, v, t)
|v|

=∞,

for each (x, t); without loss of generality, we may also assume that L(x, v, t) ≥ 0,
by adding a constant if necessary. We will also assume that

L(x, 0, t) ≤ c1, |DxL| ≤ c2L+ c3,

for suitable constants c1, c2 and c3; finally we assume that there exists a function
C(R) such that

|D2
xxL| ≤ C(R), |DvL| ≤ C(R)

whenever |v| ≤ R. The terminal cost, ψ, is assumed to be a bounded Lipschitz
function.

Example 7. Although the conditions on L are quite technical, they are fulfilled
by a wide class of Lagrangians, for instance

L(x, v) =
1
2
vTA(x)v − V (x),

where A and V are C∞,bounded with bounded derivatives, and A(x) is positive
definite. J

Fortunately, the coercivity of the Lagrangian is enough to establish the exis-
tence of a-priori bounds on optimal controls.

Theorem 21. Let x ∈ Rn and t0 ≤ t ≤ t1. Suppose that the Lagrangian L(x, v)
satisfies:

A. L is C∞, strictly convex in v (i.e., D2
vvL is positive definite), and satisfying

the coercivity condition

lim
|v|→∞

L(x, v)
|v|

=∞,

uniformly in (x, t);
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B. L is bounded by below (without loss of generality we assume L(x, v) ≥ 0);
C. L satisfies the inequalities

L(x, 0) ≤ c1, |DxL| ≤ c2L+ c3

for suitable c1, c2, and c3;
D. there exist functions C0(R), C1(R) : R+ → R+ such that

|DvL| ≤ C0(R), |D2
xxL| ≤ C1(R)

whenever |v| ≤ R.

Then, if ψ is a bounded Lipschitz function,

1. There exists u∗ ∈ L∞[t, t1] such that its corresponding trajectory x∗, given
by

ẋ∗(s) = u(s) x∗(t) = x,

is optimal, that is it satisfies

V (x, t) =
∫ t1

t

L(x∗(s), ẋ∗(s))ds+ ψ(x∗(t1)).

2. There exists C, depending only on L, ψ and t1 − t but not on x or t such
that |u(s)| < C for t ≤ s ≤ t1. The optimal trajectory x∗(·) is a C2[t, t1]
solution of the Euler-Lagrange equation

(23)
d

dt
DvL−DxL = 0

with initial condition x∗(t) = x.
3. The adjoint variable p, defined by

(24) p(t) = −DvL(x∗, ẋ∗),

satisfies the differential equationṗ(s) = DxH(p(s),x∗(s))

ẋ∗(s) = −DpH(p(s),x∗(s))

with terminal condition

p(t1) ∈ D−x ψ(x∗(t1)).

Additionally,

(p(s), H(p(s),x∗(s))) ∈ D−V (x∗(s), s)

for t < s ≤ t1.
4. The value function V is Lipschitz, and so almost everywhere differentiable.
5. If D2

vvL is uniformly bounded, then for each t < t1, V (x, t) is semiconcave
in x.
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6. For t ≤ s < t1

(p(s), H(p(s),x∗(s))) ∈ D+V (x∗(s), s)

and, therefore, DV (x∗(s), s) exists for t < s < t1.

Proof. We will divide the proof into several auxiliary lemmas.

For R > 0, define UR = {u ∈ U : ‖u‖∞ ≤ R}. From lemma 12 there exists
a minimizer uR of J in UR. Then we will show that the minimizer uR satisfies
uniform estimates in R. Finally, we will let R→∞.

Let pR be the adjoint variable given by the Pontryagin maximum principle.
We now will try to estimate the optimal control uR uniformly in R, in order to
send R→∞.

Lemma 22. Suppose ψ is differentiable. Then there exists a constant C, inde-
pendent on R, such that

|pR| ≤ C.

Proof. Since ψ is Lipschitz and differentiable we have

|Dxψ| ≤ ‖Dxψ‖∞ <∞.

Therefore

|pR(s)| ≤
∫ t1

s

|DxL(xR(r),uR(r)|dr + ‖Dxψ‖∞.

Let VR be the value function for the terminal value problem with the additional
constraint of bounded control: |v| ≤ R. From |DxL| ≤ c2L+ c3, it follows

|pR(s)| ≤ C(VR(t, x) + 1),

for an appropriate constant C. Proposition 7, shows that there exists a constant
C, which does not depend on R, such that VR ≤ C. Therefore

|pR| ≤ C.

�

As we will see, the uniform estimates for pR yield uniform estimates for uR.

Lemma 23. Let ψ be differentiable. Then there exists R1 > 0 such that, for all
R,

‖uR‖∞ ≤ R1.
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Proof. Suppose |p| ≤ C. Then, for each c1, the coercivity condition on L

implies that there exists R1 such that, if

v · p+ L(x, v) ≤ c1

then |v| ≤ R1. But then,

uR(s) · pR(s) + L(xR(s),uR(s)) ≤ L(xR(s), 0) ≤ c1,

that is, ‖uR‖∞ ≤ R1. �

Since uR is bounded independently of R, we have

V = J(x, t; uR0),

for R0 > R1. Let u∗ = uR0 and p = pR0 .

Lemma 24 (Pontryagin maximum principle - II). If ψ is differentiable, the
optimal control u∗ satisfies

u∗ · p + L(x∗,u∗) = min
v

[v · p + L(x∗, v)] = −H(p,x∗),

for almost all s and, therefore,

p = −DvL(x∗,u∗) and u∗ = −DpH(p,x∗),

where H = L∗. Additionally, p satisfies the terminal condition

p(t1) = Dxψ(x∗(t1)).

Proof. Clearly it is enough to choose R sufficiently large. �

Lemma 25. Let ψ be differentiable. The minimizing trajectory x(·) is C2 and
satisfies the Euler-Lagrange equation (23). Furthermore,

ṗ = DxH(p,x∗) ẋ = −DpH(p,x∗).

Proof. By its definition p is continuous. We know that

ẋ∗(s) = −DpH(p(s),x∗(s)),

almost everywhere. Since the right hand side of the previous identity is continuous,
the identity holds everywhere and, therefore, we conclude that x∗ is C1. Because
p is given by the integral of a continuous function (16),

p(r) = Dxψ(x∗(t1)) +
∫ t1

r

DxL(x∗(s),u∗(s))ds,

we conclude that p is C1. Additionally,

ẋ∗ = −DpH(p,x∗)
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and, therefore, ẋ∗ is C1, which implies that x is C2. We have also

p = −DvL(x∗, ẋ∗) ṗ = −DxL(x∗, ẋ∗),

from which it follows

(25)
d

dt
DvL(x∗, ẋ∗)−DxL(x∗, ẋ∗) = 0.

Thus, since DxL(x∗, ẋ∗) = −DxH(p,x∗), we conclude that

ṗ = DxH(p,x∗) ẋ∗ = −DpH(p,x∗),

as required. �

In the case in which ψ is only Lipschitz and not C1, we can consider a sequence
of C1 functions, ψn → ψ uniformly, such that

‖Dxψn‖∞ ≤ ‖Dψ‖L∞ .

for each ψn. Let

Jn(x, t; u) =
∫ t1

t

L(xn(s),un(s))ds+ ψn(xn(t1)),

and x∗n, u∗n are, respectively, the corresponding optimal trajectory and optimal
control. Similarly, let pn be the corresponding adjoint variable. Passing to a subse-
quence, if necessary, the boundary values xn(t1) and pn(t1) converge, respectively,
for some x0 and p0. The optimal trajectories x∗n and corresponding optimal controls
u∗n converge uniformly, by using Ascoli-Arzela theorem, to optimal trajectories and
controls of the limit problem. Let

p(s) = lim
n→∞

pn(s).

Then, for almost every s,

u∗ · p(s) + L(x∗(s),u∗(s)) = inf
v

[v · p(s) + L(x∗(s), v)] ,

which implies
p(s) = −DvL(x∗(s), ẋ∗(s)),

for almost all s. But, in the previous equation both terms are continuous functions
thus the identity holds for all s.

Lemma 26. For t < s ≤ t1 we have

(p(s), H(p(s),x∗(s))) ∈ D−V (x∗(s), s).

Proof. Let x∗ be an optimal trajectory and u∗ the corresponding optimal
control. For r ≤ t1 and y ∈ Rn, define xr = x∗(r) and consider the sub-optimal
control

u](s) = u∗(s) +
y − xr
r − t

,
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whose trajectory we denote by x], x](t) = x. Note that x](r) = y.

We have

V (x, t) =
∫ s

t

L(x∗(τ),u∗(τ))dτ + V (x∗(s), s)

and, by the sub-optimality of x],

V (x∗(t), t) ≤
∫ r

t

L(x](τ),u](τ))dτ + V (y, r).

This implies

V (x∗(s), s)− V (y, r) ≤ φ(y, r),

with

φ(y, r) =
∫ r

t

L(x](τ),u](τ))dτ −
∫ s

t

L(x∗(τ),u∗(τ))dτ.

Since φ is differentiable at y and r,

(−Dyφ(x∗(s), s),−Drφ(x∗(s), s)) ∈ D−V (x∗(s), s).

Observe that

x](τ) = x∗(τ) +
y − xr
r − t

(τ − t),

and, therefore,

Dyφ(x∗(s), s) =
∫ s

t

[
DxL

τ − t
s− t

+DvL
1

s− t

]
dτ.

Integrating by parts and using (25), we obtain

Dyφ(x∗(s), s) = DvL(x∗(s), ẋ∗(s)) = −p(s).

Similarly,

Drφ(y, r) = L(y,u](r)) +
∫ s

t

[
−DxL

y − xr
(r − t)2

(τ − t)

+DxL
−u∗(r)
(r − t)

(τ − t)−DvL
y − xr
(r − t)2

+DvL
−u∗(r)
r − t

]
dτ.

Integrating by parts and evaluating at y = x∗(s), r = s, we obtain

Drφ(x∗(s), s) = L(x∗(s), ẋ∗(s))− u∗(s)DvL(x∗(s), ẋ∗(s))

= −H(p(s),x∗(s)),

as we needed. �

Lemma 27. The value function V is Lipschitz.

Proof. Let t < t1 be fixed and x, y arbitrary. We suppose first that t1− t < 1.
Then

V (y, t)− V (x, t) ≤ J(y, t; u∗)− V (x, t),
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where V (x, t) = J(x, t; u∗). Therefore, there exists a constant C, depending only
on the Lipschitz constant of ψ and of the supremum of |DxL|, such that

V (y, t)− V (x, t) ≤ C|x− y|.

Suppose that t1 − t > 1. Letũ(s) = u∗ + (x− y) if t < s < t+ 1

ũ(s) = u∗(s) if t+ 1 ≤ s ≤ t1.

Then

V (y, t)− V (x, t) ≤ J(y, t; ũ)− V (x, t) ≤ C|x− y|,

where the constant C depends only on DxL and on DvL, and not on the Lipschitz
constant of ψ. Reverting the roles of x and y we conclude

|V (y, t)− V (x, t)| ≤ C|x− y|.

Without loss of generality we can suppose that t < t̂. Note that

|V (x, t)− V (x∗(t̂), t̂)| ≤ C|t− t̂|.

To prove that V is Lipschitz in t it is enough to check that

(26) |V (x∗(t̂), t̂)− V (x, t̂)| ≤ C|t− t̂|.

But since ẋ∗ is uniformly bounded

|x∗(t̂)− x| ≤ C|t− t̂|

thus, the previous Lipschitz estimate implies (26). �

Lemma 28. V is differentiable almost everywhere.

Proof. Since V is Lipschitz, the almost everywhere differentiability follows
from Rademacher theorem. �

In general, the value function is Lipschitz and not C1 or C2. However we can
prove an one-side estimate for second derivatives, i.e. that V is semiconcave.

Lemma 29. Suppose that |D2
xvL|, |D2

vvL| ≤ C(R) whenever |v| ≤ R. Then, for
each t < t1, V (x, t) is semiconcave in x.

Proof. Fix t and x. Choose y ∈ Rn arbitrary. We claim that

V (x+ y, t) + V (x− y, t) ≤ 2V (x, t) + C|y|2,
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for some constant C. Clearly,

V (x+ y, t) + V (x− y, t)− 2V (x, t)

≤
∫ t1

t

[L(x∗ + y, ẋ∗ + ẏ) + L(x∗ − y, ẋ∗ − ẏ)− 2L(x∗, ẋ∗)] ds,

where

y(s) = y
t1 − s
t1 − t

.

Since |D2
xxL| ≤ C1(R),

L(x∗ + y, ẋ∗ + ẏ) ≤ L(x∗, ẋ∗ + ẏ) +DxL(x∗, ẋ∗ + ẏ)y + C|y|2

and, in a similar way for the other term. We also have

L(x∗, ẋ∗ + ẏ) + L(x∗, ẋ∗ − ẏ) ≤ 2L(x∗, ẋ∗) + C|ẏ|2 + C|y||ẏ|.

Thus

L(x∗ + y, ẋ∗ + ẏ) + L(x∗ − y, ẋ∗ − ẏ) ≤ 2L(x∗, ẋ∗) + C|y|2 + C|ẏ|2.

This inequality implies the lemma. �

Lemma 30. We have

(p(s), H(p(s),x∗(s))) ∈ D+V (x∗(s), s)

for t ≤ s < t1. Therefore DV (x∗(s), s) exists for t < s < t1.

Proof. Let u∗ be an optimal control at (x, s) and let p be the corresponding
adjoint variable. Define W by

W (y, r) = J

(
y, r; u∗ +

x∗(r)− y
t1 − r

)
− V (x, s).

Hence, for each y ∈ Rn and t ≤ r < t1,

V (y, r)− V (x, s) ≤W (y, r),

with equality at (y, r) = (x, s). Since W is C1, it is enough to check that

DyW (x∗(s), s) = p(s),

and

DrW (x∗(s), s) = H(p(s),x∗(s)).

The first identity follows from

DyW (s,x∗(s)) =
∫ t1

s

DxLϕ+DvL
dϕ

dτ
dτ,

where ϕ(τ) = t1−τ
t1−s . Using the Euler-Lagrange equation

d

dt
DvL−DxL = 0
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and integration by parts we obtain

DyW (s,x∗(s)) = −DvL(x∗(s), ẋ∗(s)) = p(s).

On the other hand,

DrW (s,x∗(s)) = −L(x∗(s), ẋ∗(s)) +
∫ t1

s

DxLφ+DvL
dφ

dτ
dτ,

where
φ(τ) =

τ − t1
t1 − s

ẋ∗(s).

Using again the Euler-Lagrange equation and integration by parts, we obtain

DrW (s,x∗(s)) = −L(x∗(s), ẋ∗(s), s) +DvL(x∗(s), ẋ∗(s))ẋ∗(s),

or equivalently
DrW (s,x∗(s)) = H(p(s),x∗(s)).

The last part of the lemma follows from proposition 18. �

This ends the proof of the theorem. �

In what follows we prove that the value function is differentiable at points of
uniqueness of optimal trajectory.

A point (x, t) is regular if there exists a unique optimal trajectory x∗(s) such
that x∗(t) = x and

V (x, t) =
∫ t1

t

L(x∗(s), ẋ∗(s))ds+ ψ(x∗(t1)).

Theorem 31. V is differentiable with respect to x at (x, t) if and only if (x, t)
is a regular point.

Proof. The next lemma shows that differentiability at a point x implies that
x is a regular point:

Lemma 32. If V is differentiable with respect to x at a point (x, t), then there
exists a unique optimal trajectory

Proof. Since V is differentiable with respect to x at (x, t), then any optimal
trajectory satisfies

ẋ∗(t) = −DpH(p(t),x∗(t)),

since p(t) = DxV (x). Therefore, once DxV (x∗(t), t) is given, the velocity ẋ∗(t) is
uniquely determined. The solution of the Euler-Lagrange equation (23) is deter-
mined by the initial condition and velocity: x∗(t) and ẋ∗(t). Thus, the optimal
trajectory is unique. �
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To prove the other implication we need an auxiliary lemma:

Lemma 33. Let p such that

‖DxV (·, t)− p‖L∞(B(x,2ε)) → 0

when ε→ 0. Then V is differentiable with respect to x at (x, t) and DxV (x, t) = p.

Proof. Since V is Lipschitz, it is differentiable almost everywhere. By Fubinni
theorem, for almost every point with respect to the Lebesgue measure induced in
Sn−1, V is differentiable y = x + λk, with respect to the Lebesgue measure in R.
For these directions

V (y, t)− V (x, t)− p · (y − x)
|x− y|

=
∫ 1

0

(DxV (x+ s(y − x), t)− p) · (y − x)
|x− y|

ds.

Suppose 0 < |x− y| < ε. Then∣∣∣∣V (x, t)− V (y, t)− p · (x− y)
|x− y|

∣∣∣∣ ≤ ‖DxV (·, t)− p‖L∞(B(x,ε)).

In principle, the last identity only holds almost everywhere. However, for y 6= x, the
left-hand side is continuous in y. consequently, the inequality holds for all y 6= x.
Therefore, when y → x,∣∣∣∣V (x, t)− V (y, t)− p · (x− y)

|x− y|

∣∣∣∣→ 0,

which implies DxV (x, t) = p. �

Suppose that V is not differentiable at (x, t). We claim that (x, t) is not regular.
By contradiction, suppose that (x, t) is regular. Then if V fails to be differentiable,
the previous lemma implies that for each p,

‖DxV (·, t)− p‖L∞(B(x,ε)) 9 0.

Thus, we could choose two sequences x1
n and x2

n such that xin → x but whose
corresponding optimal trajectories xin satisfy

lim ẋ1
n(t) 6= lim ẋ2

n(t).

However, this shows that (x, t) is not regular. Indeed if (x, t) were regular, and xn

were any sequence converging to x, and x∗n(·) the corresponding optimal trajectory
then

ẋ∗n(t)→ ẋ∗(t).
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If this were not true, by Ascoli-Arzela theorem, we could extract a convergent
subsequence ẋnk(·)→ ẏ(·), and for which

ẋ∗nk(t)→ v 6= ẋ∗(t).

Let y(·) be the solution to the Euler-Lagrange equation with initial condition y(t) =
x(t) and ẏ(t) = v. Note that x∗n(·)→ y(·) and ẋ∗n(·)→ ẏ(·), uniformly in compact
sets, and, therefore,

V (x, t) = lim
n→∞

V (xn, t) = lim
n→∞

J(xn, t; ẋn)

= J(x, t; ẏ) > J(x, t; ẋ∗) = V (x, t),

since the trajectory y cannot be optimal, by regularity, which is a contradiction. �

Remark. This theorem implies that all points of the form (x∗(s), s), in which x∗

is and optimal trajectory are regular for t < s < t1.

Exercise 23. Show that in the optimal control ”bounded control space” set-
ting, the value function is Lipschitz continuous if the terminal cost is Lipschitz
continuous.

Exercise 24. In the optimal control ”bounded control space” setting, show that
if ψ is Lipschitz, for any (x, t) there exists p such that

(p(s), H(p(s),x∗(s))) ∈ D−V (x∗(s), s)

for t < s ≤ t1 and

(p(s), H(p(s),x∗(s))) ∈ D+V (x∗(s), s)

for t ≤ s < t1.

4. Viscosity solutions - the calculus of variations setting

In this section we discuss the viscosity solutions in the calculus of variations
setting.

Theorem 34. Consider the calculus of variations setting for the optimal control
problem. Suppose that the value function V is differentiable at (x, t). Then, at this
point, V satisfies the Hamilton-Jacobi equation

(27) −Vt +H(DxV, x, t) = 0.

Proof. If V is differentiable at (x, t) then the result follows by using statement
6 in theorem 21. �
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Note that that (27) also holds in the ”bounded control case” setting, by Theo-
rem 14.

Corollary 35. Consider the calculus of variations setting for the optimal
control problem. Then the value function V satisfies the Hamilton-Jacobi equation
almost everywhere.

Proof. Since the value function V is differentiable almost everywhere, by
theorem 21, theorem 34 implies this result. �

Exercise 25. Show that the previous corollary also holds in the ”bounded con-
trol case” setting.

However, it is not true that a Lipschitz function satisfying the Hamilton-Jacobi
equation almost everywhere is the value function of the terminal value problem, as
shown in the next example.

Example 8. Consider the Hamilton-Jacobi equation

−Vt + |DxV |2 = 0

with terminal data V (x, 1) = 0. The value function is V ≡ 0, which is a (smooth)
solution of the Hamilton-Jacobi equation However, there are other solutions, for
instance,

V (x, t) =

0 if |x| ≥ 1− t

|x| − 1 + t if |x| < 1− t

which satisfy the same terminal condition t = 1 and is solution almost everywhere.
J

An useful characterization of viscosity solutions is given in the next proposition:

Proposition 36. Let V be a bounded uniformly continuous function. Then V

is a viscosity subsolution of (27) if and only if for each (p, q) ∈ D+V (x, t),

−q +H(p, x, t) ≤ 0.

Similarly, V is a viscosity supersolution if and only if for each (p, q) ∈ D−V (x, t),

−q +H(p, x, t) ≥ 0.

Proof. This result is an immediate corollary of proposition 19. �
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Example 9. In example 8 we have found two different almost everywhere
solutions to

−Vt + |DxV |2 = 0

satisfying V (x, T ) = 0.

It is easy to check that the value function V = 0 is viscosity solution (it is
smooth, satisfies the equation and the terminal condition) and it agrees with the
value function of the corresponding optimal control problem. The other solution,
which is an almost everywhere solution is not a viscosity solution (check!).

Now we will show that the definition of viscosity solution is consistent with
classical solutions.

Proposition 37. Let V be a C1 viscosity solution of (27). Then V is a classical
solution.

Proof. If V is differentiable then

D+V = D−V = {(DxV,DtV )}.

Since V is a viscosity solution, we obtain immediately

−DtV +H(DxV, x, t) ≤ 0, and −DtV +H(DxV, x, t) ≥ 0,

therefore −DtV +H(DxV, x, t) = 0. �

Theorem 38. Let V be the value function of the terminal value problem. Then
V is a viscosity solution to

−Vt +H(DxV, x) = 0.

Proof. Let ϕ : Rd × R → R, ϕ(x, t), be a C∞ function, and let (x0, t0) ∈
argmax(V − ϕ). We must show that

−ϕt(x0, t0) +H(Dxϕ(x0, t0), x0) ≤ 0,

or equivalently, that for all v ∈ Rd we have

−ϕt(x0, t0)− v ·Dxϕ(x0, t0)− L(x0, v) ≤ 0.

Fix v ∈ Rd. Let x = x0 + v(t− t0). Then, for any h > 0∫ t0+h

t0

ϕt + vDxϕ(x(s), s)ds = ϕ(x(t0 + h), t0 + h)− ϕ(x0, t0)

≥ V (x(t0 + h), t0 + h)− V (x0, t0) ≥ −
∫ t0+h

t0

L(x, ẋ)dt.

Dividing by h and letting h→ 0 we obtain the result.
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Now let (x0, t0) ∈ argmin(V − ϕ). We must show that

−ϕt(x0, t0) +H(Dxϕ(x0, t0), x0) ≥ 0,

that is, there exists v ∈ Rd such that

−ϕt(x0, t0)− v ·Dxϕ(x0, t0)− L(x0, v) ≥ 0.

By contradiction assume that there exists θ > 0 such that

−ϕt(x0, t0)− v ·Dxϕ(x0, t0)− L(x0, v) < −θ,

for all v. Because the mapping v 7→ L is superlinear and ϕ is C1, there exists aR > 0
and r1 > 0 such that for all (x, t) ∈ Br1(x0, t0) and all v ∈ BcR(0) = Rd \BR(0) we
have

−ϕt(x, t)− v ·Dxϕ(x, t)− L(x, v) < −θ
2
.

By continuity, for some 0 < r < r1 and all (x, t) ∈ Br(x0, t0) we have

−ϕt(x, t)− v ·Dxϕ(x, t)− L(x, v) < −θ
2
,

for all v ∈ BR(0).

Therefore, for any trajectory x with x(0) = x0 and any T ≥ 0 such that the
trajectory x stays near x0 on [t0, t0 +T ], i.e., (x(t), t) ∈ Br(x0, t0) for t ∈ [t0, t0 +T ]
we have

V (x(t0 + T ), t0 + T )− V (x0, t0) ≥ ϕ(x(t0 + T ), t0 + T )− ϕ(x0, t0)

=
∫ t0+T

t0

ϕt(x(t), t) + ẋ(t) ·Dxϕ(x(t))
)
dt

≥ θ

2

∫ t0+T

t0

dt−
∫ t0+T

t0

L(x, ẋ)dt.

This yields

V (x0, t0) ≤ −θ
2
T +

∫ t0+T

t0

L(x, ẋ)dt+ V (x(t0 + T ), t0 + T )

Choose ε < θT
4 . Let xε be such that:

V (x0, t0) ≥
∫ t0+T

t0

L(xε, ẋε)dt+ V (xε(t0 + T ), t0 + T )− ε

This then yields a contradiction.

�

Exercise 26. Show that the function V (x, t) given by the Lax-Hopf formula
is Lipschitz in x for each t < t1, regardless of the smoothness of the terminal data
(note, however that the constant depends on t).
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Exercise 27. Use the Lax-Hopf formula to determine the viscosity solution of

−ut + u2
x = 0,

para t < 0 and u(x, 0) = ±x2 − 2x.

Exercise 28. Use the Lax-Hopf formula to determine the viscosity solution of

−ut + u2
x = 0,

for t < 0 and

u(x, 0) =


0 if x < 0

x2 if 0 ≤ x ≤ 1

2x− 1 if x > 1.

5. Uniqueness of viscosity solutions

To establish uniqueness of viscosity solutions we need the following technical
lemma:

Lemma 39. Let V be a viscosity solution of

−Vt +H(DxV, x) = 0

in [0, T ]× Rn and φ a C1 function. If V − φ has a maximum (resp. minimum) at
(x0, t0) ∈ Rd × [0, T ) then

(28) −φt(x0, t0) +H(Dxφ(x0, t0), x0) ≤ 0 (resp. ≥ 0) at (x0, t0).

Remark: The important point is that the inequality is valid even for some non-
interior points (t0 = 0).

Proof. Only the case t0 = 0 requires proof since in the other case the maxi-
mum is interior and then the viscosity property (the definition of viscosity solution)
yields the inequality. So suppose (x0, 0) is a strict maximum point. Consider

φ̃ = φ+
ε

t
.

Then V − φ̃ has an interior local maximum at (xε, tε) with tε > 0. Furthermore,
(xε, tε)→ (x0, 0), as ε→ 0. At the point (xε, tε) we have

−φt(xε, tε) +
ε

t2ε
+H(Dxφ(xε, tε), xε) ≤ 0,

that is, since ε
t2ε
≥ 0,

−φt(x0, 0) +H(Dxφ(x0, 0), x0) ≤ 0.
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Analogously we obtain the opposite inequality for the case of local minimum, using
φ̃ = φ− ε

t . �

Finally we establish uniqueness of viscosity solutions:

Theorem 40 (Uniqueness). Suppose H satisfies

|H(p, x)−H(q, x)| ≤ C(|p|+ |q|)|p− q|

|H(p, x)−H(p, y)| ≤ C|x− y|(C +H(p, x))

Then there exits a unique viscosity solution to the Hamilton-Jacobi equation

−Vt +H(DxV, x) = 0

that satisfies the terminal condition V (x, T ) = ψ(x).

Proof. Let V and Ṽ be two viscosity solutions with

sup
0≤t≤T

V − Ṽ = σ > 0.

For 0 < ε, λ < 1 we define

ψ(x, y, t, s) =V (x, t)− Ṽ (y, s)− λ(2T − t− s)

− 1
ε2

(|x− y|2 + |t− s|2)− ε ln(1 + |x|2 + |y|2).

When ε, λ are sufficiently small there exists points xε,λ, yε,λ, tε,λ, and sε,λ such that

maxψ(x, y, t, s) = ψ(xε,λ, yε,λ, tε,λ, sε,λ) >
σ

2
.

Since ψ(xε,λ, yε,λ, tε,λ, sε,λ) ≥ ψ(0, 0,−T,−T ), and both V and Ṽ are bounded, we
have

|xε,λ − yε,λ|2 + |tε,λ − sε,λ|2 ≤ Cε2

and

ε ln(1 + |xε,λ|2 + |yε,λ|2) ≤ C.

Observe that

ψ(xε,λ, xε,λ, tε,λ, tε,λ) ≥ ψ(xε,λ, yε,λ, tε,λ, sε,λ)

Thus from the fact that V and Ṽ are continuous, it then follows that

|xε,λ − yε,λ|2 + |tε,λ − sε,λ|2

ε2
= o(1),

as ε→ 0.
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Denote by ω and ω̃ the modulus of continuity of V and Ṽ . Then
σ

2
≤ V (xε,λ, tε,λ)− Ṽ (yε,λ, sε,λ)

= V (xε,λ, tε,λ)− V (xε,λ, T ) + V (xε,λ, T )− Ṽ (xε,λ, T )+

+ Ṽ (xε,λ, T )− Ṽ (xε,λ, sε,λ) + Ṽ (xε,λ, sε,λ)− Ṽ (yε,λ, sε,λ) ≤

≤ ω(T − tε,λ) + ω̃(T − sε,λ) + ω̃(o(ε)).

Therefore, if ε is sufficiently small T − tε,λ > µ > 0, uniformly in ε.

Let φ be given by

φ(x, t) = Ṽ (yε,λ, sε,λ) + λ(2T − t− sε,λ)+

+
1
ε2

(|x− yε,λ|2 + |t− sε,λ|2) + ε ln(1 + |x|2 + |yε,λ|2).

Then, the difference

V (x, t)− φ(x, t)

achieves a maximum at (xε,λ, tε,λ).

Similarly, for φ̃ given by

φ̃(y, s) = V (xε,λ, tε,λ)− λ(2T − tε,λ − s)−

− 1
ε2

(|xε,λ − y|2 + |tε,λ − s|2)− ε ln(1 + |xε,λ|2 + |y|2),

the difference

Ṽ (y, s)− φ̃(y, s)

has a minimum at (yε,λ, sε,λ).

Therefore

−φt(xε,λ, tε,λ) +H(Dxφ(xε,λ, tε,λ), xε,λ) ≤ 0,

and

−φ̃s(yε,λ, sε,λ) +H(Dyφ̃(yε,λ, sε,λ), yε,λ) ≥ 0.

Simplifying, we have

(29) λ− 2
tε,λ − sε,λ

ε2
+H(2

xε,λ − yε,λ
ε2

+ 2ε
xε,λ

1 + |xε,λ|2 + |yε,λ|2
, xε,λ) ≤ 0,

and

(30) −λ− 2
tε,λ − sε,λ

ε2
+H(2

xε,λ − yε,λ
ε2

− 2ε
yε,λ

1 + |xε,λ|2 + |yε,λ|2
, yε,λ) ≥ 0.

From (29) we gather that

(31) H(2
xε,λ − yε,λ

ε2
+ 2ε

xε,λ
1 + |xε,λ|2 + |yε,λ|2

, xε,λ) ≤ −λ+
o(1)
ε
.
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By subtracting (29) to (30) we have

2λ ≤ H(2
xε,λ − yε,λ

ε2
− 2ε

yε,λ
1 + |xε,λ|2 + |yε,λ|2

, yε,λ)−H(2
xε,λ − yε,λ

ε2
+ 2ε

xε,λ
1 + |xε,λ|2 + |yε,λ|2

, xε,λ)

≤ H(2
xε,λ − yε,λ

ε2
− 2ε

yε,λ
1 + |xε,λ|2 + |yε,λ|2

, yε,λ)−H(2
xε,λ − yε,λ

ε2
− 2ε

yε,λ
1 + |xε,λ|2 + |yε,λ|2

, xε,λ)

+H(2
xε,λ − yε,λ

ε2
− 2ε

yε,λ
1 + |xε,λ|2 + |yε,λ|2

, xε,λ)−H(2
xε,λ − yε,λ

ε2
+ 2ε

xε,λ
1 + |xε,λ|2 + |yε,λ|2

, xε,λ)

≤
(
C + CH(2

xε,λ − yε,λ
ε2

− 2ε
yε,λ

1 + |xε,λ|2 + |yε,λ|2
, xε,λ)

)
|xε,λ − yε,λ|

+ Cε

(∣∣∣∣2xε,λ − yε,λε2
+ 2ε

xε,λ
1 + |xε,λ|2 + |yε,λ|2

∣∣∣∣+
∣∣∣∣2xε,λ − yε,λε2

− 2ε
yε,λ

1 + |xε,λ|2 + |yε,λ|2

∣∣∣∣) |xε,λ − yε,λ|
≤
(
o(1)
ε

+ C

)
|xε,λ − yε,λ| → 0,

when ε→ 0, which is a contradiction. �
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Differential Games

This chapter is a brief introduction to deterministic differential games and its
connection with viscosity solutions of Hamilton-Jacobi equations.

1. Dynamic programming principle

Consider a problem where two players have conflicting objectives. Each of them
partially controls a dynamical system, and one of the players wants to maximize
a pay-off functional, whereas the other one wishes to minimize the same pay-off
functional. To set-up this problem, let U+ and U− be two convex closed subsets of,
respectively, Rm+ and Rm− . The + sign stands for the controls or variables available
for the maximizing player, whereas the − sign corresponds to the minimizing player.

Consider a differential equation

(32) ẋ = f(x,u+,u−),

where u± are controls for the two players taking values on U±. To simplify, we
suppose that U± are compact sets, that f is globally bounded and satisfies the
Lipschitz estimate

|f(x, u+, u−)− f(y, u+, u−)| ≤ C|x− y|.

Let T be a terminal time. To each pair of controls (u+,u−) on (t, T ), consider
the corresponding solution to (32) with initial condition x(t) = x. We are given
a running cost L(x,u+,u−) and a terminal cost ψ(x). Associated to the controls
and these costs we define the cost

J [x, t; u+,u−] =
∫ T

t

L(x,u+,u−)ds+ ψ(x(T )),

where x solves (32) with the initial condition x(t) = x. The objective of the +
player is to maximize this cost, whereas the − player wishes to minimize this cost.
Of course the players are not allowed to foresee the future and we must therefore
discuss the appropriate strategies.

63
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Denote by U±([t, T ]) the set of all mappings from [t, T ] into U±. A non-
anticipating strategy µ± is a mapping

µ± : U∓([t, T ])→ U±([t, T ])

such that for any u∓, ũ∓ ∈ U∓([t, T ]) and any t < s < T such that, for all t ≤ τ ≤ s,

u∓(τ) = ũ∓(τ)

we have

µ±(u∓)(τ) = µ±(ũ∓)(τ),

for all t ≤ τ ≤ s. Denote by Λ± the set of all non-anticipating strategies.

The upper V + value functions are defined to be

V +(x, t) = sup
µ+∈Λ+([t,T ])

inf
u−∈U−([t,T ])

J(x, t;µ+(u−),u−),

whereas the lower value function is

V −(x, t) = inf
µ−∈Λ−([t,T ])

sup
u+∈U+([t,T ])

J(x, t; u+, µ−(u+)).

Theorem 41 (Dynamic programming principle). For any t′ < T we have

V +(x, t)

= sup
µ+∈Λ±([t,t′])

inf
u−∈U−([t,t′])

∫ t′

t

L(x, µ+(u−),u−)ds+ V +(x(t′), t′).

Note that a similar result holds for the lower value, with a identical proof.

Proof. Define

Ṽ (x, t)

= sup
µ+∈Λ+([t,t′])

inf
u−∈U−([t,t′])

∫ t′

t

L(x, µ+(u−),u−)ds+ V +(x(t′), t′).

Fix ε > 0 and choose µ+
ε ∈ Λ±([t, t′]) so that

Ṽ (x, t) ≤ inf
u−∈U−([t,t′])

∫ t′

t

L(x, µ+
ε (u−),u−)ds+ V +(x(t′), t′) + ε.

Choose now µ̃+
ε ∈ Λ+([t′, T ]) so that

V (x(t′), t′) ≤ inf
u−∈U−([t′,T ])

∫ t′

t

L(x, µ̃+
ε (u−),u−)ds+ ψ(x(T )) + ε.
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By considering the concatenation of the non-anticipating strategies µ+
ε and µ̃+

ε we
obtain a non-anticipating strategy µ̄+

ε such that

Ṽ (x, t) ≤ inf
u−∈U−([t,T ])

∫ T

t

L(x, µ̄+
ε (u−),u−)ds+ ψ(x(T )) + 2ε

≤ V +(x, t) + 2ε.

Sending ε→ 0 we obtain Ṽ ≤ V +.

To obtain the opposite inequality, fix again ε > 0 and choose a non-anticipating
strategy µ̄+

ε so that

V +(x, t) ≤ inf
u−∈U−([t,T ])

∫ T

t

L(x, µ̄+
ε (u−),u−)ds+ ψ(x(T )) + ε.

Note that

inf
u−∈U−([t′,T ])

∫ T

t′
L(x, µ̄+

ε (u−),u−)ds+ ψ(x(T )) ≤ V +(x(t′), t′).

Therefore

V +(x, t) ≤ inf
u−∈U−([t,T ])

∫ t′

t

L(x, µ̄+
ε (u−),u−)ds+ V +(x(t′), t′) + ε

≤ Ṽ (x, t) + ε.

�

2. Viscosity solutions

We define the upper and lower Hamiltonians to be, respectively,

H−(p, x) = inf
u+∈U+

sup
u−∈U−

−p · f(u+, u−, x)− L(x, u+, u−),

and

H+(p, x) = sup
u−∈U−

inf
u+∈U+

−p · f(u+, u−, x)− L(x, u+, u−).

Note that in general H+ ≤ H− and the inequality may be strict. When equality
holds we say that the Isaac’s condition holds.

Before stating and proving the main result of this section, we will prove two
auxiliary results.

Lemma 42. Suppose ϕ satisfies

−ϕt +H+(Dxϕ, x) ≤ −θ,
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at a point (x, t) and for some θ > 0. Then, for all h sufficiently small there exists
µ+ ∈ Λ+([t, t+ h]) such that for all u− ∈ U−([t, t+ h]) we have∫ t+h

t

[
L(x, µ+(u−),u−) + f(x, µ+(u−),u−)Dxϕ(x(s), s)

+ϕt(x(s), s)] ds ≥ hθ
2
.

Proof. It is clear by the compactness assumption on U± that there exists a
compact Kh such that x(s) ∈ Kh for all t ≤ s ≤ t + h. Furthermore, for h small
enough we can assume that

−ϕt(y, s) +H+(Dxϕ(y, s), y) ≤ −3
4
θ,

for all y ∈ Kh and t ≤ s ≤ t+ h. Define

Θ(y, s;u+, u−) = −ϕt(y, s)−Dxϕ(y, s) · f(u+, u−, y)− L(y, u+, u−).

Then, for any u+ ∈ U+ and (y, s) ∈ Kh × (t, t + h) there exists β−(u+, y, s) such
that

Θ(y, s;u+, β−(u+, y, s)) ≤ −3
4
θ.

By the compactness of U± and uniform continuity we conclude that for all there
exists r > 0 such that

Θ(ỹ, s̃; v, β−(v, ỹ, s̃)) ≤ −1
2
θ

if |ỹ − y| + |s̃ − s| + |v − u+| ≤ r. By compactness we can find a finite cover of
K × [t, t + h] × U+ by ”balls”, Bi of the form |ỹ − yi| + |s̃ − si| + |v − u+

i | ≤ ri,
1 ≤ i ≤ n. We now define a non-anticipating strategy in the following way: if
(x, s, u−(s)) ∈ Bi ∩ ∪i−1

j=1B
C
j we set µ+(u−)(s) = β(u−(s), ỹ, s̃). Then it is clear

that for any strategy u− and for x satisfying

ẋ = f(x, µ+(u−),u−)

we have

L(x, µ+(u−),u−) + f(x, µ+(u−),u−)Dxϕ(x(s), s) + ϕt(x(s), s) ≤ θ

2
.

h �

We should observe that an analogous results for H− can be established in
exactly the same way.

Theorem 43. The upper and lower values are viscosity solutions to the Isaacs-
Bellman-Hamilton-Jacobi equation

−V ±t +H±(DxV
±, x) = 0,

with the terminal value V (x, T ) = ψ(x).
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Proof. We will do the proof for the upper value V + as the case of the lower
value is similar. Suppose V + − ϕ has a strict local maximum at (x0, t0) but, by
contradiction, there exists θ > 0 such that

−ϕ+
t +H+(Dxϕ

+, x) ≥ θ.

Using the dynamic programming principle we have

V (x0, t0) = sup
µ+∈Λ±([t0,t0+h])

inf
u−∈U−([t0,t0+h])

∫ t0+h

t0

L(x, µ+(u−),u−)ds

+ V (x(t0 + h), t0 + h).

Choose µ+
h such that

V (x0, t0) ≤ inf
u−∈U−([t0,t0+h])

∫ t0+h

t0

L(x, µ+
h (u−),u−)ds

+ V (x(t0 + h), t0 + h) + h2.

Then the local maximum property, we have

inf
u−∈U−([t0,t0+h])∫ t0+h

t0

L(x, µ+
h (u−),u−)ds+ ϕ(x(t0 + h), t0 + h)− ϕ(x0, t0) + h2 ≥ 0.

Thus

inf
u−∈U−([t0,t0+h])∫ t0+h

t0

L(x, µ+
h (u−),u−) + f(x, µ+

h (u−),u−)Dxϕ+ ϕtds+ h2 ≥ 0.

As before, is clear by the compactness assumption on U± that there exists a
compact Kh such that x(s) ∈ Kh for all t ≤ s ≤ t + h. Furthermore, for h small
enough we can assume that

−ϕt(y, s) +H+(Dxϕ(y, s), y) ≥ 3
4
θ,

for all y ∈ Kh and t ≤ s ≤ t+ h. Define

Θ(y, s;u+, u−) = −ϕt(y, s)−Dxϕ(y, s) · f(u+, u−, y)− L(y, u+, u−).

Then in Kh we have

sup
u−∈U−

inf
u+∈U+

Θ(y, s;u+, u−) ≥ 3
4
θ.

Hence we can choose ν−(y, s) such that in Kh

inf
u+∈U+

Θ(y, s;u+, ν−(y, s)) ≥ 1
2
θ.
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And so
Θ(y, s;u+, ν−(y, s)) ≥ 1

2
θ,

for any u+ ∈ U+. Therefore for u−(s) = ν−(x(s), s) we have∫ t0+h

t0

L(x, µ+
h (u−),u−) + f(x, µ+

h (u−),u−)Dxϕ+ ϕt ≤ −
1
2
θh.

But then this gives a contradiction.

Now suppose V +−ϕ has a strict local minimum at (x0, t0) but, by contradiction,
there exists θ > 0 such that

−ϕ+
t +H+(Dxϕ

+, x) ≤ −θ.

Using the dynamic programming principle and the local maximum property, we
have

sup
µ+∈Λ±([t0,t0+h])

inf
u−∈U−([t0,t0+h])∫ t0+h

t0

L(x, µ+(u−),u−)ds+ ϕ(x(t0 + h), t0 + h)− ϕ(x0, t0) ≤ 0.

This then contradicts lemma 42. �

3. Bibliographical notes

The main reference for this chapter is the book [BCD97]. The reader may also
want to consult [FS06] (the second edition of the book) for additional material.
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An introduction to mean field games

This introduction to mean field games based upon the author’s joint work with
Joana Mohr and Rafael Souza from the Universidade Federal do Rio Grande do
Sul.

Mean field games is a recent area of research started by Pierre Louis Lions and
Jean Michel Lasry [LL06a, LL06b, LL07a, LL07b] which attempts to understand
the limiting behavior of systems involving very large numbers of rational agents
which play dynamic games under partial information and symmetry assumptions.
Inspired by ideas in statistical physics, Lions and Lasry introduced a class of models
in which the individual player contribution is encoded in a mean field that contains
only statistical properties about the ensemble. A key question is how to derive
such effective or mean field equations that drive the system as well as to show
convergence as the number of agents increases to infinity. The literature on mean
field games and its applications is growing fast, for a recent survey see [LLG10b]
and reference therein. Applications of mean field games arise in the study of growth
theory in economics [LLG10a] or environmental policy [ALT], for instance, and
it is likely that in the future they will play an important rôle in economics and
population models. There is also a growing interest in numerical methods for these
problems [ALT], [AD10]. In [GMS10] was studied the discrete time, finite state
problem.

In this paper we consider the mean field limit of games between a large number
of players that are allowed to switch between two states. We are particularly
interested in understanding the limit as the number of players increases to infinity.
We should stress the the fact that we are considering only two states plays no special
rôle and we could easily generalize our results to any finite number of states.

In his PhD thesis, [Gue09], O. Guéant considered a problem with two states,
modeling the labor market. In this work he considered a continuum of individuals
and a labor market consisting of 2 sectors. Each individual has to decide on which
sector he or she is going to work. This model consists in a coupled systems of
ordinary differential equations of the type that will be derived in section 2. Another

69
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possible application of our models concerns the adoption or change of a technology
or services. For instance, a single agent faced with different social networks will
have a incentive to move to the network with more potential contacts, however
other effects play a role in this player decision, such as the level of services, trouble
of changing network, loss of contacts and so on. Another similar example concerns
switching between cell phone companies.

We start in Section 1 to model the N + 1 player problem as a Markov decision
process. We assume that N of the players have a fixed Markov switching strategy β
and then look at a reference player which looks to minimize a certain performance
criterion by choosing a suitable switching strategy α(β). This is a well know Markov
decision problem. The key novelty in this section consists in showing the existence of
a Nash equilibrium such that α(β) = β and its characterization through a non-linear
ordinary differential equation. In fact, this is a continuous time, partial information,
symmetric version of the Markov perfect equilibrium notion that has been studied
(mostly in discrete time or stationary setting) in [PS09, Liv02, MT01, Str93],
and references therein. In [PM01, Sle01] symmetric Markov perfect equilibrium
are also considered, and in the last paper the case with an infinite number of
players is studied. In [Kap95] the passage from discrete time to continuous time
is considered for N players in a war of attrition problem.

In Section 2 we derive a mean field model for the optimal switching policy
of a reference player given the fraction θ(t) of players in one of the states. This
model turns out to be a coupled system of ordinary differential equations, where one
equation governs the evolution of θ, and is subjected to initial conditions, whereas
the other equation models the evolution of the value function and has terminal
data. We call this problem the initial-terminal value problem. Initial terminal
value problems are in fact a general feature in many mean field game problems,
see for instance [LL06a, LL06b, LL07a]. Of course, existence and uniqueness of
solutions is not immediate from the general ODE theory but, adapting the methods
of Lions and Lasry we were successful in establishing both.

Our main result, theorem 57, is discussed in Section 3 where we prove the
convergence as the number of players N →∞ to a mean field model.

1. The N + 1 player game

In this section we consider symmetric games between N + 1 players under a
symmetric partial information pattern. We start by discussing the framework of this
problem, namely controlled Markov Dynamics, §1.1, admissible controls §1.3, and
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the individual player problem §1.4. Then in §1.5 we discuss the main assumptions
on running and terminal cost that allow us to use Hamilton-Jacobi ODE methods,
in §1.6 to solve the N + 1 player problem. Maximum principle type estimates are
considered in §1.7 which are then applied to establishing the existence of Nash
equilibrium solutions, §1.8. This section ends with an example §1.9.

1.1. Controlled Markov Dynamics. We consider a dynamic game between
N + 1 players that are allowed to switch between two states denoted by 0 and 1.
We suppose that all players are identical and so the game is symmetric with respect
to permutation of the players. To describe the game we will use a reference player,
which could be chosen as any one of the players.

If we fix any player as the reference player, we will suppose that he knows his
own state at time t, given by i(t), and also knows the number n(t) of remaining
players that are in state 0. i(t) and n(t) are stochastic processes that we will describe
in the following. No further information is available to the reference player. Because
the game is symmetric, the identity of the reference player is not important, and
all other players have access to the same kind of information, i.e., its own state and
the fraction of other players in state 0.

We suppose the process (n(t), i(t)) is a continuous time Markov process: the
reference player follows a controlled Markov process i(t) with transition rates from
state i to the other state 1− i given by β = β(i, n, t). More precisely we have

P
(
i(t+ h) = 1− i‖n(t) = n, i(t) = i

)
= β(i, n, t).h+ o(h) ,

where lim o(h)
h = 0 when h → 0. Because of the symmetry of the game, all other

players follow their own Markov process controlled by the same transition rate
function β : {0, 1} × {0, ..., N} × [0,+∞) → [0,+∞). Note that the rate function
β is a deterministic time-dependent function, which makes (n(t), i(t)) a non-time
homogeneous Markov process. We will suppose that β is bounded and continuous
as a function of time. We will refer to any Markov control with rate function which
is bounded and continuous on time, as an admissible control.

The transition rates of the process n(t) are given by

γ+
β (i, n, t) = (N − n)β(1, n+ 1− i, t) ,(33)

γ−β (i, n, t) = nβ(0, n− i, t) ,

where γ+
β stands for the transition rate from n to n + 1, and γ−β is the transition

rate from n to n − 1. Note that n + 1 − i is the total number of players in state
0, as seen by a player (distinct from the reference player) in state 1 whereas n− i
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is the number of players in state 0 as seen by a player (distinct from the reference
player) in state 0.

More precisely, we have

P
(
n(t+ h) = n+ 1‖n(t) = n, i(t) = i

)
= γ+

β (i, n, t).h+ o(h) ,

P
(
n(t+ h) = n− 1‖n(t) = n, i(t) = i

)
= γ−β (i, n, t).h+ o(h) ,

where lim o(h)
h = 0 when h→ 0.

We assume further that the state transitions of the different players are in-
dependent, conditioned on i and n. Note that no information is available to any
player concerning the state of any other individual player. All each player knows
is its position and the number of other players in state 0, which mean, the fraction
of other players in each one of the states 0 and 1.

1.2. A control problem. Let now T > 0, and let c : {0, 1}× [0, 1]×R+
0 → R

and ψ : {0, 1} × [0, 1] → R be two (non-negative) functions. We will discuss the
precise hypothesis on c and ψ in section 1.5. We suppose c

(
i, nN , β

)
represents

a running cost incurred by the reference player when he is in state i, n of the
remaining N players are in state 0 and this player has a transition rate β from i to
1− i. We also suppose ψ

(
i, nN

)
represents a terminal cost incurred by the reference

player at the terminal time T , if he ends up at time T in state i and at that time
n of the other players are in state 0.

If At(i, n) denotes the event i(t) = i and n(t) = n, the expected total cost of
the reference player, giving the control β and conditioned on the event At(i, n), will
be

V β(i, n, t) = EβAt(i,n)

[∫ T

t

c

(
i(s),

n(s)
N

, β(s)
)
ds+ ψ

(
i(T ),

n(T )
N

)]
.

We could be interested in finding an admissible control β that minimizes, for
each (i, n, t), the function V defined above. This however would require a coopera-
tive behavior between players and it would be an usual stochastic optimal control
problem. Instead, we are interested in finding an admissible control β that is a
symmetric Nash equilibria for the game which we will soon describe.

1.3. The Dynkin formula. Given two admissible controls β and α, we can
define a non-time homogeneous Markov process (n(t), i(t)) where the transition
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rates for n are given by (33) and the transition rate for i is given by α as

P
(
i(t+ h) = 1− i‖n(t) = n, i(t) = i

)
= α(i, n, t).h+ o(h) ,

where lim o(h)
h = 0 when h→ 0. The idea here is that, while other players use the

control β, the reference player can choose another control α.

Furthermore, we have that, for any function ϕ : {0, 1} × {0, 1, 2, ..., N} ×
[0,+∞)→ R, smooth in the last variable, and any s > t,

Eβ,αAt(i,n) [ϕ(i(s), n(s), s)− ϕ(i, n, t)](34)

= Eβ,αAt(i,n)

[∫ s

t

dϕ

dt
(i, n, r) +Aβ,αϕ(i, n, r)dr

]
,(35)

where At(i, n) still denotes the event i(t) = i and n(t) = n, and

Aβ,αϕ(i, n, r) = α(i, n, r)(ϕ̄− ϕ)(i, n, r)+
(36)

+ γ+
β (i, n, r)(ϕ(i, n+ 1, r)− ϕ(i, n, r)) + γ−β (i, n, r)(ϕ(i, n− 1, r)− ϕ(i, n, r)) ,

where γ+
β and γ−β are defined by (33), and ϕ̄(i, n, t) = ϕ(1− i, n, t).

We call Aα,β the generator of the process and (34) the Dynkin’s formula in
analogy to the Dynkin’s formula in stochastic calculus.

1.4. Individual player point of view - introducing the game. Now we
suppose the reference player decides unilaterally to use a different control, trying
to improve its value function.

We will suppose the other players continue to follow the Markov Chain with
transition rate β(i, n, t), bounded and continuous on time. Therefore n(t), the num-
ber of such players that are in state 0, is a process to which correspond transition
rates γ+

β and γ−β as in (33).

The reference player looks for an admissible control α, possibly different from
β, that minimizes

u(i, n, t, β, α) = Eβ,αAt(i,n)

[∫ T

t

c

(
i(s),

n(s)
N

,α(s)
)
ds+ ψ

(
i(T ),

n(T )
N

)]
.

That is, reference player looks for the control α which is a solution to the mini-
mization problem

u(i, n, t;β) = inf
α
u(i, n, t, β, α),

where the minimization is performed over the set of all admissible controls α. We
will call the function u(i, n, t;β) above the value function for the reference player
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associated to the strategy β of the remaining N players. The control α that attains
the minimum above can be called the best response of any player to a control β.

1.5. Assumptions on running and terminal cost. We discuss now the hy-
pothesis used in this paper concerning the running and terminal costs. We suppose
that both the running cost c = c(i, θ, α) : {0, 1}× [0, 1]×R+

0 → R and the terminal
cost ψ = ψ(i, θ) : {0, 1} × [0, 1] → R are non-negative functions, as mentioned in
the previous section, and also that they are Lipschitz continuous in θ. Of course,
our results would still be valid without any change if c and ψ are simply bounded
below, instead of being non-negative.

We assume that c(i, θ, α) is uniformly convex on α ≥ 0 and superlinear. We
assume further that c is differentiable, and c ′(θ, α) is Lipschitz in the variable θ.

For p ∈ R we define

h(p, θ, i) = min
α≥0

[c(i, θ, α) + αp] .

Note that h is an increasing concave function of p, Lipschitz in θ, and, hence,
bounded below by

min
θ∈[0,1],i∈{0,1}

h(0, θ, i).

Because of the uniform convexity the minimum is achieved at a single point, and
the function

α∗(p, θ, i) = argminα≥0 [c(i, θ, α) + αp] .

is well defined. Furthermore we have

Proposition 44. The function α∗ is locally Lipschitz in p, uniformly in θ ∈
[0, 1]. Furthermore it is uniformly Lipschitz in θ.

Proof. We will use the following inequalities, which are consequence of the
uniform convexity of c: for all θ, α ′, α, p and p ′, we have

(37) c(θ, α′) + α′p ′ ≥ c(θ, α) + αp ′ + (c ′(θ, α) + p ′)(α′ − α) + γ|α′ − α|2,

and because α∗(p, θ) is a minimizer,

(38) (c ′(θ, α∗(p, θ)) + p)(α′ − α∗(p)) ≥ 0 .

We will first prove that α∗ is uniformly Lipschitz in p : for that, we suppose
that θ is fixed. By the definition of α∗ and equation (37) we have

c(α∗(p)) + α∗(p)p ′ ≥ c(α∗(p ′)) + α∗(p ′)p ′ ≥

≥ c(α∗(p)) + α∗(p)p ′ + (c ′(α∗(p)) + p ′)(α∗(p ′)− α∗(p)) + γ|α∗(p ′)− α∗(p)|2,
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hence

0 ≥ (c ′(α∗(p)) +p)(α∗(p ′)−α∗(p)) + (p ′−p)(α∗(p ′)−α∗(p)) +γ|α∗(p ′)−α∗(p)|2.

Now using equation (38) we obtain

0 ≥ (p ′ − p)(α∗(p ′)− α∗(p)) + γ|α∗(p ′)− α∗(p)|2.

Therefore

|p ′ − p | |α∗(p ′)− α∗(p)| ≥ γ|α∗(p ′)− α∗(p)|2 ,

which implies

|α∗(p ′)− α∗(p)| ≤ 1
γ
|p ′ − p |.

This shows that α∗ is uniformly Lipschitz in p.

Now we prove that α∗ is Lipschitz in θ: for that, we suppose that p is fixed.
Again by the definition of α∗ and by equation (37) we have

c(θ ′, α∗(θ)) + α∗(θ)p ≥ c(θ ′, α∗(θ ′)) + α∗(θ ′)p

≥ c(θ ′, α∗(θ)) + α∗(θ)p+ c ′(θ ′, α∗(θ))(α∗(θ ′)− α∗(θ)) + γ|α∗(θ ′)− α∗(θ)|2,

and then

0 ≥ c ′(θ ′, α∗(θ))(α∗(θ ′)− α∗(θ)) + γ|α∗(θ ′)− α∗(θ)|2.

Using equation (38) we get

0 ≥ [c ′(θ ′, α∗(θ))− c ′(θ, α∗(θ))](α∗(θ ′)− α∗(θ)) + γ|α∗(θ ′)− α∗(θ)|2.

As c ′(θ, α) is Lipschitz in the variable θ we have

0 ≥ −K|θ ′ − θ| |α∗(θ)− α∗(θ ′)|+ γ|α∗(θ ′)− α∗(θ)|2.

Therefore

|α∗(θ)− α∗(θ ′)| ≤ K

γ
|θ − θ ′| ,

which implies that α∗ is Lipschitz in θ. �

In section 2.3 we will present and discuss monotonicity assumptions on ψ and
h, namely conditions (50) and (52), which will be necessary to prove uniqueness of
solutions of the mean field model that will be presented in section 2.
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1.6. The Hamilton-Jacobi ODE. Fix a admissible control β. Consider the
system of ODE´s indexed by i and n given by

−dϕ
dt

(i, n, t) =γ+
β (i, n, t)(ϕ(i, n+ 1, t)− ϕ(i, n, t)) + γ−β (i, n, t)(ϕ(i, n− 1, t)− ϕ(i, n, t))

+ h
(
ϕ̄(i, n, t)− ϕ(i, n, t),

n

N
, i
)
,

where ϕ̄β(i, n, t) = ϕβ(1−i, n, t), and γ+
β and γ−β are given by (33). Since γ−β (i, 0, t) =

0 and γ+
β (i,N, t) = 0, the evaluation of ϕ at n+1 and n−1 does not cause problems

outside the range, resp. when n = N or n = 0). By setting ϕn(i, t) = ϕ(i, n, t) we
write the previous ODE in compact notation:

(39) −dϕn
dt

= γ+
β (ϕn+1 − ϕn) + γ−β (ϕn−1 − ϕn) + h

(
ϕ̄n − ϕn,

n

N
, i
)
.

This system of ODE is called the Hamilton-Jacobi (HJ) ODE for player N + 1
associated to the strategy β of the remaining N players. We start by proving a ver-
ification theorem, which is completely analogous to the optimal control verification
theorem, see [FS06] for instance.

Theorem 45. Let ϕβ be a solution to (39) satisfying the terminal condition
ϕβ(i, n, T ) = ψ

(
i, nN

)
. Then

u(i, n, t;β) = ϕβ(i, n, t) .

Also, the control

(40) ᾱ(β)(i, n, t) ≡ α∗
(
ϕ̄β(i, n, t)− ϕβ(i, n, t),

n

N
, i
)
,

is admissible and satisfies

u(i, n, t;β) = u(i, n, t, β, ᾱ(β)) .

Thus a classical solution to the HJ equation associated to β is the value function
corresponding to β and determines an optimal admissible control ᾱ(β), for the
reference player.

Proof. Let α be an admissible control. By (34) we have

Eβ,αAt(i,n) [ϕβ(i(T ), n(T ), T )]−ϕβ(i, n, t) = Eβ,αAt(i,n)

[∫ T

t

dϕβ
dt

(i, n, r) +Aβ,αϕβ(i, n, r)dr

]
,

where Aβ,α is given by (36). Adding

Eβ,αAt(i,n)

[∫ T

t

c

(
i(r),

n(r)
N

,α(r)
)
dr

]
+ ϕβ(i, n, t) ,
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to both sides of the previous identity, where α(r) = α(i(r), n(r), r), and using the
definition of Aβ,αϕβ(i, n, r), we have

u(i, n, t;β, α) =

= ϕβ(i, n, t) + Eβ,αAt(i,n)

[∫ T

t

dϕβ
dt

(i, n, r) + γ+
β (i, n, r)(ϕβ(i, n+ 1, r)− ϕβ(i, n, r))

+ γ−β (i, n, r)(ϕβ(i, n− 1, r)− ϕβ(i, n, r)) + c
(
i,
n

N
, α
)

+ α(r)(ϕ̄β − ϕβ)(i, n, r)dr

]
.

The equation above is valid for all admissible controls α. Now we can define

ᾱ(β)(i, n, r) = α∗
(
ϕ̄β(i, n, r)− ϕβ(i, n, r),

n

N
, i
)
,

which is a bounded continuous Markov control and therefore admissible. We have

u(i, n, t;β) ≤u(i, n, t, β, α∗) = ϕβ(i, n, t)

+ Eβ,α
∗

At(i,n)

[∫ T

t

dϕβ
dt

(i, n, r) + γ+
β (n, r)(ϕβ(i, n+ 1, r)− ϕβ(i, n, r))

+ γ−β (n, r)(ϕβ(i, n− 1, r)− ϕβ(i, n, r)) + h
(
ϕ̄β(i, n, r)− ϕβ(i, n, r),

n

N
, i
)
dr

]
.

Now, we see that the integrand vanishes since ϕβ is a solution to HJ, and therefore
we have u(i, n, t;β) ≤ ϕβ(i, n, t).

Now we prove the other inequality:

u(i, n, t;β) = inf
α
u(i, n, t, β, α) = ϕβ(i, n, t)

+ inf
α

Eβ,αAt(i,n)

[∫ T

t

dϕβ
dt

(i, n, r) + γ+
β (i, n, r)(ϕβ(i, n+ 1, r)− ϕβ(i, n, r))

+ γ−β (i, n, r)(ϕβ(i, n− 1, r)− ϕβ(i, n, r)) + c
(
i,
n

N
, α
)

+ α(r)(ϕ̄β − ϕβ)(i, n, r)dr

]

≥ ϕβ(i, n, t) + EβAt(i,n)

[∫ T

t

dϕβ
dt

(i, n, r) + γ+
β (i, n, r)(ϕβ(i, n+ 1, r)− ϕβ(i, n, r))

+ γ−β (i, n, r)(ϕβ(i, n− 1, r)− ϕβ(i, n, r)) + h
(
ϕ̄β(i, n, r)− ϕβ(i, n, r),

n

N
, i
)
dr

]
= ϕβ(i, n, t) ,

where the last equation holds because the integrand vanishes since ϕ is a solution
to HJ.

Thus we have proved that u(i, n, t;β) = ϕβ(i, n, t). �
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1.7. Maximum principle. Here we prove that the solutions to the Hamilton-
Jacobi equations are uniformly bounded independently on the control β. We denote
by

‖u(t)‖∞ = max
n,i
|un(i, t)|,

and
M = max

(i,θ)∈{0,1}×[0,1]
|h(0, θ, i)|.

Proposition 46. Let u be a solution to (39). For all 0 ≤ t ≤ T we have

‖u(t)‖∞ ≤ ‖u(T )‖∞ + 2M(T − t).

Proof. Let u be a solution to (39). Let ũ = u+ ρ(T − t). Then

−dũn
dt

= ρ+ γ+
β (ũn+1 − ũn) + γ−β (ũn−1 − ũn) + h

(
¯̃un − ũn,

n

N
, i
)
.

Let (i, n, t) be a minimum point of ũ on {0, 1} × {0, 1, · · · , N} × [0, T ]. We have
ũn(i, t) ≤ ũn−1(i, t) and un(i, t) ≤ un+1(i, t). This implies γ−β (ũn−1 − ũn) ≥ 0 and
γ+
β (ũn+1 − ũn) ≥ 0. We also have ũn(i, t) ≤ ũn(1 − i, t) = ¯̃un(i, t), which implies

(¯̃un − ũn)(i, t) ≥ 0. Hence

−dũn
dt

(i, t) ≥ h
(

¯̃un − ũn,
n

N
, i
)

+ ρ ≥ h
(

0,
n

N
, i
)

+ ρ ,

because h(p, θ, i) is monotone increasing in p. Furthermore, if we take M < ρ < 2M
we get

−dũn
dt

(i, t) > 0.

This shows that the minimum of ũ is achieved at T hence

un(t, i) ≥ −‖u(T )‖∞ − 2M(T − t).

Similarly, let (i, n, t) be a maximum point of ũ on {0, 1}×{0, 1, · · · , N}× [0, T ].
We have ũn(i, t) ≥ ũn−1(i, t) and un(i, t) ≥ un+1(i, t), and this implies γ−β (ũn−1 −
ũn) ≤ 0 and γ+

β (ũn+1 − ũn) ≤ 0. We also have ũn(i, t) ≥ ũn(1 − i, t) = ¯̃un(i, t),
which implies (¯̃un − ũn)(i, t) ≤ 0. Hence

−dũn
dt

(i, t) ≤ h
(

¯̃un − ũn,
n

N
, i
)

+ ρ ≤ h
(

0,
n

N
, i
)

+ ρ ,

because h(p, θ, i) is monotone increasing in p. Furthermore, if we take −2M < ρ <

−M we get

−dũn
dt

(i, t) < 0.

This shows that the maximum of ũ is achieved at T hence

un(t, i) ≤ ‖u(T )‖∞ + 2M(T − t).

�
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1.8. Equilibrium solutions. We now consider the equilibrium situation in
which the best response of any player to a control β is β itself.

Definition 1. Let β be an admissible control. This control β is a Nash equi-
librium if ᾱ(β) = β.

Theorem 47. There exists a Nash equilibrium, i.e, an admissible Markov con-
trol β∗, which satisfies ᾱ(β∗) = β∗. Moreover, the Nash equilibrium is unique.

Proof. It suffices to observe that, by (40)

β∗(i, n, t) = α∗
(
ϕ̄β∗ − ϕβ∗ ,

n

N
, i
)
,

and hence the Markov control can be obtained by solving the system of nonlinear
differential equations

(41) −dun
dt

= γ+
n (un+1 − un) + γ−n (un−1 − un) + h

(
ūn − un,

n

N
, i
)
,

with terminal condition u(i, n, T ) = ψ
(
i, nN

)
, where γ±n are given by

γ+
n (i, t) = (N − n)α∗

(
ūn+1−i − un+1−i,

n+ 1− i
N

, 1
)

(42)

γ−n (i, t) = nα∗
(
ūn−i − un−i,

n− i
N

, 0
)
.

Note that (41) is well posed because un is bounded and the righthand side is
Lipschitz. Hence it follows the existence and uniqueness of a Nash equilibrium. �

For the record we give here some properties of γ±n :

|γ±n | ≤ CN,

and
|γ±n+1 − γ±n | ≤ C + CN‖un+1 − un‖∞.

1.9. An example. Let f : {0, 1} × [0, 1] → R and g : {0, 1} × [0, 1] → R be
two continuous function. We take

c(i, θ, α) = f(i, θ) +
α2

2
− αg(i, θ) .

This example could model, for instance, the marketshare of cellular companies
where there are only two competitors and N individual costumers. If the state of
the player represents the company he uses, we can think of g(i, θ) as a bonus the
company i offers customers of company 1− i in case they decide to switch. If there
are no such bonus, we set g = 0.
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Then

h(p, θ, i) = min
α≥0

[c(i, θ, α) + αp] = f(i, θ)− ((g(i, θ)− p)+)2

2
,

and

α∗(p, θ, i) = argminα≥0 [c(i, θ, α) + αp)] = (g(i, θ)− p)+ .

Therefore (41) becomes
(43)

−du
dt

= f− ((u− ū+ g)+)2

2
+(N−n)(u−ū+g)+

1,n+1−i(un+1−un)+n(u−ū+g)+
0,n−i(un−1−un).

By the results of section 1.7 we know that any solution to (43) is bounded
a-priori. Hence, if f and g are Lipschitz, (43) has a unique solution u. Therefore,
there exists a unique Nash equilibrium.

2. A mean field model

This section is dedicated to a mean field model which, as we will see in the next
section, corresponds to the limit as the number of players N + 1 → ∞. We start
in §2.1 by discussing the model and its derivation under the mean field hypothesis.
Then, in §2.2 we address existence of solutions. Uniqueness of solutions (under a
monotonicity hypothesis similar to the ones in [LL06a, LL06b]) is established in
§2.3. Finally, in §2.4, we continue the study of the model problem from §1.9.

2.1. The control problem in the mean field model and Nash equilib-
ria. If the number of players is very large, we expect their distribution between
the two states to be a deterministic function of the time t, as it would happen if
we could somehow apply the law of large numbers. So, we suppose the fraction of
players in state 0 is given by a deterministic function θ(t). If all players use the
same Markovian control β = β(i, t), which now only depends on i and t, then θ is
a solution to

(44)
dθ

dt
= (1− θ)β1 − θβ0 θ(0) = θ̄ ,

where βi denotes the function t → β(i, t), and 0 ≤ θ̄ ≤ 1 is given and represents
the initial distribution. We suppose here that βi are continuous and bounded, for
i = 0 and i = 1, and call such controls admissible controls.

We can now consider the optimization problem from a single player point of
view. As before, we fix an individual player as the reference player and assume
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he can choose any admissible control α, while other players have a probability
distribution among states determined by (44). Let

u(i, t, α) = Eαi(t)=i

[∫ T

t

c(i(s), θ(s), α(i(s), s))ds+ ψ(i(T ), θ(T ))

]
,

where i(t) is a controlled Markov chain switching between state 0 and 1 with rate
α. We assume this player looks for an admissible control α which solves

u(i, t) = inf
α
u(i, t, α).

Note that the situation is now simpler than in the N + 1-player game, because
θ is deterministic and the only stochastic process is i(t) whose switching rate is
controlled by α. We call u(i, t) the value function associated to the mean field
distribution θ.

Consider the following HJ equation:

(45) −du
dt

= h(ū− u, θ, i) .

As in the verification theorem of §1.6, any solution u to the equation above, with
the terminal condition u(i, T ) = ψ(i, θ(T )), is the value function associated to θ.
Furthermore, the optimal control is α∗(ū− u, θ, i).

Under the symmetry hypothesis, all players must use the same control when
the Nash equilibria is attained. In other words, Nash equilibria is the fixed point to
the operator described above, i.e., the operator that uses the control β to calculate
θ as a solution to (44), and after that determines the control α∗(ū− u, θ, i) where
u is the solution to the HJ equation (45) determined by θ, making the control
α∗(ū− u, θ, i) the image of β under this operator.

This leads then to the following system of ordinary differential equations

(46)

−dudt = h(ū− u, θ, i)
dθ
dt = (1− θ)α∗(u(0, t)− u(1, t), θ, 1)− θα∗(u(1, t)− u(0, t), θ, 0),

with the boundary data

(47)

u(i, T ) = ψ(i, θ(T ))

θ(0) = θ̄ .

Note that from the ODE point of view this problem is somewhat non-standard
as some of the variables have initial conditions whereas other variables have pre-
scribed terminal data. We call this the initial-terminal value problem.
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2.2. Existence of Nash Equilibria in the MFG. We now address the
existence of solutions to (46) satisfying the initial-terminal conditions (47). The
proof of existence will be based upon a fixed point argument, using the operator
ξ described in the following, which is the analogous of the operator acting on the
controls described in the last section, but now acting on distributions.

Proposition 48. There exists a solution to (46) satisfying the initial-terminal
conditions (47).

Proof. We need to solve (46) and (47) which can be rewritten as

(48)
dθ

dt
= (1− θ)α1 − θα0 θ(0) = θ̄

(49) −du
dt

= h(ū− u, θ, i) u(i, T ) = ψ(i, θ(T ))

where

α = α∗(ū− u, θ, i).

Let F be the set of continuous functions defined on [0, T ] and taking values
in [0, 1], with the C0 norm. Consider the function ξ : F → F that is obtained
in the following way: given θ ∈ F , let uθ be the solution of equation (49). Let
βθ = α∗(ūθ − uθ, θ, i) , and then let ξ(θ) be the solution to dθ

dt = (1 − θ)βθ1 − θβθ0
and θ(0) = θ̄.

From standard ODE theory we know ξ is a continuous function from F to F .
Moreover, as β is bounded, ξ(θ) is Lipschitz, with Lipschitz constant Λ independent
of θ.

Now consider the set C of all Lipschitz continuous function in F with Lipschitz
constant bounded by Λ. This is a set of uniformly bounded and equicontinuous
functions. Thus, by Arzela-Ascoli, it is a relatively compact set. It is also clear
that it is a convex set. Hence, by Brouwer fixed point theorem, ξ has a fixed point
in C. �

2.3. Uniqueness of Equilibria. To establish uniqueness we need to use the
monotonicity method of [LL06a, LL06b].

We will suppose the following monotonicity hypothesis on ψ:

(50) (x− y)[ψ(0, x)− ψ(0, y)] + (y − x)[ψ(1, x)− ψ(1, y)] ≥ 0 ,
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for any x and y in [0, 1]. This hypothesis holds, for instance, if we suppose that ψ
is differentiable on its second variable, and

dψ

dθ
(0, θ)− dψ

dθ
(1, θ) ≥ 0 ,

or if we suppose that ψ(0, θ) is non-decreasing as function of θ and ψ(1, θ) is non-
increasing as function of θ, which could be interpreted as a penalization on crowded
states.

Now, from the concavity of h in p we have, for all p, q, θ and i

(51) h(q, θ, i)− h(p, θ, i)− α∗(p, θ, i)(q − p) ≤ 0,

because α∗(p, θ, i) ∈ ∂+
p h(p, θ, i). We suppose the additional monotonicity property

θ
(
h(q, θ̃, 0)− h(q, θ, 0)

)
+ θ̃
(
h(p, θ, 0)− h(p, θ̃, 0)

)
(52)

+(1− θ)
(
h(−q, θ̃, 1)− h(−q, θ, 1)

)
+ (1− θ̃)

(
h(−p, θ, 1)− h(−p, θ̃, 1)

)
≤ −γ|θ − θ̃|2,

for all p, q ∈ R, for some γ > 0. This property will hold, for instance, if

(53) h(p, θ, i) = h0(p) + f(i, θ),

with f satisfying

(54) (θ − θ̃)(f(0, θ̃)− f(0, θ)) + (θ̃ − θ)(f(1, θ̃)− f(1, θ)) ≤ −γ|θ − θ̃|2.

Note that the example of section 1.9 easily fits the previous conditions (53) and
(54) provided we suppose g is a constant function and the functions θ 7→ f(0, θ)
and θ 7→ f(1, θ) satisfy

(θ̃ − θ)(f(0, θ̃)− f(0, θ)) ≥ γ

2
|θ − θ̃|2

and

(θ̃ − θ)(f(1, θ̃)− f(1, θ)) ≤ −γ
2
|θ − θ̃|2,

which could be seen as a consequence of the fact that the running cost is greater
when the reference player is in the more crowded state (i.e. when θ = 1 if i = 0
and when θ = 0 if i = 1).

Then , using (51) and (52) we obtain

θ
(
h(q, θ̃, 0)− h(p, θ, 0)− α∗(p, θ, 0)(q − p)

)
+ θ̃
(
h(p, θ, 0)− h(q, θ̃, 0)− α∗(q, θ̃, 0)(p− q)

)
+ (1− θ)

(
h(−q, θ̃, 1)− h(−p, θ, 1)− α∗(−p, θ, 1)(p− q)

)
+ (1− θ̃)

(
h(−p, θ, 1)− h(−q, θ̃, 1)− α∗(−q, θ̃, 1)(q − p)

)
≤ −γ|θ − θ̃|2.

(55)
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Theorem 49. Under the monotonicity hypothesis (50) and (52), the system
(48) and (49) has a unique solution (θ, u).

Proof. To establish uniqueness we will use monotonicity argument from [LL06a,
LL06b].

Suppose (θ, u) and (θ̃, ũ) are solutions of (48) and (49). At the initial point
t = 0 we have that (θ − θ̃)(u − ũ) = 0 and ((1 − θ) − (1 − θ̃))(ū − ¯̃u) = 0, where
u(t) = u(0, t) and ū = u(1, t), and similarly for ũ. Then

(θ − θ̃)(u− ũ)t = (θ − θ̃)[−h(ū− u, θ, 0) + h(¯̃u− ũ, θ̃, 0)],

and

((1− θ)− (1− θ̃))(ū− ¯̃u)t = ((1− θ)− (1− θ̃))[−h(u− ū, θ, 1) + h(ũ− ¯̃u, θ̃, 1)].

Furthermore,

(u− ũ)(θ − θ̃)t =(u− ũ)[(1− θ)α∗(u− ū, θ, 1)− θα∗(ū− u, θ, 0)

− (1− θ̃)α∗(ũ− ¯̃u, θ̃, 1) + θ̃α∗(¯̃u− ũ, θ̃, 0)],

and

(ū− ¯̃u)((1− θ)− 1 + θ̃)t =(ū− ¯̃u)[θα∗(ū− u), θ, 0)− (1− θ)α∗(u− ū, θ, 1)

− θ̃α∗(¯̃u− ũ, θ̃, 0) + (1− θ̃)α∗(ũ− ¯̃u, θ̃, 1)].

Hence,

d

dt

(
(θ − θ̃)(u− ũ) + ((1− θ)− (1− θ̃))(ū− ¯̃u)

)
=

=θ
(
− h(ū− u, θ, 0) + h(¯̃u− ũ, θ̃, 0) + [(ū− ¯̃u)− (u− ũ)]α∗(ū− u, θ, 0)

)
+ θ̃
(
h(ū− u, θ, 0)− h(¯̃u− ũ, θ̃, 0) + [−(ū− ¯̃u) + (u− ũ)]α∗(¯̃u− ũ, θ̃, 0)

)
+ (1− θ)

(
− h(u− ū, θ, 1) + h(ũ− ¯̃u, θ̃, 1) + [(u− ũ)− (ū− ¯̃u)]α∗(u− ū, θ, 1)

)
+ (1− θ̃)

(
h(u− ū, θ, 1)− h(ũ− ¯̃u, θ̃, 1) + [−(u− ũ) + (ū− ¯̃u)]α∗(ũ− ¯̃u, θ̃, 1)

)
.

Then, by using (55), with p = ū− u and q = ¯̃u− ũ, we obtain

(56)
d

dt

(
(θ − θ̃)(u− ũ) + ((1− θ)− (1− θ̃))(ū− ¯̃u)

)
≤ −γ|θ − θ̃|2.

Integrating the previous equation between 0 and T , and using the terminal condi-
tions, we have that

(θ(T )−θ̃(T ))[ψ(0, θ(T ))−ψ(0, θ̃(T ))]+(θ̃(T )−θ(T ))[ψ(1, θ(T ))− ˜ψ(1, θ(T ))] ≤ −γ
∫ T

0

|θ(s)−θ̃(s)|2ds.
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Hence by the monotonicity condition (50) we get

0 ≤ −γ
∫ T

0

|θ(s)− θ̃(s)|2ds,

which implies that θ(s) = θ̃(s) for all s ∈ [0, T ]. Therefore, we have the uniqueness
for θ. Then, once θ is known to be unique, we obtain by a standard ODE argument
that u = ũ. �

2.4. Back to the example. Just to illustrate, equations (46), in the special
case of the example of section 1.9, and supposing g is a constant function, becomes

dθ

dt
= (1− θ)(u− ū)+

1 − θ(u− ū)+
0 ,

and

−du
dt

= f(i, θ)− ((u− ū+ g)+)2

2
.

As we have already seen, provided the condition (54) holds and given the initial-
terminal condition

θ(0) = θ̄, u(i, T ) = ψ(i, θ(T ))

the system above has a unique solution.

3. Convergence

This last section addresses the convergence as the number of players tends to
infinity to the mean field model derived in the previous section.

We start this section by discussing some preliminary estimates in §3.1. Then,
in §3.2 we establish uniform estimates for |un+1 − un|, which are essential to prove
our main result, theorem 57, which is discussed in §3.3. This theorem shows that
the model derived in the previous section can be obtained as an appropriate limit
of the model with N + 1 players discussed in section 1.

3.1. Preliminary results. Consider the system of ordinary differential equa-
tions

(57) −żn = an(t)(zn+1 − zn) + bn(t)(zn−1 − zn) + µn(t)(z̄n − zn),

with an(t), bn(t), µn(t) ≥ 0. Here zn = (z0
n, z

1
n), an = (a0

n, a
1
n), etc. We assume

further that aN = 0 and b0 = 0.

We write (57) in compact form as

(58) −ż(t) = M(t)z(t).
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The solution to this equation with terminal data z(T ) can be written as

(59) z(t) = K(t, T )z(T ),

where K(t, T ) is the fundamental solution to (58) with K(T, T ) = I. Note that
equations (58) and (59) imply

(60)
d

dt
K(t, T ) = −M(t)K(t, T ).

Lemma 50. For t < T we have

‖z(t)‖∞ ≤ ‖z(T )‖∞.

Furthermore, if z(T ) ≤ 0 then z(t) ≤ 0.

Proof. Let z be a solution of (58), and fix ε > 0. We define z̃ = z + ε(t− T ).
Hence z̃ satisfies

− ˙̃zn = −ε+ an(t)(z̃n+1 − z̃n) + bn(t)(z̃n−1 − z̃n) + µn(t)(¯̃zn − z̃n).

Let (i, n, t) be a maximum point of z̃ on {0, 1} × {0, 1, · · · , N} × [0, T ]. We have
z̃n(i, t) ≥ z̃n−1(i, t) and zn(i, t) ≥ zn+1(i, t), also z̃n(i, t) ≥ z̃n(1−i, t) = ¯̃zn(i, t), this
implies bn(t)(z̃n−1− z̃n) ≤ 0 and an(t)(z̃n+1− z̃n) ≤ 0 and µn(t)(¯̃zn− z̃n)(i, t) ≤ 0.
Hence

−dz̃n
dt

(i, t) ≤ −ε.

This shows that the maximum of z̃ is achieved at T . Therefore, for all (j,m, t),

zm(j, t) + ε(t− T ) = z̃m(j, t) ≤ z̃n(i, T ) = zn(i, T )

Letting ε→ 0, we get

zm(j, t) ≤ max
n,i

zn(i, T ).

From this equation we have the following conclusions:

1. if z(T ) ≤ 0, we then have zm(j, t) ≤ 0 , for all (j,m, t), and so z(t) ≤ 0;
2. for all (j,m, t),

zm(j, t) ≤ ‖z(T )‖∞.

Now we define z̃ = z + ε(T − t). Hence z̃ satisfies

− ˙̃zn = ε+ an(t)(z̃n+1 − z̃n) + bn(t)(z̃n−1 − z̃n) + µn(t)(¯̃zn − z̃n).

Let (i, n, t) be a minimum point of z̃ on {0, 1}×{0, 1, · · · , N}× [0, T ]. We have
z̃n(i, t) ≤ z̃n−1(i, t) and zn(i, t) ≤ zn+1(i, t), also z̃n(i, t) ≤ z̃n(1 − i, t) = ¯̃zn(i, t).
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This implies bn(t)(z̃n−1−z̃n) ≥ 0, and an(t)(z̃n+1−z̃n) ≥ 0 and µn(t)(¯̃zn−z̃n)(i, t) ≥
0. Therefore we have

−dz̃n
dt

(i, t) ≥ ε.

This shows that the minimum of z̃ is also achieved at T , hence for all (j,m, t)

zm(j, t) + ε(T − t) = z̃m(j, t) ≥ z̃n(i, T ) = zn(i, T ).

Letting ε→ 0, we get

zm(j, t) ≥ min
n,i

zn(i, T ).

Hence

zm(j, t) ≥ −‖z(T )‖∞.

Therefore we have ‖z(t)‖∞ ≤ ‖z(T )‖∞. �

Note: let z(t) = K(t, s)z(s) be a solution of (58) with terminal data z(s) = b,
then lemma 50 implies that ‖z(t)‖∞ ≤ ‖z(s)‖∞, and therefore

(61) ‖K(t, s)b‖∞ ≤ ‖b‖∞,∀ b.

From the previous lemma we also conclude

Lemma 51. If p1 ≤ p2, and t ≤ s, then we have

K(t, s)p1 ≤ K(t, s)p2.

Proof. Observe that if p1−p2 ≤ 0 then K(t, s)(p1−p2) ≤ 0, by lemma 50. �

We note now that if t ≤ s ≤ T we have K(t, s)K(s, T ) = K(t, T ), which implies

d

ds

(
K(t, s)K(s, T )

)
= 0.

Hence, using equation (60) we get

−K(t, s)M(s)K(s, T ) +
(
d

ds
K(t, s)

)
K(s, T ) = 0,

and therefore, by taking T = s we conclude that

(62)
d

ds
K(t, s) = K(t, s)M(s).

We now prove the main technical lemma:
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Lemma 52. Suppose z is a solution to

(63) −ż(s) ≤M(s)z(s) + f(z(s)).

Then

z(t) ≤ ‖z(T )‖∞ +
∫ T

t

‖f(z(s))‖∞ds.

Proof. Multiplying (63) by the order preserving operator K(t, s), we have

−K(t, s)ż(s) ≤ K(t, s)M(s)z(s) +K(t, s)f(z(s))

using the identity

d

ds
K(t, s)z(s) = K(t, s)ż(s) +K(t, s)M(s)z(s),

which follows from (62), we get

− d

ds

(
K(t, s)z(s)

)
+K(t, s)M(s)z(s) ≤ K(t, s)M(s)z(s) +K(t, s)f(z(s)).

Thus, integrating between t and T , we have

z(t)−K(t, T )z(T ) ≤
∫ T

t

K(t, s)f(z(s))ds.

So, using equation (61),

z(t) ≤ ‖z(T )‖∞ +
∫ T

t

‖f(z(s))‖∞ds.

�

3.2. Uniform estimates. In this section we prove ”gradient estimates” for
the N + 1 player game, that is, we assume that the difference un+1 − un is of the
order 1

N at time T and show that it remains so for 0 ≤ t ≤ T , as long as T is
sufficiently small.

We start by establishing an auxiliary result:

Lemma 53. Suppose v = v(s) is a solution to the ODE with terminal condition

(64)

−dvds = Cv + CNv2 + C
N

v(T ) ≤ C
N ,

where N is a natural number, and C > 0. Then, there exists T ? > 0, which does
not depend on N , such that T ≤ T ? implies v(s) ≤ 2C

N for all 0 ≤ s ≤ T .
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Proof. Note that (64) implies that v is a monotone decreasing function of s
and is equivalent to 

ds
dv = −1

Cv+CNv2+ C
N

s(CN ) ≤ T.

This implies by direct integration that

s

(
2C
N

)
≤ T −

∫ 2C
N

C
N

dv

Cv + CNv2 + C
N

.

Now ∫ 2C
N

C
N

dv

Cv + CNv2 + C
N

≥
∫ 2C

N

C
N

N

2C2 + 4C3 + C
dv =

1
2C + 4C2 + 1

.

Therefore if we define T ? = 1
2C+4C2+1 , we have that s

(
2C
N

)
≤ 0 if T ≤ T ?. Hence

this implies v(0) ≤ 2C
N , which yields the desired result when we take into account

that v is a decreasing function of s. �

Proposition 54. Suppose that

(65) ‖un+1(T )− un(T )‖∞ ≤
C

N
.

for C > 0. Let u be a solution of (41). Then there exists T ? > 0 such that, for
0 < T < T ? ,we have

‖un+1(t)− un(t)‖∞ ≤
2C
N
,

for all 0 ≤ t ≤ T .

Proof. Let

zn = un+1 − un.

Note that, as usual, zn = (z0
n, z

1
n). We have

−żn = γ+
n+1zn+1−γ+

n zn−γ−n+1zn+γ−n zn−1+h
(
n+ 1
N

, i, ūn+1 − un+1

)
−h
( n
N
, i, ūn − un

)
.

We can write

γ+
n+1zn+1−γ+

n zn − γ−n+1zn + γ−n zn−1

=
γ+
n+1 + γ+

n

2
(zn+1 − zn) +

γ+
n+1 − γ+

n

2
(zn+1 + zn)

+
γ−n+1 + γ−n

2
(zn−1 − zn) +

γ−n − γ−n+1

2
(zn−1 + zn).

We must now observe that∣∣∣∣∣γ−n − γ−n+1

2

∣∣∣∣∣ ≤ C + CN‖z‖∞,
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as well as ∣∣∣∣∣γ+
n+1 − γ+

n

2

∣∣∣∣∣ ≤ C + CN‖z‖∞.

Furthermore, we have

h

(
n+ 1
N

, i, ūn+1 − un+1

)
− h

( n
N
, i, ūn − un

)
= h

(
n+ 1
N

, i, ūn+1 − un+1

)
− h

( n
N
, i, ūn+1 − un+1

)
+ h

( n
N
, i, ūn+1 − un+1

)
− h

( n
N
, i, ūn − un

)
≤ C

N
+ hp

( n
N
, i, ūn − un

)
((ūn+1 − un+1)− (ūn − un))

≤ C

N
+ µn(z̄n − zn),

where µn = hp
(
n
N , i, ūn − un

)
≥ 0.

At this point we are in position to apply lemma 52 from the previous section.
We obtain

zn(t) = (un+1 − un)(t) ≤ ‖z(T )‖∞ +
∫ T

t

C‖z(s)‖∞ + C‖z(s)‖2∞ +
C

N
ds .

We can also use the same argument applied to

z̃n = un − un+1 .

Finally, if we set w = ‖un+1 − un‖∞ we conclude that

w(t) ≤ w(T ) +
∫ T

t

Cw(s) + CNw(s)2 +
C

N
ds.

Now we define

η(t) = w(T ) +
∫ T

t

Cw(s) + CNw(s)2 +
C

N
ds.

We have that

(66) w(t) ≤ η(t),

and also that
dη

dt
(t) = −g(w(t)),

where g is the nondecreasing function g(w) = Cw + CNw2 + C
N . Thusdη

dt (t) ≥ −g(η(t))

η(T ) = w(T ).
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A standard argument from the basic theory of differential inequalities can now be
used to prove that η(t) ≤ v(t) for 0 ≤ t ≤ T if v(t) is the solution ofdv

dt (t) = −g(v(t))

v(T ) = w(T ).

This last result can be combined with lemma 53, the hypothesis w(T ) ≤ C
N and the

inequality (66), to prove that w(t) ≤ 2C
N for all 0 ≤ t ≤ T , which ends the proof of

the proposition. �

3.3. Convergence. In this section we prove theorem 57, which implies the
convergence of both distribution and value function of the N + 1-player game to
the mean field game, for small times.

We start by assuming that at the initial time the N players distinct from
the reference player distribute themselves between states 0 and 1 according to a
Bernoulli distribution with probability θ̄ of being in state 0.

Let

(67)



VN (t) ≡ E
[(

n(t)
N − θ(t)

)2
]
,

WN (t) ≡ E
[(
u(0, t)− un(t)(0, t)

)2]
,

W̄N (t) ≡ E
[(
u(1, t)− un(t)(1, t)

)2]
,

QN (t) ≡WN (t) + W̄N (t) ,

where θ(t) is the solution of (44), 0 ≤ n(t) ≤ N is the number of players (distinct
from the reference player) which are in state 0 at time t, and u = u(i, t) and un =
un(i, t) are respectively the solution of the HJ equation and terminal conditions for
the MFG (46) and N + 1 player game (41).

We have

VN (0) = Var
[
n(0)
N

]
=
θ̄(1− θ̄)
N

,

because n(0) is the sum of N iid rv with Bernoulli distribution.

In this section α = α(i, t) is the optimal control for the MFG, while αN =
αN (i, n, t) is the optimal control for the N +1 player game. We know from sections
1.5, 1.6 and 2.1 that αN = α∗

(
ūn − un, nN , i

)
and α = α∗(ū− u, θ, i).
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Lemma 55. There exists C1 > 0 such that

VN (t) ≤
∫ t

0

C1(VN (s) +QN (s))ds+
C1

N
.

Proof. Using Dynkin’s Formula (34) with ϕ(i, n, s) =
(
n(s)
N − θ(s)

)2

, we have

VN (t)− θ0(1− θ0)
N

= E
∫ t

0

ωN (s) + ςN (s)ds

where

ωN (s) = (N−n)αN1

[(
n+ 1
N
− θ
)2

−
( n
N
− θ
)2
]

+nαN0

[(
n− 1
N
− θ
)2

−
( n
N
− θ
)2
]
,

αN0 = α∗
(
ūn−i − un−i,

n− i
N

, 0
)
,

αN1 = α∗
(
ūn+1−i − un+1−i,

n+ 1− i
N

, 1
)
,

un = uN (i, n, t) ,

and

ςN (s) =
dϕ

dt
(i, n, r) = −2

( n
N
− θ
)

((1− θ)α1 − θα0) .

We have

ωN (s) =
(

1− n

N

)
αN1

(
2n+ 1
N

− 2θ
)
− n

N
αN0

(
2n− 1
N

− 2θ
)

=2αN1
(

1− n

N

)( n
N
− θ
)
− 2αN0

n

N

( n
N
− θ
)

+ τN (s),

where τN (s) = αN1
N + n

N2 (αN0 − αN1 ) . Now

ωN (s)+ςN (s) = 2
( n
N
− θ
) [
αN1

(
1− n

N

)
− αN0

n

N
− ((1− θ)α1 − θα0)

]
+ τN (s)

=2
( n
N
− θ
) [

(αN1 + αN0 )
(
− n
N

)
+ (α1 + α0)θ + (αN1 − α1)

]
+ τN (s)

=2
( n
N
− θ
) [

(αN1 + αN0 )
(
θ − n

N

)
+ (α1 − αN1 + α0 − αN0 )θ + (αN1 − α1)

]
+ τN (s)

=− 2(αN0 + αN1 )
( n
N
− θ
)2

+ 2
( n
N
− θ
) (

(α1 − αN1 + α0 − αN0 )θ + (αN1 − α1)
)

+ τN (s).

Then

VN (t)− θ0(1− θ0)
N

=− 2E
[∫ t

0

(αN0 + αN1 )
( n
N
− θ
)2

ds

]
+ E

[∫ t

0

2
( n
N
− θ
) (

(α1 − αN1 + α0 − αN0 )θ + (αN1 − α1)
)
ds

]
+ E

[∫ t

0

τN (s)ds
]
.
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Now we see that

|α0 − αN0 | =
∣∣∣∣α∗(ū− u, θ, 0)− α∗

(
ūn−i − un−i,

n− i
N

, 0
)∣∣∣∣

< K

( ∣∣∣∣θ − n− i
N

∣∣∣∣+ |ū− ūn−i|+ |u− un−i|
)

< K

( ∣∣∣θ − n

N

∣∣∣+ |ū− ūn|+ |ūn−i − ūn|+ |u− un|+ |un−i − un|+
1
N

)
< K

( ∣∣∣θ − n

N

∣∣∣+ |ū− ūn|+ |u− un|+
3
N

)
,

where we used that α∗ is Lipschitz in both variables, and u and uN are bounded,
and the uniform bounds on |un+1−un| obtained in proposition 54 of §3.2. Similarly

|α1 − αN1 | < K

(∣∣∣θ − n

N

∣∣∣+ |ū− ūn|+ |u− un|+
3
N

)
.

Thus

VN (t) ≤K1

∫ t

0

VN (s)ds+ 2E
∫ t

0

(
n

N
− θ
)
K

( ∣∣∣θ − n

N

∣∣∣+ |ū− ūn|+ |u− un|+
3
N

)
ds+

K2

N

≤(K1 + 2K)
∫ t

0

VN (s)ds+ 2E
∫ t

0

(
n

N
− θ
)
K

(
|ū− ūn|+ |u− un|+

3
N

)
ds+

K2

N

≤(K1 + 2K)
∫ t

0

VN (s)ds+ 2K
∫ t

0

2VN (s) + (WN (s) + W̄N (s))ds+
K2 + 6T

N

=
∫ t

0

K3VN (s) + 2KQN (s)ds+
K2 + 6T

N

≤
∫ t

0

C1(VN (s) +QN (s))ds+
C1

N
.

�

Lemma 56. There exists C2 > 0 such that

QN (t) ≤
∫ T

t

C2(VN (s) +QN (s))ds+
C2

N
.

Proof. In this proof, un(s) or simply un will denote the expected minimum
cost of player N + 1 conditioned on its state being equal to 0 at time s, i.e.,
un(s)(0, s). We will also use, here, u(s) or simply u to denote u(0, s).
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Using Dynkin formula (34) with ϕ(i, n, s) =
(
un(s) (0, s)− u(0, s)

)2, and equa-
tions (41) and (45), we have

WN (t)−WN (T ) = −E[(un(t)− u(t))2] + E[(un(T )− u(T ))2]

=E
∫ T

t

2(un − u)
d

ds
(un − u)ds

+ E
∫ T

t

γ+
n

[
(un+1 − u)2 − (un − u)2

]
+ γ−n

[
(un−1 − u)2 − (un − u)2

]
ds

=E
∫ T

t

2(un − u)
(
−γ+

n (un+1 − un)− γ−n (un−1 − un)− h
(
ūn − un,

n

N
, 0
)

+ h(ū− u, θ, 0)
)
ds

+ E
∫ T

t

γ+
n

[
(un+1 − u)2 − (un − u)2

]
+ γ−n

[
(un−1 − u)2 − (un − u)2

]
ds

=E
∫ T

t

γ+
n (un+1 − un)2 + γ−n (un−1 − un)2 − 2

(
h
(
ūn − un,

n

N
, 0
)
− h(ū− u, θ, 0)

)
(un − u)ds,

where γ±n = γ±n (0, n(s), s). In the last equation we used the fact that

−2(un − u)γ+
n (un+1 − un) + γ+

n

[
(un+1 − u)2 − (un − u)2

]
= γ+

n (un+1 − un)2
,

and a similar calculation for γ−n .

Now, using results from §3.2, proposition 54, we have that γ+
n (un+1 − un)2,

γ−n (un−1 − un)2 and WN (T ) are bounded by K5
N , which implies

WN (t) ≤ K6

N
+ 2E

∫ T

t

(
h
(
ūn − un,

n

N
, 0
)
− h (ū− u, θ, 0)

)
(un − u)ds .

Using the fact that h is Lipschitz in both variables, we have∣∣∣h(ūn − un, n
N
, 0
)
− h(ū− u, θ, 0)

∣∣∣ < K

( ∣∣∣θ − n

N

∣∣∣+ |ū− ūn|+ |u− un|
)
.

Thus

WN (t) ≤ K6

N
+K7

∫ T

t

VN (s) +WN (s) + W̄N (s)ds .

With a similar calculation we have a analogous inequality for W̄N (t), which ends
the proof. �

Now we can state and prove our main result that establishes the convergence
of the N + 1 player game to the mean field model as N →∞.

Theorem 57. If ρ = TC < 1, where C = max{C1, C2}, and QN (t) + VN (t) is
given in (67) then

QN (t) + VN (t) ≤ C

1− ρ
1
N
∀t ∈ [0, T ] .
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Proof. Adding both inequalities given in the two last lemmas, we have

QN (t) + VN (t) ≤ C
∫ T

0

(VN (s) +QN (s))ds+
C

N
.

Now suppose ρ = TC < 1. Defining

QN + VN = max
0≤t≤T

QN (t) + VN (t),

we have
QN + VN ≤ ρ(QN + VN ) +

C

N
,

which proves the theorem. �

4. Bibliographical notes

Mean field games is a recent area of research started by Pierre Louis Lions
and Jean Michel Lasry in a series of seminal papers [LL06a, LL06b, LL07a,
LL07b]. The literature on mean field games and its applications is growing fast,
for a recent survey see [LLG10b] and reference therein. Applications of mean field
games arise in the study of growth theory in economics [LLG10a] or environmental
policy [ALT]. Two references on numerical methods for these problems are [ALT],
[AD10]. The discrete time, finite state problem was studied in [GMS10].
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C. R. Math. Acad. Sci. Paris, 343(9):619–625, 2006.

[LL06b] Jean-Michel Lasry and Pierre-Louis Lions. Jeux à champ moyen. II. Horizon fini et
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