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Abstract

In this article, we introduce a new approach for proving Maximum Principle type
results for viscosity solutions of second-order, fully nonlinear possibly degenerate el-
liptic equations. This approach leads, in particular, to a better understanding of the
conditions on the equation which are necessary to obtain such results. It allows us to
provide new comparison results for semilinear and quasilinear equations.

1 Introduction

In this work, we are interested in Maximum Principle type results for viscosity solutions of
fully nonlinear elliptic equations

F (x, u, Du,D2u) = 0 in Ω (1.1)

where Ω is a bounded domain of IRn, the solution u : Ω → IR is a real-valued function, Du,
D2u denote respectively its gradient and Hessian matrix. The nonlinearity F (x, u, p, M) is a
locally Lipschitz continuous function defined on Ω× IR× IRn×Sn taking values in IR, where
Sn is the space of n× n symmetric matrices; Throughout this paper, the nonlinearities are
always assumed to satisfy the ellipticity condition

FM(x, u, p, M) ≤ 0 a.e. in Ω× IR× IRn × Sn .

More specifically, we are looking for structure conditions on F which insure that we have a
comparison result between upper semicontinuous (USC) subsolutions and lower semicontin-
uous (LSC) supersolutions of (1.1). Such results allow to derive, in particular, uniqueness
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properties for (1.1) but also existence ones through the Perron’s method introduced in the
framework of viscosity solutions by H. Ishii[I]. We put an emphasis in this work on the
semilinear and quasilinear cases.

General Maximum Principle type results for viscosity solutions of equations like (1.1) are
described, for example, in the “Users’guide to viscosity solutions” of M. Crandall, H. Ishii
and P.L. Lions [CIL] (See also H. Ishii and P.L. Lions [IL] and the book of W. Fleming and
H.M. Soner [FS]). The main assumptions are the following : first, there exists ν > 0 such
that

ν(u− v) ≤ F (x, u, p, X)− F (x, v, p, X) forany u ≥ v, (x, p,X) ∈ Ω× IRn × Sn (1.2)

and, for any R > 0, there is a modulus mR : [0,∞] → [0,∞] that satisfies mR(0+) = 0 such
that

F (y, u, α(x− y), Y )− F (x, , u, α(x− y), X) ≤ mR(α|x− y|2 + |x− y|) (1.3)

whenever x, y ∈ Ω, |u| ≤ R,X, Y ∈ Sn satisfying the matricial inequality for α > 0.

−3α

(
I 0
0 I

)
≤
(

X 0
0 −Y

)
≤ 3α

(
I −I

−I I

)
. (1.4)

(See Theorem 3.3 in [CIL]).

Our motivation to do this work comes from two remarks : first, the condition (1.3) is not
easily checkable and it would be better to have an hypothesis which is easier to verify. Of
course, the difficulty is that X, Y in (1.3) have to satisfy the inequalities (1.4) and it is not
completely obvious to see what are all the consequences on X and Y of these inequalities. The
second remark is that (1.2) which is an assumption on the behavior of F in r is independent
of (1.3) which is (essentially) an assumption on the behavior of F in x. The remark is that
one would get better results by connecting them and this is what we are going to do.

The key step for solving the first above mentioned difficulty is to get a precise estimate on
X − Y for X, Y satisfying (1.4) : it is known that these inequalities imply at least X ≤ Y
but we prove below that we have the sharper estimate

X − Y ≤ − 1

6α
(tX + (1− t)Y )2 for all t ∈ [0, 1].

This property is then used to derive a rather simple structure condition on F, which ensures
that the Maximum Principe holds for (1.1). This structure condition consists in saying that
a suitable combination of the derivatives of F has to be positive and this is easily verifiable.

Then, in the same spirit as in [BA] where gradient bounds are studied, we systematically
study the effect of changes of variables u = φ(v) for obtaining more general results in the
semilinear and quasilinear cases where F is given by

F (x, u, p, X) = − Tr (A(x, p)X) + H(x, u, p) .
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In the semilinear case (i.e. when A does not depend on p), we are able to obtain general
comparison results for discontinuous solutions by using this strategy. Unfortunately, in the
quasilinear case (i.e. when A depends on p), this is not the case in general because there is
no way that the equation obtained after a change of variable can satisfy a property like (1.2)
and, for this reason, we have to restrict ourselves to Hölder continuous solutions.

This paper is organized as follows : in Section 2, we present a general structure condition on
the nonlinearity F which allows to obtain a comparison result in the case when F satisfies
(1.2); in particular a proof of the above estimate on X − Y is given. Section 3 is devoted to
a systematic study of the changes of variable which can be used to transform an equation
which does not satisfy the structure condition of Section 2 into a new one which does it.
Finally the quasilinear case is studied in Section 4 which can be seen as following the same
strategy described in Section 2 and 3 but in a framework where (1.2) does not hold.

Acknowledgement : The authors acknowledge warmly the financial support by the
Indo-French Centre for Promotion of Advanced Research under the project 1901-2.

2 A General Structure Condition for the Maximum

Principle

We first give a comparison result for equation (1.1) using a structure condition on F.

Theorem 2.1 : Assume that F is a locally Lipschitz continuous function which satisfies
(1.2) and assume that, for any R > 0, there exists CR > 0 such that

Fx(x, u, p, M) · p− 1

6
FM(x, u, p, M)M2 ≥ −CRFu(x, u, p, M)(1 + |p|2) (2.1)

for almost all (x, u, p, M) ∈ Ω × [−R,R] × IRn × Sn. If u ∈ USC(Ω) and v ∈ LSC(Ω) are
subsolution and supersolution of (1.1) respectively with u ≤ v on ∂Ω, then u ≤ v on Ω.

As we mentioned it in the Introduction, the key step in the proof of this theorem, is the

Lemma 2.2 : If (1.4) holds for X, Y ∈ Sn, then we have

X − Y ≤ − 1

6α
(tX + (1− t)Y )2 for all t ∈ [0, 1]. (2.2)

Proof. In this proof, for the sake of clarity, we denote by 〈·, ·〉 the usual salar product in
IRn. From (1.4), we have for any ξ, η ∈ IRn,

〈
(

ξ
η

)
,

(
X 0
0 −Y

)(
ξ
η

)
〉 ≤ 3α〈

(
ξ
η

)
,

(
I −I

−I I

)(
ξ
η

)
〉 ≤ 3α〈

(
ξ
η

)
,

(
ξ −η

−ξ +η

)
〉,

3



which reduces to
〈Xξ, ξ〉 − 〈Y η, η〉 ≤ 3α|ξ − η|2. (2.3)

We make a special choice for ξ and η :

ξ = p, η = p− q.

With this choice of ξ, η, (2.3) becomes

〈(X − Y )p, p〉 ≤ 3α|q|2 + 〈Y q, q〉 − 2〈Y q, p〉 (2.4)

similarly with a choice of ξ = p + q and η = p, (2.3) becomes

〈(X − Y )p, p〉 ≤ 3α|q|2 − 2〈Xq, p〉 − 〈Xq, q〉. (2.5)

For θ ∈ [0, 1], we multiply (2.4) by (1 − θ) and (2.5) by θ and add both the inequalities to
get

〈(X − Y )p, p〉 ≤ 3α|q|2 − 2〈(θX + (1− θ)Y )q, p〉+ 〈(−θX + (1− θ)Y )q, q〉. (2.6)

Notice that from the first part of the inequality (1.4) , we have

X ≥ −3αI and − Y ≥ −3αI

Hence we have

〈(−θX + (1− θ)Y )q, q〉 ≤ 〈(3αθ + (1− θ)3α)q, q〉 ≤ 3α〈q, q〉.

Calling (θX + (1− θ)Y ) = Mθ, we now choose q = tMθp, to reduce (2.6) as

〈(X − Y )p, p〉 ≤ 3αt2〈M2
θ p, p〉 − 2t〈M2

θ p, p〉+ t23α〈M2
θ p, p〉

≤ 6αt2〈M2
θ p, p〉 − 2t〈M2

θ p, p〉

Now we choose the optimal t = 1
6α

and get

〈(X − Y )p, p〉 ≤ 1

6α
〈M2

θ p, p〉 − 1

3α
〈M2

θ p, p〉 ≤ −1

3α
〈M2

θ p, p〉,

for all θ ∈ [0, 1].

Proof of Theorem 2.1. The beginning of the proof follows along the lines of [CIL]. We
argue by contradiction assuming that M := max

Ω
(u−v) > 0 and, for α > 0 large, we introduce

the function (x, y) 7→ u(x) − v(y) − α
2
|x − y|2. This function is upper semicontinuous on Ω

and therefore it attains its maximum at some (x̂α, ŷα) ∈ Ω×Ω. Moreover, since M > 0 and
u ≤ v on ∂Ω, then we know that x̂α, ŷα ∈ Ω for α large enough.
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Since u is a subsolution and v is a supersolution of (1.1), classical arguments lead to the

existence of matrices X and Y , satisfying (1.4), with (α(x̂α − ŷα), X) ∈ D
2,+

u(x̂α) and

(α(x̂α − ŷα, Y ) ∈ D
2,−

v(ŷα), such that the following viscosity inequalities hold

F (x̂α, u(x̂α), α(x̂α − ŷα), X) ≤ 0 ,

F (ŷα, v(ŷα), α(x̂α − ŷα), Y ) ≥ 0 .

We refer the reader to the proof of Theorem 3.2 in [CIL] for a justification of this claim.

From now, we assume for simplicity that F is a C1 function, the case of locally Lipschitz
functions F can be treated by tedious but straightforward arguments.

Dropping the α’s for the sake of notational simplicity, we can write

0 ≥ F (x̂, u(x̂), α(x̂− ŷ), X)− F (ŷ, v(ŷ), α(x̂− ŷ), Y )

=

1∫
0

d

dt
{F (tx̂ + (1− t)ŷ, tu(x̂) + (1− t)v(ŷ), α(x̂− ŷ), tX + (1− t)Y } dt

=

1∫
0

{Fx(z, w, p, M)(x̂− ŷ) + Fu(z, w, p, M)(u(x̂)− v(ŷ)) + FM(z, w, p, M)(X − Y )}dt

where z = tx̂+(1− t)ŷ, w = tu(x̂)+ (1− t)v(ŷ), p = α(x̂− ŷ) and M = tX +(1− t)Y. Using
the lemma and the fact that FM ≤ 0, we get

FM(z, w, p, M)(X − Y ) ≥ −1

6 α
FMM2.

¿From this and (1.2), it follows that

0 ≥
1∫

0

(FuMα + Fx(x̂− ŷ)− 1

6α
FMM2)dt =

1∫
0

(FuMα +
1

α
(Fx · p−

1

6
FMM2) )dt. (2.7)

¿From [CIL], (see Lemma 3.1 there), we know that α|x̂α − ŷα|2 → 0 as α → +∞. Hence

|p|2

α
→ 0 and

1 + |p|2

α
→ 0 as α → +∞.

Thus (2.7) reduces in view of our assumption (2.1), to

0 ≥
∫ 1

0
Fu

(
Mα − CR

(1 + |p|2)
α

)
dt.

But by (1.2), Fu ≥ ν > 0 and since Mα → M > 0 as α → +∞, this leads to a contradiction.
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Example 2.3 We consider the model equation,

−Tr(A(x, Du)D2u) + H(x, u, Du) = 0

and we check when (2.1) holds. Here A(x, p) is a nonnegative matrix with

A(x, p) = σ(x, p)σ(x, p)T

Then we have

Fx · p−
1

6
FMM2 = −Tr(Ax · pM) +

1

6
Tr(AM2) + Hx · p

= −Tr(σx · pσT M)− Tr(σσT
x · pM) +

1

6
Tr(AM2) + Hx · p

Thanks to Cauchy-Schwarz inequality, we have for any matrices A and B,

Tr(AB) ≤ θ

2
Tr(AAT ) +

1

2θ
Tr(BBT )

Using this, we obtain

Tr(σx · pσT M) ≤ θ

2
· Tr((σx · p)(σx · p)T ) +

1

2θ
Tr(σT M(σT M)T ),

Tr(σσT
x · pM) ≤ θ

2
Tr((σT

x · p)(σT
x · p)T ) +

1

2θ
Tr(Mσ(Mσ)T ).

Since M is symmetric,

Tr(σT M(σT M)T ) = Tr(Mσ(Mσ)T ) = Tr(σσT ·M2) = Tr(AM2).

Further
Tr(σx · p)(σx · p)T ) = Tr((σx)

T · p)((σx)
T · p)T ) ≤ (‖σx‖)2|p|2

Here
‖σx‖2 =

∑
i

∑
j

|∇(σi,j)|2

If we choose θ = 6, then

Hx · p− Tr(Ax · pM) +
1

6
Tr(AM2) ≥ −C

{
Tr(σx · p(σx · p)T ) + Tr((σT

x · p)(σT
x · p)T )

}
Hence condition (2.1) holds for this model equation if

‖σx(x, p)‖2 ≤ CRHu(x, u, p),

|Hx(x, u, p)| ≤ CRHu(x, u, p)(1 + |p|) (2.8)

for all (x, p) ∈ Ω× IRn and |u| ≤ R.
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In particular, for the semilinear case i.e. when A does not depend on p, and when Hu is
expected to be bounded, we recover the “natural” conditions under which the Maximum
Principle is known to hold, namely A = σσT with σ Lipschitz continuous and H satisfying
Hu(x, u, p) ≥ ν and |Hx(x, u, p)| ≤ C̃R(1 + |p|) for some constant C̃R.

Our approach provides new results in the case when, typically, Hu depends on p. For example,
the above conditions show that the Maximum Principle holds when H is given by

H(x, u, p) = g(x, u)|p|k + u− f(x),

where k ≥ 1 and g, f are locally Lipschitz continuous function with gu(x, u) ≥ η > 0. If
k > 1, this example does not enter into the classical framework.

3 Semilinear Elliptic equations

In this section, we address the following question in the case of semilinear elliptic equation :
if we have an equation which does not satisfy the structure condition (2.1), does there exist
a change of variable u = φ(v) such that we can apply Theorem 2.1 to the transformed
equation?

We consider the equation

F (x, u, Du, D2u) = −Tr(A(x)D2u) + B(x, u, Du) = 0. (3.1)

where
A(x) = σ(x)σ(x)T ≥ 0 and Bu > γ > 0. (3.2)

In the example at the end of Section 2, we give conditions on σ and B such that we can
compare an upper semicontinuous subsolutions and lower semicountinuous supersolutions of
(3.1). We are going to show that by an appropriate change of variable, we can have the
comparison under much weaker conditions on B.

To do so, we consider the change of function u = φ(v). The transformed equation is given
by G = 0 where

G(x, v, Dv, D2v) =
1

φ′(v)

{
F (x, φ(v), φ′(v)Dv, D2(v)φ′(v) + φ′′(v)Dv ⊗Dv

}
,

=
1

φ′(v)

{
−Tr(A(x)(φ′(v)D2v + φ′′(v)Dv ⊗Dv) + B(x, φ(v), φ′(v)Dv).

}
.

In the sequel, we use the following notations : q is the variable corresponding to Du, p for
Dv, M for D2u and N for D2v. With these notations, we have

G(x, v, p, N) = −Tr(A(x)N)− φ′′(v)

φ′(v)
Tr(A(x)(p⊗ p)) +

1

φ′(v)
B(x, φ(v), φ′(v)p) (3.3)
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We are going to compute the derivatives of G w.r.t v, p and N and, in order to choose the
change of variable, we are going to transform them back in the old variables (u, q, M) as in
[BA].

We first consider Gv.

Gv(x, v, p, N) =
1

φ′(v)
[Buφ

′ + Bqpφ
′′(v)− Tr(A(x)(φ′′′(v)p⊗ p))]

− φ′′(v)

(φ′(v))2
[−Tr(A(x)(φ′′(v)p⊗ p + B]

= Bu +
φ′′(v)

(φ′(v))2
(Bqq −B)− Tr(A(x)q ⊗ q)

(
φ′′′(v)φ′(v)− (φ′′(v))2

φ′(v)4

)

= Bu +
φ′′(v)

(φ′(v))2
(Bqq −B)− |σ(x)q|2

(φ′(v))2

{
φ′′′(v)φ′(v)− φ′′(v)2

(φ′(v))2

}
. (3.4)

Now we look for a function w(u) which will transform the coefficients, which are nonlinear
function of derivatives of φ(v), into ones which are linear in the derivatives of w(u) so that
w(u) can be chosen easily according to our convenience. Let

w(u) = φ′(v).

Then one can check that

w′(u) =
φ′′(v)

φ′(v)
,

w′′(u) =
φ′(v)φ′′′(v)− (φ′′(v))2

(φ′(v))3

Hence now we have

Gv(x, v, p, N) = Bu +
w′(u)

w(u)
(Bqq −B)− w′′(u)

w(u)
|σ(x)q|2. (3.5)

The idea is first to look for a function w(u) > 0 so that Gv > 0 and then to look at the
other terms in condition (2.1). For this, we need to consider 2 cases separately and choose
w differently in each case:
(i) The matrix A(x) is uniformly elliptic refered below as the “subquadratic case”,
(ii) The matrix A(x) is only non-negative refered below as the “superquadratic case”.

The Subquadratic Case. In this case we choose w′′(u) < 0 so that the positivity of
|σ(x)q|2 can be used to get a positive sign for Gv.

Assume that, for any R > 0, there exist C1, C2,R > 0, satisfying

(i) σ(x)σT (x) ≥ C1I for all x ∈ IRn,

(ii) (Bq · q −B) ≥ −C2,R(1 + |q|2), (3.6)
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for almost all |u| ≤ R, (X, p) ∈ Sn×IRn. The condition (ii) in (3.6) explains the terminology
“subquadratic case”.

Let us choose
û = (u + ||u||∞ + 1), w(u) := 1− e−kû,

for a suitable k to be chosen more precisely later on. Then

Gvφ
′(v) = Bu(1− e−kû) + ke−kû(Bqq −B) + |σ(x)q|2k2e−kû

≥ γ(1− e−kû) + ke−kû(k|σ(x)q|2 + (Bqq −B))

= γ(1− e−kû)− C2,Rke−kû + ke−kû(kC1 − C2,R)|q|2.

If

k >
C2,R

C1

and
ke−kû

1− e−kû
<

γ

C2,R

,

then Gv ≥ 0. This will hold, if we choose k large, satisfying

k >
C2,R

C1

and
ke−k

1− e−k
<

γ

C2,R

,

since û ≥ 1. Then it follows that, for this transformation φ(v) = u,

Gv(x, v, p, N)φ′(v) ≥ C̃R(1 + |q|2) = C̃R(1 + w2|p|2)
≥ ĈR(1 + |p|2)

Remark : We point out that, actually, the change of variable may depend on R since we
compare bounded solutions.

The Superquadratic Case. Now we assume that, for any R > 0, there exists constants
C1,R, C2,R > 0 such that

(i) σ(x)σT (x) ≥ 0 for all x ∈ IRn

(ii) Bq · q −B ≥ C1,R|q|2 − C2,R (3.7)

for almost all (q, M) ∈ IRn×Sn and |u| ≤ R. The condition (3.7)(ii) explains the terminology
“superquadratic case”.

Let us choose again w(u) := 1− e−kû. where û = (u + ||u||∞ + 1). Then we have

Gv · φ′(v) = Bu(1− e−kû) + ke−kû(Bqq −B) + |σ(x)q|2k2e−kû

≥ γ(1− e−kû) + ke−kû(k|σ(x)q|2 + (Bqq −B))

= γ(1− e−kû) + ke−kû(C1,R|q|2 − C2,R)

Now choose k such that
ke−k

(1− e−k)
<

γ

C2,R

.
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Then

Gv · φ′(v) ≥ C̃R(1 + |q|2) ≥ ĈR(1 + |p|2) for all (p, N) ∈ IRn × Sn and for all |u| ≤ R.

Thus, in either of the cases, equation (3.1) under the assumptions (3.6) or (3.7) can be
transformed to the equation (3.3) satisfying

Gv(x, v, p, N) ≥ ĈR(1 + |p|2) (3.8)

for all (x, p,N) ∈ Ω× IRn × Sn and |v| ≤ R.

Because of this property and (2.1), we observe that a subsolution v1 and a supersolution v2

of equation (3.3) can be compared under the further assumption

Gx · p−
1

6
GN ·N2 ≥ −CR(1 + |p|4) (3.9)

for all (x, p,N) ∈ Ω × IRn × Sn and |v| ≤ R. This is because the assumption (2.1) follows
from (3.8) and (3.9) and the comparison holds by Theorem 2.1.

It remains to calculate the conditions on F which will lead to (3.9) for the transformed
equation (3.3). We have

Gx · p−
1

6
GN ·N2 =

1

φ′(v)
[−Tr((Ax · p)M) + Bx · p] +

1

6
Tr(A(x)N2) (3.10)

Using the expression for N we deduce that

N2 =

(
M − p⊗ pφ′′(v)

φ′(v)

)2

=
1

φ′(v))2
(M − q ⊗ qφ′′(v)

(φ′(v))2
)2

=
1

(φ′(v))2

(
M2 + (q ⊗ q)2 (φ′′(v))2

(φ′(v))4
−M

(q ⊗ q)φ′′(v)

(φ′(v))2
− q ⊗ qMφ′′(v)

(φ′(v))2

)

=
1

(φ′(v))2
[M2 +

(
φ′′(v)

φ′(v)

)2
(q ⊗ q)|q|2

(φ′(v))2
− φ′′(v)

(φ′(v))2
[M(q ⊗ q) + (q ⊗ q)M ] ,

since (q ⊗ q)2 = (q ⊗ q)|q|2. Substituting this in (3.10),

Gx · p−
1

6
GN ·N2 =

1

φ′(v)2
{−Tr((Ax · q)M) + Bx · q}

+
1

6φ′(v)2
Tr

(A(x)

M2 +

(
φ′′(v)

φ′(v)

)2
q ⊗ q|q|2

(φ′(v))2
− φ′′(v)

φ′(v)2
(Mq ⊗ q + q ⊗ qM)


=

1

w2
{−Tr(Ax · qM) + Bx · q}

+
1

6w2
Tr{A(x)[M2 +

(w′)2

w2
(q × q)|q|2 − w′

w
(Mq ⊗ q + q ⊗ qM)]}
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Now using the expression for w,

Gx · p−
1

6
GN ·N2 =

1

w2
(−Tr(Ax · qM) +

1

6
Tr(AM2) +

k2e−2kû

6w2
|q|2Tr(A(x)q ⊗ q)

− ke−kû

6w
Tr(A(Mq ⊗ q + q ⊗ qM)) + Bx · q) (3.11)

Notice that by using Cauchy-Schwartz inequality

Tr(Ax · qM) = Tr(σx · qσT M) + Tr(σσT
x qM)

≤ 2θTr(σx · q)(σx · q)T ) +
1

2θ
Tr(σT M)σT M)T )

+ 2θTr((σx)
T · q)((σx)

T · q)T ) +
1

2θ
Tr(Mσ)(Mσ)T )

≤ 4θ(‖σx‖)2|q|2 +
1

θ
Tr(AM2)

for some suitable θ > 0. Here

‖σx‖2 =
∑

i

∑
j

|∇(σi,j)|2

Similarly we get

−CTr(AMq ⊗ q) +
1

θ
Tr(AM2) ≥ −θC2Tr{(q ⊗ qσ)(q ⊗ qσ)T}

−CTr(Aq ⊗ qM) +
1

θ
Tr(AM2) ≥ −θC2Tr{(q ⊗ qσT )(q ⊗ qσT )T}

Notice that

Tr{(q ⊗ qσ)(q ⊗ qσ)T} = Tr{(q ⊗ qσT )(q ⊗ qσT )T} = (|σ(x)q|2)|q|2.

If we choose θ such that
3

θ
≤ 1

6
i.e. θ ≥ 18

then

Gx · p−
1

6
GN ·N2 ≥ 1

w2

{
−4θ(‖σx‖)2|q|2 + Bx · q

+ |q|2(|σ(x)q|2)(−2θC1 + C2)
}

≥ −CR(1 + |q|4)

provided A is Lipschitz continuous in x and B satisfies

Bx(x, u, q) · q ≥ −C̃R(1 + |q|4) , (3.12)

11



for all x ∈ Ω, |u| ≤ R and q ∈ IRn in both the cases.

Thus we have proved the

Theorem 3.1 : Assume there exists a Lipschitz continuous function σ such that A(x) =
σ(x)σ(x)T and that B is a locally Lipschitz continuous function satisfying (3.12) and

Bu(x, u, p) > γR > 0 a.e. for |u| ≤ R, (x, p) ∈ Ω× IRn. (3.13)

Further assume that either one set of the following conditions, (3.14) or (3.15) hold:

there exists constants C1, C2,R > 0 such that,

(i) σ(x)σ(x)T ≥ C1I for all x ∈ Ω,

(ii)(Bq · q −B) ≥ −C2,R(1 + |q|2) a.e. for |u| ≤ R, (x, p) ∈ Ω× IRn (3.14)

or there exists constants C1,R, C2,R > 0 such that,

Bq · q −B ≥ C1,R|q|2 − C2,R a.e. for |u| ≤ R, (x, p) ∈ Ω× IRn. (3.15)

If u ∈ USC(Ω) and v ∈ LSC(Ω) are respectively sub and supersolutions of the equation

−Tr(A(x)D2u) + B(x, u, Du) = 0 in Ω ,

with u ≤ v on ∂Ω, then u ≤ v on Ω.

Example 3.2 As concrete examples of equations satisfying the conditions of Theorem 3.1,
we have

−Tr(A(x)D2u) + b(x)|Du|α + u = f(x) in Ω ,

where A = σσT , σ, b, f being Lipschitz continuous functions. Condition (3.14) is satisfied if
σ ≥ νI in Ω and if 1 ≤ α ≤ 2, while (3.15) holds if α ≥ 2.

4 Quasilinear Equations

We consider in this section quasilinear equation of the following form

−Tr(A(x, Du)D2u) + B(x, u, Du) = 0 (4.1)

The key difference with the previous section is that, after a change of variable u = φ(v),
we have no hope to obtain a nonlinearity which is increasing in v. We are anyway going to
follow the same type of ideas as in Section 2 and 3 but in order to obtain our results, we will
be obliged to restrict our study to Hölder continuous solutions.

12



We assume again that

A(x, p) = σ(x, p)σ(x, p)T ≥ 0 in Ω× IRn and Bu > ν > 0 a.e. in Ω× IR× IRn. (4.2)

To follow the same program, we start by an analogue of Theorem 2.1 but we drop the
condition “Fu > 0”.

Theorem 4.1: Let G be a continuous function satisfying the ellipticity condition and the
following structure conditions:

(i) Gv(x, v, p, N) = G1
v(x, v, p, N) + G2

v(x, v, p, N) in Ω× IR× IRn × Sn with

G1
v(x, v, p, N) > 0 for all |v| ≤ R and (x, p,N) ∈ Ω× IRn × Sn ;

(ii) |G2
v(x, v, p, N)| ≤ χ(p)

√
−GNN2 + G1

v|p|2 for some continuous function χ : IRn → IR,

(iii) for every 0 < ν < 1
6
, there exists Cν < 1/2, such that

Gx · p− νGN .N2 ≥ −CνG
1
v(1 + |p|2).

Let v1, v2 ∈ C0,δ(Ω) with δ > 1/2 satisfy in the viscosity sense, for some ε > 0,

G(x, v1, Dv1, D
2v1) ≤ −ε in Ω,

G(x, v2, Dv2, D
2v2) ≥ 0 in Ω,

and we assume in addition that, either δ = 1 or the function χ satisfies : for any constant
K, we have for k2 := (2δ − 1)−1

G1
v(x, v, p, N)|p|2 −K|p|2δk2χ2k2(p) ≥ o(|p|

2−δ
1−δ ) ,

uniformly for x ∈ Ω, v bounded and N ∈ Sn. Then, we cannot have at the same time
max

Ω
(v1 − v2) = 0 and max

∂Ω
(v1 − v2) < 0.

Proof: We argue by contradiction following exactly the proof of Theorem 2.1. In particular,
we consider the test-function (x, y) 7→ v1(x) − v2(y) − α

2
|x − y|2. For α > 0 large enough,

the maximum points of this function are in Ω × Ω and we get inequalities similar to (2.7),
namely

−ε ≥
1∫

0

{Gv(v1 − v2) +
1

α
(Gx · p−

1

6
GN .N2)}dt.

Using the assumptions, we get for some ν < 1
6
,

−ε ≥
1∫

0

{
G1

v(v1 − v2) + G2
v(v1 − v2)−

(
1

6
− ν

)
GNN2

α
− Cν

α
G1

v(1 + |p|2)
}

dt

13



Since v1 or v2 is in C0,δ(Ω) and max
Ω

(v1 − v2) = 0, we have

α

2
|x̂− ŷ|2 ≤ v1(x̂)− v2(ŷ) ≤ C|x̂− ŷ|δ (4.3)

Using this in the above inequality,

−ε ≥
1∫
0

{
G1

v
α
2
|x̂− ŷ|2 − C|x̂− ŷ|δχ(p)

√
−GN .N2 + G1

v|p|2

−
(

1
6
− ν

)
GN .N2

α
− Cν

α
G1

v(1 + |p|2)
}

dt

≥
1∫
0
{G1

v

|p|2

2α
− Cαθ

2
|x̂− ŷ|2δχ2(p)− 1

2αθ
(−GN .N2 + G1

v|p|2)

− 1
α

(
1
6
− ν

)
GN .N2 − Cν

α
G1

v(1 + |p|2)}dt

(4.4)

by the use of Cauchy-Schwarz inequality. Let us choose ν < 1
6

and θ large, such that(
1

6
− ν

)
>

1

2θ
and

(
1

2
− Cγ

)
>

1

2θ
. (4.5)

We deduce from (4.4)

−ε ≥
1∫

0

{G1
v(
|p|2

α
(
1

2
− Cν −

1

2θ
)− Cν

α
)− Cαθ

2
|x̂− ŷ|2δχ2(p)}dt , (4.6)

which can be written as

−ε ≥
1∫

0

1

α
{G1

v(|p|2(
1

2
− Cν −

1

2θ
)− Cν)−

Cθ

2
α2(1−δ)|p|2δχ2(p)}dt . (4.7)

This inequality leads to a contradiction if |p| remains bounded since each term in the bracket
is either bounded or a o(α). This is the case in particular if δ = 1. Therefore we can assume
without loss of generality that |p| tends to +∞.

Then we introduce k1 := [2(1 − δ)]−1 ; since δ > 1/2, k1, k2 > 1 and k−1
1 + k−1

2 = 1. Using
Young’s inequality in the above integral, we deduce that, for some constant K, we have

−ε ≥
1∫

0

α−1
{
G1

v(|p|2(
1

2
− Cν −

1

2θ
)− Cν)−K|p|2δk2χ2k2(p)− 1

2
αε
}

dt; ,

and therefore

−1

2
ε ≥

1∫
0

α−1
{
G1

v(|p|2(
1

2
− Cν −

1

2θ
)− Cν)−K|p|2δk2χ2k2(p)

}
dt; .

14



Using the assumption on χ, this leads to the final inequality

−1

2
ε ≥

1∫
0

α−1o(|p|
2−δ
1−δ )dt . (4.8)

On the other hand, it follows from (4.3) that

|p|2−δ ≤ Cα1−δ

so that we have
o(|p|

2−δ
1−δ )

α
→ 0 as α →∞ since we know that |p| → +∞.

Using this in (4.8), we are lead to a contradiction for α small.

Now we proceed by looking for a transformation φ(v) = u as before, so that equation (4.1)
is transformed to

G(x, v, Dv, D2v) = G(x, v, p, N)

=
1

φ′(v)
{−Tr

(A(x, φ′(v)p)M)

(φ′(v))2m
}+

1

(φ′(v))2m+1
B(x, v, φ′(v)p), (4.9)

where the old variables (u, q, M) and the new variables (v, p, N) are defined as in Section 2.
Here 1

(φ′)2m is introduced to take care of possible homogeneity in A. Then we have

G(x, v, p, N) =
1

φ′(v)
{−Tr

(A(x, φ′(v)p) N)

(φ′(v))2m
} − φ′′(v)

φ′(v)

Tr(A(x, φ′(v)p))(p⊗ p))

(φ′(v))2m

+
1

φ′(v)2m+1
B(x, φ(v), φ′(v)p) (4.10)

If we calculate Gv as in (3.4) and transform it back to the old variables (u, q, M),

Gv(x, v, p, N) =
1

(φ′)2m
[Bu +

φ′′(v)

(φ′(v))2
(Bqq − (2m + 1)B)

− Tr(A(x)q ⊗ q)

(
φ′′′(v)φ′(v)− (φ′′(v))2

φ′(v)4

)

− φ′′(v)

(φ′(v))2
Tr(M(Aqq − 2mA))] (4.11)

Choosing as before w(u) = φ′(v), we get

Gv(x, v, p, N) =
1

w2m

(
Bu +

w′(u)

w(u)
(Bqq − (2m + 1)B)− w′′(u)

w(u)
|σ(x)q|2

− w′(u)

w(u)
Tr(M(Aq · q − 2mA))

)
(4.12)
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and (Gx · p− 1
6
GN .N2), the same as in (3.10) except for the factor 1

(φ′)2m . Let us define

G1
v(x, v, p, N) =

1

w2m

(
Bu +

w′

w
(Bq.q − (2m + 1)B)− w′′

w
Tr(Aq ⊗ q)

)
G2

v(x, v, p, N) = Gv(x, v, p, N)−G1
v(x, v, p, N)

= − w′

w2m+1
Tr(M(Aq · q − 2mA))

Now the function w(u) = 1 − e−k(u+‖u‖∞+1) can be chosen exactly in the same manner as
before, so that G1

v satisfies condition (3.8) in both subquadratic and superquadratic cases.
Since G2

v involves M, it has to be bounded suitably using the positive quantities G1
v and

(−GN .N2) in order to be able to use Theorem 4.1 to conclude uniqueness.

More precisely, the result is the following.

Theorem 4.2 : Let A and B in equation (4.1) be locally Lipschitz continuous and

A(x, q) = σ(x, q)σ(x, q)T ≥ 0 ∀(x, q) ∈ Ω× IRn.

Assume that

(i) Bu(x, u, p) > γ > 0 a.e. for |u| ≤ R, (x, p) ∈ Ω× IRn.

(ii) Bx · q ≥ −β(1 + |q|4) and ||σx|| ≤ β(1 + |q|2) a.e. for |u| ≤ R, (x, p) ∈ Ω × IRn, with
β < e−Rγ,

(iii) ||σq(x, q).q −mσ(x, q)|| ≤ C(1 + |q|)η a.e. in Ω× IRn, for some m and η ∈ IR.

Further assume that one of the following set of conditions hold :
For any R > 0, there exists C1, C2,R > 0 such that,

(a1) σ(x, q)σ(x, q)T ≥ C1I for all (x, q) ∈ Ω× IRn,

(a2) Bq · q − (2m + 1)B ≥ −C2,R(1 + |q|2) a.e. for |u| ≤ R, (x, q) ∈ Ω× IRn.

or, for any R > 0, there exists C1,R, C2,R > 0 such that,

(b1) Bq · q − (2m + 1)B ≥ C1,R|q|2 − C2,R a.e. for |u| ≤ R, (x, q) ∈ Ω× IRn.

Let u1 ∈ USC(Ω) and u2 ∈ LSC(Ω) be sub and supersolutions of (4.1), at least one of
them being in ∈ C0,δ(Ω) with δ > 1/2 and assume in addition that, in (iii), η < max(3δ −
2,

3δ − 2

2(1− δ)
). Then, if u1 ≤ u2 on ∂Ω, we have

u1 ≤ u2 on Ω.
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Equivalently this result holds for δ > 1− (2η + 3)−1 if η ≥ 0 or for δ > max((η + 2)/3, 1/2)
if η < 0.

Proof. We argue by contradiction assuming that max
Ω

(u1 − u2) = M > 0. Let us replace u1

by u1−M, still denoting it by u1, so that u1 and u2 satisfy max
Ω

(u1−u2) = 0, max
∂Ω

(u1−u2) < 0

and

F (x, u1, Du1, D
2u1) ≤ −γRM in Ω,

F (x, u2, Du2, D
2u2) ≥ 0 in Ω.

As explained above, we can choose a transformation u = φ(v), w(u) = φ′(v) so that equation
(4.1) is transformed into

G(x, v, Dv, D2v) = 0 in Ω,

with Gv = G1
v +G2

v and G1
v satisfying the condition (i) of Theorem 4.1. In fact we can choose

k large to define w(u) = 1− e−k(u+‖u‖∞+1) in such a way that G1
v satisfies condition (3.8), in

both sub and super quadratic cases.

Now we check condition (ii). Notice that

−GN .N2 =
1

φ′(v)2m
{Tr(A(x, φ′(v)p) N2)},

and hence

−GN .N2 =
1

φ′(v)2m+2
(Tr{AM2 + (

w′

w
)2A(q ⊗ q)|q|2 − w′

w
A(M(q ⊗ q) + (q ⊗ q)M)}).

Since for θ > 2,

−GN .N2 ≥ 1

w2m+2
(Tr(AM2) +

w′2

w2
|σ(x, q)q|2|q|2 − w′2

w2
2θ|σ(x, q)|2|q|2 − 2

θ
Tr(AM2)),

it follows that

G1
v|p|2 −GN .N2 ≥ 1

w2m+2

[(
1− 2

θ

)
Tr(AM2) + w′

2

w2 (1− 2θ)|σq|2|q|2

+ |q|2(Bu + w′

w
(Bq.q − (2m + 1)B)) + w′′

w
|σq|2)

]
≥ 1

w2m+2

(
1− 2

θ

)
Tr(AM2),

if
(

(w′)2

w

)
(2θ−1) < (−w′′), or e−k < w

2θ−1
. This can be achieved by increasing k if necessary.

Using Cauchy-Schwarz inequality as before, we get

|G2
v| = |w′

w
| |Tr(Aq.q − 2mA)M |

= |w′
w
| |Tr(σq.q −mσ)(σ)T M) + Tr(σ(σT

q q −mσT )M)|
≤ C

√
Tr(AM2){

√
(Tr(σq.q −mσ)(σq.q −mσ)T )

+
√

Tr(σT
q q −mσT )(σT

q q −mσT )T )}
≤ (

√
Tr(AM2))χ(q) ,
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where χ(q) = C{
(
Tr(σq.q −mσ)(σq.q −mσ)T )

)1/2
+
(
Tr(σT

q q −mσT )(σT
q q −mσT )T )

)1/2
}.

From this, it follows that condition (ii) of Theorem 4.1 holds thanks to our assumption (iii)
here and the condition on η can be checked in two ways : either by requiring that

|q|2δk2χ2k2(q) = o(G1
v|q|2) as |q| → +∞ ,

i.e. |q|2δk2χ2k2(q) = o(|q|4) which leads to the condition η < 3δ − 2 or that

|p|2δk2χ2k2(p) ≥ o(|p|
2−δ
1−δ ) as |q| → +∞ ,

which leads to the condition η < 3δ−2
2(1−δ)

.

To verify condition (iii) of Theorem 4.1, we proceed in the same way as in the semilinear
case but we need to check now that Cν < 1

2
. Observe that using (a1) and (a2), we will have,

denoting e−kû by ck, where û = (u + ||u||∞ + 1),

G1
v ≥ (γ(1− ck)− C2,Rkck) + kck(kC1 − C2,R)|q|2,

and using (b1) leads to

G1
v ≥ (γ(1− ck)− kckC2,R) + kckC1,R|q|2.

The constant k has been chosen so large that the constant term and the coefficient of |q|2
are both positive in the above two estimates. Recall that

Gx · p− νGN .N2 =
1

w2m+2
{−Tr(Ax · qM) + Bx · q}

+
ν

w2m+2

{
Tr{A(x)[M2 +

(w′)2

w2
(q ⊗ q)|q|2 − w′

w
(Mq ⊗ q + q ⊗ qM)]}

}

=
1

w2m+2
(−Tr(Ax · qM) + Bx · q + νTr{A(x)M2}

+
νk2e−2kû

w2
|q|2TrA(q ⊗ q)− νke−kû

w
TrA(Mq ⊗ q + q ⊗ qM)).

As before, using the Cauchy-Schwarz inequality,

−Tr(Ax · qM) ≥ −4θ(‖σx‖)2|q|2 − 1

θ
Tr(AM2),

for a suitable θ > 0. Further,

−(
νck

w
)Tr(AMq ⊗ q + Aq ⊗ qM) +

2

θ
Tr(AM2)

≥ −2θ(
νck

w
)2Tr{(q ⊗ qσ)(q ⊗ qσ)T}

≥ −2θ(
νck

w
)2|σq|2|q|2.
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Combining these inequalities,

Gx · p− νGN ·N2 ≥ 1

w2m+2

{
−4θ(‖σx‖)2|q|2 + Bx · q

+ |q|2(|σ(x)q|2)ν(ck)
2(−2θν + 1)

}
≥ 1

w2m+2

{
−4θβ|q|2(1 + |q|2)− β(1 + |q|2)− ν(ck)

2(−2θν + 1)C|q|2(1 + |q|2)
}

.

¿From these estimates, one checks easily using our assumption (ii) that the condition (iii) of
Theorem 4.1 also holds with Cν small, after further increasing k, if necessary.

The change of variable , which is now fixed by our choice of k, u = φ(v) transforms the sub
and supersolutions v1 and v2 into the given u1 and u2 with

max
Ω

(v1 − v2) = 0

because the same is true for u1 and u2. Then applying Theorem 4.1 to v1 and v2, leads to
a contradiction because we have at the same time max

Ω
(v1 − v2) = 0 and max

∂Ω
(v1 − v2) < 0.

Thus we have the desired contradiction and u1 ≤ u2 on Ω.

We now examine few examples and concentrate on the condition (iii) and the restriction con-
cerning η and δ, the other assumptions being similar to the ones appearing in Theorem 3.1.

We consider terms of the form −Tr(A(q)N) where we take for the operator A,

(a) Mean Curvature Equation for graphs : A(q) =

(
I − q ⊗ q

1 + |q|2

)
,

(b) m-Laplace Equation: A(q) = |q|m−2

(
I +

(m− 2)q ⊗ q

|q|2

)
.

Notice that the first one is uniformly elliptic satisfying condition (a1) but the second one is
only degenerate elliptic. One can check that for these examples,

(a) σ(q) =

I − q ⊗ q√
1 + |q|2(1 +

√
1 + |q|2



(b) σ(q) = |q|
m−2

2

(
I + (

√
m− 1)− 1)

q ⊗ q

|q|2

)

and hence in each case,

19



(a) σq · q = − q ⊗ q

(1 + |q|2)3/2

(b) σq · q =
m− 2

2
|q|

m−2
2

(
I + (

√
m− 1− 1)

q ⊗ q

|q|2

)
.

These computations can be done in a (relatively) simple way, in particular for the case (a),

by computing
d

dλ
(σ(λq)) for λ = 1.

For the case (a), we choose k = 0 and we see that (iii) is satisfied for η = −1 and the
restriction on δ in Theorem 4.2 only reduces δ > 1/2.

For the case (b), we choose k = m−2
2

, we see that, σ being homogeneous, we have

(σq.q − kσ) ≡ 0

Hence (iii) is satisfied for every η and again just the restriction δ > 1/2 has to be satisfied
in Theorem 4.2.
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