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Structure conditions (SC)

F (x, u,Du,D2u) = f(x) in Rn

Assumptions on F :
P−λ,Λ(Y −X)− γ|η − ξ| ≤ F (x, u, η, Y )− F (x, u, ξ,X) ≤
P+
λ,Λ(Y −X) + γ|η − ξ|

F (x, u, ξ,X)− F (x, v, ξ,X) ≤ −δ(u− v)s if v < u, s > 1
F (x, 0, 0, 0) = 0

Example

F (x, u,Du,D2u) = P+
λ,Λ(D2u) + γ|Du| − |u|s−1u
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Structure conditions (SC)

F (x, u,Du,D2u) = f(x) in Rn

Assumption on f :

f ∈ Lploc(Rn) with p > p0 = p0(n,Λ/λ) ∈ (n/2, n).

p0 is the exponent such that the generalized maximum principle (GMP)
holds true:

GMP

If f ∈ Lp(Ω) with p > p0 and u ∈W 2,p
loc (Ω) ∩ C(Ω) is an Lp-strong solution

of the maximal equation

P+
λ,Λ(D2u) + γ|Du| ≥ f,

then
max

Ω
u ≤ max

∂Ω
u+ Cd

2−n
p ‖f−‖Lp(Ω) (1)

with d = diam(Ω) and C a positive constant depending on n, λ,Λ, p, γd.
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Lemma1

Let Ω be a domain of Rn such that ΩR := Ω ∩BR 6= ∅. Suppose that
F satisfy structure conditions (SC) a.e. x ∈ ΩR. If u ∈ C(ΩR) is an
Lp-viscosity solution (p > p0) of the equation

F (x, u,Du,D2u) ≥ f(x)

with f ∈ Lp(ΩR), then for each r ∈ (0, R) we have

sup
Ωr

u ≤ u+
∂Ω +

C0(1 +R)µ/2Rµ

(R2 − r2)µ
+ C‖f−‖Lp(ΩR) (2)

with µ = 2/(s− 1), C0 = C0(n,Λ, γ, s, δ) and C = C(n, p, λ,Λ, γR)
are positive constants. Here

u+
∂Ω =

 sup
BR∩∂Ω

u+ if BR ∩ ∂Ω 6= ∅

0 if BR ⊂ Ω .
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Sketch of the proof:

Osserman’s barrier function

Φ(x) =
CRR

µ

(R2 − |x|2)µ
, |x| < R

µ = 2/(s− 1), Cs−1
R = 2µδ−1(Λ(n+ 2(1 + µ)) + γR)

(SC)⇒ F (x,Φ(x), DΦ(x), D2Φ(x)) ≤ 0 a.e. in ΩR
w = u− Φ is an Lp-viscosity solution of
P+
λ,Λ(D2w) + γ|Dw| ≥ f(x) in ΩR ∩ {u > Φ}

(GMP)⇒ conclusion.
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Lemma2

Let ΩR, F and f as in Lemma1. If u ∈ C(ΩR) is an Lp-viscosity
solution (p > p0) of the equation

F (x, u,Du,D2u) = f(x),

then for each r ∈ (0, R) we have

sup
Ωr

|u| ≤ |u|∂Ω +
C0(1 +R)µ/2Rµ

(R2 − r2)µ
+ C‖f‖Lp(ΩR) (3)

with C0, C and |u|∂Ω = max(u+
∂Ω, u

−
∂Ω) as defined in Lemma1.
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Assumption:
∀R > 0 ∃ωR : R+ → R+ such that ωR(t)→ 0 as t→ 0+ and

|F (x, v, ξ,X)− F (x, u, ξ,X)| ≤ ωR(|v − u|) (4)

a.e. in x for |u|+ |v|+ |ξ|+ ‖X‖ ≤ R.

(SC)’=(SC)+(4)

Theorem

Let F : Rn × R× Rn × Sn → R be measurable in x and satisfy the
structure condition (SC)′ a.e. x ∈ Rn for all (u, ξ,X) ∈ R× Rn × Sn.
If f ∈ Lploc(Rn), then equation

F (x, u,Du,D2u) = f(x)

has an Lp-viscosity solution in Rn for any p > p0.
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Sketch of the proof:

fk ∈ C∞(Rn) such that limk→∞ ‖fk − f‖Lp(Ω) = 0
(4)⇒ solvability in the ball B2k of (DP) F = fk + continuous
boundary condition
Uniform estimates ⇒ for h > k

sup
B2k

|uh| ≤ C0 + C‖f‖Lp(B2k+1 )

(SC)’+Cα - estimates ⇒

‖uh‖Cα(B2k ) ≤ C1(1 + ‖f‖Lp(B2k+1 ))

Diagonal argument uhk → u ∈ C(Rn) uniformly on every
bounded domain
Stability results ⇒ conclusion.
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Maximum Principle

Let δ > 0, s > 1 and Ω be a domain of Rn.
Suppose for a.e. x ∈ Ω that

F (x, u, ξ,X) ≤ P+
λ,Λ(X) + γ|ξ| − δ|u|s−1u

for all (u, ξ,X) ∈ R× Rn × Sn and u ∈ C(Ω) is an Lp-viscosity
solution (p > p0) of the equation

F (x, u,Du,D2u) ≥ 0 in Ω.

If Ω = Rn, then u ≤ 0 in Rn.
If Ω ( Rn and u ≤ 0 on ∂Ω, then u ≤ 0 in Ω.

Giulio Galise University of Salerno



Existence results
Uniqueness results

Maximum Principle
Uniqueness

Mimum Principle

Let δ > 0, s > 1 and Ω be a domain of Rn.
Suppose for a.e. x ∈ Ω

F (x, v, ξ,X) ≥ P−λ,Λ(X)− γ|ξ| − δ|v|s−1v

for all (v, ξ,X) ∈ R× Rn × Sn and v ∈ C(Ω) an Lp-viscosity solution
(p > p0) of the equation

F (x, v,Dv,D2v) ≤ 0 in Ω.

If Ω = Rn, then v ≥ 0 in Rn.
If Ω ( Rn and v ≥ 0 on ∂Ω, then v ≥ 0 in Ω.
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F ∈ C(Rn × R× Rn × Sn), f ∈ C(Rn)

Theorem

If F is indipendent of x and satisfies (SC) then the equation

F (u,Du,D2u) = f in Rn

has a unique C-viscosity solution.

Sketch of the proof:

u, v solution, Ω = {u > v}. Jensen’s approximations ⇒

P+
λ,Λ(D2(u− v)) + γ|D(u− v)| − δ(u− v)s ≥ 0 in Ω

Maximum Principle ⇒ u ≤ v...
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F ∈ C(Rn × R× Rn × Sn), f ∈ C(Rn)

Theorem

Suppose that F satisies (SC) and that for all R > 0 there exist a
constant KR > 0 and a function ωR : R+ → R+ such that
lim
t→0+

ωR(t) = 0 and

|F (y, u, ξ,X)− F (x, u, ξ,X)| ≤ KR‖X‖ |y − x|+ ωR((1 + |ξ|)|y − x|)
(A2.1)

as x, y ∈ Rn, u ∈ (−R,R) and (ξ,X) ∈ Rn × Sn. If p > p0 and

‖f‖Mp := sup
x∈Rn

‖f‖Lp(B1(x)) < +∞ , (A2.2)

then equation F (x, u,Du,D2u) = f has a unique C-viscosity solution.

Sketch of the proof:
u, v solutions, (A2.1)+(A2.2)⇒ u− v satisfies a maximal equation...

Giulio Galise University of Salerno



Existence results
Uniqueness results

Maximum Principle
Uniqueness

x 7→ F (x, ·, ·, ·) measurable, f ∈ Lploc(Rn), p > p0

We suppose that for every R > 0 there exists cR > 0 such that

P−λ,Λ(Y −X)− γ|η − ξ| − cR|v − u|
≤ F (x, v, η, Y )− F (x, u, ξ,X) ≤ P+

λ,Λ(Y −X) + γ|η − ξ|+ cR|v − u|
(5)

for x ∈ Rn and any R > 0, u, v ∈ (−R,R), ξ, η ∈ Rn, X,Y ∈ Sn

(SC)”=(SC)+(5)

βF (x, x0) := sup
X∈Sn
X 6= 0

|F (x, 0, 0, X)− F (x0, 0, 0, X)|
‖X‖

.
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Theorem

Suppose:
(SC)” holds true
F (·, ·, ·, X) convex

sup
r∈(0,r0)

(∫
Br(x)

− |βF (x, y)|n dy

)1/n

≤ θ

for every x ∈ Rn, with θ = θ(n, p, λ,Λ, r0).
Then the equation F (x, u,Du,D2u) = f(x) has a unique Lp-strong
solution u ∈W 2,p

loc (Rn).

Sketch of the proof:
u, v solutions are Lp-strong solution and by using (SC)” we get a
maximal equation for u− v. We conclude from maximum principle.
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