Existence results Uniqueness results

Viscosity solutions of elliptic equations in \mathbb{R}^n : existence and uniqueness results

> Giulio Galise Department of Mathematics University of Salerno, ITALY

> > June 13, 2012

GNAMPA School "DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS" Serapo (Latina), June 11-15, 2012

(*) *) *) *)

Results presented in this school are extracted from:

G. Galise and A. Vitolo, Viscosity Solutions of Uniformly Elliptic Equations without Boundary and Growth Conditions at Infinity, International Journal of Differential Equations (2011).

• = • •

Some previous results

• H. Brezis¹

$$\Delta u - |u|^{s-1}u = f \qquad s > 1, \ f \in L^1_{loc}(\mathbb{R}^n)$$

 \exists ! solution (distributional sense)

• M. J. Esteban, P. Felmer, A. Quaas²

 $F(D^2u) - |u|^{s-1}u = f \qquad s > 1, \ f \in L^n_{loc}(\mathbb{R}^n)$

 $\exists!$ solution (L^n -viscosity solution)

 $^{^1 \}rm H.Brezis,$ Semilinear equations in \mathbb{R}^n without conditions at infinity, Appl. Math. Optim. 12 (1984), 271–282

²M.J.Esteban., P.L.Felmer and A.Quaas, Superlinear elliptic equations for fully nonlinear operators without growth restrictions for the data, *Proc. Edinb. Math.* Soc. **53** (2010), 125–141

STRUCTURE CONDITIONS (SC)

$$F(x, u, Du, D^2u) = f(x)$$
 in \mathbb{R}^n

Assumptions on F:

•
$$\mathcal{P}_{\lambda,\Lambda}^{-}(Y-X) - \gamma |\eta - \xi| \leq F(x, u, \eta, Y) - F(x, u, \xi, X) \leq \mathcal{P}_{\lambda,\Lambda}^{+}(Y-X) + \gamma |\eta - \xi|$$

•
$$F(x, u, \xi, X) - F(x, v, \xi, X) \le -\delta(u - v)^s$$
 if $v < u, s > 1$

•
$$F(x, 0, 0, 0) = 0$$

EXAMPLE

$$F(x, u, Du, D^2u) = \mathcal{P}^+_{\lambda, \Lambda}(D^2u) + \gamma |Du| - |u|^{s-1}u$$

<ロ> (四) (四) (日) (日) (日)

э

STRUCTURE CONDITIONS (SC)

$$F(x, u, Du, D^2u) = f(x)$$
 in \mathbb{R}^n

Assumption on f:

• $f \in L^p_{\text{loc}}(\mathbb{R}^n)$ with $p > p_0 = p_0(n, \Lambda/\lambda) \in (n/2, n)$.

 p_0 is the exponent such that the generalized maximum principle (GMP) holds true:

GMP

If $f \in L^p(\Omega)$ with $p > p_0$ and $u \in W^{2,p}_{loc}(\Omega) \cap C(\overline{\Omega})$ is an L^p -strong solution of the maximal equation

$$\mathcal{P}^+_{\lambda,\Lambda}(D^2u) + \gamma |Du| \ge f_{\lambda,\Lambda}$$

then

$$\max_{\overline{\Omega}} u \le \max_{\partial \Omega} u + C d^{2 - \frac{n}{p}} \|f^-\|_{L^p(\Omega)} \tag{1}$$

・ロッ ・回 ・ ・ ヨッ

with $d = \operatorname{diam}(\Omega)$ and C a positive constant depending on $n, \lambda, \Lambda, p, \gamma d$.

Lemma1

Let Ω be a domain of \mathbb{R}^n such that $\Omega_R := \Omega \cap B_R \neq \emptyset$. Suppose that F satisfy structure conditions (**SC**) a.e. $x \in \Omega_R$. If $u \in C(\overline{\Omega}_R)$ is an L^p -viscosity solution $(p > p_0)$ of the equation

$$F(x, u, Du, D^2u) \ge f(x)$$

with $f \in L^p(\Omega_R)$, then for each $r \in (0, R)$ we have

$$\sup_{\Omega_r} u \le u_{\partial\Omega}^+ + \frac{C_0 (1+R)^{\mu/2} R^{\mu}}{(R^2 - r^2)^{\mu}} + C \|f^-\|_{L^p(\Omega_R)}$$
(2)

with $\mu = 2/(s-1)$, $C_0 = C_0(n, \Lambda, \gamma, s, \delta)$ and $C = C(n, p, \lambda, \Lambda, \gamma R)$ are positive constants. Here

$$u_{\partial\Omega}^{+} = \begin{cases} \sup_{B_R \cap \partial\Omega} u^{+} & \text{if } B_R \cap \partial\Omega \neq \emptyset \\ 0 & \text{if } B_R \subset \Omega \,. \end{cases}$$

・ロッ ・回 ・ ・ ヨッ

э

Sketch of the proof:

• Osserman's barrier function

$$\Phi(x) = \frac{C_R R^{\mu}}{(R^2 - |x|^2)^{\mu}}, \ |x| < R$$

$$\mu = 2/(s-1), \ C_R^{s-1} = 2\mu\delta^{-1}(\Lambda(n+2(1+\mu))+\gamma R)$$

- (SC) $\Rightarrow F(x,\Phi(x),D\Phi(x),D^2\Phi(x)) \leq 0$ a.e. in Ω_R
- $w = u \Phi$ is an L^p -viscosity solution of $\mathcal{P}^+_{\lambda,\Lambda}(D^2w) + \gamma |Dw| \ge f(x)$ in $\Omega_R \cap \{u > \Phi\}$
- $(GMP) \Rightarrow$ conclusion.

3

Lemma2

Let Ω_R , F and f as in Lemma1. If $u \in C(\overline{\Omega}_R)$ is an L^p -viscosity solution $(p > p_0)$ of the equation

$$F(x, u, Du, D^2u) = f(x),$$

then for each $r \in (0, R)$ we have

$$\sup_{\Omega_r} |u| \le |u|_{\partial\Omega} + \frac{C_0 (1+R)^{\mu/2} R^{\mu}}{(R^2 - r^2)^{\mu}} + C \|f\|_{L^p(\Omega_R)}$$
(3)

with C_0 , C and $|u|_{\partial\Omega} = \max(u_{\partial\Omega}^+, u_{\partial\Omega}^-)$ as defined in Lemma1.

・ 同 ト ・ ヨ ト ・ ヨ ト

э.

Existence results Uniqueness results Existence

Assumption: $\forall R > 0 \ \exists \omega_R : \mathbb{R}_+ \to \mathbb{R}_+ \text{ such that } \omega_R(t) \to 0 \text{ as } t \to 0^+ \text{ and}$

$$|F(x,v,\xi,X) - F(x,u,\xi,X)| \le \omega_R(|v-u|) \tag{4}$$

a.e. in x for $|u| + |v| + |\xi| + ||X|| \le R$.

$$(\mathbf{SC})' = (\mathbf{SC}) + (4)$$

Theorem

Let $F : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \times \mathcal{S}^n \to \mathbb{R}$ be measurable in x and satisfy the structure condition $(\mathbf{SC})'$ a.e. $x \in \mathbb{R}^n$ for all $(u, \xi, X) \in \mathbb{R} \times \mathbb{R}^n \times \mathcal{S}^n$. If $f \in L^p_{loc}(\mathbb{R}^n)$, then equation

$$F(x, u, Du, D^2u) = f(x)$$

has an L^p -viscosity solution in \mathbb{R}^n for any $p > p_0$.

・ 「 ト ・ ヨ ト ・ ヨ ト

-

Sketch of the proof:

- $f_k \in C^{\infty}(\mathbb{R}^n)$ such that $\lim_{k\to\infty} \|f_k f\|_{L^p(\Omega)} = 0$
- (4) \Rightarrow solvability in the ball B_{2^k} of (DP) $F=f_k+$ continuous boundary condition
- Uniform estimates \Rightarrow for h > k

$$\sup_{B_{2^k}} |u_h| \le C_0 + C ||f||_{L^p(B_{2^{k+1}})}$$

• (SC)'+
$$C^{\alpha}$$
 - estimates \Rightarrow

$$\|u_h\|_{C^{\alpha}(B_{2^k})} \le C_1(1 + \|f\|_{L^p(B_{2^{k+1}})})$$

- Diagonal argument $u_{h_k} \to u \in C(\mathbb{R}^n)$ uniformly on every bounded domain
- Stability results \Rightarrow conclusion.

I na ∩

MAXIMUM PRINCIPLE

Let $\delta > 0$, s > 1 and Ω be a domain of \mathbb{R}^n . Suppose for a.e. $x \in \Omega$ that

$$F(x, u, \xi, X) \le \mathcal{P}^+_{\lambda, \Lambda}(X) + \gamma |\xi| - \delta |u|^{s-1} u$$

for all $(u, \xi, X) \in \mathbb{R} \times \mathbb{R}^n \times S^n$ and $u \in C(\overline{\Omega})$ is an L^p -viscosity solution $(p > p_0)$ of the equation

 $F(x, u, Du, D^2u) \ge 0$ in Ω .

• If $\Omega = \mathbb{R}^n$, then $u \leq 0$ in \mathbb{R}^n .

• If $\Omega \subsetneq \mathbb{R}^n$ and $u \leq 0$ on $\partial \Omega$, then $u \leq 0$ in Ω .

・ 同 ト ・ ヨ ト ・ ヨ ト

э.

MIMUM PRINCIPLE

Let $\delta > 0$, s > 1 and Ω be a domain of \mathbb{R}^n . Suppose for a.e. $x \in \Omega$

$$F(x, v, \xi, X) \ge \mathcal{P}^{-}_{\lambda, \Lambda}(X) - \gamma |\xi| - \delta |v|^{s-1} v$$

for all $(v, \xi, X) \in \mathbb{R} \times \mathbb{R}^n \times S^n$ and $v \in C(\overline{\Omega})$ an L^p -viscosity solution $(p > p_0)$ of the equation

$$F(x, v, Dv, D^2v) \le 0$$
 in Ω .

- If $\Omega = \mathbb{R}^n$, then v > 0 in \mathbb{R}^n .
- If $\Omega \subseteq \mathbb{R}^n$ and $v \ge 0$ on $\partial \Omega$, then $v \ge 0$ in Ω .

- 4 同 ト - 4 日 ト - 4 日 ト

э.

$$F \in C(\mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \times \mathcal{S}^n), \ f \in C(\mathbb{R}^n)$$

Theorem

If F is indipendent of x and satisfies (SC) then the equation

$$F(u, Du, D^2u) = f$$
 in \mathbb{R}^n

has a unique C-viscosity solution.

Sketch of the proof:

• u, v solution, $\Omega = \{u > v\}$. Jensen's approximations \Rightarrow

$$\mathcal{P}^+_{\lambda,\Lambda}(D^2(u-v)) + \gamma |D(u-v)| - \delta(u-v)^s \ge 0 \quad \text{in } \Omega$$

• Maximum Principle $\Rightarrow u \leq v...$

- 20

$$F \in C(\mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \times \mathcal{S}^n), \ f \in C(\mathbb{R}^n)$$

Theorem

Suppose that F satisfies (SC) and that for all R > 0 there exist a constant $K_R > 0$ and a function $\omega_R : \mathbb{R}_+ \to \mathbb{R}_+$ such that $\lim_{t \to 0^+} \omega_R(t) = 0$ and

$$|F(y, u, \xi, X) - F(x, u, \xi, X)| \le K_R ||X|| |y - x| + \omega_R((1 + |\xi|)|y - x|)$$
(A2.1)
(A2.1)

as $x, y \in \mathbb{R}^n$, $u \in (-R, R)$ and $(\xi, X) \in \mathbb{R}^n \times S^n$. If $p > p_0$ and

$$||f||_{M^p} := \sup_{x \in \mathbb{R}^n} ||f||_{L^p(B_1(x))} < +\infty, \qquad (A2.2)$$

then equation $F(x, u, Du, D^2u) = f$ has a unique C-viscosity solution.

Sketch of the proof: u, v solutions, (A2.1)+(A2.2) $\Rightarrow u - v$ satisfies a maximal equation... $x \mapsto F(x, \cdot, \cdot, \cdot)$ measurable, $f \in L^p_{\text{loc}}(\mathbb{R}^n), \ p > p_0$

We suppose that for every R > 0 there exists $c_R > 0$ such that

$$\mathcal{P}_{\lambda,\Lambda}^{-}(Y-X) - \gamma |\eta - \xi| - c_R |v - u|$$

$$\leq F(x, v, \eta, Y) - F(x, u, \xi, X) \leq \mathcal{P}_{\lambda,\Lambda}^{+}(Y-X) + \gamma |\eta - \xi| + c_R |v - u|$$
(5)

for $x \in \mathbb{R}^n$ and any $R > 0, u, v \in (-R, R), \xi, \eta \in \mathbb{R}^n, X, Y \in \mathcal{S}^n$

$$(SC)^{"}=(SC)+(5)$$

$$\beta_{F}(x,x_{0}) := \sup_{\substack{X \in \mathcal{S}^{n} \\ X \neq 0}} \frac{|F(x,0,0,X) - F(x_{0},0,0,X)|}{\|X\|}.$$

イロト 不同 ト イヨト イヨト ヨー うらぐ

Theorem

Suppose:

۲

- (SC)" holds true
- $F(\cdot, \cdot, \cdot, X)$ convex

$$\sup_{r \in (0,r_0)} \left(\int_{B_r(x)} |\beta_F(x,y)|^n \, dy \right)^{1/n} \le \theta$$

for every $x \in \mathbb{R}^n$, with $\theta = \theta(n, p, \lambda, \Lambda, r_0)$.

Then the equation $F(x, u, Du, D^2u) = f(x)$ has a unique L^p -strong solution $u \in W^{2,p}_{\text{loc}}(\mathbb{R}^n)$.

Sketch of the proof:

u, v solutions are L^p -strong solution and by using (SC)" we get a maximal equation for u - v. We conclude from maximum principle.

3