An Introduction to the Theory of Viscosity
Solutions for First-Order Hamilton-Jacobi
Equations and Applications

Guy Barles

Abstract In this course, we first present an elementary introduction to the concept
of viscosity solutions for first-order Hamilton—Jacobi Equations: definition, stability
and comparison results (in the continuous and discontinuous frameworks), boundary
conditions in the viscosity sense, Perron’s method, Barron—Jensen solutions . . . etc.
We use a running example on exit time control problems to illustrate the different
notions and results. In a second part, we consider the large time behavior of periodic
solutions of Hamilton—Jacobi Equations: we describe recents results obtained by
using partial differential equations type arguments. This part is complementary of
the course of H. Ishii which presents the dynamical system approach (“weak KAM
approach”).

1 Introduction

This text contains two main parts: in the first one, we present an elementary
introduction of the notion of viscosity solutions in which we restrict ourselves to
the case of first-order Hamilton—Jacobi Equations (we do not present the uniqueness
arguments for second-order equations). We recall that this notion of solutions was
introduced in the 1980s by Crandall and Lions [22] (see also Crandall et al. [21]).
In the second part, we describe recent results on the large time behavior of solutions
of Hamilton—Jacobi Equations which are obtained by using partial differential
equations type arguments: this part is complementary of the course of H. Ishii which
presents the dynamical system approach (“weak KAM approach”).

Despite the main focus of this article will be on first-order equations, we point
out that the natural framework for presenting viscosity solutions’ theory is to
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consider fully nonlinear degenerate elliptic equations (and even equations with
integro-differential operators under suitable assumptions); we will use this natural
framework when there will be no additional difficulty.

We refer the reader to the book of Bardi and Capuzzo Dolcetta [2] for a
more complete presentation of this notion of solutions including applications to
deterministic optimal control problems and differential games, to the “Users guide”
of Crandall et al. [23] for extensions to second-order equations and to the book
of Fleming and Soner [26] where the applications to deterministic and stochastic
optimal control are also described. An introduction to the notion of viscosity
solutions as well as applications in various directions can also be found in the 1995
CIME course [3].

By “fully nonlinear degenerate elliptic equations”, we mean equations which
can be written as

F(y,u,Du,D*u) =0 in 0, (1)

where ¢ is a domain in RY and F is, say, a continuous, real-valued function defined
on 0 x R x RN x .#N &N being the space of N x N symmetric matrices, and
which satisfies the (degenerate) ellipticity condition

F(y,r,p,My) < F(y,r,p, M) if M, > M,, (2)

foranyy e 0,r e R, p € RN, M, M, € .V . The solution u is a scalar function
and Du, D?u denote respectively its gradient and Hessian matrix.

Of course, first-order equations obviously enter in this framework since, in that
case, F does not depend on D?u and is therefore elliptic. We also point out that
parabolic/first-order evolution equations like

u + H(x,t,u,Du) —eA> u=0 in2x(0,T),

are also degenerate elliptic equations if ¢ > 0 (including ¢ = 0) with the domain
0 = §2 x (0, T) and the variable y = (x,¢); in other words, a classical (possibly
degenerate) parabolic equation is a degenerate elliptic equation.

The ellipticity property is a key property for defining the notion of viscosity
solutions: this fact will become clear in Sect.3. From now on, we will always
assume it is satisfied by the equations we consider.

In fact, the notion of viscosity solutions applies naturally to (a priori) any type
of equations modelling monotone phenomenas. A famous result in this direction is
given by Alvarez et al. [1] for image analysis (see also Biton [19]): a multiscale
analysis which satisfies some locality, regularity, causality and monotonicity prop-
erties is given by a fully nonlinear parabolic pde, and even by the viscosity solution
of this pde. Furthermore, one has a geometrical counterpart of this result in [14]
for front propagation problems, where monotonicity has to be understood in the
inclusion sense. We will emphasize this monotonicity feature, starting, in Sect. 2,
with a running example on exit time control problems.



First-Order Hamilton—Jacobi Equations and Applications 51

The article is organized as follows: in Sect.3, we provide the definition of
continuous viscosity sub and supersolutions and their first properties (different
formulations, connections with classical properties, changes of variables, ... etc);
we also provide a first stability result for continuous solutions (Sect.4). Section 5
describes what is called (improperly) “uniqueness results”: in fact, these are
“comparison results” of Maximum Principle type which (roughly speaking) implies
that subsolutions are below supersolutions. After describing the basic arguments
(doubling of variables and basic estimates), we show how to obtain such comparison
results in various situations (in particular for problems set in RY x (0, T') with
or without “finite speed of propagation” type properties). In Sect. 6, we describe
the notion of viscosity solutions for discontinuous solutions and equations: the
main motivation comes from the discontinuous stability result (“half relaxed limit
method”) which allows passage to the limit with only a uniform (L°°) bound on the
solutions. This last result leads us to the existence properties for viscosity obtained
by the Perron’s method (Sect.7). In Sect.8, we show how to prove regularity
results: Lipschitz continuity, semi-concavity, . . . etc and we conclude by the Barron—
Jensen’s approach for first-order equations with convex Hamiltonians (Sect. 9).

In a second part, in Sect. 10, we provide an application of the presented tools to
the study (by pde methods) of the large time behavior of solutions of Hamilton—
Jacobi Equations: we present the various difficulties and key results for these
problems (basic estimates, ergodic problem, . .. etc.) and we describe the two main
convergence results, namely the Namah—Roquejoffre framework [42] and what we
name as the “strictly convex” framework, even if the Hamiltonians do not really
need to be strictly convex, related to the result by Souganidis and the author [15];
while the Namah—Roquejoffre result relies on rather classical viscosity solutions’
methods, the “strictly convex” one uses a more surprising asymptotic monotone
property of the solutions in .

2 Preliminaries: A Running Example

In this section, we present an example which is used in the sequel to illustrate
several concepts or results related to viscosity solutions. This example concerns
deterministic control problems and, more precisely, exit time control problems. We
describe it now.

We consider a controlled system whose state is described by the solution y, of
the ordinary differential equation (the “dynamic”)

Vx(s) = b(yx(s),a(s)) fors >0,
3)

yx(0)=x€$2.
where £ is a bounded domain of RY (£2 or its closure £2 represents the possible
“states of the system”), «(-), the control, is a measurable function which takes its
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value in a compact metric space ./ and b : RY x .o/ — R is a function satisfying,
for some constant C > 0 and forany x,y € 2,«a € &

b is a continuous function from RY x < into RY .

b(x.0) —b(y.a)| < Cly—x|. |b(r.a)|<C. @

Because of this assumption, the ordinary differential equation (3) has a unique
solution which is defined for all s > 0.

The trajectories y, depend both on the starting point x but also on the choice
of the control a(-). We omit this second dependence for the sake of simplicity of
notations.

The “value function” is then defined, for x € £2 (or 22) and ¢ € [0, T], by

U(x,t):%{ | 10005 + 001z + 00O - )

where f. ¢, ug are continuous functions defined respectively on £2 x o7, 92 and 2
which takes values in R. We denote by t the first exit time of the trajectory y, from
£2,1.e.

t=inf{t >0; y,(t) ¢ 2 }.

Of course, T depends on x and «(-) but we drop this dependence, again for the
sake of simplicity of notations. Finally, for any set A, 14 denotes the indicator
function of the set A. For reasons which will be clear later on, we assume the
compatibility condition

up=¢ons . (6)

In the sequel, we will say that the “control assumptions”, and we will write (CA),
are satisfied if (4) holds, if f, ¢, uy are continuous functions and if we have (6).

The first remark that we can make on this example concerns the monotonicity:
keeping the same dynamic, if we consider different costs fi, ¢1, u(l) and f>, @7, u%
with

fi<f onRxg, ¢ <@ ondf, u(l) < u(z) on 2,

then the associated value functions satisfy U; < U, on 2 x [0, T']. In other words,
the value functions depends in a monotone way of the data.

We will see that the value function U is a solution of

U +Hx,DU) =0 inR2x(0,T), ©)

where H(x, p) := SUpyey {—D(x,@) - p — f(x,a)}, with the Dirichlet boundary
condition
U(x,t) = ¢(x,t) on 92 x(0,7T), (8)

and the initial condition
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U(x,0) = up(x) on 2. 9)

We have to answer to several questions in the sequel:

— A priori, the value function U is not regular: in which sense can it be a solution
of (7)—(9)?

— How is the boundary data achieved? In which sense?

— Is the value function the unique solution of (7)-(9)?

— Are we able to prove directly that a solution of (7)—(9) satisfies the monotonicity
property?

We conclude this section by (very) few some references on exit time control
problems. The work of Soner [44] on state constraints problems is the first article
which studies this kind of problems in connections with viscosity solutions, uses
boundary conditions in the viscosity solutions’ sense and provides a general argu-
ment to prove uniqueness results. Boundary conditions in the viscosity solutions’
sense have been considered previously for Neumann/reflection problems by Lions
[37]. Pushing their ideas a little bit further, Perthame and the author [8—10] (see
also [5]) systematically study Dirichlet/exit time control problems (including state
constraints problems). For stochastic control, we refer the reader to [12] and
references therein.

3 The Notion of Continuous Viscosity Solutions: Definition(s)
and First Properties

3.1 Why a “Good” Notion of Weak Solution is Needed?

We give now few concrete examples of equations where there will be a unique
viscosity solution but either no smooth solutions or with several generalized
solutions (i.e. solutions which are locally Lipschitz continuous and satisfy the
equation almost everywhere). We refer to Sect.5 for the proof of the uniqueness
results we are going to use.

The first example is

0 0
P12~ 0 in Rx (0, +00) . (10)
ot ax
We first remark that (10) enters into our framework with & = R x (0, +00), the
ou ou
jableis y = (x,t), Du = (—, —)' and
variableis y = (x, 1), Du (8x 81) an

F(y,u,p,M) = p: + |px| ,

"Here we use the notation Du for the full gradient of u in space and time but, in general, we will
use it for the gradient in space of u.
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with p = (px, pr)-
It can be shown that the function u defined in R x (0, +00) by

u(x,t) = —(x| +1)%,

is the unique viscosity solution of (10) in C(R x (0, 400)) (see Sect. 5.3). It is worth
remarking in this example that u is only locally Lipschitz continuous for ¢t > 0
despite the initial data

u(x,0) = —x* in R,

is in C *°(R). In particular, this problem has no smooth solution as it is generally the
case for such nonlinear hyperbolic equations.
Moreover, if we consider (10) together with the initial data

u(x,0) =|x| in R, (11

then the functions u; (x,¢) = |x|—t and up(x,t) = (|]x|—t)™T are two “generalized”
solutions in the sense that they satisfy the equation almost everywhere (at each of
their points of differentiability). This problem of nonuniqueness is solved by the
notion of viscosity solutions since it can be shown that u; is the unique continuous
viscosity solution of (10)—(11) (see again Sect.5.3). In that case, the notion of
viscosity solutions selects the “good” solution which is here the value-function of
the associated deterministic control problem (cf. Bardi and Capuzzo Dolcetta [2]
and Fleming and Soner [26]). An other remark (or interpretation) is that the notion
of viscosity solutions selects the solution which satisfies the right monotonicity
property: indeed the initial data is positive and therefore the solution has to be
positive since 0 is a (natural) solution.

For second-order equations, non-smooth solutions appear generally as a con-
sequence of the degeneracy of the equation. We refer to [23] for details in this
direction.

3.2 Continuous Viscosity Solutions

As we already mention it in the introduction, we are going to present the different
definitions of viscosity solutions in the framework of fully nonlinear degenerate
elliptic equations i.e. equations like (1) which satisfies the ellipticity condition (2).

In order to introduce the notion of viscosity solutions and to show the importance
of the ellipticity condition, we first give an equivalent definition of the notion of
classical solution which only uses the Maximum Principle.

Theorem 3.1 (Classical Solutions and Maximum Principle). ¥ € C%*(0) is a
classical solution of (1) if and only if
forany ¢ € C*(0), if yo € O is a local maximum point of u — ¢, one has
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F(yo.u(y0), Dp(y0). D*¢(y0)) < 0.
and, for any ¢ € C*(0), if yo € O is a local minimum point of u — @, one has
F(yo,u(y0), De(y0), D*¢(y0)) = 0.

Proof. The proof of this result is very simple: the first part of the equivalence just
comes from the classical properties Du(yo) = Do(yo), D*u(yo) < D*@(y0), at a
maximum point y of u — ¢ (recall that u and ¢ are smooth) or Du(yo) = D¢(yo),
D*u(yo) > D?@(y0), at a minimum point yo of u — ¢. One has just to use these
properties together with the ellipticity property (2) of F to obtain the inequalities of
the theorem.

The second part is a consequence of the fact that we can take ¢ = u as test-
function and therefore F(yo, u(yo). Du(yo), D*u(y0)) is both positive and negative
at any point y, of & since any yy € € is both a local maximum and minimum point
of u—u.

Now we simply remark that the equivalent definition of classical solutions which
is given here in terms of test-functions ¢ does not require the existence of first and
second derivatives of u. For example, the continuity of u is sufficient to give a sense
to this equivalent definition; therefore we use this formulation to define viscosity
solutions.

Definition 3.1 (Continuous Viscosity Solutions). The function u € C(0) is a
viscosity solution of (1) if and only if
for any ¢ € C%(0), if yo € O is a local maximum point of # — ¢, one has

F(yo, u(y0), Do(»0), D*¢(y0)) <0,

and, for any ¢ € C2(0), if yo € O is a local minimum point of u — ¢, one has
F(yo,u(y0), De(y0), D*¢(y0)) = 0.

If u only satisfies the first property of Definition 3.1 (with maximum points), we
will say that u is a viscosity subsolution of the equation, while it is called a viscosity
supersolution if it only satisfies the second one. From now on, we will talk only
of subsolution, supersolution and solution considering that they will be anytime
taken in the viscosity sense. This notion of solution was called “viscosity solution”
because for first-order equations, as we will see it below, viscosity solutions were
first obtained as limits in the “vanishing viscosity method”, i.e. by an approximation
procedure involving a —e A term.

For first-order equations (otherwise this remark makes no sense), it is worth
pointing out that a solution of F = 0 is not necessarily a solution of —F = 0:
the sign of the nonlinearity plays a role. This phenomena can be understood in
the following way: the viscosity solution of the equation F = 0 when unique
can be thought as being obtained through the vanishing viscosity approximation
—eA + F = 0 and there is no reason why the other vanishing approximation
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e¢A 4+ F = 0 (which leads in fact to a solution of —F = 0) converges to the
same solution.

Finally we remark that parabolic equations are just a particular case of (degen-
erate) elliptic equations: the y—variable is just the (x, t)—variable and, of course,
Du, D*u have to be understood as the gradient and Hessian matrix of u with respect
to the variable (x, 7).

3.3 Back to the Running Example (I): The Value Function U
is a Viscosity Solution of (7)

The key result is the Dynamic Programming Principle

Theorem 3.2. Under the hypothesis (CA), if x € §2,0 <t < T, the value function
satisfies, for S > 0 small enough

S
UGr.) = inf [ / FOa(s),a(s))ds + Ulra(S).1 — S)} RS
ol. 0

We leave the proof of this result to the reader and show how it implies that U is a
viscosity solution of (7). To do so, we assume that U is continuous (an assumption
which will be removed later on). We only prove that it is a supersolution, the
subsolution property being easier to obtain.

Let¢ € C'(£2 x (0, T)) and assume that (x, ) € 2 x (0, T) is a local minimum
point of U — ¢. There exists r > 0 such that, if |x’ — x| < r and |t/ — ¢| < r, then
x'€ 2, >0and

U, ) —o(x',t) = U(x,t) — ¢ (x,1) .

Using the Dynamic Programming Principle with S small enough in order to have
S <rand|y.(S)— x| <r (recall that b is uniformly bounded), we obtain

s
pe =int | [ 00000+ 40500 = 5)]
al.) 0
But, by standard calculus
P(yx(S).1 = 5)
s
=¢x.0)+ /0 (D@ (yx(s). 1 —5) - b(ya(s),a(8)) — Pi(yx(s).1 —5)) ds .

And therefore
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S
0= int| [ (D9031(6).1 =51 03,0006 = 3150t =)

T F O (s).a(s)) ds] ,

or

S
sup [ / (=D(e(5).1 —5) - b(y(s). a(5))
al.) 0

¢ (x(5).1 = 5) = [(yx (). (s))) dS} >0.

Next, we remark that the integrand can be replaced by (the larger quantity)

G (yx(s).1 = 5) + H(yx(s), DP(yx(s). 1 —5))

and then, because of the regularity of ¢ and the continuity property of H, by
¢i(x,t) + H(x, Dp(x,t)) + o(1) where o(1) denotes a quantity which tends to
0 as § — 0, uniformly with respect to the control. Finally

S
sup [/ (¢ (x,1) + H(x, Do (x.1)) +0(1))ds} >0,
() 0

and the conclusion follows by dividing by S and letting S tends to 0, noticing that
the sup can be dropped.

Remark 3.1. The above argument is a key one and it is worth pointing out that it
just uses the fact that
u(x,t) = G(S,x,t,u(?),

where G is monotone in u(-) and consistent with the equation, in the sense that

P(x.1) —G(S.x.1.¢())
S

— ¢i(x,t)+ H(x,D¢p(x,t) as S — 0,

for any smooth function ¢.> Therefore it is a rather general argument which connects
“monotonicity” and “viscosity solutions”: it appears in various situations such as
the convergence of numerical scheme (see in particular [13]), the connection of
monotone semi-group with viscosity solutions (see, for instance, [1,19,36]), ... etc.

2Here we have also used a less important (but simplifying) property, namely the commuta-
tion with constants: for any ¢ €R, S,x,t and for any function u(-), G(S,x,t,u(-)+c)=
G(S,x,t,u()+c.
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3.4 An Equivalent Definition and Its Consequences

We continue by giving some equivalent definitions which may be useful.

Proposition 3.1. An equivalent definition of subsolution, supersolution and solu-
tion is obtained by replacing in Definition 3.1:

1. “¢ € CHO)" by “p € CK(0)” (2 <k < +00) orby “¢p € C®(0)”

2. “¢p € C2(0)” by “¢p € C(O)” in the case of first-order equations

3. “local maximum” or “local minimum” by “strict local maximum” or “strict
local minimum” or by “global maximum” or “global minimum” or by “strict
global maximum” or “strict global minimum”.

This proposition is useful since, in general, the proofs are simplified by a right
choice of the definition. In particular the definition with “global maximum points”
or “global minimum points” in order to avoid heavy localisation arguments.

The proof of this proposition is left as an exercise (despite it is not obvious at all):
it is based on classical Analysis type arguments, some of them being rather delicate.

We give now a more “pointwise” definition using generalized derivatives (“sub
and super-differential” or “semi-jets”’) which plays a central role for second-order
equations.

Definition 3.2 (Second-order sub and super-differential of a continuous
function). The second-order superdifferential of u € C(&0) at y € & is the,
possibly empty, convex subset of RY x .7V, denoted by D>*u(y), of all couples
(p. M) e RY x .V satisfying

u(y + 1) = () = (p. )~ 5 (M. h) < o(lhf?)

for h € RY small enough.

The second-order subdifferential of u € C(&) at y € O is the, possibly empty,
convex subset of RV x .7V, denoted by D>~ u(y), of all couples (p, M) € RV x
SN satisfying

u(y + 1) = () = (p. ) = 5 (M, 1) = o((hf?)

for h € RN small enough.
As indicated in the definition, these subsets can be empty, even both as it is the
1
case, at the point y = 0, for the function y > +/|y| sin(—z) extended at 0 by 0.
y

If u is twice differentiable at y then
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D**u(y) = {(Du(y). M); M > D*u(y)},
D*"u(y) = {(Du(y). M); M < D?u(y)},

Now we turn to the connections between sub and super-differentials with
viscosity solutions.

Theorem 3.3. (i) u € C(0) is a subsolution of (1) iff, for any y € O and for any
(p. M) € D*>Fu(y)

F(y,u(y),p,M) <0. (13)

(ii) u € C(0O) is a supersolution of (1) iff, for any y € O and for any (p, M) €
D*~u(y)
F(y,u(y),p.M)>0. (14)

Before giving some elements of the proof of Theorem 3.3, we provide some easy
(but useful) consequences.

Corollary 3.1. (i) Ifu € C*(0) satisfies F(y,u(y), Du(y), D*u(y)) = 0in 0
then u is a viscosity solution of (1).

(ii) If u € C(0O) is a viscosity solution of (1) and if u is twice differentiable at
Vo € O then

F(yo, u(y0), Du(yo), D*u(yo)) = 0 .

(i) Ifu € C(O) is a viscosity solution of (1) and if ¢ : R — R is a C*—function
such that ¢’ > 0 on R then the function v defined by v = ¢(u) is a viscosity
solution of

K(y,v,Dv,D*v) =0 in0,

where K(y.z.p.M) = F(y.v().¥'@p.¥' @M + ¥"@)p ® p) and
y=¢"

The proof of this Corollary is based on the classical technics of calculus and is
left as an exercise.

This corollary is formulated in terms of “solution” but, of course analogous
results hold for subsolutions and supersolutions.

A lot of different changes can be considered instead of the one in the result (iii):
as long as signs are preserved in order to keep the inequalities satisfied by the sub
or superdifferentials or, if the minima are not transformed in maxima and vice-
versa, such result remains true. Let us mention, for example, the transformations:
v = u+ V¥, with ¥ being of classe C? or v = yu + v, x, ¥ being of classe C? and
x=>oa>0... etc

In the case when “signs are changed”, we have the following proposition.

Proposition 3.2. u € C(0) is a subsolution (resp. supersolution) of (1) iff v = —u
is a supersolution (resp. subsolution) of

—F(y,—v,—Dv, —Dzv) =0 in0.
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The proof of Theorem 3.3 (that Proposition 3.2 allows us to do only in the
subsolution case) relies only on two arguments; the first is elementary: if ¢ a C?
test-function and if yy a local maximum point of u — ¢ then, by combining the
regularity of ¢ and the property of local maximum, we get

u(y) = ¢(y) + u(yo) — ¢(yo)

< u(yo) + (D¢ (y0), y — yo) + %D2¢(J/0)(y —0) - (y = yo) +o(ly —yol») .

Therefore (D¢ (yo), D2¢ (1)) is in D> u(yy).
The second one is not as simple as the first one and is described in the following
lemma.

Lemma 3.1. If (p, M) € D> u(yy), there exists a C*>—function ¢ : 0 — R such
that D¢ (yo) = p, D*¢(yo) = M and such that yy is a local maximum point of

u—ao.

The proof of this lemma uses classical but rather tricky Analysis tools, in
particular regularization arguments. We skip it since it is rather long and not in
the central scope of this course. We refer to Crandall et al. [21] or Lions [36] for a
complete proof.

4 The First Stability Result for Viscosity Solutions

There is no need to recall here that problems involving passage to the limit
in nonlinear equations when we have only a weak convergence is one of the
fundamental problem of nonlinear Analysis. We call “stability result” a result
showing under which conditions a limit of a sequence of sub or supersolutions is
still a sub or a supersolution.

We present in theses notes two types of stability results which are of different
natures: the first one looks rather classical since it requires compactness (or
convergence) properties on the considered sequences. It may be a priori of a rather
difficult use since the needed estimates on the solutions are not so easy to obtain in
concrete situations. The second one, on the contrary, will be far less classical and
requires only easy estimates but rather strong uniqueness properties for the limiting
equation: we present this second stability result in Sect. 6 since it requires the notion
of discontinuous viscosity solutions. We state both results in the framework of
second-order equations since there are no additional difficulties.

The first result is the

Theorem 4.1. Assume that, for ¢ > 0, u, € C(O) is a subsolution (resp. a
supersolution) of the equation

F.(y,u, Du,, Dzug) =0 in0, (15)
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where (F;). is a sequence of continuous functions satisfying the ellipticity condition.
Ifu, — uin C(0) andif F, — F in C(O x Rx RN x .#N) then u is a subsolution
(resp. a supersolution) of the equation

F(y,u,Du,D*u) =0 in0 .

We first recall that the convergence in the spaces of continuous functions C (&)
or C(0 x R x RY x .#V) is the uniform convergence on compact subsets.

This result allows to pass to the limit in a nonlinear equation (and in particular
with a nonlinearity on the gradient and the Hessian matrix of the solutions) with
only the local uniform convergence of the sequence (i, )., which, of course, does not
imply any strong convergence (for example, a convergence in the almost everywhere
sense) neither on the gradient nor a fortiori on the Hessian matrix of the solutions.

An unusual characteristic of this result is to consider separately the convergence
of the equation—or more precisely of the nonlinearities F;—and of the solutions u,.
Classical arguments would lead to a question like: is the convergence of u, strong
enough in order to pass to the limit in the equality F(y,u,, Dug, D*u;) = 0?”.
In this case, the necessary convergence on u, would have depended strongly on
the equations through the properties of the F;. Here this is not at all the case: the
required convergences for F; and u, are fixed a priori.

The most classical example of application of this result is the vanishing viscosity
method

—eAu, + H(y,ue, Du,) =0 in 0.

This explains why we present the above result in the second-order framework. In
this case, the nonlinearity F; is given by

Fg(y,lzt,p,M):—€TI'(M)+H(y,Lt,p),

and its convergence in C(OxRxRYN x.#N) to H(y, u, p) is obvious. If u, converges
uniformly to u, then Theorem 4.1 implies that u is a solution of

H(y,u,Du)=0 in0 .

The above example shows that the solutions of Hamilton—Jacobi Equations—and
more generally of nonlinear elliptic equations—obtained by the vanishing viscosity
method are viscosity solutions of these equations, and this justifies the terminology.

In practical use, most of the time, Theorem 4.1 is applied to a subsequence of
(ue). instead of the sequence itself. When one wants to pass to the limit in an
equation of the type (15), one proceeds, in general, as follows:

1. One proves that u, is locally bounded in L°°, uniformly w.r.t £ > 0.

2. One shows that u, is locally bounded in some Hélder space C%* for some 0 <
o < 1 orin W uniformly w.r.t & > 0.

3. Because of the two first steps, by Ascoli’s Theorem, the sequence (i), is in a
compact subset of C(K) forany K CC 0.
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4. One applies the stability result to a converging subsequence of (u;). which is
obtained by a diagonal extraction procedure.

This method will be really complete only when we will have a uniqueness
result: indeed, the above argument shows that all converging subsequence of the
sequence (u.). converges to A viscosity solution of the limiting equation. If there
exists only one solution of this equation then all the converging subsequences
converge to THE viscosity solution of the limiting equation that we denote by u.
A classical compactness and separation argument then implies that all the sequence
(ug)e converge to u (exercise!).

But, in order to have uniqueness and to justify this argument, one has to impose
boundary conditions and also to be able to pass to the limit in these boundary
conditions . .. (to be continued!).

We now give an example of application of this method.

Example. This example is unavoidably a little bit formal since our aim is to show
a mechanism of passage to the limit by viscosity solutions’ methods and we do not
intend to obtain the estimates we need in full details. In particular, we are to use the
Maximum Principle in RY without justification.

For & > 0, let u, € C*(RY) N W1°(R¥) be the unique solution of the equation
—eAu, + H(Du,) + u, = f(x) inRY,

where H is a locally Lipschitz continuous function on RV, H(0) = 0 and f €
W12 (RV). By the Maximum Principle, we have

—[1flloo <tz < || flloc inRY,

because —|| f||oo and || f||oo are respectively sub- and supersolution of the equa-
tion. Moreover, if 4 € R, since us(. + h) is a solution of an analogous equation
where f(.) is replaced by f(. + &) in the right-hand side, the Maximum Principle
also implies

Nue(. +h) —ue(H|loo < I f(+h)— f()]leo in RN,

and, since f is Lipschitz continuous, the right-hand side is estimated by C || where
C is the Lipschitz constant of f. This yields

e (. 4+ h) = ue(Mloo < Cl|  inRY .

Since this inequality is true for any £, it implies that u, est Lipschitz continuous
with Lipschitz constant C.

Using the Ascoli’s Theorem and a diagonal extraction procedure, we can extract
a subsequence still denoted by (i), which converges to a continuous function u
which is, by Theorem 4.1, a solution of the equation
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HDu) +u= f(x) inRY .

In this example, we perform a passage to the limit in a singular perturbation
problem without facing much difficulties; again this example will be complete only
when we will know that u is the unique solution of the limiting equation since it will
imply that the whole sequence (u.). converges to u by a classical compactness and
separation argument.

Now we turn to the Proof of Theorem 4.1. We prove the result only in the
subsolution case, the other case being shown in an analogous way.

We consider ¢ € C%(0) and yy € € alocal maximum point of u—¢. Subtracting
if necessary a term like x(y) = |y — yo|* to u — ¢, one can always assume that y; is
a strict local maximum point. We then use the following lemma (left as an exercise).

Lemma 4.1. Let (v;). be a sequence of continuous functions on an open subset O
which converge in C(0O) to v. If yo € O is a strict local maximum point of v, there
exists a sequence of local maximum points of v, denoted by (y.)., which converges
to yo.

One uses Lemma 4.1 with v, = u, — (¢ + x) and v = u — (¢ + y). Since u, is
a subsolution of (15) and since y® is a local maximum of u, — (¢ + x), we have, by
definition

Fo(3*u:00%). DO() + Dy(37), D29 () + D*4(3)) < 0.

Now we have just to pass to the limit in this inequality: since y* — yq, we use the
regularity of the test-functions ¢ and y which implies

D¢(y*) + Dx(y*) = Dp(yo) + Dx(yo) = Dd(yo) .
and

D*¢(y°) + D*x(y°) = D’¢(yo) + D*x(y0) = D’¢(yo) -

Moreover, because of the local uniform convergence of u,, we have u.(y*) — u(yy),
and the convergence of F; finally yields

Fo(»"ue(6), DS () + Dx (), D2$(y*) + D*x("))
— F(yo.u(v0). D$ (30), D*¢ (30) ) -

Therefore

F(y0.u(v0). D(30), D*¢(30) ) < 0.

And the proof is complete.
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5 Uniqueness: The Basic Arguments and Additional Recipes

5.1 A First Basic Result

In this section, we present the basic arguments to obtain “comparison results” for
viscosity solutions. In order to simplify the presentation, we begin with a simple
result and then we show (few) additional arguments which are needed in order to
extend it to different situations.

We consider the equation

u+ H(x,t,Du) =0 in2 x(0,T), (16)

where §2 is a bounded open subset of RY, T > 0and, here, Du denotes the gradient
of u in the space variable x and H is a continuous function. We use the (standard)
notations

Q0=2x(0,T) and 3,0 =32 x [0, T] U 2 x {0} .

0, 0 is called the parabolic boundary of Q.
By “comparison result”’, we mean the following

Ifu,v € C(Q) are respectively subsolution and supersolution of (16) and ifu < v
on 9,Q then
u<v onQ.

To state and prove the main result, we use the following assumption

(H1) There exists a modulus m : [0, +00) — [0, +00) such that, for any x, y € Q,
t€(0,T]and p € RV

|H(x,t,p) — H(y.t, p)l <m(]x —y|(1 +|p]) .

We recall that a modulus m is an increasing, positive function, defined on
[0, +00) such that m(r) — 0 when r | 0.
The result is the following.

Theorem 5.1. If (HI) holds, we have a comparison result for (16). Moreover, the
result remains true if we replace the hypothesis (H1) by either “u is Lipschitz
continuous in x” or by “v is Lipschitz continuous in x”, uniformly w.r.t. t.

This result means that the Maximum Principle, which is classical for elliptic and
parabolic equations, extends to viscosity solutions of first-order Hamilton—Jacobi
Equations.

At first glance, assumption (H1) does not seem to be a very natural assumption.
We first remark that, if H is a locally Lipschitz continuous function in x for any
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t € (0,T] and for any p € R", (Hl) is satisfied if there exists a constant C > 0,
such that, forany ¢ € (0, T] and p € RV

oH
Ia—(x,t,p)| <C(1+|p|) ae.inRY.
X

This version of (H1) is perhaps easier to understand.
In order to justify (H1), let us consider the case of the transport equation

u, —b(x)-Du= f(x) in Q. 17

It is clear that the hypothesis (H1) is satisfied if » is a Lipschitz continuous vector
field on £2 and the function f has to be continuous on £2.

In this example, the Lipschitz assumption on b is the most restrictive and
important in order to have (H1): we will see in the proof of Theorem 5.1 the central
role of the term |x — y|.| p| in (H1) which comes from this hypothesis. But it is well-
known that the properties of (17) are connected to those of the dynamical system

X(t) = b(x(1)) . (18)

Indeed, one can compute the solutions of (17) by solving this ode through the
Method of Characteristics. Therefore the Lipschitz assumption on b appears as
being rather natural since it is also the standard assumption to have existence and
uniqueness for (18) by the Cauchy—Lipschitz Theorem.?

Remark 5.1. Ttis worth pointing out that, in Theorem 5.1, no assumption is made on
the behavior of H en p (except indirectly with the restrictions coming from (H1)).
For example, one has a uniqueness result for the equation

u + H(Du) = f(x,t) inQ,

if f is continuous on Q, for any continuous function H, without any growth
condition.

There are a lot of variations for Theorem 5.1: for example, one can play with
(H1) and the regularity of the solutions (as it is already the case in the statement of
Theorem 5.1).

A classical and useful corollary of Theorem 5.1 is the one when we do not assume
anything on the sub and supersolution on the parabolic boundary of O

3In Biton [19], a non-trivial counterexample to the uniqueness for (17) is given in a situation where
the Cauchy-Lipschitz Theorem cannot be applied to (18).
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Corollary 5.1. Under the assumptions of Theorem 5.1, if u,v € C(Q) are respec-
tively sub and supersolutions of (16) then

max (u —v)t < max (u—v)" .
[ 9,0

Moreover, the result remains true if we replace (HI1) by “u is Lipschitz continuous
in x” or by “v is Lipschitz continuous in x”, uniformly w.r.t. t.

The proof of Corollary 5.1 is immediate by remarking that, if we set C =
maxy,o (u — v)*, v + C is still a supersolution of (16) and u < v + C on 9, 0.
Theorem 5.1 implies then u < v + C on @, which is the desired result.

Remark 5.2. As the above proof shows it, this type of corollary is an immediate
consequence of all comparison results with a suitable change on the sub or
supersolution which may be more complicated depending on the dependence of
H in u. We can have also more precise results by applying the comparison property
on sub-intervals.

Now we turn to the Proof of Theorem 5.1. The aim of is to show that M =
max (u — v) is less or equal to 0. We argue by contradiction assuming that M > 0.
0

In order to simplify the proof, we are going to make some reductions and to give
preliminary results.

First, changing u in u,(x,t) := u(x,t) — nt for some n > 0 (small), we may
assume without loss of generality that u a strict subsolution of (16) since u, is a
subsolution of

() + H(x,t,Du,) <—n <0 in2x(0,7T) (19)

To complete the proof, it suffices to show that u, < v on O for any 7 and then to let
n tends to 0. Notice also that we still have u,, < v on d, Q. To simplify the notations
and since the proof is clearly reduced to compare u, and v, we drop the n and use
the notation u instead of u;,.

Next, we consider the difficulty with £2 x {T}: a priori, we do not know if u < v
on this part of the boundary and a maximum point of # — v (or related functions)
can be located there. It is solved by the

Lemma 5.1. Ifu,v € C(Q) are respectively sub and supersolutions of (16) in Q,
they are also sub and supersolutions in §2 x (0, T]. More precisely the viscosity
inequalities hold if the maximum or minimum points are on §2 x {T }.

We leave the simple checking of this result to the reader: if (xo,7) is a strict
maximum point of u — ¢, where ¢ is a smooth function, we consider the function
u(x,t) — ¢(x,t) — 7= for n > 0 small enough. By Lemma 4.1, this function has
a maximum point at a nearby point (x,,#,) (¢, < T) and (x,,t;) — (xo,7T); in
order to conclude, it suffices to pass to the limit in the viscosity inequality at the
point (xy, t;), remarking that the term % has a positive derivative which can be
dropped.
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Next, since # and v are not smooth, we need an argument in order to be able to use
the definition of viscosity solutions. This argument is the “doubling of variables”.
For 0 < ¢, ¢ < 1, we introduce the “test-function”

=y s
2 - .

w&,a(x7t’yvs)ZM(X’I)_U(.V’S)_ Ol2
The function ¥, being continuous on Q x Q, it achieves its maximum at a point
which we denote by (x,7,7,5) and we set M := ¥, ,(X,7,,5); we have dropped
the dependences of X,7,y,s and M in all the parameters in order to avoid heavy
notations.

|x —yP? |t —s|?
o and o
the maximum points (X,7,7,5) of Y. to verify (X,7) ~ (7,5) if &, @ are small
enough, one can think that the maximum of v, , looks like the maximum of u — v.
This idea is justified by the following lemma which plays a key role in the proof.

Because of the “penalisation” terms ( ) which imposes to

Lemma 5.2. The following properties hold

1. Whene,a -0, M — M.
2. u(X, 1) —v(y,5) > M when e, — 0.
3. We have

IX—3* [t -5
_— 3 —0 whene,a —0.

&2 o
2(x-7y)
2

Moreover; if u or v is Lipschitz continuous in x, then p := is bounded

by twice the (uniform in t) Lipschitz constant of u or v.
4. (x,7), (3,5) € 2 x (0, T] if e, « are sufficiently small.

We conclude the proof of the theorem by using the lemma. We assume that ¢, o
are sufficiently small in order that the last point of the lemma holds true. Since
(X,%,7,5) is a maximum point of ¥, 4, (X, 7) is a maximum point of the function

(x,1) = u(x, 1) —@'(x, 1),
where

=2 <2
X — t—73

o' (x.t) = v(¥,5) + | 2y| + | 3 iy
€ o

)

but u is viscosity subsolution of (19) and (X,7) € £2 x (0, T, therefore

! I - _
e (Y,ﬂ+H(f,7,D<pl(f,a):M+H 728V,
ot ¢ o? &2

In the same way, (¥, ) is a maximum point of the function

(y,S) H‘”()’J)"“PZ()’J) s
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where

e
0'(y.9) = u(® D) - ——— - ;

)

o?

hence (¥,5) is a minimum point of the function v — ¢2; but v is viscosity
supersolution of (16) and (y,s) € £2 x (0, T], therefore

dg? 2( -5 2(X -7
Yoo+ Esoeee) =220 (752570 20
ds o? g?

2(x-7)

Then we subtract the two viscosity inequalities: recalling that p := 5
€

we obtain
H(X,1.p)-H(3.5P) <-n.

We can remark that a formal proof where we would assume that u et v are C! and
where we could directly consider a maximum point of # — v, would have lead us to
an analogous situation, the term p playing the role of “Du = Dy” at the maximum
point; the fact that we keep such equality here is a key point in the proof. The
only -rather important- difference is the one corresponding to the current points:
(x,7) for u, (¥,5) for v. This is where (H1) is going to play a central role.

We add and subtract the term H (x,'s, p) which allows us to rewrite the inequality
as

(H(x.1,p) - H(x.5.7) - (H(.5.p) —H(X.5.p)) = -1 .
In the left-hand side, the first term is related to the regularity of H in ¢ and the second
one to the regularity of H in x, namely (H1). For fixed &, p remains bounded (say,
by at most a K /¢ for some constant K > 0) and denoting by m?,; the modulus of
continuity of H on O x B(0, K /¢), we are lead, using (H1) to

my (It =5) + m(Ix =¥|(1 +|p]) < —n.

But, on one hand, |[f — 5| — 0 as @ — 0 since the maximum point property implies
— —32 .
that the penalisation term Itagl is less than R := max(||u||co, ||V]]|co) (see the proof

of Lemma 5.2 below) and therefore |[f — 5| < (2R)1/ 2o while, on the other hand,

2—_—2
F =TI+ [B) = [F—F + 22" 0 whene.a — 0.
&

In order to conclude, we first fix ¢ and let « tend to 0 and then we let ¢ tend to O.
The above inequality and the properties we just recall lead us to a contradiction.

In the case when u or v is Lipschitz continuous in x, uniformly w.r.t. f,
Lemma 5.2 implies that |p| is uniformly bounded and the contradiction just follows

from the uniform continuity of H on Q x B(0, 2K), where K denotes the Lipschitz
constant of u or v, and the proof is complete.
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Now we prove Lemma 52. Since (X,7,7,5) is a maximum point of V.4, we
have, for any (x,?), (y,s) € O

— - . x=3?* |i-35* —
wé‘,u(xvtsyss) = wé‘,u(xstvyvs) = u(x,t)—v(y,S)— | Szyl - I o? I =M.
(20)

Choosing x = y and ¢ = s in the left-hand side yields
u(x,t) —v(x,t) <M, forall(x,t)e 0,

and, by considering the supremum in x, we obtain the inequality M < M.

Since u, v are bounded, we can set as above R := max(||u||co, ||V]|co) and we
also have by arguing in an analogous way
—_ =52 [F_<2
X — t—75s
S e
&2 a? g2 a?

T—F?2 -5
M = u(® D)~ 0(7.5) - SEe R

Recalling that we assume M > 0, we deduce

—_ 52 [F_<2

X — -5

bl gy kI ryy
g2 o?

In particular, |[Xx — y|,|f —5| - O as e, a — 0.
Now we use again the inequality

—_ =12 |F_<]2
MzuEn-ve -2 T e oves . en

Since Q is compact, we may assume without loss of generality that (X,7), (¥,5)
converge and this is to the same point because [X — y|,|[f —5| —> O as ¢, — 0. We
deduce from this property and (21) that

M <liminf(u(x,7) — v(7,5)) < limsup(u(x,7) —v(y,5)) <M . (22)
As a consequence lim(u(X,7) — v(¥,5)) = M and using again (21)

—_ =2 |F_<2
— X — t—s
M:u(f,ﬂ—v(?j)—l 2y| | 2| —- M .
e [

But, since u(X,7) — v(¥,5) — M, we immediately deduce that

Ix—7* n 7 -5
g2 a?

— 0,

and we have proved the two first points of the lemma.
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For the last one, it is enough to remark that, if (x,?) is a limit of a subsequence
of (X,7), (¥,5), then u(x,t) —v(x,t) = M > 0 and therefore (x, ) cannot be on
0,0.

It just remains to prove the estimate on p if u or v is Lipschitz continuous in x,
uniformly w.r.t. . We assume, for instance, that u has this property with Lipschitz
constant K, the proof with v being analogous.

We come back to (20) and we choose x = y = y,t = f and s = ¥; after
straightforward computations, this yields

x5

— <u(.0)—u1) < K[x-7|.
&

Therefore || < 2K. This concludes the proof of lemma.

5.2 Several Variations

The first one concerns equations with a dependence in u
u + H(x,t,u,Du) =0 in2x(0,7T). (23)

Of course, an assumption is needed in order to avoid Burgers type equations
which do not fall into this kind of framework. The classical one is

(H2) For any 0 < R < 400, there exists yg € R such that, for any (x,¢) € Q,
—RfvfufRandpe]RN

H(x,t,u,p)— H(x,t,v,p) > yr(u—v) .

If yr > 0 for any R, then the proof follows exactly from the same arguments.
Otherwise, the simplest way to reduce to this case is to make a change of variable
u — uexp(yt) for some well-chosen y € R, typically some yg for large enough
R (larger than ||u||s0). Finally we point out that, in general, (H1) is modified by
allowing the modulus m to depend on R as yg in (H2).

Next we consider problems set in the whole space RV where the lack of
compactness of the domain creates additional problems. The following assumption
is needed

(H3) H is uniformly continuous on R x [0, T'] x B for any R > 0.
We also introduce the space BUC(RY x [0, T]) of the functions which are
bounded, uniformly continuous on RY x [0, T]. The result for (16) is the

Theorem 5.2. Assume (H1)and (H3). Ifu,v € BUC(RN x [0, T]) are respectively
sub and supersolution of (16) with 2 = R, then
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sup (u—v) <sup (u(x,0) —v(x,0)) .
RV x[0.7] RNV

Moreover, the result remains true if we replace the hypothesis (H1) by either “u is
Lipschitz continuous in x” or by “v is Lipschitz continuous in x”, uniformly w.r.t. t.

We just sketch the proof since it follows the same ideas as the proof of
Theorem 5.1: for 0 < ¢, @, B < 1, we introduce the test-function

=gl jr-sP

Y(x,t,y,s) = ulx,1) —v(y,s) = = BUxP + 1y

o?

The main change is with the S-term: because of the non-compactness of the domain,
such term is needed for the maximum of ¥ to be achieved. Two technical remarks
are enough to complete the proof:

1. From the proof of Lemma 5.2, it is clear that B(|x|> + |y]?) < R = max(||u||cos
||v]]oo) and these terms produces derivatives which are small since [28x| =
2B2(B(1x|*)"/> < 2BY2R'Y? and the same is (of course) true for 2fy.
(H3) takes care of these small perturbations.

2. The proof of Lemma 5.2 is not as simple as in the compact case because the result
is not true in general for any continuous functions u and v. In fact, the behavior
of the maximum of i depends on the way we play with the different parameters.
The two extreme cases are:

» Ifwe fix B and let first ¢ and « tend to 0, the maximum of i actually converges
to maxg (u(x,t) — v(x,1) — 28|x]?)) and then, if we send B tend to 0, this
maximum converges to the supremum of u — v.

* But, if, on the contrary, we first let 8 tend to 0 by fixing ¢ and « and then we
let ¢ and o tend to 0, the maximum of v does not converges to the supremum

of u — v but to im supy, o SUP|(, 1)—(y.5)| < @(x, 1) —v(y,5)).

In general these limits are different and therefore playing with the parameters
may be delicate. This explains the assumption “u or v is in BUC(RY x [0, T])” in
Theorem 5.2: indeed all these limits are the same in this case. In the BUC(RY x
[0, T']) framework, the proof follows the one of Theorem 5.1 since (21) leads to

If—ﬂ2+ﬁ—ﬂ2

IA

u(x,r) —v(y,s)— M

u(xva - M(?, E) + M(? 5) - U(?v 5) -M
M(Y7a - “(y’ E) P

g2 a?

IA

IA

because u(y,s) —v(y,s) < M.If m, denotes a modulus of continuity of u, we have
u(x, 1) —u(y,s) <m,(|(x,7) — (¥,5)|) and therefore
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T-31 , [F-5P o
A [ B A P
& o

Finally using that |[X — y| < (2R)'/?¢ and |f — 5| < (2R)"/?a, we have a complete
estimate of the penalisation terms.

Remark 5.3. In fact, there is a technical way which allows to avoid (partially) the
above mentioned difficulty, assuming only that there exists 1y € BUC(R") such that

u(x,0) < up(x) <v(x,0) inRY.

By a standard result (exercise!), the modulus m given by (H1) satisfies: for any
n > 0, there exists Cy, such that m(zr) < C,t + /2. We then change the test-
function into

_ lx —yl>  le—s? 2 2
V(x.t.y.s) = ulx.t) —v(y.s) —exp(Cyt) —5— — —— = Bx|"+ [y .
The effect of the new “exp(C,¢)”-term is to produce a positive C, exp(Cyt) |X;2y ‘2

—vl|2
term in the inequality which allows to control the “bad” dependence in % and
therefore allows to treat cases where we do not know that this quantity tends to 0.
Clearly the «-penalisation term does not create any difficulty.

5.3 Finite Speed of Propagation

An important feature of time-dependent equations is the possibility of having “finite
speed of propagation” type results which can be stated in the following way for
u,v € C(RY x [0, T]) which are respectively sub and supersolution of (16) in
RN x [0, T]

There exists a constant ¢ > 0 such that, if u(x,0) < v(x,0) in B(0, R) for some
R then u(x,t) < v(x,t) forany x in B(0, R —ct), ct < R.

The constant ¢ is the “speed of propagation” and, of course, B(0, R) can be
replaced by any other ball B(z, R). The key assumption for having such result is the

(H4) Forany x € RV, 7 € [0,T] and p,q € RV
|H(x,t,p) — H(x,t,q)| <C|p—q| .

Theorem 5.3. Assume (H1) and (H4). Then we have a “finite speed of propaga-
tion” type results for (16) in RN x [0, T with a speed of propagation equal to C.

Before giving the proof of this result, we want to point out that such result may
also be obtained for sub and supersolutions which are Lipschitz continuous in space,
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uniformly w.r.t. # by assuming only H to be locally Lipschitz continuous in p:
indeed, in that case, only bounded p and g play a role and the inequality in (H4) is
satisfied if H is locally Lipschitz continuous.

Proof of Theorem 5.3. We just sketch it since it is a long but easy proof which
borrows a lot of arguments from the proof of Theorem 5.1.

Lemma 5.3. If u,v € C(RY x [0, T]) are respectively sub and supersolution of
(16) in RN x [0, T), the function w := u — v is a subsolution of

w; —C|Dw| =0 inRY x(0,7). (24)

Formally the result is obvious since it suffices to subtract the inequalities for # and
v and use (H4). But to show it in the viscosity sense is a little bit more technical.
Again we just sketch the proof: if (xo, f) is a strict maximum point of w — ¢ where
¢ is a smooth test-function, we introduce the function

2 2
X — t—s
(X,t,y,S) EM(X,I)—U(y,S)—| 2y| _| 2| —GD(XJ)-
& o

If (xo0, o) is a strict maximum point of w — ¢ in B((xo, ), ), we look at maximum
points of this function in B((xo, #o), ) x B((xo, fo), r). Because of the compactness
of the domain, the maximum is achieved at a point (X,7,y,5) and one easily
shows that (X,7), (7,5) — (xo0.%) as &, — 0; in particular (X,7), (7,5) are in
B((xo,10),r) for &, small enough. Writing the viscosity inequalities, following
the arguments of the proof of Theorem 5.1 and using (H4), one concludes easily.

The next step consists in showing that, if w(x,0) < 0 in B(0, R) for some R,
then w(x,?) < 0 for any x in B(0, R — Ct), Ct < R, which is equivalent to the
“finite speed of propagation” type results. To do so, it is enough to build a suitable
sequence of (smooth) supersolutions.

We introduce smooth functions ys : R — R such that ys5(r) = 0 forr < R — 4,
xs(r) = M forr > R, where M = MaX g Ryx(0.7] w(x,t) and y; is increasing
in R. Next we consider the functions ys(|x| + Ct); it is immediate to check that this
function is a smooth solution of (24) for Ct < R —§,i.e. fort <t5:= (R—6)/C
and that, on dB(0, R) X [0,2s5] and B(0, R) x {0}, w(x, ) < ys(|x| + Ct). Applying
Theorem 5.1 in B(0, R) x [0, 5], we obtain that w(x, ) < ys(|x|+ Ct) in B(0, R) x
[0, 5] and therefore, by the properties of ys, w(x,?) < O for |x| + Ct < R + 6.
Letting § tend to O gives the complete answer.

Remark 5.4. In fact, we do not really need a comparison result, namely Theorem
5.1, to conclude: the last part of the proof follows from the definition of viscosity
(sub)solution. Indeed the function ys(|x| + Cr) + 8¢ is a smooth strict supersolution
in B(0, R) x (0, t5); this shows that w(x, ) — (xs(|x| + Ct) 4+ §t) cannot achieve a
maximum point in B(0, R) x (0, T'], which immediately leads to the conclusion.
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6 Discontinuous Viscosity Solutions, Discontinuous
Nonlinearities and the ‘“Half-Relaxed Limits” Method

The main objective of this section is to present a general method, based on the
notion of discontinuous viscosity solutions, which allows passage to the limit in
(fully) nonlinear pdes with just an L°°-bounds on the solutions. To do so, we have
to extend the notion of viscosity solution to the discontinuous setting. We refer to
Ishii [30,31], Perthame and the author [8,9] for the notion of discontinuous viscosity
solutions, the half-relaxed limits method being introduced in [8].

We use the following notations: if z is a locally bounded function (possibly
discontinuous), we denote by z* its upper semicontinuous (usc) envelope

Z*(x) = limsup z(y),

y—=>x
and by z, its lower semicontinuous (Isc) envelope

z+(x) = liminf z(y).
y—=>x

6.1 Discontinuous Viscosity Solutions

The definition is the following.

Definition 6.1 (Discontinuous Viscosity Solutions). A locally bounded upper
semicontinuous (usc in short) function u is a viscosity subsolution of the equation

G(y,u,Du, Dzu) =0 on0 (25)
if and only if, for any ¢ € C2(0), if yo € € is a maximum point of u — ¢, one has

G« (30, u(y0). Do(30), D*¢(y0)) < 0.

A locally bounded lower semicontinuous (Isc in short) function v is a viscosity
supersolution of the (25) if and only if, for any ¢ € C%(0), if yo € € is a minimum
point of u — @, one has

G*(yo, u(y0), De(30), D*¢(y0)) = 0.

A (discontinuous) solution is a function whose usc and Isc envelopes are
respectively viscosity sub and supersolution of the equation.

The first reason to introduce such a complicated formulation is to unify the
convergence result we present in the next section: in fact, when & is an open subset
different from R", the function G may contain both the equation and the boundary
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condition. With such general formulation, we avoid to have a different result for
each type of boundary conditions. The possibility of handling discontinuous sub
and supersolutions is also a key point in the convergence proof.

To be more specific, we consider the problem

F(y,u,Du, D’u) =0 in O,
B(y,u,Du) =0 ondd0,

where F, B are a given continuous functions.
In order to solve it, a classical idea consists in considering the vanishing viscosity
method
—eAug + F(y,ug, Dug, D*u;) =0 in 0,
% B(y,u;,Du;) =0 on d0.

Indeed, by adding a —e A term, we regularize the equation in the sense that one can
expect to have more regular solutions for this approximate problem—typically in
Cc2(0)nCl(0).

If we assume that this is indeed the case, i.e. that this regularized problem has a
smooth solution u, and that, moreover, u, — u in C (5). It is easy to see, by the
arguments of Theorem 4.1, that the continuous function u satisfies in the viscosity
sense

F(y,u,Du, D*u) = 0 in 0,
min(F(y, u, Du, D*u), B(y,u, Du)) < 0 on 0,
max(F(y,u, Du, D?u), B(y,u, Du)) > 0 on 30,

where, for example, the “min” inequality on & means: for any ¢ € C 2(0), if
Yo € 00 is a maximum point of u — ¢ on O, one has

min(F (o, u(y0). D¢(0). D*¢(0)), B(y, u(y0), Du(0))) < 0.

The interpretation of this new problem can be done by setting the equation in &
instead of &. To do so, we introduce the function G defined by

F(y,u,p,M) if y € O,
B(y,u,p) ifyed0.

G(y,u,p,. M) =
The above argument shows that the function u is a viscosity solution of
G(y,u, Du, Dzu) =0 ond,

and in particular on 5, if

G« (y,u,Du, Dzu) <0 on &
G*(y,u,Du,D*u) >0 on0
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where G, and G* stand respectively for the lower semicontinuous and upper
semicontinuous envelopes of G. Indeed, the “min” and the “max’ above are nothing
but G4 and G* on 90.

6.2 Back to the Running Example (I1I): The Dirichlet
Boundary Condition for the Value-Function

In this subsection, we show that the value function of the exit time control problem
actually satisfy the Dirichlet boundary condition in the viscosity sense.

To do so, we use a more sophisticated version of the Dynamic Programming
Principle.

Theorem 6.1. Under the assumptions (CA), the value-function satisfies, for any
x€N,t>0and0 < S <t

SAt
Uty =int] [ F006). 05 + 115U = )+ Tiszapels (60|
(26)

In order to understand why this formulation leads naturally to boundary condi-
tions in the viscosity solutions sense, we consider x € 52,0 <t < T and a sequence
(xe, t;) converging to (x,t) such that U(x,,?,) — Us(x,t). We apply the Dynamic
Programming Principle at the point (x,, f,). We argue formally assuming that there
exists an optimal control o, (-) in such a way that we have

SATe
UGt = [ £ 00 )ds + Loy U0 (S)et = 5)
+ I{Sng}qp(yxs(fs)) .

Here there are two cases:

(i) Either . — 0 as ¢ — 0 and letting ¢ tends to 0, we obtain (formally)
Ui(x,1) = ¢(x).
(ii) Or 7, remains bounded away from 0 and by choosing S small enough, we have

S
Ulr. 1) = /0 £, (). 0e(5))ds + Uy, (). 1o — S) .

which, since U > U, on £2 can be rewritten as

s
U*(x,t)+0£(1)2/0 S (x. (8), e (8))ds + Us (. (S). 1. = S)
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a similar situation to the case when x € 2. Playing with ¢ and S (or fixing S
and using relaxed controls to pass to the limit ¢ — 0), it is easy to show that the
supersolution inequality holds.

In conclusion, boundary conditions in the viscosity solutions sense are natural
from the optimal control point of view since they take into account the strategy of
the controller and/or the controlability properties of the system. Indeed, we obtain
U (x,1) > ¢(x) [i.e. we are in the case (i)] if either it is interesting in term of cost
to pay ¢ (and if we can exit the domain to do it) or, on the contrary, if we are obliged
to exit the domain, even if this cost is high. Case (ii) may arise either if we want to
avoid paying the cost ¢ (and if some control allows to do it) or if we have no choice
but to go away from the boundary.

These interpretations for the “min” and “max” inequalities are important since
they connect the control problem and its properties with the equation and the
boundary conditions.

6.3 The Half-Relaxed Limit Method

The first key point is a stability result for discontinuous viscosity solutions. To state
it we use the following notations: if (z.). is a sequence of uniformly locally bounded
functions, the half-relaxed limits of (z¢). are defined by

lim sup® z.(y) = lilpsung(j/) and liminf, z.(y) = limipfzg(j).
= 0

Theorem 6.2. Assume that, for ¢ > 0, u. is an usc viscosity subsolution (resp. a lsc
supersolution) of the equation

G.(y,uz,Du,, D*u;) =0 on 0,
where (G,), is a sequence of uniformly locally bounded functions in € x R x RN
x N which 1satisfy the ellipticity condition. If the functions u, are uniformly locally
bounded on O, thenu = limsup* u, (resp. u = liminfy u,) is a subsolution (resp.
a supersolution) of the equation

G(y,u,Du,D’u)y =0 on0 ,

where G = liminf, G,.
(resp. of the equation

G(y,u,Du,D’u) =0 on0 ,

where G = limsup* G,).
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Of course, the main interest of this result is to allow the passage to the limit
in fully nonlinear, degenerate elliptic pdes with only a uniform local L°—bound
on the solutions. This is a striking difference with Theorem 4.1 which requires far
more informations on the u,’s. The counterpart is that we do not have anymore a
limit but two half-limits # and ¥ which have to be connected in order to obtain a real
convergence result.

This is the aim of the half-relaxed limit method:

. One proves that the u, are uniformly bounded in L*° (locally or globally).

. One applies the above discontinuous stability result.

. By definition, we have u < u on 0.

. To obtain the converse inequality, one uses a Strong Comparison Result (SCR
in short) i.e. a comparison result which is valid for discontinuous sub and
supersolutions. It yields

RSN S

@<u in O (oron O).

5. From the SCR, we deduce u = u in & (or on 5). If we setu := u = u, then u
is continuous (because u is usc and u is Isc) and it is easy to show that, on one
hand, u is the unique solution of the limiting equation (using again the SCR) and,
on the other hand, we have the convergence of i, to u in C(&) (or in C(0)).

It is clear that, in this method, SCR play a central role: we give in the next
subsection few indications on how to prove such results and references on the
existing SCR.

We first describe a typical example of the use of Theorem 6.2.

Example 6.1. We consider the problem

—eul (x) + u.(x) = 1in (0, 1)
ue(0) = u.(1) =0

Of course, it is expected that the solution of this problem converges to the solution of

{ W(x)=1 in(0,1)
u(0) =u(1) =0

But the solution of this problem does not seem to exist.
The solution u, can be computed explicitly

exp(e™'(x — 1)) —exp(—&™")
B 1 —exp(—e~1)

3

us(x) = x

and therefore we can also compute the half-relaxed limits of the sequence (),

x ifxe][0,1)
u(x) =x and u(x)=
0 forx=1.
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By Theorem 6.2, these half-relaxed limits are respectively sub and supersolution of

W(x)—1=0 in(0,1),
min(#/(x) —1,u) <0 atx=0and 1,

max(u'(x) —1,u) >0 atx =0and 1.

The problem is, of course, at the point x = 1 where u is 1 while u is 0. Several
remarks: this fact is a consequence of the boundary layer near 1 since u, looks like
x but it has also to satisfies the Dirichlet boundary condition u.(1) = 0. A clear
advantage of Theorem 6.2 is that we can pass to the limit despite of this boundary
layer. Of course, there is no hope here to apply Theorem 4.1. But the price to pay is
that u(1) is different from u(1).

In order to recover the right result, namely the convergencein [0, 1) of u. to x, the
SCR has to take care of this difference and this is done by “erasing” the “wrong”
value of u at 1. This explains why we wrote above that we can compare u and u
either in @ or on €': here we can do it only in & := (0, 1) (and even in [0, 1)).

Now we give the Proof of Theorem 6.2. We do it only for the subsolution case,
the supersolution one being analogous.
It is based on the

Lemma 6.1. Let (v.). be a sequence of uniformly bounded usc functions on O and
v = limsup® v.. If y € 0 is a strict local maximum point of U on O, there exists a
subsequence (vy)y of (Ve), and a sequence (yy)e of points in € such that, for all
&', ye is a local maximum point of vy in O, the sequence (yg ) convergesto y and
Ve (yer) = V(p).

We first prove Theorem 6.2 by using the lemma. Let ¢ € C(0) andlet y € €
be a strict local maximum point de u — ¢. We apply Lemma 6.1 to v, = u, — ¢ and
UV =u—¢ = limsup* (4. — ¢). There exists a subsequence (u.),s and a sequence
(y¢)e such that, for all &', y is a local maximum point of u,; — ¢ on &. But u,/ is
a subsolution of the G -equation, therefore

Ge (yer uer (yer), Do(yer), Dz(ﬂ()’a’)) <0.

Since y, — x and since ¢ is smooth D¢ (y,) — D(y) and D?¢(yy) — D¢(y);
but we have also uy(ye) — u(y), therefore by definition of G

G(x, (), Dp(y), D*¢(y)) < liminf Ge (yer, uer (yer), Dp(yer), D2p(yer)) -

This immediately yields

G(x.u(y), De(y). D*p(y)) <0,

and the proof is complete.
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Now we turn to the Proof of Lemma 6.1: since y is a strict local maximum point
of v on O, there exists r > 0 such that

Yze 6N B(y,r), () <),

the inequality being strict for z # y. But & N B(y,r) is compact and v, is usc,
therefore, for all & > 0, there exists a maximum point y* of v, on & N B(y,r). In
other words

Vze ONB(y.r). v:(2) <ve(y°). 27)

Now we take the lim sup for z — y and ¢ — 0: by the definition of the lim sup*, we
obtain

v(y) < limsup v.(y°) .

Next we consider the right-hand side of this inequality: extracting a subsequence
denoted by &, we have limsup, v.(y®) = lim, V() and since ONB(y,r)is
compact, we may also assume that y» — ¥ € ¢ N B(y,r). But using again the
definition of the lim sup* at y, we get

E(y) < limsup Ua(yg) = lim vy (ya’) = 5(7) .
& g

Since y is a strict maximum point of 7in & N B(y, r) and that y € 6 N B(y, r), this
inequality implies that y = y and that v,/ (y.) — v(y) and the proof is complete.
We conclude this subsection by the

Lemma 6.2. If % is a compact subset of O and if i = u on ¥ then u, converges
uniformly to the functionu :=u =uon J .

Proof of Lemma 6.2. Since u = u on J# and since u is usc and u is Isc on &, u is
continuous on ¢ .
We first consider M, = sup (u: - u). The function u} being usc and u being
A

continuous, this supremum is in fact a maximum and is achieved at a point
y®. The sequence (u.), being locally uniformly bounded, the sequence (M),
is also bounded and, %" being compact, we can extract subsequences such that
My — limsup, M, and y» — J € . But by the definition of the lim sup*,
lim sup u}, (y/) < u(y) while we have also u(y) — u(y) by the continuity of u.
We conclude that

limsup M, = lim My = lim u (ye) — u(ye) <u(y) —u(y) =0.

&

This part of the proof gives half of the uniform convergence, the other part being
obtained analogously by considering M, = sup (# — (u¢)«).
H
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6.4 Strong Comparison Results

In general, this is clearly THE difficulty when applying the half-relaxed limit
method.

The basic comparison result we have already proved, namely Theorem 5.1, is
in fact a SCR: we use the continuity of u and v only once to obtain that u(X,7) —
v(¥,5) = M and then an estimate on the penalization terms through the inequality

= _ T2 [F_<]2
I 82y| LI ;' <uF D) —vF.5)—M—0.
But, if (x,7), (7,5) — (x0.%), we have limsupu(X,7) < u(xo,fy) because u is
usc and lim infv(¥,5) > v(xo, fy) because v is Isc, and therefore lim sup(u(X,7) —
v(¥,5)) < M, which is enough to obtain both the convergence of u(x,7) — v(7,5)
to M and the right property for the penalization terms.

For problem with boundary conditions:

(a) One has general SCR for Neumann BC (even for second-order equations): see
[6,34].

(b) Dirichlet boundary conditions present more difficulties, at least when they are
not assumed in a classical sense: we refer to [5, 9, 10] for first-order problems
and [12] for second-order problems.

We come back again to our running example and provide a Strong Comparison
Result for the Dirichlet problem of the exit time control problem.

Theorem 6.3. Under the above assumptions, if 2 is a W?>*®-domain and if there
exists v > 0 such that, for any x € 082, there exists oti, ozf € V such that

b(x,ai)-n(x) >v and b(x,ajzc)-n(x) <-v, (28)

where n(x) is the unit outward normal to 052 at x, then we have a Strong Compar-
ison Result for (7)—(9), namely if u and v are respectively sub and supersolution of
(7)—(9), then

u<v onSs2.

We first comment Assumption (28): it is a (partial) controlability assumption
on the boundary; roughly speaking, it means that, in a neighborhood of each point
x € 052, the controller has both the possibility to leave £2 by using a}( or to stay
inside £2 by using a2,

It is also worth pointing out that we can compare u and v only in £2:
unfortunately, as Example 6.1 shows it, the boundary conditions in the viscosity
sense (at least in the Dirichlet case) do not impose strong enough constraints on the
boundary and one may have “artificial” values for u and/or v. This is why we have
to redefine u and/or v on the boundary in the proof of the SCR and also why the
result holds only in £2.
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The program to study such control problems and obtain that the value-function
is continuous and the unique solution of the associated Bellman problem is the
following:

(a) Show that one has a dynamic programming principle for the control problem:
in general, this is easy for deterministic problems, more technical for stochastic
ones because of measurability issues. An alternative solution consists in arguing
by approximation.

(b) Deduce that, if U is the value function, then U* and U, are respectively
viscosity sub and supersolution of the Bellman problem.

(c) Use the Strong Comparison Result to prove that U* < U, which shows that
U := U* = U, is continuous since it is both upper and lower semicontinuous.

(d) Use again the Strong Comparison Result to obtain the uniqueness result.

7 Existence of Viscosity Solutions: Perron’s Method

Perron’s method was introduced in the context of viscosity solutions by Ishii [31].
We present the main arguments in the case of (16) together with the initial data

u(x,0) = up(x) inRY, (29)
where ug € BUC(RV).

The result is the

Theorem 7.1. Assume (HI), (H3) and that uy € BUC(RY). For any T > 0, there
exists a unique viscosity solution u of (16)—(29) in BUC(R" x [0, T]).

Proof of Theorem 7.1. We denote by M = ||u||oo and C = supgn o 7] H(x,1,0).
The functions u(x,t) := —M — Ct and u(x,t) := M + Ct are respectively sub
and supersolution of (16); moreover

u(x,0) < up(x) <u(x,0) inRY .

We denote by .7 the set of all usc subsolutions w of (16) such thatu < w < uin
R x [0, T] and which satisfies w(x, 0) < uo(x) in R . Then we set

u(x,t) = sup{w(x,t) : we S}.
The first step consists in showing that u* is a (possibly discontinuous) viscosity

subsolution of (16). The proof of this claim comes from three types of arguments:

1. If u; and u, are usc functions then D> [sup(u1,uz)] C D> uy N D>Tuy, a
property which immediately yields that the supremum of two subsolutions (and
then of a finite number of subsolutions) is a subsolution.
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2. Next the discontinuous stability result allows to extend this result to a countable
number of subsolutions. In this case, the supremum of a countable number of usc
functions is not necessarily usc and one has to use an usc envelope: this is done
automatically by the lim sup® operation.

3. In order to prove that u™* is a subsolution of (16), we have to extend Point 2 to
any set of subsolutions. We remark that, for a given point (x, ¢), there exists a
sequence (w,), of elements of .% such that, if

Un(y,S) ‘= Ssup Wk(y,S) s

0<k=<n

then

*
u*(x,t) = limsup® v,(x,t) = limsup v,(y,s) = (supwk(y,s)) .

(y,8)—(x,1) keN

n——+00

This leads us to introduce the function iz := lim sup* v, which is a subsolution of
(16) by Point 2. To conclude, we use an analogous argument to the one of Point
1. If u; and u, are usc functions such that u; < u; and u;(x,7) = uy(x,t) for
some point (x,¢) then D>V uy(x,t) € D>V uy(x,t). Applying this result with
u; = it and up = u* shows that u* satisfies the subsolution inequalities at (x, ¢)
since it does. Since this is true for any point (x, ), we have proved that u* is a
subsolution of (16) and also that u is usc since, by definition, u > u* because
u*e.?.

The next step consists in showing that u, is a viscosity supersolution of (16).
To do so, we argue by contradiction assuming that there exists a smooth function ¢
such that u, — ¢ has a global minimum point at some (X, 7) for7 > 0 and

%—f(x, )+ H(X,7,Dp(x,7) < 0. (30)

We may assume without loss of generality that ux(¥,7) = ¢(x,7). For ¢ > 0, we
consider the functions

we(x, 1) = max{u(x, 1), ¢ (x, 1)},

where ¢, (x,1) := ¢(x,1) +e— |x = X|* — |t —7]*.

Since ¢ < ux < u and ux(x,7) = ¢(x,7), we can differ from u only in a small
neighborhood of (X,7) and more precisely where |x — X|* + |t — 7|* < &. And we
point out that this neighborhood becomes smaller and smaller with ¢. Using (30),
we see that ¢ and therefore ¢, are subsolution of (16) in a small neighborhood of
(X, 7). This implies that w; is still a subsolution of (16) as the supremun of two
subsolutions, if we choose ¢ small enough.
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Next we want to prove that w, € .% and to do so, it remains to show that w, < u,
at least if ¢ is small enough. Since this is true for u#, we have just to check it for ¢,
and for |x — X|* + |t —7|* < &, i.e. close enough to (¥, 7).

By the same argument as in Point 3 above, we cannot have u«(X,7) = u(x,7):
otherwise, since us < %, D> u4(¥,7f) C D>Tu(x,7) and u. would satisfies the
supersolutions inequalities at (x,7). Therefore u«(xX,7) = ¢(X,1) = ¢(X,7) <
u(x,1) and, for & small enough, the last inequality remains true in a neighborhood
by the continuity of ¢, and u. Hence w, € .7

This fact is a contradiction with the definition of «: indeed,

us(x,7) ;= liminf wu(y,s) = lim u(y, ) .
(y5)—=>(x.1) k

But, we(X,7) = u«(X,7) + ¢ and by the continuity of wy, it is clear that, for k large
enough, u(yi, tr) < we(Vk, t).

In fact, the above argument is not completely correct since we do not take into
account the initial data. There are two ways to do it, the first one being simpler, the
second one being more general.

The first solution consists in showing that « is, in fact, continuous at time t = 0
and that u(x,0) = up(x) for any x € R". To do so, we remark that, thanks to the
property on the modulus of continuity recalled in Remark 5.3, since ug is uniformly
continuous in RY, we have, for any x, y € R" and n > 0

uo(x) —n/2 = Cylx — y| < uo(y) < uo(x) +n/2+ Cylx —y|,

for some large constant C;, > 0. Then choosing a constant (:‘,7 > 0 large enough, the
functions

ur(y,1) = up(x) £ /24 Cylx —y| £ Cyt ,

are respectively viscosity subsolution and supersolution of (16). We use these
functions in the following way: on one hand, if w € %/, w < u4 in RY x [0,T];
this inequality can be easily obtained by smoothing the term |x — y| and remarking
that u™ being a strict supersolution of (16) for C‘,, large enough, w — u4 cannot
achieved a maximum in RY x (0, T] (remark also that such maximum is achieved
because u4(y,t) — +o00 as |y| — +00) and therefore it is achieved for t = 0
where w < u4. On the other hand, max(u_, u) € .. Therefore, combining these
properties with the definition of u, we have

u_ <max(u_,u) <u<uy inRY x[0,T],
and, since uy are continuous, this yields u—(x, 0) <ux(x,0) <u*(x,0) <uy(x,0),

i.e
up(x) —1/2 < ux(x,0) < u*(x,0) < uo(x) +n/2.



First-Order Hamilton—Jacobi Equations and Applications 85

This property being true for any 7 > 0 and x € R", we have u*(x,0) < uo(x) and
ux(x,0) > up(x) in R, which are the desired properties since they imply that u is
continuous at (x, 0) and u(x, 0) = up(x).

The second method to treat the initial data consists in understanding this initial
data in the viscosity solution sense, i.e.

min(w; + H(x,0,Dw),w —up) <0 inRY, (31)

and
max(w, + H(x,0,Dw),w —ug) >0 in RV . (32)

With few modifications, the above arguments can take into account, at the same
time, the equation in the domain and the initial data in this viscosity sense.
Hence u satisfies (31)—(32) but then we use the

Lemma 7.1. If w is an usc subsolution of (16) satisfying (31) (resp. a Isc super-
solution of (16) satisfying (32)), we have w(x,0) < uy(x) (resp. up(x) < w(x,0))
in RN,

Therefore, in non-singular situations, initial data in the viscosity sense always
reduce to initial data in the classical sense.

Using this lemma, Remark 5.3 shows that we can compare the subsolution u*
and the supersolution u; therefore

u*(x,1) <ux(x,t) inRY x[0,7].

But, by definition, the opposite inequality holds and we can conclude that u is
continuous, the BUC-property for u coming from a careful examination of the
uniqueness proof. And the existence result is complete.

Proof of Lemma 7.1. We prove the result only in the subsolution case, the
supersolution one being analogous. For x € R", we introduce the function

ly —xP
X(ys[) :W(yst)_T_Cst P

where ¢ > 0 is a parameter devoted to tend to 0 and C; > 0 is a large constant to be
chosen later on.

Standard argument shows that y has a maximum point (¥, 7) near (x, 0) for small
enough ¢ and large enough C,. Since w is a subsolution of (16) satisfying (31), if

t > 0, we have _
- 2(y—x)

CS+H(7,r,—) 0.
&

But this inequality cannot hold if C, is chosen large enough (the size depending

on ¢ and H but neither on 3 nor on 7 since the term |y—€x|2 is bounded). Therefore
7 = 0 and (31) holds. But since the above inequality cannot hold, (31) implies



86 G. Barles

w(¥,0) < up(y). We conclude by remarking that, as ¢ — 0, w(y,0) — w(x,0)
by using the maximum point property and the upper-semicontinuity of w, while
uo(¥) — up(x) by the continuity of uy.

8 Regularity Results

The aim of this section is to investigate further regularity properties for the solutions
obtained through Theorem 7.1. To do so, we first strengthen assumption (H1) into

(H1-s) There exists L, L, > 0 such that, forany x,y € £2,¢ € (0,T] and p € RN
|H(x.t,p)— H(y,t,p)| < Li|x — y|lp| + La|x — y| .

Theorem 8.1. Assume (HI-s), (H3) and that ug € W' (RN). Then the solution of
u of (16)—(29) given by Theorem 7.1 is Lipschitz continuous in x for any t € [0, T]
and

L
1D, 1)l o < exp(Lit)|IDiolloo + > (exp(Lit) = 1) .
1

Proof of Theorem 8.1. The proof is similar to the proof of the comparison result and
we just sketch it to avoid repeating the same arguments. We introduce the function
(x,v,t) > u(x,t) —u(y,t) — C(¢)|x — y|: the aim is to show that this function is
negative for some well-chosen (smooth) function C(-); at least for ¢ = 0, we can
choose C(0) = ||Dup||co to have this property.

To do so, we argue by contradiction, assuming that its supremum is strictly
positive and in order to use viscosity solutions’ arguments, we double the variables
in time, namely

|t —s|?
B+ 1y

Yx.ty.5) = ulx.1) —u(y.s) = C)|x —y| -

For o, 8 > 0 small enough, the maximum of ¥ is still strictly positive and we
denote by (X,7,¥,5) a maximum point of . We notice that we cannot have
X = ¥, otherwise ¥ (X,7,¥,5) would be negative. Dropping the S-terms which
are not going to play any role and performing the same arguments as in the proof of
Theorem 5.1, we are lead to the inequality

ac _ _  _ o o _
E@Ix—yl+H(x,t,p)—H(y,s,p)50,

with 7 = C(7)

é:% . Writing this inequality as

c o o o o
E(t)lx—yl+H(x,t,p)—H(y,t,p)+H(y,t,p)—H(y,s,p)50,
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and using (H1-s), we obtain
ac _ _  _ o _ _
E(INX_YI_LIC(I)Ix_yI_LZIX_ﬂ+0a(1)50,

where 04(1) — Oasa — 0. If %(f) — L1C(t) — Ly > 0, we get the contradiction
by letting o tend to 0.

Therefore it is enough to solve %(f) — LC() — L, = § for some § > 0 and
with C(0) = ||Duo||e. This yields

Lry+§
1

Cs(1) = exp(L11)||Dug||oo + (exp(Lir) — 1) .

The above proof shows that u(x,?) — u(y,t) — Cs(t)|x — y| < Oforall x, y,¢ and
8 > 0. Letting § tends to 0, we obtain the right bound on ||Du(-, t)||co-

An other way to get Lipschitz regularity is, for coercive Hamiltonians, through
an estimate of u, when H is independent of . We recall that H(x, p) is said to be
coercive if it satisfies

(HS5) H(x, p) — +o0 as |p| = +o0, uniformly in x.

Theorem 8.2. Assume that H is independent of t and satisfies (HI), (H3) and (HS).
If up € WHR(RN), then the solution of u of (16)—(29) given by Theorem 7.1 is
Lipschitz continuous in x for anyt € [0, T] and

[[1Du(-. 1)[loo = K(H, uo) .

Proof of Theorem 8.2. By the comparison result, since u(x, ) and u(x,t + h) for
h > 0 are solutions of the same equation, we have

lu(x, 2+ h) —u(x, ))loo = [[u(x, h) —u(x,0)[|oo .
But u being Lipschitz continuous, if we set

R:=||Duo|loc and C:= max |H(x,p)|,
RN xB(0,R)

then uo(x) — Ct and up(x) + Ct are respectively viscosity sub and supersolution of
the equation and therefore

up(x) — Ct < u(x,t) <up(x) + Cr inRY x[0,7].

In particular, ||u(x, h) —u(x,0)||oo < Ch and therefore ||u(x,t +h) —u(x,t)||co <
Ch, which implies that ||u;||co < C.
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In order to deduce the gradient bound in space, we consider any point (x,?),
t > 0 and we want to show that u(y, ) < u(x,t) + K|y — x| for some large enough
constant K. To do so, we consider the function

a2
(.5) o u(y. ) — (e, 1)~ K|y — x| = L=

The maximum of this function is achieved at some point (,s) since u is bounded
and K|y — x| + (t;—z‘)z — 4ooif |y — x| + |t — 5| = +00. Moreover s — t when
oa— 0.

If y # x, then the function (y,s) — u(x,t) + K|y — x| + (";—;)2 is smooth at
(7,5) and since u is a viscosity subsolution of (16) we have

s —1
25D 4 e <o,
o

with p = K%

Now we claim that |2%| < 2C': this can be proved in an analogous way as in
the proof of Lemma 5.2 (point (3) for the estimate on |2(i;27) ). Using (HS) and the
fact that |p| = K, the above inequality can not hold if K is large enough, namely
if H(y,p) > 2C. Therefore y = x for o small enough and also necessarily 5 = ¢
(otherwise the value at the maximum would be less than the value at (x,?)). The
maximum point property for s = ¢ yields

M(ysl)_u(xvt)_K|y_-x| 507

which is the desired property.
We provide a last result on the semi-concavity of solutions when the Hamiltonian
is convex in p and satisfies some smoothness assumption in (x, p). We recall that a
function u : RN x [0,T] — Ris semi-concave (with a uniform constant of semi-
concavity wrt ¢) if there exists a constant k such that, for any x,h € RN and ¢t €
[0.7] ]
u(x +h,t) +u(x —h,t) —2u(x,1) < k|h|*.

For the Hamiltonian H, we use the following assumption which is satisfied for
example if H is W2 in (x, p) uniformly in ¢ and convex in p

(H6) There exists constants ki, k, > 0 such that, for any x,h, p,k € R" and
te€0,T]
H(x+ht.p+k)+H(Xx—ht,p—k)—2H(x.t,p) > —ki|h|]* — ky|h||k]| .

The result is the

Theorem 8.3. Assume that H satisfies (HI), (H3) and (H6). If uy € WHoRY)
is semi-concave, then the solution of u of (16)—(29) given by Theorem 7.1 is semi-
concave in x for any t € [0, T, with a uniform constant of semi-concavity.
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We just give a short sketch of the proof of Theorem 8.3 which is tedious since it
requires to triple the variables (each of them corresponding to either x + /4, x — h
or x). Namely we introduce the function

x+y =22 |x—z |y-z (-2
g2 g2 g2 a?

u(x,t) +u(y,s) —2u(z,t) —

(s—1)°

o?

where we have dropped the usual “B”-terms to penalize infinity. With this function,
the proof follows from straightforward but tedious computations.

9 Convex Hamiltonians, Barron—-Jensen Solutions

In this section, we describe additional properties of viscosity solutions of (16) in
the case when H is convex in p. The main motivation is to extend the theory -and
in particular the uniqueness results- to the case when the initial data is only lower
semi-continuous, a natural framework for optimal control problems. The key ideas
described in this section were introduced by Barron and Jensen [17, 18] who also
consider the applications to optimal control. The simplified presentation we provide
follows the one of [4].
Our first result is the following.

Theorem 9.1. Assume that H is convex in p and (H3) holds. If u € W1 (RN x
(0, T)) satisfies
w, + H(x,t,Du) <0 aein2x(0,7T),

then u is viscosity subsolution of (16).

Proof of Theorem 9.1. We are going to use a standard regularization argument. Let
(o) be a sequence of C*°, positive, smoothing kernels in RV ™!, with compact
support in the ball of radius ¢. For n > 0 small enough, we are going to show that

us(x,t) ;= / u(y,s)ps(x — y,t —s)dyds ,
RN+1

is an approximate C! subsolution of the equation in RY x (3, T —n) if & < 1.

To do so, for x € RV, ¢ € (n, T —n), we multiply the equation at the point (y, s)
by pe(x —y,t —s) and we integrate over R¥*! (or, in fact, over the ball of radius ).
By the properties of the convolution, we obtain

(), (e 1) + / L H (5. Du(2,5)) pe(x = ot = 5)dds <0,
R
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Using (H3), we can replace, in the integral, H (y, s, Du(y, s)) by H (x,t, Du(y, s))
with a small error in . This gives

()i (x,1) + /]RN-H H (x,t,Du(y,s)) pe(x — y,t — s)dyds < 0.(1) .

In order to conclude, we have just to apply Jensen’s inequality which leads to
(ue)e(x,t) + H (x,t, Duc(x,t)) dyds < 0.(1) .

Therefore u, is a smooth subsolution of (16) in RN x (n, T — 1), hence a viscosity
subsolution of (16) in RY x (n, T — 1) and so is u which is the uniform limit of u,,
by Theorem 4.1. Since this is true for any 7, the proof is complete.

This result has several consequences which are listed in the following

Theorem 9.2. Assume that H is convex in p and that (HI), (H3) hold.

(i) The functionu € W1 (RN x (0, T)) is a viscosity subsolution (resp. solution)
of (16) if and only if, for any smooth function ¢, if (x,t) is a local minimum
point of u — ¢, one has

@ (x,t) + H(x,t,Dp(x,t)) <0 (resp. = 0). (33)

(ii) Ifui,up € WH@RYN x (0, T)) are viscosity subsolutions (resp. solutions) of
(16), then min(u,, uy) is also a subsolution (resp. solution) of (16).

(iii) Ifu € WL (RN x (0, T)) is a viscosity subsolution of (16) and if (HI-s) holds
then

2
x_
ug(x,1) = inf u(y,z)+e—“’% ,
yERN &

is a viscosity subsolution of (16) within a O(e) error term which depends only
on the L*°-norm of u.

In (iii), the function u, is obtained through an inf-convolution procedure on u. The
connections of such inf and sup-convolution with viscosity solutions were remarked
by Lasry and Lions [35]. In general, an inf-convolution is a supersolution, while sup-
convolutions are subsolutions. Therefore (iii) is a priori a rather surprising result.

Proof of Theorem 9.2. The proof of (i), (ii) and (iii) are easy: for (i), we may
assume that (x, ¢) is a strict local minimum point of u — ¢ and we can approximate
this minimum point by minimum points (x;, z;) of u, — ¢ where u, is the sequence
of smooth approximations of u built in the proof of Theorem 9.1. By the regularity
of u. and ¢, we have (u.),(xc, 1) = @;(Xe,te) and Dug(x,, 1) = Dp(xe,t.) and
therefore, since u, is a C! subsolution of (16)

(Pt(xm te) + H(x., 1., D(P(xez, ta)) <0.

The conclusion follows by letting & — 0.
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For (ii), we have just to use Stampacchia’s Theorem together with Theorem 9.1:
indeed

D[min(u;, u3)] = Du;  if u; < up and D[min(u;, up)] = Du, otherwise,

and Du; = Duj; a.e. on the set {u#; = u,}; and the same is, of course, true for the time
derivative. To get the subsolution property, we have just to argue in the a.e. sense
while the supersolution property always holds since the minimum of supersolutions
is a supersolution (exactly in the same way as the maximum of two subsolutions is
a subsolution, cf. Perron’s method).

For (iii), we just sketch the proof since it requires long but straightforward
computations. Using (i), we have look at what happens at a minimum point (x, ¢)
of u, — ¢ where ¢ is a smooth function. Thanks to the definition of u,, this leads to
consider minimum point of the function

2
_ Z—
0129 e utrn + e B ey

We see that we are in a framework which is close to the proof of the comparison
result, and in the spirit of Remark 5.3. The computations are then easy using (i).

Theorem 9.2 provides all the necessary (technical) ingredients to extend the
theory and to do so, we are first going to say that a Isc function u : RY x [0, T] — R
is a Barron—Jensen (BJ for short) subsolution (or solution) of (16) if and only if it
satisfies (33). Theorem 9.2 (i) shows that this is equivalent to the usual notion of
viscosity solution when u is Lipschitz continuous (and it is also the case when u is
continuous).

The extension to Isc subsolutions and solutions, and the uniqueness result are
given by the

Theorem 9.3. Assume that H is convex in p and that (HI), (H3) hold.

(i) If (u). is a sequence of BJ subsolution (resp. solution) of (16) then liminfy u,
is a subsolution (resp. solution) of (16).

(ii) Assume (HI-s), (H3) and that ug is a bounded lsc initial data. There exists a
unique lsc BJ solution u of (16)—(29) which satisfies

liminf u(y,s) = up(x) . (34)
(y,s)—)éx,O)

We just give a very brief sketch of this result. The proof of (i) follows
immediately from the arguments of the proof of the (discontinuous) stability results.
For (ii), if u is a Isc BJ solution (or even only a subsolution) of (16) then the result of
Theorem 9.2 (iii) holds (even if u is just Isc) and (34) implies that u.(x, 0) < uy(x)
in RV . But now u, is an approximate solution of (16), which is Lipschitz continuous
in x (by its definition through the “inf-convolution” formula) and also in ¢ (by the
equation). If v is an other solution, we can compare u, and v: clearly u.(x, 0) < v(x)
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in R and the Lipschitz continuity of u, allows to use the arguments of the proof of
Theorem 5.2 in a rather easy way.

10 Large Time Behavior of Solutions of Hamilton-Jacobi
Equations

10.1 Introduction

In this second part, we are interested in the behavior, as t — +o00, of the viscosity
solutions of first-order Hamilton—Jacobi Equations of the form

w + H(x,Du) =0 inRY x (0, +00) , (35)

with the initial data
u=uy in RN, (36)

in the case when the Hamiltonian H (x, p) and the initial datum ug are Z" -periodic
in x,i.e., forall x, p € RY andz € ZV,

H(x+z,p)=H(x,p) and up(x + z) = up(x) . (37)
and when H is coercive, namely
H(x,p) = 400 when |p| = 400, uniformly wrt x € RV, (38)

In the last decade, the large time behavior of solutions of Hamilton—Jacobi Equa-
tion in compact manifold . (or in R", mainly in the periodic case) has received
much attention and general convergence results for solutions have been established
by using two different types of methods: in his course, H. Ishii [this volume]
describes the “weak Kam approach” which is an optimal control/dynamical system
approach and both uses and provides formulas of representation, the ones for the
asymptotic solutions being based on the notion of Aubry—Mather sets.

Our aim is to describe a second approach which relies only on partial differential
equations methods: it provides results even when the Hamiltonians are not convex
but it gives a slightly less precise description of the phenomenas compared to the
“weak Kam approach”.

In 1999, Namah and Roquejoffre [42] are the first to obtain convergence results
in a general framework, by pde arguments which we describe below. They use the
following additional assumptions

H(x, p) > H(x,0) forall (x, p) € .# xR" and m;{x H(x,0) =0, (39

where .# is a smooth compact N -dimensional manifold without boundary.
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Then Fathi in [25] proved a different type of convergence result, by dynamical
systems type arguments, introducing the “weak KAM theory”. Contrarily to [42],
the results of [25] use strict convexity (and smoothness) assumptions on H(x, -), i.e.,
D,,H(x, p) > al forall (x, p) € .# x RY and a > 0 (and also far more regularity)
but do not require (39). Afterwards Roquejoffre [43] and Davini and Siconolfi in
[24] refined the approach of Fathi and they studied the asymptotic problem for
Hamilton—Jacobi Equations on .# or N -dimensional torus.

The first author and Souganidis obtained in [15] more general results, for possibly
non-convex Hamiltonians, by using an approach based on partial differential
equations methods and viscosity solutions, which was not using in a crucial way
the explicit formulas of representation of the solutions: this is the second main type
of results we (partially) describe here.

All these results (except perhaps the Namah—Roquejoffre ones) use in a crucial
way the compactness of the domain: indeed either they are stated on a compact
manifold or they use periodicity which means that we are looking at equations set
on the torus. We also refer to the articles [11,27-29,33] for the asymptotic problems
in the whole domain R" without the periodic assumptions in various situations.

Finally there also exists results on the asymptotic behavior of solutions of
convex Hamilton—Jacobi Equation with boundary conditions. Mitake [38] studied
the case of the state constraint boundary condition and then the Dirichlet boundary
conditions [39, 40]. Roquejoffre in [43] was also dealing with solutions of the
Cauchy-Dirichlet problem which satisfy the Dirichlet boundary condition pointwise
(in the classical sense): this is a key difference with the results of [39, 40] where
the solutions were satisfying the Dirichlet boundary condition in a generalized
(viscosity solutions) sense. These results were slightly extended in [7] by using an
extension of PDE approach of [15].

10.2 Existence and Regularity of the Solution

The first result concerns the (global) existence, uniqueness and regularity of the
solution.

Theorem 10.1. Assume that H satisfies (37)—(38) and that uy € W1 RY) is
a ZN -periodic function. Then there exists a unique solution of (35)—(36) which is
(i) periodic in x and (ii) Lipschitz continuous in x andt on RY x [0, +00).

We just sketch the proof of Theorem 10.1 since it is an easy adaptation of the
results given in the previous sections, which we can simplify here.

For the existence, we use Perron’s method: assuming first that ug € C'(RY) N
W12 (RN), the functions —Ct + ug(x) and Ct + uo(x) are respectively sub and
supersolution of (35)—(36) if C is given by

R = ||Dw||cc and C:= max |H(x,p)|.
RN xB(0,R)
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Truncating H(x, p) by replacing it by Hx(x, p) := min(H (x, p), K) for some
large constant K > 0, we can apply readily Perron’s method. We obtain the existence
of a continuous solution ux of the Hg-equation which satisfies

— Ct + up(x) < ug(x,t) < Ct+ up(x) foranyux € RY, t>0. (40)

Periodicity comes directly from the construction since if w is a subsolution of (35)-
(36), then it is also the case for sup_c,~ [W(- 4 2)] = w(:). Therefore the supremum
of subsolutions is clearly achieved for a periodic subsolution.

The uniqueness is proved readily by the argument of the proof of Theorem 5.1
(at least if we assume periodicity) or by the slight adaptation for having the
comparison in BUC(Q).

The time derivative (ux); is bounded since, for any 7 > 0

[lug(x,t +h) —ug(x,t)||loo < |lug(x,h) —uo(x)||oo
and —Ch+uy(x) < ug(x,h) < Ch+up(x) by construction. Therefore |(ug),| < C
and, if K > C, then ug is a solution of the H -equation. We denote it by u.
Finally, since H is coercive and H(x, Du) = —u,, we deduce immediately that

Du is bounded as well. Using that u is Lipschitz continuous, a (slight) variant of
Theorem 5.1 implies that it is the unique solution of (35)—(36).

10.3 Ergodic Behavior

The first step in the study of the large time behavior of u is the

Theorem 10.2. Under the assumptions of Theorem 10.1, there exists a constant
¢ € R such that

’t .
M — ¢ ast — +o0 uniformly w.rt. x € RY . 41)

Proof. We set
m(t) = I%%X (u(x,t) —up(x)) .

We first have

m(t +s) < IE?VX (u(x,t +s) —u(x,1) + I%%X (u(x,t) —up(x)) ,

and then by comparison

rﬁ%x (u(x,t +s5)—u(x,t) < I%%X (u(x,s) —u(x,0)) = m(s) .
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Therefore m (¢ +s) < m(t) +m(s) for any ¢, s > 0 but the Lipschitz continuity of u
in ¢ gives also m(¢) > —Ct for some constant C. A classical result on sub-additive

functions implies
m(1) : (M(t ))
— = c:=inf[ — )] .
t >0 t

Finally, it is easy to show that u(x,¢) — m(¢) is bounded independently of x and ¢
by using the periodicity and Lipschitz continuity in x of u, and the result follows.

For the convenience of the reader we sketch the proof of the result for m. Pick
any v > 0. If t > 0, there exists n € N such that nt < ¢ < (n + 1)7. Using the
sub-additivity of m yields

m(t) < nm(t) + m(e),

where ¢ := ¢t —nt € [0, 1). Dividing by t = nt + ¢ gives

m(t) - nm(t) n m(e) 7
t T nt+e nt+e

and letting t — +o00, we obtain

t
lim sup _m( ) < —m(t) .
t—>+o00 I T

But this is true for any t, hence

limsup [ — ) <inf | —= ) =¢
t—>4o00 t T T

m(t

. .. ) m(t)
But obviously lim inf > ¢, therefore

t—>+00
It is worth pointing out that the assumption “m(¢) > —Ct” is just used to have a

well-defined constant c.
Then we are led to several natural questions:

— C

(a) Can we have a characterization of the constant ¢?
(b) Can we go further in the asymptotic behavior ? Namely: is u(x, ) —ct bounded?
does it converge to some function?

A first remark is the following: if, for large ¢, u(x, t) looks like At + v(x), then
A and v should satisfy the equation

H(x,Dv)+A =0 inR" . (42)
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A key question is then: does this equation, where both the constant A and the
function v are unknown, have (periodic) solutions?

The answer is given by the following result of Lions et al., Homogenization of
Hamilton—Jacobi equations, unpublished work.

Theorem 10.3. Assume that H satisfies (37)—(38). There exists a unique constant
A such that (42) has a periodic, Lipschitz continuous solution.

An immediate consequence of Theorem 10.3 is the

Corollary 10.1. Assume that H satisfies (37)—(38). Then ¢ = A and u(x,t) — ct is
bounded.

The proof of this corollary is obvious since, if (A, v) solves (42), then v(x) + At
is a solution of (35) and by comparison

u(x, 1) = (v(x) + A1)[|oo = [|u(x,0) = v(X)]|oo -

Therefore u(x,t) — At is bounded and dividing by ¢ and letting 1 — 400 shows
that ¢ = A.

As a consequence, Theorem 10.3 gives a characterization of the ergodic con-
stant ¢ as the unique constant such that the “ergodic problem” (42) has a periodic
(bounded) solution.

Proof of Theorem 10.3. For 0 < o <« 1, we consider the equation
H(x,Dvy) +avy =0 inRY | (43)

and we set M := ||H(x,0)||co. In order to prove that this equation has a unique
periodic solution vy, we use Perron’s method.

We first remark that —éM and éM are respectively sub and supersolution of
this equation and we are looking for a solution which satisfies

1 1 Y
——M <v, <—M inR".

o o
Since H does not a priori satisfy Assumption (H1), we have to argue either as
in proof of Theorem 10.1, introducing some truncated Hamiltonians Hg or we
remark that, because of (38), the subsolutions w which are bounded from below by
—éM are equi-Lipschitz continuous: in this last case, we directly build a Lipschitz
continuous solution of (43).

In any case, we build a solution v, of (43) such that

1
1Valloe = =M .

which is Lipschitz continuous and an easy modification of the proof of Theorem 5.1
shows that v,, is the unique periodic solution of (43).
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Moreover, as a consequence of (38), since av, is bounded, H(x, Dvy) is also
bounded and therefore the v,’s are equi-Lipschitz continuous.

Using this property together with the periodicity of the v,, the functions
We(X) :=v4(x) —v4(0) are equi-bounded and equi-Lipschitz continuous. By
Ascoli’s Theorem, they converge (up to a subsequence) to some function
ve WI(RY). And we may assume as well that the bounded constants v, (0)
converges to some constant A.

We have H(x,Dw,) + aw, + avy,(0) = 0in RY and we can pass to the limit
by using Theorem 4.1: A and v solves (42).

For the uniqueness of A, if (v, 1) and (v’, 1) are solutions of the ergodic problem,
we compare the solutions v(x) + Az and v’(x) + At of (35)

(&) + A1) = (V' (x) + A'Doo = [[v(x) = '(¥)]]oo
or equivalently
1) = v' () + A = A)D)lleo = [[v(x) = V' (X)|]oo-

Dividing by ¢ and letting t — 400 gives A = ',

10.4 Asymptotic Behavior of u(x,t) — ct

By considering H. = H +c and u.(x,t) = u(x,t)—ct, we may assume thatc = 0
and the solutions u of (35) are uniformly bounded and Lipschitz continuous. We are
going to do it from now on.

The main question of this section is: do the u(x,?) always converge as t —
+00? or do we need additional assumptions? The following examples shows that
the answer is not completely obvious.

Example 1. The function u(x,t) := sin(x — ¢) is a solution of the transport
equation
u+u, =0 inR x (0,+00),

it satisfies very good regularity properties and uniform estimates but it does not
converge as ¢ — 4-oo. This shows that convergence is not only a question of
estimates. But, of course, in this example the coercivity assumption is not satisfied.

Example 2. The same function is also a solution of
u + |uy +1]—1=0 inR x (0,400) .

In this example, the Hamiltonian is coercive and even convex but not strictly convex.
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These two examples shows that the convergence as ¢ — +oo requires additional
assumptions and/or a particular framework: we are going to show that the conver-
gence holds in two cases:

(a) The Namah—Roquejoffre framework for which a typical example is
u, 4+ |Dul = f(x) inRY x (0, +00),

where f(x) > 0 and the set {x : f(x) = 0} is non-empty.
(b) The “strictly convex” framework for which a typical example is

u; + |Du + q(x)|2 — |c1(x)|2 =0 inRY x 0, +00),

where ¢ is (say) a periodic, Lipschitz continuous function.

Roughly speaking, the first framework is more restrictive on the structure of the
Hamiltonians but it allows to take into account Hamiltonians H (x, p) which are not
strictly convex in p, contrarily to the second framework where the structure of the
Hamiltonians is very general but where we have to impose strict convexity.

10.5 The Namah—Roquejoffre Framework

The main assumptions are the following. In the sequel, we refer to this assumptions

as (NR).

e H(x,p)> H(x,0) forany x, p € RV,

e H(x,0) <0 forany x € RY and the set 2 = {x € RY; H(x,0) = 0} is
non-empty.

e For any o > 0 (small) and for any 0 < p < 1, there exists n(a, ;) > 0 such that

H(x,up) < —n(e,n) if H(x,p) <0andifd(x, 2) > .

Remark 10.1. If H(x, p) = |p| — f(x) where f(x) > 0 and the set 2 := {x :
f(x) = 0} is non-empty, these assumptions are satisfied since

H(x,up) = plpl = f(x) = n(lpl = f(x)) = (1 = p) f(x) .
< —nla,p) :==—(1- M)d(xm%r)lmf(ﬂ <0 if|p[— f(x) 0.

Theorem 10.4. Assume that H satisfies (37)—(38) and (NR), then ¢ = 0 and, for
any uy € WL (RN), the solution u of (35)—(36) converges to a solution of the
Stationary equation.
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Proof of Theorem 10.4. To show that ¢ = 0, we have first to solve the equation
H(x,Dv) =0 inR".

We first remark that, because of (NR), 0 is a subsolution.

On the other hand, if z € 2, by the coercivity of H, C|x — z| is a supersolution
for C large enough: indeed this is obviously true for x # z since the gradient of this
function has norm C. And this is also clear for x = z since, by (NR), H(z, p) >
H(z,0) = 0forany p. Asaconsequence, Cd(x, %) := ien; C|x—z]| is a (periodic)

Z

supersolution of the equation as the infimum of supersolutions.

We apply Perron’s method which provides us with a discontinuous solution. To
prove that this solution is continuous, we need a SCR.

Noticing that both the (continuous) sub and supersolution vanish on %, the value
of the solution is imposed on 2 (see the construction above) and we need a SCR
for the Dirichlet problem set in the complementary of %, namely

H(x,Du) =0 dans 0 := R\ &
u(x) =0 surdd .

To obtain it, we use ideas which are introduced in Ishii [32] (see also [5]). If v; is
a subsolution of this problem and v, a supersolution with v; < 0 < v, on 90, we
pick some u € (0, 1), close to 1. Because of the last requirement in (NR), we have
in the viscosity sense

H(x, Dpvi (1)) < —n(e, ) ifd(x, Z) = a,

and following the arguments of the comparison proof, it is clear that the maximum
of pv; — v, can be achieved only on 2. Therefore uv; — v, < 0 and we conclude
by letting w tends to 1. Therefore we have a continuous solution of the stationary
equation and ¢ = 0.

Next we examine the behavior of the solution u of the evolution equation on
% since H(x, p) > 0 on &, we have u;, < 0 on Z and therefore ¢t +— u(x,t)
is decreasing. Recalling that u is Lipschitz continuous, this implies that u(x,t) —
@(x) uniformly on 2 where ¢ is a Lipschitz continuous function.

It remains to show the global behavior: to do so, we use the half-relaxed limit
method outside Z. For ¢ > 0, we set

t
us(x,t) :=u (x, —) in RY x (0, 00) .
e

The function u, solves

aa”f +HGx, D) =0 inRY x (0,00) .

&
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We introduce (as usual) the half-relaxed limits
u(x,t) = limsup® u.(x,t) and u(x,r) = liminfy u.(x,1) .

For any + > 0, u(:,t) and u(-,t) are respectively sub and supersolution of
H(x,Dw) = 0 in R, It is worth pointing out that, here, % and u are Lipschitz
continuous in x for any 7, because of the uniform Lipschitz properties of u.

A priori we do not have a strong comparison result for this equation in RY but
we can use the additional information that we have on 2, namely u(-, 7) = u(-,t) =
¢(-) on Z. Therefore we are lead to the same Dirichlet problem as above, except that
the boundary condition is now ¢ instead of 0. Applying readily the same arguments
with a slight modification due to the Dirichlet data ¢, we conclude that, for any
s,t > 0,%(-,t) < u(-,s)in RV, This implies that %(-,¢) = u(-, s) for any s, > 0
and, setting w(-) = u(:,¢) = u(-,s), we have the uniform convergence of u(-, ¢) as
t — 400 to the continuous function w which is the unique solution of the Dirichlet
problem with ¢ and also solves

H(x,Dw) =0 inR" .
Remark 10.2. This approach does not work for the equation
u + |Du+ g —g(x)? =0 inRY x (0, +00)

which does not satisfy the (NR) assumptions.

10.6 The “Strictly Convex” Framework

In fact, like in the Namah—Roquejoffre framework, the assumptions on H we are
going to use in this section does not really imply that H is strictly convex; the title
of this section is just to fix ideas.

Our key assumption is the following.

(SCA) There exists 7o > 0 such that, for any n € (0, no], there exists a constant
¥, > O such thatif H(x, p +¢) > nand H(x,q) < 0 for some x, p,q € R", then
for any p € (0, 1],

pH (x,§+q) > H(x.p+0) + Uy (1 — ).

This assumption does not implies that H is convex but it implies that, for all x,
the set {p : H(x, p) < 0} is convex (Ishii, personal communication) and imposes
the behavior of H in the set {p : H(x, p) > 0}.
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Remark 10.3. If H is indeed a C?, strictly convex function of p, ie. if
Dpsz(x, p) > vid for some v > 0, have, forany u € (0,1],a,b € RY

H(x,pa+ (1—p)b) < pH(x,a) + (1 — p)H(x,b) — Cw)u(l — p)la — b|*.

Choose a = 5 +4q,b=¢q,pna+ (1 —p)b = p—+ q and therefore

H(x,p+q) < pH(x, ﬁ +q)+ (1= WH(x.q) — COL)u(l — M)|§|2 ,

ie.
p D2
H(x,p+q) < pH(x, mn +q)—Cv)ul —M)Iﬁl :
since H(x,g) < 0. But p is bounded away from O since H(x, p + ¢q) > n and
H(x,q) <0, therefore (SCA) holds.
Our result is the following.

Theorem 10.5. Assume that H satisfies (37)—(38), ¢ = 0 and (SCA), then, for
any uy € W' (@RN), the solution u of (35)~(36) converges to a solution of the
Stationary equation.

It is worth recalling that, in this case, we actually assume that ¢ = 0, it is not a
consequence of the assumptions on H.
The key result is this approach is the

Theorem 10.6 (Asymptotically Monotone Property). Under the assumption of
Theorem 10.5, for any n € (0, no), there exists §, : [0, 00) — [0, 1] such that

8,(s) >0 ass— oo and

u(x,s) —u(x,t) +n(s —1) < 8,(s)

forall x € RY st € [0, 00) witht > s.

The meaning of Theorem 10.6 is that the solution « is becoming more and more
increasing as t — oo. Why should this be true?

We can first consider the Oleinik—Lax Formula. The solution of

u; 4+ |Dul* =0 inRY x (0, 4+00) ,

is given by

. lx —y|?
,1) (= inf .
u(x.1) = inf, (uo(y)+ 1
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Formally, if y is a minimum point in this formula

Ix — y|?

Du(x,t) =
u(. 1) 412

2(x —y)
- 7 d 1) = —
a7 and u(x,?)
| 2

But we know that remains bounded since ug is bounded, hence u;, =

o).

A more general remark can be made by assuming that H is strictly convex and

Hp(xvp)'p_H(-xsp)ECH(xvp) 1fH(x,p)zO,

for any x, p € R" and for some ¢ > 0. For example, one can think about quadratic
Hamiltonians like |p + ¢|* — |¢|? or |p|* — f(x)*.

In this case, we perform the Kruzkov’s change w = —exp(—u). The function w
solves

D
Wi —wH(x, — =2y =0 inRY x (0, +00) .
w

Then we set z = w; and m(t) = ||z ||co. Differentiating the equation with respect
to ¢, we find that z satisfies at the same time (dropping the arguments of H and its

derivatives)
z+Hy-p—H)z+H,-Dz=0,

z—wH =0.

Next looking at a (negative) minimum point of z (where Dz = 0), it follows
m'(t)+ (H,-p— H)m(t) = 0.
But H = z/w > 0 and therefore (H, - p — H) > cH = cz/w. Hence
m'(t) + c[m(@)]>/w =0 whichimplies m’(t) > é[m(t)]* .

Recalling that m(¢) < 0, this inequality yields a behavior like m(t) = O(¢™").
We first prove Theorem 10.5 by using the Asymptotically Monotone Property.

(a) Since the family (u(-,1)),>o is bounded in W (R"), by Ascoli’s Theorem,
there exists a sequence (u(-, 7,)),en Which converges uniformly on RY as
n— oo.

By comparison, we have

G T 4 2) = ul, T 4 lloo < [luC. To) — ul, T lloo

for any n, m € N. Therefore, (u(-, T, + -))nen is a Cauchy sequence in C(RY x
(0, 400)) and therefore it converges uniformly to a function denoted by u*> €
C(RY x (0, +00)). Moreover u®™ is a solution of (35), by stability.
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(b) Fix any x € RV and 5,7 € [0, 00) with 7 > s. By the Asymptotically Monotone
Property, we have

ulx,s +Tp) —ulx,t +T,) +n(s —¢t) <8,(s + Tp)

for any n € N and n > 0. Sending » — oo and then n — 0, we get, for any
tr=s
u®™(x,s) <u*(x,1).

The functions x + u®(x,?) are uniformly bounded and equi-continuous,
and they are also monotone in ¢. This implies that u*°(x, #) — w(x) uniformly
onRY ast — oo for some w € W (R which is a solution of the stationary
equation.

(c) Since u(-, T, + -) — u® uniformly* in RN x (0, +-00) as n — oo, we have

—0,(1) + u®™®(x,t) <u(x,T, +1) <u®>(x,1) + 0,(1),

where 0, (1) — 0o as n — oo, uniformly in x and 7.

Taking the half-relaxed semi-limits as t — 400, we get

—0,(1) +w < liminfy u < limsup® u < w + 0,(1).
t—00 —>00

Sending n — oo yields

w(x) = liminf, u(x,?) = lim sup® u(x,7)
t—>00 1—>00

for all x € R". Therefore u(x,t) — w(x) uniformly as ¢ — oo and the proof is
complete.

Now we turn to the Proof of the Asymptotically Monotone Property. Let v be a
periodic, Lipschitz continuous solution of H(x, Dv) = 0.

Since u is bounded and since we can change v in v — M for some large constant
M > 0, we may assume that

u(x,t) —v(x) >1 foranyx e RY andt > 0.

‘We introduce the function

Hy(s) == min

X€ERN t>5

(u(x,t) —v(x) +n(t — s)) ‘

u(x,s) —v(x)

“This is a key point: the compactness of the domain (periodicity) plays a crucial role here since
local uniform convergence is the same as global uniform convergence.
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By the uniform continuity of u and v, u, € C([0, c0)) and we have 0 < p,(s) < 1
forall s € [0, 00) and 7 € (0, no].

Proposition 10.1. Under the assumption of Theorem 10.5, p,(s) — 1 as s — oo
for any n € (0, no].

As a consequence, for any x € RY andt > s,

u(x,t) —v(x) +n(t —s)
u(x,s) —v(x)

> 1+o05(1),

where 0,(1) depends on 1 and tends to 0 as s — oo.
A simple computation yields

u(x,t) —u(x,s) +n( —s) > os(1) .

The proposition is a consequence of the following lemma.

Lemma 10.1. Under the assumption of Theorem 10.6, for any n € (0, no], there
exists a constant C > 0 such that the function i, is a supersolution of

¥

max { w(s) — 1,w'(s) + C

(w(s) — 1)} = 0in (0, 00) .

Using the lemma, it is easy to prove the proposition since the solution of the
variational inequality with initial data u,(0) is given by

w(s) :=1— (uy(0) + 1) exp (—%s) .

and therefore, by comparison

Pn(s) = 1= (uy(0) + 1) exp (—%s) .

for any s. Recalling that u,(s) < 1, we have u,(s) — 1 ass — oo.

Proof of Lemma 10.1. We fix n € (0, no] and, to simplify the notations, we write @
for ;.

Let ¢ € C'((0,00)) and 5 > 0 be a strict local minimum of yu — ¢.

Since there is nothing to check if p(5) = 1, we assume that ;. (5) < 1. We choose
¥ € RY and 7 > 5 such that

5 — ED =) + 1T =)
ps) = u(®,5) — v(%)
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For 0 < ¢ <« 1, we introduce the function
u(x,t) —v(z) + nt —s) 1

—¢(s) + 5(x =y +1x —zP)
u(y,s) —v(z) &

U(x,y,2,t,8) =
+ x=xP+|r—1)

The function ¥ achieve its minimum at a point (x, y, z, ¢, s) (depending on ¢) and,

by classical arguments, as ¢ — 0, we have
t—>1t,5s—>5.

X, Y, —=> X

Moreover, by the Lipschitz continuity in x of  and v
X — X —z
=yl e
€

&2
for some constant C.
With the notations

i i=u(y,s) —v(z), fo:=u(x,1) —v() +n—s),

i (Z(Z—X))

and if we set
2y —
v x)) and Q := _ 5
1—1 €

we have formally,
Dyu(x.t) = P + (1 - )0 + o0.(1) ,
u,(x,t) = —ﬂ—zﬂl(f _ﬂ ’

Dyu(y,s) = P,
us(y,8) = =5 (1 + g’ (s)) .

D.v(z) = Q.
By the definition of viscosity solutions

—n+o.(1)+ Hx,oiP +(1—-)0 +0.(1)) >0,

_%@+ﬁ@h»+H@Jva
H(z, Q) <0.

Since P and Q are bounded, we may even let ¢ tend to 0 and drop the o.(1)-terms
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With

i = u(x,5) —v(x), p2:i=ux1)—vX) +nl-5), pu= %

we end up with
N+ HE puP +(1-pwQ) =0,
e g 5) + HE.P) <0
H(x,Q) 0.
If p:=p(P—-—Q)andg = Q,wehave H(X, p+¢q) > nand H(X,q) <0, and
therefore, by (SCA)

ﬁ(n +m¢'() = HEF. P) = HF. £ +9q)

A%

1
m (HE, p +q) + ¥, (1 — )

A%

1
o (v —p)
This shows
1
'(5) = —y,(1—p),
K1

which is the desired conclusion.

10.7 Concluding Remarks

* The Asymptotically Monotone Property is true in a more general framework
(problems set in the whole space or with boundary conditions ... etc) but, in
general, it does not imply the convergence as ¢ — oo. This shows the importance
of the periodic framework (compactness) where local uniform convergence is
equivalent to global uniform convergence.

* In the Namah—Roquejoffre case, periodicity is less important, even if one has to
avoid the infinity to play a role (by assuming that lim sup|,|_, ; o, H(x,0) < 0).
See, for example, [11].

* For problems set in the whole space, the behavior at infinity of 1y may determine
the asymptotic behavior as # — oo of u, even at the level of the ergodic constant
c (cf. [11]).
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e If H is convex and if Sy, S+ denote respectively the semi-groups associated
to H and H™, we know that these semi-groups commutes, namely

Sa)Sy+(s) = Sy+(s)Su(t)

for any 5,7 > 0.

For any ug, S+ (s)up converges to the maximal subsolution of H = 0 which is
below uy.

If we are in a framework where we have convergence for Sy (¢) as t — oo, i.e.
Su(t)ug = uso ast — +00, then

S1(00)S 4 ()t = Spy+(5) S (00) g = loo

This shows that 1o is the same for ug and for maximal subsolution of H = 0 which
is below uy: in other words, given ug, u(x,t) converges to the minimal solution
which is above the maximal subsolution which is below 1.

For such properties of commutations of semi-groups, we refer the reader to
Cardin and Viterbo [20], Motta and Rampazzo [41] and Tourin and the author [16].

References

1. L. Alvarez, F. Guichard, P.L. Lions, J.M. Morel, Axioms and fundamental equations of image
processing. Arch. Ration. Mech. Anal. 123(3), 199-257 (1993)

2. M. Bardi, I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-
Bellman Equations (Birkhéduser, Boston, 1997)

3. M. Bardi, M.G. Crandall, L.C. Evans, H.M. Soner, P.E. Souganidis, Viscosity Solutions and
Applications, ed. by 1. Capuzzo Dolcetta, P.L. Lions. Lecture Notes in Mathematics, vol. 1660
(Springer, Berlin, 1997), x+259 pp

4. G. Barles, Discontinuous viscosity solutions of first order Hamilton-Jacobi equations: a guided
visit. Nonlinear Anal. TMA 20(9), 1123-1134 (1993)

5. G. Barles, Solutions de Viscosité des Equations de Hamilton-Jacobi Mathématiques &
Applications (Berlin), vol. 17 (Springer, Paris, 1994)

6. G. Barles, Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equa-
tions and applications. J. Differ. Equ. 154, 191-224 (1999)

7. G. Barles, H. Mitake, A PDE approach to large-time asymptotics for boundary-value problems
for nonconvex Hamilton-Jacobi equations. Commun. Partial Differ. Equ. 37(1), 136-168
(2012). doi:10.1080/03605302.2011.553645

8. G. Barles, B. Perthame, Discontinuous solutions of deterministic optimal stopping time
problems. Model. Math. Anal. Numer. 21(4), 557-579 (1987)

9. G. Barles, B. Perthame, Exit time problems in optimal control and vanishing viscosity method.
SIAM J. Control Optim. 26, 1133-1148 (1988)

10. G. Barles, B. Perthame, Comparison principle for Dirichlet type Hamilton-Jacobi Equations
and singular perturbations of degenerated elliptic equations. Appl. Math. Optim. 21, 21-44
(1990)

11. G. Barles, J.-M. Roquejoftre, Ergodic type problems and large time behaviour of unbounded
solutions of Hamilton-Jacobi equations. Commun. Partial Differ. Equ. 31(7-9), 1209-1225
(2006)



108 G. Barles

12. G. Barles, E. Rouy, A strong comparison result for the Bellman equation arising in stochastic
exit time control problems and its applications. Commun. Partial Differ. Equ. 23(11 & 12),
1995-2033 (1998)

13. G. Barles, P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second
order equations. Asymptot. Anal. 4, 271-283 (1991)

14. G. Barles, PE. Souganidis, A new approach to front propagation problems: theory and
applications. Arch. Ration. Mech. Anal. 141, 237-296 (1998)

15. G. Barles, PE. Souganidis, On the large time behavior of solutions of Hamilton-Jacobi
equations. SIAM J. Math. Anal. 31(4), 925-939 (2000)

16. G. Barles, A. Tourin, Commutation properties of semigroups for first-order Hamilton-Jacobi
equations and application to multi-time equations. Indiana Univ. Math. J. 50(4), 1523-1544
(2001)

17. E.N. Barron, R. Jensen, Semicontinuous viscosity solutions of Hamilton-Jacobi Equations with
convex hamiltonians. Commun. Partial Differ. Equ. 15(12), 1713-1740 (1990)

18. E.N. Barron, R. Jensen, Optimal control and semicontinuous viscosity solutions. Proc. Am.
Math. Soc. 113, 49-79 (1991)

19. S. Biton, Nonlinear monotone semigroups and viscosity solutions. Ann. Inst. Henri Poincaré
Anal. Non Linéaire 18(3), 383—402 (2001)

20. F. Cardin, C. Viterbo, Commuting Hamiltonians and Hamilton-Jacobi multi-time equations.
Duke Math. J. 144(2), 235-284 (2008)

21. M.G. Crandall, L.C. Evans, PL, Lions, Some properties of viscosity solutions of Hamilton-
Jacobi equations. Trans. Am. Math. Soc. 282, 487-502 (1984)

22. M.G. Crandall, P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math.
Soc. 277, 1-42 (1983)

23. M.G. Crandall, H. Ishii, P.-L. Lions, User’s guide to viscosity solutions of second order partial
differential equations. Bull. AMS 27, 1-67 (1992)

24. A. Davini, A. Siconolfi, A generalized dynamical approach to the large time behavior of
solutions of Hamilton-Jacobi equations. SIAM J. Math. Anal. 38(2), 478-502 (2006)

25. A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sér. I Math.
327(3), 267-270 (1998)

26. W.H Fleming, H.M. Soner, Controlled Markov Processes and Viscosity Solutions. Applications
of Mathematics (Springer, New-York, 1993)

27. N. Ichihara, H. Ishii, Asymptotic solutions of Hamilton-Jacobi equations with semi-periodic
Hamiltonians. Commun. Partial Differ. Equ. 33(4-6), 784-807 (2008)

28. N. Ichihara, H. Ishii, The large-time behavior of solutions of Hamilton-Jacobi equations on the
real line. Methods Appl. Anal. 15(2), 223-242 (2008)

29. N. Ichihara, H. Ishii, Long-time behavior of solutions of Hamilton-Jacobi equations with
convex and coercive Hamiltonians. Arch. Ration. Mech. Anal. 194(2), 383-419 (2009)

30. H. Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets.
Bull. Faculty Sci. Eng. Chuo Univ. 28, 33-77 (1985)

31. H. Ishii, Perron’s method for Hamilton-Jacobi equations. Duke Math. J. 55, 369-384 (1987)

32. H. Ishii, A simple, direct proof of uniqueness for solutions of Hamilton-Jacobi equations of
eikonal type. Proc. Am. Math. Soc. 100, 247-251 (1987)

33. H. Ishii, Asymptotic solutions for large time of Hamilton-Jacobi equations in Euclidean n
space. Ann. Inst. Henri Poincaré Anal. Non Linéaire 25(2), 231-266 (2008)

34. H. Ishii, Fully nonlinear oblique derivative problems for nonlinear second-order elliptic PDE’s.
Duke Math. J. 62, 663-691 (1991)

35. J.M. Lasry, PL. Lions, A remark on regularization in Hilbert spaces. Isr. J. Math. 55, 257-266
(1986)

36. P.L. Lions, Generalized Solutions of Hamilton-Jacobi Equations. Research Notes in Mathe-
matics, vol. 69 (Pitman Advanced Publishing Program, Boston, 1982)

37. P-L. Lions, Neumann type boundary conditions for Hamilton-Jacobi equations. Duke Math. J.
52(4), 793-820 (1985)



First-Order Hamilton—Jacobi Equations and Applications 109

38.

39.

40.

41.

42.

43.

44,

H. Mitake, Asymptotic solutions of Hamilton-Jacobi equations with state constraints. Appl.
Math. Optim. 58(3), 393-410 (2008)

H. Mitake, The large-time behavior of solutions of the Cauchy-Dirichlet problem for Hamilton-
Jacobi equations. Nonlinear Differ. Equ. Appl. 15(3), 347-362 (2008)

H. Mitake, Large time behavior of solutions of Hamilton-Jacobi equations with periodic
boundary data. Nonlinear Anal. 71(11), 5392-5405 (2009)

M. Motta, F. Rampazzo, Nonsmooth multi-time Hamilton-Jacobi systems. Indiana Univ. Math.
J. 55(5), 1573-1614 (2006)

G. Namah, J.-M. Roquejoffre, Remarks on the long time behaviour of the solutions of
Hamilton-Jacobi equations. Commun. Partial Differ. Equ. 24(5-6), 883-893 (1999)

J.-M. Roquejoffre, Convergence to steady states or periodic solutions in a class of Hamilton-
Jacobi equations. J. Math. Pures Appl. (9) 80(1), 85-104 (2001)

H.M. Soner, Optimal control problems with state-space constraints. SIAM J. Control Optim.
24, 552-562, 1110-1122 (1986)



2 Springer
http://www.springer.com/978-3-642-36432-7

Hamilton-Jacobi Equations: Approximations, Mumerical
Analysis and Applications

Cetraro, Itahy 2011, Editors: Faola Loreti, Micoletta Anna
Tchou

Achdou, ¥.; Barles, G.; Ishii, H.; Litvinov, G.L. - Loreti, P;
Tchou, M. (Eds.)

2013, ¥V, 301 p. 11 illus., 2 illus. in color., Softcowver
ISBM: 97 8-3-642-36432-7



