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LL HaBauThen
Reed :

/ Definitive Let M be a set
,
and ☐≤ MXM

.

Let 2 ( " sub" /

be the associated binary relation : ✗ 4 y :⇔ (✗ y / c- D.

Cal 4 is a paitialo-iugcoqm-isapa-tialhfe.de#et )
= ⇔ they, Zf M :

( it ✗ { × ( reflexive

Ci it @ try & ✗ < × ) ⇒ (✗ = y ) ( antisymmetric )

Liii ) (✗ try & y < 2- I ⇒ ( ✗
42-1 (transitive /

(b) ×
, y c-

te are Coyparade
:⇔ ✗ Sy or ✗

<×

✗iy
are incomparable :⇔ ×

, y are not comparable .

⇐ I 4 is a totIovdeg
: ⇔

lil 4 is a partial ordering
Lii ) ✗ ay ace comparable for all ✗- y C-M

@ I Let * ≤ M .
Then u c- M is an u_ppevbol fax

i. ⇔ w 4 u tf WE VV .

(e) WE W is a www.alelewent-oft : ⇔The following

implication holds
:

in hw far WEw ⇒ in = w
.

( Note : A maximal element need not be an upper
bound

and vice versa
- see examples below ) .

|E✗amp cat
"

≤
"

is a total ordering on IR .

* = [0 , 1) has ☒ maximal element
,
but any

u ≥ 7-

is an upper
bound for W

(b)
"

≤
"
is a partial ordering on PCI ) ,

but not a total

ordering .



Cc ) (✗± , ✗a) < ( ya , ya ) : ⇔ ✗j ≤ Yj ,
j = 1,2 , ④

is a partial ordering ( but
not total ) on M = tr .

W : = { lad ,
I 1,01

,
(o , 1)} has 2 ( !) maximal

elements
,

but none of them is an upper bound
for it .

-
-

The following axiom is equivalent to the
axiom of

choice .

'

/A✗iom (Zen's Lena / Let M≠¢ be a

partially ordered set . Assume every totally
ordered

subset of M has an upper
bound _

Then M has

a maximal element .

-
-

We now finish the

pwufofthm.2.SI(Remains
: Every Hilbert space

# ≠ { 01
has an orthonormal basis )

Let M : = { E ≤ E I E orthonormal } .

Then ?

( is re ≠ ¢
( ii )

"

E
"
is partial ordering on M

Liii) Let 1×1 . be a totally ordered subset
of M

.

Then U : = U E E M :

EE 1×1

If × , ,
✗z
E U then 7 Ej C- W .

'

XJE Ej , j
- 1,2

.

As V4 is totally ordered , E ,
≤ Ez ( w log . )

Hence
,
×
, ,
×,

c- Ez ⇒ ×
,
1-Xz ⇒ U orthonormal

That is , U is an upper
bound for 1×1 .

By Zorn : 7 maximal
elementMt M .



Claim: M is an orthonormal basis for I ⑤
( it orthonormal clear , since

ME M

Iii ) Assume it is not complete , i. e. , not a basis .

Then ( by Def . 2.47 (d)1 ,
there is some ◦ ≠ ✗ C- E

such that ✗ 1- in the EM
.

Hence
,

M
'
: = { ¥, } UM C- M ( since M

'

isoituouovmal )

so MEU
'

which contradicts it being maximal
☒

/Remaek Similar arguments pwrethm
.
2- 4

(existence of Hazel
basis ;

see exercise).

|Theoum (taEIH Let # be a vectorspace ,

let p
:* → IR be convex

,
i. e. f- ×

,
✗
'

c-E
,
Ka c- [o

,
I] :

p ( ✗ ✗ t 4- ✗Ix
' ) ≤ ✗pal c- C-Hp (✗ ' 1

.

* )

Let be a subspace , and let ✗ : Y → It be linear , with
Redly / ≤ ply / try c- Y

. (a)

Then there exists :* → It linear such that :

(it A / y
= ✗ ( i. e. 11 is extension of d)

Lii / REACH ≤ pal txt # ( i - e. ☒ 1 is preserved )

If
,
in addition , p also satisfies

**) Pax ) ≤ pcxl tx c-$ ,
ta c- It with 1×1=1

then we even have / 116-11 ≤ pcxl A-c-I .
-
- .

(Remwk I (a) Condition ☒* 1 is equivalent to :

p (xx)
= pal txt 1K with 1×1=1 ( check ! /

Cbl If p is a s(ewi
- ) norm on E, then p satisfies * I & @ *1 .

I



Pf): 4 Steps : steps 1- &2 prove the main ④

part for IR - vector spaces , step
3 fr e- vector - spaces,

and

step 4 proves the addendum under add . condition * *) .

vlog : Y § # (otherwise trivial) .

Step: Case It = IR . Extend by one dimension - a preparation for
step2 .

By assumption
? I 2- c- ☒ IY ( so 2- to )

.

Let F- = span ( Y, { 2-3) .

For
every I

c- F
,
7 ! decomposition I = Yt ✗ 2- , ✗ C- Y

,
✗ c-R

Candidate for extension I of ✗ to F :

ICFI : = ✗Cyl c- a } far scene } c- 1k
.

( to be chosen /

Interpretation : } = IG ) . Clearly , I is ( IR- ) linear on YT
and I /y

-✗ .

Will choose } s -t . I ≤ p on É ( recall Iii)) :

Let Pa , Pz
> 0

, Ya , Ya C- Y
i
then

p , Hyde pzldyzl
= +pit (p.Fj-Yi-p.FI Ya) ⇐ 1

by@
#
≤ p (ftp.Yi-p?-pIYa1-=p?pT(y-pzZItp#pz(Yz-PiZ1

Hence ,

p
convex

(F) ≤ p , ply , -pal tpzpcyztpi-4 .

Re - arranging, we get

¥ ( that - ply, - pal) ≤ ¥ ( plyzt Pit ) - Xlyal)
Pi , Pz

>°
,

tf Yi , 42 C- Y



Hence
,
there exists a c- 1k ! ⑧

⇔ sup [ ptcxcy , ) - ply ,- pas] ≤ a ≤ int [ p÷( pcyz-cpi-4-rky.AT
pz
> o p ,

> ◦

KEY YAY

Set } = 512-1 : = a. Then , try- Yt✗2- c- F with ✗ >o ,
the right inequality in⇔ implies

✗ (E) ≤ 2- ( Plf) - Nyt ) ,
so I (f) ≤ Phil .

If I = y - ✗ 2- with a > ◦ , use the left iueq . in#
instead

.

Therefore ,
I ≤ p on F.

Sfep Case 1K = IR
.

Idea : Use Zorn to construct the extension .

Let
M : = { ( IR-7 linear extensions e of ✗ with e

≤ p on
doin /e)/

We have

Lil M € ¢ since ✗ c- H

Lii) Define partial ordering
4 on M :

e , he ≥
= ⇔ dom le, ) c- dow lez) ^ ez /dance, ,

= el .

Liii / Let IN ≤ M be totally ordered
.

Udom let → IR where é is any
element

Define
u : eew of W suchthat

✗ 1- é(✗ I ✗ c- donley
.

uiEed :(i-e . iuclep . of
the chosen é among

allowed elements) :

let ✗ £ doin (F) n dow (et) . Since V4 is totally
ordered

,

we have (wlug . ) éz is anextension ofei-H.eu ,
Ezcxl = ETCH .

uisl.IR#liuew:Letx.,xzC-Udomle) , y C- IR
.

Hence
,

ee w

Féj EW : ✗g- c- doin lej ) , j = 1,2 . Since he is totally ordered ,
(w log. ) et is extension of et .

Then ✗ i ,
✗a ,

✗ it✗ ✗a

C- dow test & linearity of u follows from that of Ez .



Lastly : UCH = e-64 ≤ pcxl Kx c- U dance) . ⑨
etw

Hence : U E M
,
and ( check !/ u is an upper bound for W.

By Zorn's Lemma
: of has a maximal element A. .

Ian : down (A) = E. : suppose down (A) f-E.Then there

is some ◦ ≠ ZE#\ down (A) .
Let F : = span Colour

V17
,
{ 2-3) .

By step 1 , X has some ( IR -) linear extension
ITEM to F

,

which contradicts M being maximal
.

Hence , the main partof the term .

follows for # =/R
.

Stp≥ Case It -_ e. Reduce to the
real case.

Define lly ) : = Reilly / HYE Y .

Then I :# → IR is IR
- linear

,

and I ≤ p on Y .
So
,
Step 2 implies : There exists IR

-linear

functional L : ☒ → R with L / y
= l and L ≤ p on

€
.

Note : ✗Cyl = llyl till- iy ) try c- Y since :

all - iyl = Re ✗C- iy /
+¥" Re [- idly if = Im ✗Ciel

Define ACH : = Lcxl + i LL - ixl , ✗ C-II .

Then
, by step 2 ,

Lil X is IR - linear ouI

wildly = ✗

Liii) Rex ¥
"""

L ≤p on I

Also
,
A is € - linear

,
since it is IR- linear and

LIR- Lin

✗ (ixl = (( i✗ It i LCH = i (Lil + i Ll- ix)) - i ACH ,

proving the
main part for 1K=e .

Step : Addendum
: We fix c- E and use the polar Upr .

✗ 6-1=1116-11 ei◦→
' [If ☒= IR then ei

•⇐'
c- { -1 , I}]

Then 1×641 = e-
i ⊖#1/11×1 E-

""

✗ ( e-
i 06-1×1 ¥ˢᵗ

"

Red (e- iocxlx ,

main part
≤ pie

- i0-41×1 ⇔É pay ☒



④/Coary4 Let E be a normed space ,
Y ≤I a subspace,

and q E Y
*
. Then there exists f c- ☒

*
with fly = q

and H f If
#
*
= Kelly * .

-

-

P± Apply Them .

4- 3 with p 1×1
: = Kelly * - 11×11 far ✗ c-E

( fulfills assumptions - check ! / to ✗ = g. Ther Ff :#
→ It

linear with If CHI ≤ Kelly ☒ 11×11 , hence 11ft#* ≤ Helly * .

But
af#* = sup
lf

◦≠✗c-☒ 11×11
≥ "P

"
= Kelly* ☒

0--1 ✗ C- Y

/ CovoUay# Let # be a normed space
and let ◦ ≠ ✗◦ c-E.

-
-

Then there exists f- c- E* with fish = 11✗◦ If and 11ft/
*
E-1 .

-

-
-

PI. Let Y =

span { ✗ o} .
If y c- Y then ✗ = ✗ Xo far some

unique ✗ C- It
.

Define ee on Y by cecy ) : = ✗ . 11×011
.

This implies ce Gol = 11×011 and ce c- Y
* with Kelly*=L ,

since 141411 = 1144 . By Cov . 4- 5 ,
3- f : ☒ → HE linear

,

with

fly =

q ( in particular , f Gol = 11×011 ) and Iff 11#*
= Kelly#

= 7-
☒

-

/Cuy Let E be a normed space ,
2- ≤ E a

closed subspace ,
and ✗◦ c- E) 2- with ◦ < distcxo ,

Z) = :D
.

Then there exists f c- * * with f /E- 0, fcxu)
=D

and 11 C- 11$# =L .

- -

Pw See exercise
.



4-IILeceseq-uenee-LBE.ve
'

stem ⑧

www.4#CBIagh-stILans;UIfEBEEPEik )

Let € be a Banach space ,
Y a normed ( ! ) space ,

and

5- ≤ BLCEIY) .

If
sup

11T✗ If < a V-✗ c- E

TEF

then sup
11TH <•

.

TEF
_

-

-

PI For u c- IN ,
define

An '

- = {✗c-I / 111711 ≤ n KT c-F) = MT
- '

(RE) (
closed

,
since

1- c-F T cont . )
Then

, by hypothesis , E=¥wAu . By car 1- 49 ( causey . Baire )

there exists no C- IN St . An
◦
is not no-where dense .

Since Ano is also closed : F ✗◦ c- Am
.

& r - o : Brio / ≤ An
. .

Now let ◦ e-✗ c-I and TEF
,
then

I 11TH ≤ 11T (¥,✗ + ✗a) 11 -11117011 ≤ not 1117.11
,ZKXCI -

C- Brian ≤Ah
,hence

,

11TH ≤ f- (not KT ✗◦ III. Taking the supremum
overall

TEF proves the claim . ☒

Meaem/(Qpen_mapp±ugthem / Let E, Y be Banach spaces .

Let T C- BLLE , 4) be onto ( surjective ) . Then T is open

can open map) , i -e .

:

A ≤☒ open ⇒
1- (A) ≤ Y open
- -



The thin . follows from 3 claims : ⑨

¥1 : Fr > ◦ : TCB d) has non - empty interior
⇒ T is open ( i -e . claim is

"

⇒
" holds/ .

P€ Assume TCBÉ Cost has non - empty interior .
Let y

: =Tx for some ✗ c- BE lol be an interior point of
1- ( BE loll

,
i -e-

, Fry ' Biffy) ≤ T( BE toy
.

Note : BÉ (o) ≤ BÉ (✗ 1 far some E > o C large enough ,
e.g- 3r)

Hence
, 13¥41 C- 1- ( BICH

.

* f

By scaling ,
translation and linearity , we get tr

'
>o :

TCBÉC✗1) =TCBE.cat/)--T(f-BFColtx1--&-TCBFco))-Tx--tf-T(BFcx1-x) + TX
☒
≥ ¥431,41 - Tx) + Tx = 13¥01 +Tx

Ty
= 13T¥ 6) + Tx = B¥⇒(y1 . ④*1

Now
,
let d- C-II be open , let y

'
c- 1- (A) be arbitrary ,

and

choose ✗
'

c- A s -t - Y
'
= Tx

'

. Since A is open ,
3- r

'
>◦ :

BÉC✗ ' / ≤A ,
hence

☒*

1-(A) ≥ TCB (✗4) =T( 13¥64 +✗
'

-✗ I ≥ BÉ÷(Hey ' - y=B¥¥y
')

.

i.e. TCAI is open ,
so claim 7- holds. ✓

From now on
: center of ad balls is 0 ( unless otherwise noted)

and we drop the center from
the notation

claim: 7 E " :

BI ≤ TCBTE)
.
C-** I



PI : Y
◦

TCEI = T (UBE ) = UTCBÉ ) . . ⑨
NEIN HE IN

Now
,
Y is complete , so we can apply Baine 'sThe ( in form

of car . 1.491 : Then exists uc- IN '
- T( BE ) is nod no- where

dense
,
i- e

, Fy c- TCBTI) and Ezo : Betty) ≤ TCBTEI
,

or

,

equivalently , Bet ≤F -

y .

We have :

(it 7 (✗kfnw≤ BÉ s -t . y
= himTxn

b.→ do

liil -VkE IN : TCBTI) -Txn = T(B¥ ≤ TCBZET
hence BÉ ≤TIE)

,
so BÉu=± BEY ≤⇐

TCB-Et-TCE.BE/--TCBF1-.VClaim-3:TCB-F)c-TCBE)P-I
Let E be as in Claim 2 .

Let ✗ c- TCB .

Then there exists × , c- BE such that

y
- Tx

,
c- BIG *É

'

TCB)
.

Similarly ,
then exists ×≥ c- BE such that

y
-Tx

,
-Txz = f-Tx ,) - Tx, c- BÉ, ¥**TCBy

Inductively we get : the 1W 3- ✗u C- 131¥ , s -
t.

y
- Étxj C- 13¥, ***✗ I

g- =/

Since I llxull < 2 <a
,
and E is a Banach space,

UE IN Iz- Ch- 1)

I g.
: = ✗ c- I exists by Lemma 2- Jalal . AST is cent;

JEIN

we have Tx = I Txj . Using @*** 1 and the continuity of All,j c- IN

Ky -Tx 11 = him Hy
- Étxj If = 0 ,

hence y=Tx , 11×11<2
→ so j= ,

i.e
. ✗ c- TCBÉ ) ☐•



⑨lcoraclany4.lt/CI=Eappi-ugteecnl- -

Let E , Y be Banach spaces ,
and 1- c- BLCITY/

a bijection . Then T"EBLÉ
-

PI Clearly ,T
- '
exists and is linear (recall 2.25) .

By Thw
-4.9

,
T is open ,

that is
,
T
- '
is continuous ☒

/ D-efim-h.nu#I-X--YbenvmdspHT:x--o-dom(T)-sY
a linear operator .

@ I G-raphof-T.co(T) : = { ( ✗Tx) ≤ E-✗ Y I ✗ c- doin CT)}
We equip * ✗ Y with thee now

Klay) 11
#✗y

'

-
= 11×11*-1 11411¥

Then : Ei Y complete ⇒ ✗ ✗ Y complete .

(b) T is glossed Cqpe&w) : ⇔ GCT) ≤✗ ✗ Y is closed

( in ✗ ✗ Y
,
All✗✗y).

/RemwkY
Cat T is closed if and only if the following implication

holds :
@uh ≤ doin LTI with

: ✗É% c-I & Txu→ y c- Y

⇒ ✗ C- down LT) and y
=Tx

Cb I compare @ 1 with the definition
of Tlseq . ) co .

,

where convergence of #-) u must be proved .

Here
,
it is given /assumed !



thetas / ( closed graphical ⑨
Let E , Y be Banach spaces

and T :* ≥dont → Y

a closed linear operator . Then
doin CT ) closed ⇔ T bounded

.

-

PI
"

⇐
"

: Let⇐In ≤ clout with ✗a"→%c-E.Then Cain
is Tandy in E. By hypothesis ,T is bounded ,

so (T✗n)u is candy in Y .

But Y is complete ,
so Fye Y : Txu § and ,

sinceT is closed
,
it follows

that ✗ = him an c- dow CT) ( and Tx =y / .

→a

GCT ) → doin CT )
Define the pwjed-il.nl?:@.Tx1i- ✗

(if GCT) is closed in ✗ ✗ Y
,
hence GLT) is a Banach space .

( i it down LTI is closed in# ( by hypothesis / , hence
down CTI is a Banach space .

Liii) P, is a bijection
Liv) P

, is bonded : Let 2- = Lxitxl c- GCT)
,
thee

UP , 2- If#
= 11×11

#
≤ 11×11*+1117114 = 112-14,y .

So XP
, 11 ≤ 1

By the inverse mapping theorem Pi
'
: doing → GCT )
✗↳ ⇐Tx )

is also bounded
,
hence :

Fc < • : HP
,

- '
✗ If ✗✗y

≤ c 11×11×-5 iuullpi '✗H✗×y= 11×11×+111711,
this implies 111711

,
≤ ⇐ + 1) 11 ✗ 11€

So T is bounded ☒



/F✗am4 / Let E=Y= Court with supremum norm (
Banach !/⑨

-

Consider T : = :
domCTI → Cock)

f ↳ f
'

with dour (T) = { f- c- Coca I f- c- CHIN and f
'
c- Cocoa} ≤ Cock) .

Claim : T is closed ( a closed operator) .
Let ( ful new

c- clan CTI be a sequence such
that

.

'

til 7g c- Court : I / fu - g % %
u→w

Iii ) 7h c-Court : Kfu
'
- hello→ o

i. e.
,
(fu

,
fu

'

)u C- GCT )
, (fn , fu

'

)
,
[g.h ) in * ✗ Y ; we need

to prove
that & ,4 C- GCTI

, equivalently , g c- dom CTI and h=g !

By uniform convergence , we can exchange
limits

,
so
,
Kx c- IR

,

✗
✗

him fu
'

Ltl It = him fuiltldt = g 64
- geol

f.uutdt - → •
→ • tofu

1×1 - fufo)

( since fu → g pointwise , by ( is) .

Henie
, guy = gco) + fath ltldt Hx c- 112

So
, by the Fundamental

Theorem of calculus (HDI ) : g c- C'CIRI

with g
'
= h c- Court

.

Since g c- Court ,
we have gtdomct)

,

and so (g , h) = (gig
' ) c- GCT)

.

So T is closed .

Thin - 4- 73

Also : Since T is unbound Ccf. 2.28 ) ⇒ doin LT) is not

a closed subspace of court wit . Ella .

4-IEi-hsalspayednwectopoeogi.es/Theoiem4-5-Let E be a normed space .

Then
,
for every

✗ c-*
,

11×11 = sap
lf¥

o≠f c-**
11ft/
*

- -
-

PI: see exercise .



/Defimkl ⑦
-

Let * be a normed space .
We call

☒
**

: = ☒* )
*
the bidnafspauof ( always Banach !)

More generally ,
iutwdue the uKal _spat
n - i times

/..Mi
time ,

: = ⇐**) * for u c- IN
, recursively .

/FÉedefimti-) Let ☒ be a normed space .

-

The cauouicalembe-diugj.LI → *
**

✗ ↳ j✗
with Jx : **→ It

f ↳ flat

is well-defined
,
linear

,

and isometric
.

If J is surjective ,
we call I ief6 .

/Reuwks/ (a) Hilbert spaces are reflexive ( Riesz ! )
(b) Every finite

dimensional named space is reflexive
(usethedual basis /

(c) IP , LP are reflexive far p c- ( 1 , a) ; co &
It are¥t reft_

(d) Milman - PettisRim
: I uniformly convex & Banach

⇒ ☒ reflexive

(e) E reflexive ⇒ I complete .

-
-

Pf( : J is well - defined ( i - e. Jx c-*
** the# ) :

Let ✗
, p c-
It

, fig c-☒
*

,
then

(Jx)(✗ ftp.g ) = @ ftp g) G- I
= ✗ fcxltpgcxl = ✗ ( Jx ) (ftp.CJx) (g)

So
,
Jx is linear . Also , Jx is

bounded
,
since

11 Jxlf = sup = sap
lf Thu.4. 15

= 11×11 <0
.

**
◦ ≠fc-☒*

Ilf4¢ o≠f←#*
Nfl/
*

Hence
,
JX C-*

**

,
so J is well - defined

- and
,
an isometry.

Also
,

J is linear : Let xp c- It
,
✗ ay c-
E

,
then

,
for all f c-*,*

(✗ ✗+py))(f)
= fcxxtpy) = ✗flxltpfcie) = ✗ (Jxlcf / c- p (F) If /

,

and so J(✗✗ tpy ) = ✗ Jcxltp Ily) ☒



MEG / Let # be a Banach space .

Then ④
-

* reflexive ⇔ *
*

reflexive
-
-

PI : ☒
*

)**=(⇐ *F)
*
= ☒** )* = #

*

a

: see f. ex
.
Werner

,

"

Fuuktionalaualyaiis ; 8-Anti - ,Tim .

# 3- 4
.

|Theoum4 Let E be a normed space .

Then

☒
*

separable ⇒ E separable .

/Rewaikl * =L 1- shows that
"

⇐
"

does#hall
,
since

I ≈ (et)
*

,
which is eat separable .

Pf(4 : Let A : = { fu c- *
*
Inf IN / be dense (exists by hyp . ) .

For u c- IN choose ✗a C- Is . t.lt/n4--1&lfnlxu)Ia-Illfnl1*
.

Let D: = span# { ✗u
1new} ≤I .

Claim: D is dense in * ( Note : Disha countable ,
but alt- linear

subspace ) .

Pf(c) : Assure ( fav contradiction
) Duct dense .

Then then exists
ZE # s -f . distz , D) 20 . By Cov . 4.7 CH- B:)

F f c- ☒
* : f / ☐

= 0
,
f- (2-I 20.

Now :

( it A dense in #
* implies

: 7 seq . C-untie
≤ A :

11 fun- f- ¥ ☒ f

Lii ) We have f1b=◦

If fun _ fff* ≥ / fun Cxnn) - fcxun) / ± / fun(✗null ≥ £11 fun¥
k→ do

Then llfnnll
#

¥0
,
so fun → o in#

*

,

hence f- = o by④ %
So

,
D is dense .

Define Ñ : = if It = IR
, resp

. HT: = + iQ if It = ¢
,
and set



D: = span# {✗u Inc- IN} .

Then Ñ is countable & dense in* ☒ ⑨

/DefT Let E be a He - vector space ,
let { Pa } ✗c-I

be a family of semi horns on ☒

@ I { palate is separating
: ⇔ to≠✗ c- A- : 7✗ c-I : pal ✗ I so

4) For given ✗ c-I , r > ° ,
let

↳ r : = { y c- II I paly) < v } 70 .

Also
,
for ✗c-E ,

let

↳v64 : = ✗+ Uav
= { YEE I paly-✗ I < r} 2- × .

Let

Nx : = { Ñ Ug
, rjlxl / ut 1W , dj c-I , vj > 0 fwj = e-, _ . , in }

j= ,

( family of finite intersections
of Uav (✗I

'

s )

Define the Loyalty coIgtopolugy-cl-c.tt on
# indeed .

by { Pdx c-I :

Y ≤I open in
the l - c -t .

:⇔ A- c- Y 3-*Elk : ↳ ≤ Y

⇔ V-xc-YJ-H.tk : Y = U Xx
✗C- Y

/Remaik3 / ca ) Uarlxl is open in l - e -t -

,
and it is a

neighbourhood base of the I. c-
t.at × .

(b) If { Pa}✗c-I is separating ,
then the d- c-t.is Hausdorff

( see exercise ) .
@ 1 The elements ofthe neighbourhood

base an

conic sets ( hence the name) : For ye , yz E Uav
and ✗ c-Eri

,

we have ✗4 , t (1-7) Yz C- Ua , v ,
since ?

Pac Xy , +C- that ≤ pal ✗Yi It pill
- that

= ✗ PYY# + c-HPaY÷ < r
.



(d) E is a topological vector space
wit

. a locally ④
- - - --

convex topology , i.e. , addition of
vectors and malt . of

a vector by a scalar are continuous wet . a I. c.
t

.

This relies on Ugo (x1 = ✗ + Uav & ✗ Var (✗1=4,1*4×4
✗ C-* , ✗ c- It ,✗ c-I,

r >0
.

Not-d-i.ve#spau-topolog-y : ⇔ a topology making E
into a topological vector space .
-
-
-

The composition of a
linear map

with a norm gives a

semi norm ( check ! 1 . The following abstract result
will be

applied several times with
different choices of Sa and 2- :

/ Lemma4- I Let E be a vector space ,
I -2,11 . Hz) a normed

space ,
and Sa : * → 2- a linear map

for every
index ✗ C-I

.

Let t.at
.

be the Locally ≤owe ✗ topology on * induced by

the family of semi norms { ✗
↳ Ilsa ✗ Hz}

,←I.
Then :

(a) t.ee
.

is the coarsest vector space topology on
E s -t .

For every
✗ C-I the map Sa is continuous .

(b) @a) new ≤E converges to ✗ c-E wit . Te⇔ ⇔

IlSa - Sa ✗ 11=5%0 ta c-I
-

Pf:Svcise_ _
A very important example is when Sa C-

#and 2- = It :

/ Defi-4.at#--i.LetEbeauovwedspaie.ThewIkIopology-
onE_
*
is the locally convex topology (t.at -7 on I induced

by the family of semi norms { ✗→ If G)I }
+e-**

.

·



⑧/LemmaY Let ☒ be a normed space _

Then the

weak topology on E is

Cal Hausdorff .

(b) the coarsest vector - space topology
on ⇐ such that

every
f- c-*

*
is continuous .

In particular , the weak

topology is coarser than the norm (= : strong) topology .

@ 1 identical to the norm topology ,
if dim # <•

,

@ 1 such that Giuliano ≤* converges to ✗ in the weak

topology ( or , weakling iff-

Lim fin) = f- (x) tf c- ☒
*

→ a
u→ a

Notation : Xu⇒ ✗
,
or ✗n- ×

.

-

PI (a) By Ruh Y - 23lb 1
,
it suffices to check that the

family of semi norms is separating _

This follows from

corollary 4- 6 (H
- B !) : For every

◦ ≠ ✗ C-I Ff×I*:f×6-1=11×11 .

4) Lemma 4-24 (at ⇐ I see exercise @ f Lemma 4- 24 Cbl .
☒

/ RemwkY.tt# (a) Weak limits are unique by Lemma 4-26 /at
-

(b) If dim * = 0 ,
then the weak topology is ¥

1ˢᵗ countable ( hence not ineligible ! ) ( fwpfr , see exercise )

(c) Strong convergence
"¥" weak convergence (butingeneral not

vice versa ! )
(d) In a Hilbert space E ( by Lem -

Y -
26 (d) & Riesz) :

u → a

✗u # ✗ ⇔ Ly , ✗u >
→ Cy , ×> try c- I

⇐ f In et :
→a

✗in × ⇔ 1km- ✗ 11
,

→ o

(Schur
,
1921 ;

see also Conway ,

"

A course in FA
"

,
1990

, Pmp -
5-2)



/F✗ Let ☒ =L P
, p

c- It
,
in]

,
en: =@an)nn for u c- IN . ⑨

Then Li ) (e)u has no II. Up - convergent lie , strongly cow. )

subsequence .

Lii ) If p = 1 ,
then Lenin is most weakly convergent :

Recall @⇒
*
≤ IT and choose f- (-1,1 , -1,1 , -1 ,

.
. / C-to

then f- (en) = C- 11
"
tu c- IN which is not convergent

as u→ • This is consistent
with Rink 4-27-61) .

Liii) If I < p ≤a ,
then Cenk is weakly convergent too :

In case lap <N ,
we have @D) *≈ let cthw .

2-38)

with 1 < g-
<N .

Hence
,
for f y= (yn)net

9-
:

f- (en) = yn# u ( since Ilyn /
9-
<a)

.

KEIW

In the case p
=D

,
use also exercises F-20 & F-

22
.

I Let E- be a normed space ,@u)u£w≤
€
,
✗ c-I

,

and

✗u
→ ✗

.
Then

(a) sup 11 ✗all <&
,
(b) 11×11 ≤ liminfllxull

UEHU
-

u→ 0

- ÷
-

PI (a) : Let ✗u ⇒ ✗
,
so fcxul → f-CH tf C- #

*

,

hence

tf c- E-
*
(fixed) : sup

If (a) I < •
,

HEIN~

(Txu) (f)

with the canonical embedding J :#→***. Since *
*
is

Banach
,
the Uniform Boundedness Principle Ohm -4-9) gives

sup HJ✗nH** < oo .

✓

new

IQ
(b / By Cor .

4. 6 (H- B !) :

F- c- ☒ * : Kf× ✗
*

= 1 and -9×1×1 = 11×11

and



Then ⑤
1×11=17×6-11 = him If✗ (xn) / = 6-mint / f- (a) I ≤ him inf 11-1×11*11✗all ☒

→a u→ a → a

=p

/theorems / Let IT be a normed space .Then ✗is × iff

the following two statements
hold :

Li) sup
11hr11 <outIN

Iii / IF#
*
with span

(F) dense (wit . 11-11*1 in E-
*
s -t .

tf c- F : Lim f Gul = flxl
.

* 1
→ a

-
- -

P€
"

⇒
"

: From Lem .
4. 29 and by definition

of weak convergence

E-
"

: Use an 3- - argument : Let E >◦ and g c-
.

Let

K : = f- ( 11×11-1 sup llxull) <a. Since span
(F) is dense in☒*

,

ut/N

there exists f e span (F)
: 11 f - g 11*2 ¥ .

.

Also
,
far

f- c- span (F) ,
7N c- IN : th ≥ N : / fin) - f (x1 ) < §

( Nate : ☒ 1 holds also for f c- span
CF) as finite tin - comb

. )
Hence ,

In ≥N :

Ig 6-1 - gcxn) / ≤ lgcxl-fcxst-lfcxl-f-ull-lfcxul-gcxu.tl
≤ ¥É¥(

" +

H%
< E

☒

ltheoumY.SI/CEbenE5xhgn ) Let# be a Banach space
and d-≤II.Then A weakly compact⇔ A weakly sequentially compact .
-
-
-
-

Pf
.

Not here ;
see Whitley , Math . Ann .

172
,
116 - 118 ( 19671

.

☒

/Defim-tn.cn#2/- Let # be a normed space .
Then the w&* topology

on € (
" weak - star

"

) is the locally convex topology on *
*

induced by the family of seminouns { f-↳ IfG) I}✗ ≤☒
-

#



I / Let II be a normed spaceThen
the weak

*

topology ④
is (a) Hausdorff

Cbf The coarsest vector - space topology
on ☒

*
s -t.tk c-€

,
the map

☒
*
→ It is continuous.

f- ↳ fat

E) coarser than the weak topology on E-
*

,
and the two coincide

iff E is reflexive .

(d) such that (ful u ≤*
*
converges to f c-

E-
* intine weak

#
_ top .

iff. fucxl %Cx ) Fx c-E

Notation ' fu#f.
-

PI ( at { f ↳ IfG) I/✗←☒ is a separating family
of seminorms :

For f -1-0 there exists ✗ c- I
write fat -1-0 .

Cbf Lemma 4.24 /a) with -2 = It and Sa = Jx (J :☒→☒
** canonical

embedding )

(c) J (E) C-☒
** with equality iff € is reflexive.

@ I Lemma 4.24 (b) .
-

The next theorem is the analogue of Lem .
4- 29 &Thin .

4.30
.

However : Nate that hey , I
must be ccenplite in order to

apply the Uniform
Boundedness Principle in Cal Li ) .

/TheoUmY / Let * be a normed space, FEET@
In ≤ ≤

*

(a) If fu f
,
then

( is If * is even a Banach space ,
then sup

/Hulk, < •
hf IN

Iii ) Hf1f* ≤ him infllfn 11¥
u→ a

② 1 If Ci ) sup Hfu¥ <outIN

Lii ) 3- A ≤E with span (A)
dense in ☒ (wit . 11.11)s.tt/xC-A=fuCx1h-B*fcx1

then fu →
*

f. (If E Banach ,
the reverse holds by (a)(il)



Pf : See exercise ☒ ④
/Theoum4.3 ( Baruch-HIGH Let E- be a normed space .

Thenthe closed unit ball in ☒
*

,
B-↑ : = { f c-** I 11ft* ≤I}

is compact in the weak
*

topology .

-
-

PI. Equip the
set of maps { f : ☒ → It} = 1K€ with the

product topology Tpood
: = ,€*T* of the Euclidean topology

JÉ on It. Then
:

lit Tpood is the
coarsest topology on 1K€ such that the projection

evalntatiuu map 117 : It
#
→ It is continuous far

all ✗ c-E

f ↳ f- 1×1
( see1-7 ,Tnt sheet 2)

Iii) Jpwd is a vector - space topology
on 1K¥

Adon " it : 1K¥ #
*

→ 1K€
.

It suffices to prove openness
of A-

'

cut

¢ , g) ↳ ftg

in 1K¥#
* for U in a base of Jpvod , that is , for U

= ✗ U✗
✗C- U

with 4- C- JK ,

and Ux = It for all but at
most finitely many

✗c- E. Addition in the field
It
,
it#

: #✗ It→ It ,
is continuous

②Z ' ) ↳2-+2-1

Hence ,
A-

'

(U) = ✗ it"# (4) with
✗c-*

tix (U✗ \ ≤ J*✗J* ✗ c-*

and A-¥ (4) = It✗ It except for at
most finitely

may
✗ C-€ .

Hence
,
d-
"
( U ) c- Jpued ✗ Jpwd ,

as finite intersection
of a union

of product sets 4 ✗ Vz with each Vj E Jpvud ,
j = 1,2 , being

a product set
of factors all of which are equal to #

except for one .

✓ The case of scalar mutt . is analogous
&

simple.

Liii ) Given a linear subspace
$ ≤ 1K¥ the subspace topology

Jp and /g.
'

-
= { Un $ I U c- Jpwd } is a vector space topology on

$ wit . which the restricted eval . maps 1171s are continuing tx c-I

z



Now
,
choose $ = #

*

,
and let Jw* denote the weak * top . ④

on ☒
*
. By 4.33 (b) , Jw*

≤ Jpwd /** .

Therefore ,
the

map

6 :#
*

, Jpwa /**)
→ ( EF Twx )

f 1- f

is continuous
,
and the theorem follows if we prove

: B-↑ is

Tpwd - compact : we claim
: Then it is Tpvoa /⇔

- compact

( and hence , by continuity
of 6

,
Tw* - compact / .

Pfn ? Consider a Jpwd /*I open cover V4
of B-

,

* and
a

use that , for Va C- Jpwd /** ,
then exists Ua C- Jpwd with

Va = Van #
*

.

The Jpvod - open cover Y 4
has a finite

subcover

( by assumption) , and intersection
with#*gives finite

sub -

cover of Va Va -

✓ ( claim) .

t-PIJpn.eupaetues
: Define A : = ✗ Ax ,

where

✗c-€

A × : = { 2-c- It / 12-1
≤ 11×11} is compact in It . ByTycho

uoff Grin . 7-28,1

It is Jpwd - compact .
Note that : FEA ⇔ fat c-A✗

ttx c-*

⇔ sup
H ≤ 1

.

For ✗ye E , × , p c-
It
,
let

◦≠✗c-I
11×11

Lay ,xp
: = { ft #

*
IfÉ

= ° }

=
✗try

- ✗II - pity) Ifl

=

+py

- ✗II -pity)
- '
( { ◦3)

.

But
+py
- ✗II - PITY is Jpwe

- Jag - continuous ,
and { °} e- 1K

,

and
is Jae - closed , hence ↳ y,xp

is Jpvod - closed in
1K£

so also
[ : = M ↳y,

✗
, p
= { f '

- E → It } is line
✗ YETI
9 P c- He

Finally , BY = An L is Jpwa - compact (as closed subset
of

the compact A) ☒

E 3
is closed.



|m ( they ;ve-2°fIEIEn ) ④
Lef E be a sep⇐b6 normed space Then

B-↑ is

weak
* sequentially compact .
-

PI Let { ✗n 1k£ IN }
≤E be ( countable ) dense in E.We

need to prove
: Any sequence (fnlu

≤ B-it has a weak
#
- convergent

subsequence : Fix KE IN arbitrary .

Consider the sequence

(firer)) new≤ It .
This sequence

is bounded ,
since

/ fncxn) I ≤ 11 full#
- Axtell ≤ If ✗n 11 ( d k fix ?

¥ for all k fixed
, C-u int )u

Hence
, by Balzano

-
Weier strap ,

has a convergent subsequence ( in
1K )

.

Clm Then
exist a Comicon subsequence @j );

≤ IN :

tkf IN : (fujin))j←µ is convergent .

PI: Use Cantor 's diagonal sequence
trick :

There exists ⇔" ); C- IN such
that (fuji kill; converges

.

Then there
exists @ )j ≤ Cuj

"

)j s.t.C-fy.ca (x2)); converges.

Continuing this pwcednne ,

then exists @% "

);
≤ ⇔'

);

such that (fnje+n(✗e+ , ←w
converges.

The claim then

holds with uij
: = uj.it .

Now
,
define guy = = him fugGI Kx c- span {

✗nlktsw}= : doing?

j→&

( i ) doin (g) is a dense subspace
of# with respect to 11.11

( ii) g
: down (g) → It is linear

Liii ) g is bounded
: 191×11 = him lfmjcxll ≤ 11×11

j→ a~
≤ llfmj 11*11×11

Since It is complete, we can I.
apply the Bounded Linear ExtThin -2-31 :

There exists 5
'

-*→ It such that 51dam ,gj 9
& 11514=11911*1
≤ 1



Hence
, g- C- B-¥ _

Then
, by Them .

4.34Cbl
, fmj 3*5 asj -so ④

☒

Khe_IKEaEEreÉau¥AEE1
Let I be a Bausch space _

Then

I reflexive ⇔ BI: = { ✗ c-El 11×112-1} is we# compact
-

PI
"⇒ By Thur 4.19 ,

E-
*
= : Y is reflexive

. Applying 4-3314

to Y
,
weget : The weak topology on Y

*
= #*

*
=☒ coincides

with the weak# topology on Y☒=E , hence the
claim

follows from Thur . 4.35 applied to Y -
☒

☒

: See f. ex .

Werner
,

"Fnnktionalanalysis
"

,
8.Anti

,
Sat 2- VIII. 3.18.

/ F-xa-mp64.is#- Compactness of BT in different spaces
.

Here , p , g- c- Chao
)_anetÑdv conjugate

weak weak# seq -weak seq . weak#

It (≈l¥ ) no yes no yes

" ⇐ "" "" "" "" ""

vk.ec#l no yes / no / yes* a.µ .am, w f , w -

LPt*YY
[• (≈ (4)*) no yes .no yes

Thur
.

used 4.37 4-35 4.31 4.36

④ f Cov . to Krein- MilmanTheorem
,
see f-ex

.

Werner
,
sect _ VIII. 4

.

E


