Chapter 4: The corner stores of Functional Analysis

FI

(c)
$$(x_{2}, x_{2}) \land (y_{2}, y_{2}) : \Longrightarrow x_{j} \leq Y_{j}, j = 1, 2,$$

is a partial ordering (but not total) on $M = R^{2}$.
 $W: = \{(o, o), (1, o), (o, 1)\}$ has $2(.!)$ maximal elements,
but none of them is an upper bound for W .
The following axium is equivalent to the axium of
choice:
 $(Axiom 4.1]$ (2004's Lemma) Let $M \neq \phi$ be a
partially ordered set. Assume every totally ordered
subset of DT has an upper bound. Then M has
a maximal element:
 $We now finish the
Proof of Thm 2.53 (Remains: Every Hilbert space $K \neq \{0\}$
has an orthonormal basis)
Let $M:=\{E \subseteq S \mid E \text{ orthonormal}\}$. Then:
 $(i) M \neq \phi$
 $(ii) " \subseteq "$ is partial ordering on M
 (iii) Let W be a totally ordered subset of M .
Then $U:= \bigcup E \in M$:
 $Efew$
If $x_{1}, x_{2} \in U$ then $\exists E_{j} \in W$: $x_{j} \in E_{j}$, $j=1,2$.
As W is totally ordered, $E_{1} \subseteq S_{2}$ (mlog.)
Hence $i x_{1}, x_{2} \in E_{2} \Longrightarrow X, Lx_{2} \Longrightarrow U$ orthonormal
That is, U is an upper bound for W .
By Zern: \exists maximal element $M \in M$.$

Claim: M is an orthonormal basis for
$$X$$

(i) orthonormal class, since $M \in M$
(ii) Assume M is used complete, i.e., ust a basis.
Then (by Def. 2.47(d)), there is some $0 \pm x \in X$
such that $x \perp m$ the M . Hence,
 $M' := \{ \frac{x}{4\pi i} \} \cup M \in M$ (since M'is orthonormal)
So $M \subseteq M'$ which contro divides M being maximal \mathbb{R}
[Remark 4.2] Similar arguments pour Thrue 2.9
(existence of Homel basis; see exercise)
(theorem 4.3] (Hahn-Banneh (H-B)) Let X be a vectorspace,
let $p: X \Rightarrow R$ be convex, i.e. $\forall x, x' \in X$, $\forall x \in L_{0}, R$
 $P(x \times (-x)x') \leq xp(x) + (-x)p(x')$. (x)
Let Y be a subspace, and let $A: Y \Rightarrow K$ be timer, with
 $Re A(y) \neq P(y) = \forall y \in Y$ (a)
Then these exists $A: X \Rightarrow K$ diver such that:
(i) $A|_{Y} = A$ (i.e. A is extension of A)
(ii) $ReA(G) \neq p(x) = \forall x \in X$, $\forall x \in K$ with $|x| = 1$
then we even have $|A(x)| \leq p(x) = \forall x \in X$.
(Remark 4.4) (a) Condition $\forall x \in K$ with $|x| = 1$ (chush)
(b) If p is a (semi-) norm on X, then p sotiefies (k) $R(x)$.

Pf (of 4.3): 4 Steps : Steps I 2 prove the main (Fg)
paul for IR- vector spaces, step 3 for C vector-spaces, and
step 4 proves the additudin under add condition (k+).
Whog: Y S X (othermiser trivial).
Step I: Case IK=R. Extend by one dimension - a preparation for
Step 2: Case IK=R. Extend by one dimension - a preparation for
Step 2: Case IK=R. Extend by one dimension - a preparation for
Step 2: Case IK=R. Extend by one dimension - a preparation for
Step 2: Case IK=R. Extend by one dimension - a preparation for
Step 2: Case IK=R. Extend by one dimension - a preparation for
Step 2: Step 2: Case IK=R. Extend by one dimension - a preparation for
Step 2: Step 2: Case IK=R. Extend by one dimension - a preparation for
Step 2: Step 2: Case IK=R. Extend by one of the second of the second of the second for extension
$$\tilde{X}$$
 if λ to \tilde{Y} :
 $\tilde{X}(\tilde{Y}) = \lambda(\eta)(\tilde{F} \alpha \tilde{X})$ for some $\tilde{Y} \in Y, \alpha \in \mathbb{R}$
(to be chosen)
Inderprediction: $\tilde{g} = \tilde{\lambda}(\tilde{z})$. Clearly $_{1}\tilde{\lambda}$ is $(Re-1)$ diversion of \tilde{Y}
and $\tilde{\lambda}|_{Y} = \lambda$. Will Choose \tilde{z} set. $\tilde{\lambda} \in p$ on \tilde{Y} (read (11))!
Let $\beta_{e_1}\beta_{e_2} = 0$, $Y_{e_1}Y_{e_2} \in Y$ interm
 $\beta_{e_1}\lambda(y_1) \in \beta_{e_2}\lambda(y_2) = (\beta_{e_1}\beta_{e_1})\lambda(\frac{\beta_{e_1}}{\beta_{e_1}\beta_{e_2}}Y_{e_1} + \frac{\beta_{e_2}}{\beta_{e_1}\beta_{e_2}}Y_{e_2})$
 $= \frac{\beta_{e_1}}{\beta_{e_1}\beta_{e_2}}(\gamma - \beta_{e_2}2) + \frac{\beta_{e_2}}{\beta_{e_1}\beta_{e_2}}(\gamma_2 + \beta_{e_1}2)$.
Re-arranging we get
 $\frac{1}{\beta_{e_2}}(\lambda(y_1) - p(\gamma_1 - \beta_{e_2}2)) \leq \frac{1}{\beta_{e_1}}(p(\gamma_2 + \beta_{e_1}2) - \lambda(y_2))$
 $\forall \beta_{e_1}, \beta_{e_2} > 0, \forall Y_{e_1}, y_2 \in Y$

Hence, there exists
$$a \in \mathbb{R}^{2}$$

(3)
Sup $\left[\int_{\mathbb{R}^{2}} (\lambda(y_{1}) - p(y_{1} - p_{2}z) \right] \leq a \leq \inf \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} (p(y_{2} + p_{1}z) - i(y_{2})) \right]$
Set $j = \lambda(z) = a$. Then, $\forall \tilde{\gamma} - \gamma + \alpha \geq e\tilde{\gamma}$ with $\alpha > 0$,
the right inequality in $(\nabla \forall i \text{ implies})$
 $\lambda(\tilde{z}) \leq \frac{1}{\alpha} (p(\tilde{\gamma}) - \lambda(\gamma))$, so $\tilde{\lambda}(\tilde{\gamma}) \leq p(\tilde{\gamma})$.
If $\tilde{\gamma} = \gamma - \alpha \geq \min \alpha > 0$, use the left ineq. in $(\nabla \forall)$ indeed.
Therefore, $\tilde{\lambda} \leq p$ on $\tilde{\gamma}$.
Step 2: Case $\mathbb{K} = \mathbb{R}$. Iclsa: Use form to construct the extension
Let $\mathbb{M} := \{(\mathbb{R}^{-}) \text{ linear extensions } e \text{ of } \lambda \text{ with } e \leq p \text{ on } dem(e)\}$
We have
If $\mathbb{M} = \varphi$ serve $\lambda \in \mathbb{H}$
(ii) Define partial ordering λ on \mathbb{M} :
 $e_{i} \langle e_{2} : e^{-\beta} = dom(e_{i}) \leq dom(e_{2}) \wedge e_{i} (dom(e_{i}) = \tilde{e})$.
(iii) Let $\mathbb{W} \in \mathbb{M}$ be totally ordered.
Define $u : e^{eint}$ of \mathbb{W} such that
 $x : --\beta \in \mathbb{K}$ is any element
 $u : e^{eint}$ of \mathbb{W} such that
 $u : e^{eint} = \delta = 0$.
(if $u = 1$ dow(\tilde{e}_{i}). Some \mathbb{W} is totally ordered,
 $u = 1$ before $(u = 0, 1) \in \tilde{e}$ is an extension of \tilde{e}_{i} . Hence,
 $\tilde{u} = 0$ dow $(\tilde{e}_{i}) \wedge dom(\tilde{e}_{i})$. Some \mathbb{W} is totally ordered,
 $u = 1$ be $u = (u = 0, 1) = \tilde{e}_{i}$ is an extension of \tilde{e}_{i} . Hence,
 $\tilde{u} = (\mathbb{R}^{-})$ linear: Let $x_{i}, x_{i} \in U$ dom(\tilde{e}_{i}). Since \mathbb{W} is totally ordered,
 $(w = 0, 1) = \tilde{e}_{i}$ is extension of \tilde{e}_{i} . Then $x_{i}, x_{i}, x_{i} + x_{i}$
 \in dow $(\tilde{e}_{i}) \in \mathbb{R}$. It follows from that of \tilde{e}_{i} .

Lastly: ule = e le e ple + x E U dom (e). Hence: UE H, and (check!) it is an upper bound for W. By Zovn's Lemma : of has a maximal element A. Claim: dow (A) = X: Suppose dow (A) & X. Then there is some $0 \neq z \in \mathbb{Z} \setminus dow(\Lambda)$. Let $\tilde{Y} = span(dow(\Lambda), \{z\})$. By Step I, A has some (IR-) line extension REM to Y, which contradicts M being maximal. Hence, the main part of the thin. follows for HK = 12. Step 3: Case # = C. Reduce to the real case. Define $l(y) = Re\lambda(y) \forall y \in Y. Then <math>l: S \rightarrow IR$ is IR-linear and l & p on Y. So, Step 2 implies : There exists IR-linear functional L: X > R with Lly = l and L & p on X. Note: X(y) = L(y) + i L(-iy) + y e (sime: l(-iy) = Re L(-iy) de-lin Re [-i h(y]] = Im h(y) Define ACXI:= L(xI+iL(-ix), xEX. Then, by Step 2, Lil X is R-linear on X Also, A is C-linear, since it is R-linear and $\Lambda(ix) = L(ix) + iL(x) = i(L(x) + iL(-ix)) = i\Lambda(x),$ proving the main put for IK=C. Step y: Addenkum: We fix e & and use the polar repr. $\Lambda(x) = |\Lambda(x)|e^{i\Theta(x)}$ [If K = iR then $e^{i\Theta(x)} \in \{-1, 1\}$] Then $|\Lambda(x)| = e^{-i\theta(x)} \Lambda(x) \stackrel{\text{the line}}{=} \Lambda(e^{-i\theta(x)}x) \stackrel{\text{LHSER}}{=} Re \Lambda(e^{-i\theta(x)}x)$ main put $\leq p(e^{-i\theta Gel}) \leq p(x)$

Covollary 4.5 Let
$$X$$
 be a normed space, $Y \subseteq X$ a subspace, $\mathcal{E}^{\mathcal{F}}$
and $\varphi \in Y^*$. Then there exists $f \in X^*$ with $f|_Y = \varphi$
and $\|f\|_{X^*} = \|\varphi\|_{Y^*}$.

$$\begin{array}{l} \begin{array}{l} \overbrace{fills}{fills} & \overbrace{fills} & \overbrace{fills} & \overbrace{fills} & \overbrace{f$$

[Covallary 4.6] Let
$$X$$
 be a normed space and let $0 \neq x_0 \in X$.
Then there exists $f \in X^*$ with $f(x_0) = ||x_0||$ and $||f||_{X^*} = 1$.
Pf: Let $Y = 5pan \{x_0\}$. If $\gamma \in Y$ then $\gamma = \infty \times 5$ for some
unique $\infty \in \mathbb{K}$. Define φ on Y by $\varphi(\gamma) := \infty \cdot ||x_0||$.
This implies $\varphi(x_0) = ||x_0||$ and $\varphi \in Y^*$ with $||\varphi||_{Y^*} = 1$,
since $||\varphi||_1 = ||\gamma||$. By Cov. 4.5, $\exists f : X \to \mathbb{K}$ linear, with
 $f|_Y = \varphi(in particular, f(x_0) = ||x_0||)$ and $||f||_{X^*} = ||\varphi||_{Y^*} = 1$.

Covultany Y.7] Let X be a normed space,
$$Z \subseteq X$$
 a
closed subspace, and $x_0 \in X \setminus Z$ with $0 < dist(x_0, 2) = :d$.
Then there exists $f \in X^*$ with $f|_Z = 0$, $f(x_0) = d$
and $\|f\|_{X^*} = 1$.

Provol: See exercise.

4.2 Three consequences of Baire's theorem

Śź

Pf: For
$$n \in IN$$
, define
 $A_{n} := \{x \in \mathbb{X} \mid ||Tx|| \le n \forall T \in \mathbb{F}\} = \prod^{-1} (\overline{B_{n}^{Y}(o)}) (\frac{closed}{T}, sind)$
Then, by hypothesis, $\mathbb{X} = \bigcup A_{n}$. By Cor 1.49 (conseq. Baire)
there exists up $\in IN$ s.t. Ano is use no-where dense.
Since $A_{n_{0}}$ is also closed: $\exists x_{0} \in A_{n_{0}}$. $\& v \neq 0$: $Br(x_{0}) \le A_{h_{0}}$.
Now let $0 \le x \in \mathbb{X}$ and $T \in \mathbb{F}_{1}$ then
 $\frac{v}{2I_{NI}} ||Tx|| \le ||T(\frac{v}{2I_{N}} \times + x_{0})|| \le ||Tx_{0}|| \le n_{0} \in ||Tx_{0}||$
 $||ET|| \le \frac{2}{v} (n_{0} + ||Tx_{0}||)$. Taking the supremum one all
 $T \in \mathbb{F}$ proves the claim. \mathbb{R}
[Measure 4.9] (Open mapping theorem) Let $\mathbb{X}_{1} Y$ be Banach spaces.
Let $T \in BL(\mathbb{X}_{1} Y)$ be onto (surjective). Then T is open
(an open map), i.e.:
 $A \le \mathbb{X}$ open $\Longrightarrow T(A) \le Y$ open

Pf: The time follows from 3 claims:
(f)
Claim 1:
$$\exists v > o$$
: $T(B_{r}^{z}(o))$ has non-empty interior
 \Rightarrow T is open (i.e. claim is "=) \cdot holds].
Pf: Assume $T(B_{r}^{z}(o))$ has non-empty interior
Let $\gamma := Tx$ for some $x \in B_{r}^{z}(o)$ be an interior point of
 $T(B_{r}^{z}(o)) \subseteq B_{r}^{z}(x)$ for some $\delta > o$ (large enough e.g. $3r$)
Hend, $B_{r_{1}}^{v}(\gamma) \subseteq T(B_{r}^{z}(o))$.
 $B_{r_{1}}^{v}(\gamma) \subseteq T(B_{r}^{z}(o))$.
 $B_{r_{1}}^{v}(\gamma) \subseteq T(B_{r}^{z}(o))$.
 $T(B_{r}^{z}(o)) \equiv B_{r}^{x}(a) \to ord (hread) + (we get $Vr' > o$.
 $T(B_{r}^{z}(x)) = T(B_{r}^{z}(a) + x) = T(\frac{v}{\sigma} B_{r}^{z}(o) + x)$
 $= \frac{v}{\sigma} T(B_{r}^{z}(o) + Tx) = \frac{v}{\sigma} T(B_{r}^{z}(o) + 7x)$
 $= \frac{v}{\sigma} T(B_{r}^{z}(o) + Tx) = \frac{v}{\sigma} T(B_{r}^{z}(o) + 7x)$
 $= B_{r_{1}}^{v}(o) + Tx = B_{r_{1}}^{v}(\gamma)$. (fix)
 $Dows let A \subseteq E$ for open, let $\gamma' \in T(A)$ be arbitrary, and
choost $x' \in A = f$. $\gamma' = Tx'$. Since A is open, $\exists v' > o$:
 $B_{r_{1}}^{x}(x) \subseteq A$, hence
 $T(A) \supseteq T(B_{r}^{z}(x)) = T(B_{r}^{z}(x) + x' - x) \supseteq B_{r_{1}}^{v}(\gamma) + \frac{v}{\sigma} \frac{v}{\sigma}$$

Theorem 4.13 (Closed graph tracew)
Let
$$X, Y$$
 be Barach spaces and $T: X = 2 \operatorname{dom} T \to Y$
a closed linear operator. Then
 $\operatorname{dom}(T)$ closed $\longrightarrow T$ bounded.
Pf: "=":Let $(X_n)_n \in \operatorname{dom} T$ with $X_n \to X \in X$. Then $(X_n)_n$
is Cauchy in X . By hypothesis, T is bounded,
so $(T \times n)_n$ is Cauchy in Y . But Y is compute,
so $\exists y \in Y : T \times n \to Y$ and, since T is closed if follows
that $X = \lim_{n \to \infty} x_n \in \operatorname{dom}(T)$ (and $T \times = y$).
"=: Define the projection $P_i: G(T) \to \operatorname{dom}(T)$
(X, TX) $\longmapsto X$
(if $G(T)$ is closed in $X \times Y$, hence $G(T)$ is a Barach space.
(if) dom (T) is closed in $X (hypothesis)$, hence
 $\operatorname{dom}(T)$ is a bijection
(if) P_i is bounded : Let $\Xi = (x_iT \times i \in G(T),$ then
 $\|P_i \Xi\|_{\overline{X}} = \|X\|_{\overline{X}} \leq \|X\|_{\overline{X}} + \|T \times N\|_{\overline{Y}} = \|\Xi\|_{X \times Y}$.
So $\|P_i\| \leq 1$
By the inverse mapping theorem P_i^{-1} : dom (T) $\Rightarrow G(T)$
is also bounded, hence: $X \mapsto (X, TX)$
 $\exists c = \infty : \|P_i^{-1} \times \|X \times Y \leq c \|\|X\|_{\overline{X}} - Since \|P_i \times \|X\|_{\overline{X}} = \|X\|_{\overline{X}} + \|T \times \|_{\overline{Y}}$
So T is bounded

$$\begin{split} \left| \begin{array}{c} \mathbb{E} \mathsf{Kample} \ 4.14 \right| \quad \text{Let } \mathbb{X} = Y = \mathsf{Co}(\mathsf{Re}) \quad \text{with supremum norm} (\mathsf{Bunnet}) \left| \begin{array}{c} \mathbb{F}_{3} \\ \mathbb{C} \\ \mathsf{Consider} \\ T := \frac{d}{dx} : \quad \mathsf{dom}(\mathsf{T}) \to \mathsf{Co}(\mathsf{Re}) \\ \mathsf{f} \mapsto \mathsf{f}' \\ \text{with } \mathsf{dom}(\mathsf{T}) = \left\{ \mathsf{fe} \mathsf{Co}(\mathsf{Re}) \right| \quad \mathsf{fe} \mathsf{C}^{*}(\mathsf{Re}) \text{ and } \mathsf{f}' \mathsf{E}(\mathsf{Co}(\mathsf{Re}) \right\} \in \mathsf{Co}(\mathsf{Re}) \\ \mathbb{C}(\mathsf{darm}: \mathsf{T} \text{ is } \mathsf{closed}) (a \ \mathsf{closed} \ \mathsf{opended}). \\ \mathbb{P} \mathsf{f}' \quad \mathsf{Lef} (\mathsf{fn})_{\mathsf{Re}} \mathbb{E} \ \mathsf{dom}(\mathsf{T}) \quad \mathsf{be} a \ \mathsf{sequence such that:} \\ \mathsf{(i)} \quad \exists \mathsf{g} \in \mathsf{Co}(\mathsf{Re}) : \quad \mathsf{llfn} \cdot \mathsf{gl}_{\mathfrak{G}} \xrightarrow{\to 0} \\ \mathsf{(ii)} \quad \exists \mathsf{he} \mathsf{Co}(\mathsf{Re}) : \quad \mathsf{llfn} \cdot \mathsf{nll}_{\mathfrak{G}} \xrightarrow{\to 0} \\ \mathsf{ie}_{1}, \quad \mathsf{(fn}, \mathsf{fn}')_{\mathfrak{n}} \in \mathsf{G}(\mathsf{T}) \quad \mathsf{(fn}, \mathsf{fn}')_{\mathfrak{n}} \xrightarrow{\to 0} \\ \mathsf{fo} \quad \mathsf{prove that} (\mathsf{g}, \mathsf{h}) \in \mathsf{G}(\mathsf{T}) \quad \mathsf{(fn}, \mathsf{fn}')_{\mathfrak{n}} \xrightarrow{\to 0} \\ \mathsf{fo} \quad \mathsf{prove that} (\mathsf{g}, \mathsf{h}) \in \mathsf{G}(\mathsf{T}) \quad \mathsf{equivalenty}, \quad \mathsf{g} \in \mathsf{dom}(\mathsf{T}) \ \mathsf{and} \ \mathsf{h}^{=} \mathsf{g}'. \\ \mathsf{By} \quad \mathsf{uniform} \ \mathsf{convergend}, \quad \mathsf{we} \ \mathsf{con} \quad \mathsf{exclosurged} \quad \mathsf{lunifs}, \mathsf{so}, \quad \mathsf{fxe}\mathsf{E}\mathsf{Re}, \\ \int_{0}^{\infty} \mathsf{htH} \ \mathsf{dt} - \int_{0}^{\infty} \mathsf{linn} \ \mathsf{fn}' \mathsf{th} \ \mathsf{dt} = \mathsf{linn} \quad \int_{0}^{\infty} \mathsf{fn}' \mathsf{th} \mathsf{dt} - \mathfrak{g}(\mathsf{N}) - \mathfrak{g}(\mathsf{o}) \\ \mathfrak{sinu} \quad \mathsf{fn} = \mathfrak{g}(\mathsf{o}) + \int_{0}^{\infty} \mathsf{h} \ \mathsf{h} \mathsf{th} \mathsf{dt} + \mathsf{fn}' - \mathfrak{g}(\mathsf{ln}) \\ \mathsf{fn} \ \mathsf{th} \mathsf{dt} \mathsf{dt} = \mathsf{g}(\mathsf{o}) \\ \mathsf{fn} \ \mathsf{th} \mathsf{so} \mathsf{dn} \ \mathsf{so} \ \mathsf{g}(\mathsf{c}) \\ \mathsf{so}, \quad \mathsf{by} \ \mathsf{the} \ \mathsf{Fuvdamendat} \ \mathsf{Reoven} \ \mathsf{of} \ \mathsf{Calculus} (\mathsf{HDE}) : \ \mathsf{g} \in \mathsf{C}'(\mathsf{Re}) \\ \mathsf{unif} \quad \mathsf{so} \ \mathsf{g}(\mathsf{so}) = \mathsf{g}(\mathsf{o}) + \int_{0}^{\infty} \mathsf{h} \ \mathsf{h} \ \mathsf{th} \mathsf{d} \mathsf{t} + \mathsf{fn} \ \mathsf{d} \\ \mathsf{so}, \quad \mathsf{by} \ \mathsf{the} \ \mathsf{fn} \\ \mathsf{fn} \ \mathsf{so} \ \mathsf{fn} \$$

$$\|x\| = \sup_{0 \neq f \in \mathbb{X}^*} \frac{|fw||}{\|f\|_*}$$

Pf: See exercise.

$$\begin{split} \vec{D} &:= \operatorname{span}_{R} \{x \mid n \in \mathbb{N}\}, \ \text{Then } \vec{D} \text{ is converted to spane, let } parale i | Definition 422 | Let \vec{X} be a K -vector spane, let $\{parale I \}$
be a family of seminorus on \vec{X}
(a) $\{parale I \text{ is separating} : \in \forall \forall 4 \times \epsilon \vec{X} : \exists x \in I : pa(x) > 0$
(b) For given $a \in I, v > 0$, let
 $U_{x,v} := \{y \in \vec{X} \mid pa(y) \leq v\} = 0.$
Also, for $x \in \vec{X}$, let
 $U_{x,v} := \{y \in \vec{X} \mid pa(y) \leq v\} = 0.$
Let
 $N_{\vec{X}} := \{\int_{j=1}^{n} U_{x,j} \mid_{j=1}^{j} | n \in \mathbb{N}, dj \in \vec{I}, v_j > 0 \text{ for } j = 1, ..., n\}$
 $(family of finite intersections of $U_{x,v}(\epsilon t \mid s)$
Define the Locally convex topology (l.c.t.) on \vec{X} indexed.
by $\{Pala \in I :$
 $Y \in \vec{X}$ open in the l.c.t. is $\forall x \in Y \exists V_x \in M_x : Y = \bigcup V_x$
 $(Remark 4.23)$ (a) $U_{x,v}(\kappa t \text{ is open in l.c.t., and $v \mid_{x} \text{ is a } n \in [d]$ boundood bost of the l.c.t. is Hausdooff
(convex sels (here the value): For $y_{1,v_2} \in U_{x,v}$ and $h \in Eqt$)
 $w \in have \lambda_{y_1} \in (1-\lambda) y_2 \in U_{x,v}$, sine:
 $pa(\lambda_{y_1} + (1-\lambda)y_2) \leq pa(\lambda_{y_1}) \in (1-\lambda)pa(v_2) < r$.$$$$

(d) I is a topological vector space with a locally (97) convex topology, i.e., addition of vectors and mult. of a vector by a scalar are continuous with a licit. This relies on $V_{\sigma_1 v}(x) = X \in V_{\sigma_1 v}(x) \wedge A = V_{\sigma_1$

The composition of a linear map with a norm gives a
seminorm (check!). The following abstract result will be
applied several times with different choices of Sx and Z
[Lemma 4-24] Let X be a vector space, (Z, 11.112) a normed
Space, and Sx: X > Z a linear map for every index & ET.
Let Jeet be the Locally convex topology on X induced by
the family of seminorms
$$\{x \mapsto \|S_{xx}\|_{2}\}_{x \in T}$$
. Then:
(a) Jeet is the coarseel vector space topology on X s.t.
For every $x \in T$ the map Sx is continuous.
(b) $(X_R)_{REM} \subseteq X$ converges to $x \in X$ wid. Jeet (Z)

Pf: See exercise.
A very important example is when
$$S_x \in \mathbb{X}^*$$
 and $Z = It$:
Definition 4.25 [Let \mathbb{X} be a normed space. The weak topology
on \mathbb{X} is the locally convex topology (l.c.t.) on \mathbb{X} induced
by the family of seminorus $\{x \mapsto |f(x)|\}_{f \in \mathbb{X}^*}$.

$$\begin{aligned} \left| \frac{Example 4.28}{16} \right| Let X = l^{P} p \in [1, \infty], en := (5nn)_{new} for new (9) \\ Then (i) (en)_{n} has no || \cdot ||_{p} - convergent (ir, strongly conv.) \\ Subsequent. \\ (1i) If p = 1, then (en)_{n} is net weakly convergent:
Recall (2) * 2 l20, and choose f => (-1, 1, -1, 1, -1, ...) El20
then f(en) = (-1)" Vn EW which is not convergent
as n > 00 (This is consistent with Ruch 4.27(e)).
(iii) If 1
In case 1 20, we have (2P) * 2 l2 (Thm. 2.38)
with | < q < co. Hence, for f <> y = (yin)_{2} < l2,
f(en) = yn \xrightarrow{s}_{0}^{20} (sine $\sum_{k \in W} 1y_{k} |^{2} < co$).
In two case $p = \omega_{1}$ use also exercises Eo.1 & Eb.3.
(Lemma 4.29] Let X be a normed space $_{1}(x_{1})_{n\in W} \in S, x \in S$ and
 $x_{n} \xrightarrow{s}_{X}$. Then
(A) sup lixelf < co $_{1}$ (b) lixth \leq lim inf lixelf
 $w < W$ is so $f(x_{1}) \rightarrow f(x_{1}) + f \in \mathbb{X}^{*}$, hence
 $\forall f \in \mathbb{X}^{*}(fixed) : sup 1f(h)| < \infty_{1}$
with the canonical embedding $J : X \rightarrow X^{**}$. Since \mathbb{X}^{*} is
Baroch, the Uniform Boundedness Principle (Thm. 4.4) gives
 $u < M = \frac{||Jx_{n}||_{xx}}{||Sx_{n}||_{xx}} < \infty$.
(b) By Cor. 4.6 (H-8!):
 $\exists f_{x} \in \mathbb{X}^{*}$: If $h_{1} = 1$ and $f_{x}(x) = ||x||$$$

Then

$$\|x\| = |f_x(x)| = \lim_{n \to \infty} |f_x(x_n)| = \liminf_{n \to \infty} |f_x(x_n)| \leq \liminf_{n \to \infty} \inf_{n \to \infty} \|f_x\|_{*} \|x_n\| = 1$$

$$|Theorem 4.30| Let X be a normed space. Then $x_n \xrightarrow{n} x$ iff
the following two elafements hold:
(i) $\sup_{n \in W} \|x_n\| \leq \infty$
 $\lim_{n \in W} |I| \leq 1$ dense (wet $\|\cdot\|_{*}$) in X*s.t.
 $\forall f \in F$: $\lim_{n \to \infty} f(x_n) = f(x)$. (*1)$$

Theorem 7.31 (Eberlein - Suntian) Let X be a Banach space
and ASX. Then A weakly compart (=> A weakly sequentially compart
Pf. Not here; see Whitley, Math. Ann. 172, 116 - 118 (1967).
Definition 4.32 (Let X be a normed space. Then the weak* topology
on X*("weak-stor") is the (o cally convex topology on X*
induced by the family of seminorus
$$fi-f(x)|_{X \in X}$$

Pf: See exercise B

[Theorem 4.35] (Banach-Alaoghu) Let X be a normed space. Then the closed unit ball in \mathbb{X}^* , $\overline{B}_{,}^* := \{f \in \mathbb{X}^* \mid \|f\|_{x} \in I\}$ is compart in the weak topology. Pf: Equip the set of maps {f: X -> IK} = IK X with the product topology Jpood = X JK of the Enclidean topology XEX JAK on K. Then? (i) Jprod is the coarsect topology on K^X such that the projection/ evalutation map $T_X: K^X \to K$ is continuous for all $x \in X$ (see T2.3, Tut Sheet 2) $f \mapsto f(x)$ (ii) Jprod is a rector-space topology on the Addition L: KXXKX > KX It suffices to prove openness of l(U) $(f,g) \longrightarrow f+g$ in KX × KX fer U in a base of Jprod, that is, fer U= XUx with Ux & Jik, and Ux = the for all but al most finitely many $x \in X$ Addition in the field \mathbb{K} , $\mathcal{A}_{\mathbb{K}} : \mathbb{K} \times \mathbb{K} \to \mathbb{K}$, is continued $f(u) = X \cdot \mathcal{A}_{\mathbb{K}}(u_{x})$ with $(2z^{2}) \mapsto 2z^{2}z^{2}$ $\mathcal{A}_{\mathbb{K}}(u_{x}) = \mathcal{A}_{\mathbb{K}}(u_{x}) = \mathcal{A}_{\mathbb{K}} \times \mathcal{A}_{\mathbb{K}} = \mathcal{A}_{\mathbb{K}} = \mathcal{A}_{\mathbb{K}} \times \mathcal{A}_{\mathbb{K}} = \mathcal{A$ cuid $f_{ik}(U_k) = ik \times ik$ except for at most finitely many $\times \in \mathbb{X}$. Hence, $\mathcal{L}'(U) \in J_{prod} \times J_{prod}$, as finite intersection of a minor of product sets $V_1 \times V_2$ with each $V_j \in J_{prod}$, j = 1, 2, being of product sets $V_1 \times V_2$ with each $V_j \in J_{prod}$, j = 1, 2, being a product set of factors all of which are equal to the except for one. I The case of scalar mult is analogous & simpler (iii) Given a linear subspace $S \subseteq HK^X$ the subspace topology Jpril == { UNS | VE Jpril } is a vecter spare topology on S wit. which the restricted eval maps TIX/s are continuing the E

(loz)

Now, choose
$$S = X^*$$
, and let Jax devole the weak * top. [63]
on X^* . By Y. 33(b), $T_{VV*} \leq T_{PV*}|_{X^*}$. Therefore, the map
 $G:(X^*, T_{PV*}|_{X^*}) \rightarrow (X^*, T_{VV*})$
 $f \longrightarrow f$
is continuous, and the theorem follows if we prove: B_i^* is
 $T_{PV*}|_{-compart}: We claim : Then it is $T_{PV*}|_{X^*}$ -compating
(and hence, by contractly of G, T_{VV*} -compating).
Pf Claim: Concreter a $T_{PV*}|_{X^*}$ open cover UV_x of B_i^* and
use that, for $V_x \in T_{PV*}|_{X^*}$, there exicts $U_x \in T_{PV*}|_{X^*}$ coupon
 $U_x = U_x \cap X^*$. The $T_{PV*}|_{X^*}$ open cover UV_x has a finite cubcore
(by assumption), and indersection with X^* gives facilit sub-
cover of $U_x V_x = V$ (claim).
To prove $T_{PV*}|_{Compart}$ is compart in K . By Tychonoff (T_{MV}, N^*)
 $A_x := \{2eK \mid |2i| \leq |x||_Y\}$ is compart in K . By Tychonoff (T_{MV}, N^*)
 $A_x := \{2eK \mid |2i| \leq |x||_Y\}$ is compart in K . By Tychonoff (T_{MV}, N^*)
 $A_x := \{1eK \mid |Ei| \leq |x||_Y| = 1ex||_Y = 1ex||_Y = 1ex||_Y = 1ex||_Y$
 $= (T_{X^*}p_Y) - xT_X - pT_Y)^{-1}(\{2e\})$.
Built $T_{X^*}p_y - xT_X - pT_Y)^{-1}(\{2e\})$.
Built $T_{X^*}p_X - xT_X - pT_Y = 1ex - pK_X$ is $L_{X^*}p_X$.
 $T_Y \in X - K$ is closed.
Finally, $B_Y^* = An L$ is T_{PV} -compations cubcod subset of
the compart A .) $T_X$$

Recrem 4.36 (Helly; version 2 of Bauach-Alacghn) (104) Let & be a separable normed space. Then Bx is weah* sequentially compact. Pf: Let {xx | k \in W} S E be (countable) densitin &. We reed to prove: Any sequence (In) = Bit has a weak - convergent subsequence: Fix kE IN arbitrary. Consider the sequence (fn(xk))new SHK. This sequence is bounded, sing $|f_n(\mathbf{x}_R)| \leq ||f_n||_{\mathbf{x}} ||\mathbf{x}_R|| \leq ||\mathbf{x}_R|| \quad (a \mid f_{\mathbf{x}_r})$ Henry, by Balzano-Weiersfrags, in for all k fixed, (fn (xh)), has a convergent subsequence (in IK). Claim: Then exist a common subsequence (m;); SN: HkEN: (fuij(Xn)) is convergent. P.C: Use Cantor's diagonal sequency trick: There exists (u(i)) CIN such that (fuir (xi)); converges. Then there exists $(u_j^{(2)})_j \subseteq (u_j^{(1)})_j$ s.t. $(f_{u_j^{(2)}}(x_2))_j$ converges Continuing this procedure, there exists $(u_j^{(a+1)})_j \subseteq (u_j^{(a)})_j$ such that (fuceril (xeril) jew converges. The claim then holds with mj == uj! Now, define $g(r) := \lim_{j \to \infty} f_{m_j}(r) \forall x \in \text{span} \{x_n | k \in \mathbb{N}\} = : dom(g)$ (i) dom(g) is a dense subspace of X with respect to II.II (ii) g= dom(g) -> # is linear (iii) g is bounded: $|g(x)| = \lim_{j \to 0} |f_{u_j}(x)| \leq ||x||$ Since IK is complete, we can $\leq ||f_{m_j}||_* ||x||$ apply the Bounded Linear Ext. Thm. 2-31: There exists g - X -> IK such that g | dom(g) g & ligily = ligily

Hence,
$$\tilde{g} \in \tilde{B}_{1}^{*}$$
. Then, by Thm. 4.34(b), $f_{m_{j}} \xrightarrow{w} \tilde{g}_{a \neq j \to 00}$ (05)
[Reorem 4.37] (Kakutani, version 3 of Banach - Alacghn)
Let \tilde{X} be a Banach space. Then
 \tilde{X} reflexive \Longrightarrow $\tilde{B}_{L} := \{x \in X \mid ||x|| \le 1\}$ is weakly compart

		Wrak	ver eak*	seq.weak	seq. weak *
	$\mathcal{A}^{1}(\simeq c_{\circ}^{*})$	~0	yes	S	res
	$\mathcal{L}^{P} (\cong (\mathcal{L}^{q})^{x})$	yes	yes	4.62	res
	$\mathcal{I}^{\infty} \ (\cong (\ell^{\perp})^{*})$	VC	yes	10	Yes
(*1	L ¹ (not a clual;	vo		vo	
	$L^{P}(\simeq(L^{q})^{*})$	yes	Yes	YPS	ypes
	$L^{\infty}(\simeq(L')^*)$	ho	Y-85	ho	y es
	Thm. Used	4.37	4.35	4.31	4.36