
tchap-I.ua#HibT-paes / ⑤
-
-
-

- -

2. 1 Vector spaces
- .

~

General assumption : * ≠ { o } is alt - vector space , It
c- { IRR } .

|Defimtim2 Let ¢ ≠ re ≤* .

lil re is aliyah independent iff all non
- empty

finite ( ! ) subsets F ≤ M are linearly independent ,

i-e.
,
the following implication holds

:

[ ✗f f = ◦ → ✗f
= o tf E F

f C- F TE It

Cii ) M is linearly dependent iff Nishat linearly independent
.

- - -

Liii ) B C-E is a Hamel basis ( or aLgeb¥ba ) iff
- -

(1) B is linearly independent
(2) Every ✗ c- I can be represented as a

( finite ! ) linear combination
of elements in B

( B 2paI E) .

( ir) E has fim-tedimenac.nu
iff there exists a Hamel

basis with 1131 <• .

Then dim £ : = 1131 is called

the dimensionally
(v1 E has infix di#u iff # does

not have

finite dimension

/Remaik /The dimension is well - defined : 1131

is the same for every
Hamel basis in a given

space ( Pf : see linear algebra ( LH) ) .

-



/EÑÑ ( al consider !
-

Cc : = { ✗ = cxjlg.tw/xjc-C-Vjc-1W,audxj--ofououhgfiuifely many j 's }
( see also exercise , the index

'

c
' stands for

"

compact support
"

;
also : )

Let em: =L . _ _ , 0 , 1,0 , _ . . / with a
e- at the with. position .

Claim ? B = = { en In c- IN } is a Hamel basis farce

(b) Even though It is separable ,
then exists no countable Hamel

basis for It (see exercise / .

|TheoÑ Every vector space ☒ f- { o } has
a Hamel basis

PI : Uses Zorn 's Lemma g see later .

/Coy 2-5-7 II has infinite dimension iff For every u c- IN

there exists ten C- E such that I Mul = n and ten is linearly iudep:

Pf Existence of Hamel
basis with 1131 = a ☒

/ Exa=p6 Infinite dimensional vector spaces :
cc

,
IP

,
CCI ) ( where ∅ ≠# ≤ Ird open )

2.2 .
Banach Spaces
In- m

/Deftvn2_7 Let ☒ be a vectorspace .
A map *

→ Io
, a)

- -

✗ I→ 11×11
is a uovm_ :⇔

C) 11×11>0 to f- ✗ C-*

(at 117×11=1×1.11×11 trick E- c-E (⇒ 11×11--0)

(3) 11×+411 ≤ 11×11 +11yd tx- y C- E-

(E
,
11-4) is called a normal space- - - -

If only (2) and (3) hold ,
II. It is called a semim

- -



/ReTl Let E be a normed space .

Then dcx
, y ) : = 11×-44 ⑤

is a metric on E. Thus all topological notions and results

from the theory
of metric spaces are

available
.

A base of the norm topology on € :

{ BECH I ✗EE ,Kew} = { ✗ + BEG / ✗c-E, K c- IN /
[ KiIeEem of sets A

,
B : At B : = { a+ b la c- d-

,
b c- B }

and at B : = { a } + BY

fWag. / Not every
metric convector spaces / comes

fwm a norm.

/E✗_ampU2 @ f IP is a normed space with 11-11=11
- Xp Kp c- It , a]

Cbl CCE ; It) ( where E is a compact Hausdorff space ) is a
normed space with yfg : = Hf% : = sup IfG) I

✗C-€

(c) IRD
,
ed are normed spaces for de 1W (wit . p

- norm /

¥2 Let E be normed space . Then the following

maps are
continuous =

@ 1 Nurse : E→ Io ,a)

✗ 11×11

(b) Addition : ☒ ✗E →I

C- -41 ✗+y
@ I scaiw-mulh-ph.cat : * ✗ *→E

C. ✗ Its ✗✗

PI (a) Let (a)*µ c-It
with ✗n→ ✗

,
k -so

,
i.e.
,

If ✗n-✗¢→ 0
,
k → • ( see Cor . 1.8)

.

Hence
,
the claim

follow from reinventing quality :

111×4-1411 I ≤ 11×+44

(b)
,
( of see exercise ☒



⑤efi / A complete normed space LE , HH) is
called a Beach space

/F-xamp.us# I (a) All spaces in Ex -

2.9 are Banach spaces
-
-

I

(b) Let € : = ( ( [o
, D) with E-uuvm 11-111

≥
: = /

◦

lfltlldt .

Then (E ,
It-1k ) is not a Banach space ( recall Ex .

1. 11 Cbl)
.

Ñe3T Every normed space I can be completed , so
that

☒ is isometric to a dense linear subspace 1×1 of a Banach space É,
which is unique up to

isometric isomorphisms .

-
-
-

PI Analogous to the proof of Theown 1.14 . Nate :The isometry
is even a linear bijection ( hence ,

an isomorphism) in this

case ( see section 2- 3 below) .

IDefim-tr.vn#/ Let E be a normed space . A sequence ten)u≤
I

-

is called a (SEM) basis in I : ⇔ Far all +c- I there

exists a sequence (a) new
≤ K such that

him 11 × - Éxuen /1--0
N → N u= 1

Notation : ✗ = Einen
,
infiniteli combination ,cozreugeutseuiesuc.IN

111¥ : Linear independenceu required for Schauder basis

/Examp4 I Let p c- [ 1 ,a) . Then (en)*µ with eu : = Cq . -10,79 . . . )
- -

( the 1 inthe n'th position) is a (Schauder) basis ofIP :

For ✗ = (xn)new
C- l P we have

N 0

If × - Ixuenlf
"
= -21×4PET .

u=/ in= Nt 1

Note: This construction fails for Ñ !

↓



④/ Lemmu2 Let E be a normed space .

Then

II has a (Schauder ) basis ⇒ I is separable

P± Let It;=Q ,
if It = 112

, resp . Ito : = + i ④ far It = ¢
.

Define

N

An : = { Exuen in Elko for ut {1, - in}}
u= 1

Then the union A : = U A µ is dense in *
,

and countable ☒
N C- IN

/Remak2 The implication
"

⇐
"

in Lemma 2.16 does not hold

(Enflo
,
1973 )

(Remwk2-# All norms in finite -dimensional spaces are equivalent .

That is
,
for norms II. It and 111.111 on It

"

then exists constants

C
,
E > 0 such that

c. 11×11 ≤ 111×111 ≤ c- 11×11 txt # ?

(see exercise )

/Reoum- / Let E be a normed space , and FEE a finite
- dim

.

subspace . Then F is complete and closed .

-

-

PI Let u : = dim F < 0 .

Fix a basis { e≥ , . . , en} inF. For every

✗ c- F there exists unique ✗ = (✗
=) . .in) c- It

"

s -t . ✗ = Étjej
.

j =,
Let 111×111 : = It Étjejlf to = (x≥ ,

. .

,
a) c- K

"

.

j-4

Then the normed spaces ( F , 11-111
and ( IK

"

,
111.111) are isometrically

isomorphic via ✗↳ ✗
. Now

,
K
"

is closed and complete wit .

the Euclidean norm
,
and all norms in 1K

"
are equivalent ( by

2. 18)
.
Hence

,
( IK

"

,
111.111) is closed and complete , and , because

of the isometry ,
so is (F, 11.111 .

BE

As a preparation for Theorem 2.21 we prove
the following
lemma :



I / ( Rniesnlemua ,
19181 Let E be a normed space , ⑤

and U f- a closed ( ! ) subspace .

Then
,
troll ✗ c- Coil)

,
there

exists ✗
✗
c- E) U such that

11×+11 = 1- and llx ,
- u 11 ≥ ✗ true

-

-
-

PI Let ✗ c- ☒ IU (open ! / Then
7 & > ◦

! B{✗ (✗ I ≤E) V. Hence

d : = diet (× , U) = iuf 11×-411 ≥ ex so far all ✗ c- EIU .

Ut U

since ◦ < ✗ < 1 there exists v4 c- U sat . I ≤ 11×-4×11 ≤ .

Hence
, y : = ¥, ,,

≥ ¥ .

Define ×
,
: = 86--4 ) c- E)u ( ! )

By definition
of & ,

we have 11×+11=8.11×-4×11--1 , and

1k¢ - all = 1186--4×1 - all = 118 ✗
- Cut guilt = g- Kx - Cu,

-F) 11

≥ yd ≥✗ tu c-U ☒ ¥

Warning 1.26 illustrates the following general result :

Meomn2 Let # be a normed space .

Then

13,1T = { ✗ c-I 111×11<-1} compact ⇔ dim I < a.

PI
"

: Let u - = dim E- < • .
Fwm (the pwof A) Thin 2.19 ?

I is isometric to ( IK
"

,
111.111) .The statement follows from Heine -

Borel for ( IK "
,
I - 1) and the equivalence of norms .

: Assume ( for contradiction) that dim #=D .
Will prove

:

this implies BÑ is nad seq_ compact , by constructing a sequence
new in BÑ with Convergent subsequences :

lit Let × ,
c- E be arbitrary ,

sat . Kick -- 1.Let vi. = span {×, } f- I

be the closed ( ! ) subspace spanned by × , ,
Riesz

'

Lemma
,

applied with D= £ , gives existence of ✗a c-E) U, s -t .

11×211--1 and 11×2-411 ≥ £ .

Let Uz : = span { ×, ,✗a } 9- E.

E



( iif Let vi. = span { ✗± , _ . , ×} f- II be the closed subspace ④
of the vectors constructed before . Again , by Riesz

'

Leming
then exists ✗ne , c- *14 sat . Hint , 11=1 and distant , ,Un) ≥É .

By assumption ,
diw E- = •

,
hence this procedure does not stop .

We get a sequence (a) new ≤ 13,10T s.t.tl/u-xm1l2-1-z-Vn-- in .

Clearly , (✗ulnew has no convergent subsequence - contradicting the
(seq-1 compactness of Belt § ☒

◦

peiat.rs/Defiui-h#2--2/Let € , Y be vector spaces (over
the same field 1kt

,

Eo ≤E a ( linear) subspace ,
and T :# ◦ → Y

.

Lil T is a ( linear) operator :⇔
1- (✗✗ +py)

= ✗Text + pT(41 tape# , they C-Eo

Lii ) doin CT) -

_

= DCT) = = Eo is the domain of T
--

'

Liii) ran CTI = = RLT) : = 1- (Eo) is the izygeof
Civ) her CT) : = NCT ) : = { ✗ C- Eo / Tx = o } is the herd

Cornellspay) of T
(w) U≤ doin CTI a subspace ,

1-1
,

:
° → Y is the restriction of T to u

✗ ↳ Tx
- - -

(ri) w ≥ doin CTI a vector space ,
F : w→ Y linear with

F- / done,,
= T is called a (1) linear extension ofT to it .

/ExaT Some linear operators :
(a) Identity ◦pewter on vector

space ☒
:

TI : = TIE :
* → I

✗ 1- ✗



(b) * = Y= CLEO
, B) ⑤

Ii ) Differentiation operator (Eo = Cicco , B)) :

¥ :
CHEO

, B) → cc -29131
f f

'

Lii) Anti- derivative operator (E. = # ) :

T :
Cleo

, B) → c([ u , D)
f- ↳ Tf

with (f) 6-1 = = [fltldt *✗ c- Io
,
I]

0

Ciii) Multiplication operate by argument : As above (in (iit) ,
with C-f)(x1 : = ✗FG ) tx E Eo , ☐

/ Lemma22 Let T :* ≥ doinCT / → Y be a linear operator .

Then

@ I ran CTI and Ker CTI are vector subspaces ( linear subspaces)
Cbf dim vault) ≤ dim doin LTI

@ I kevltl = { o} ⇔ T injective

⇔
7 inverse T

- '
of T sat . T

' '
: can CTI → duw IT)

,

T
'

'T = TI /donor, i
TT
"

= TI / vault)

If: Copy fwm Linear Algebra ☒

/ Remains / Cal IfT
- '
exists

,
it is linear

.

PI ✗ ✗ = T
'

'T (xx) = T
- '

(✗Tx) Fx c- dow CTI , * ✗ C- It
.

Hence
,

✗T
-'

y
= T

- '

( ✗y ) Ky c- vault / . Similarly far addition .

(b) Even if T:#→I with herLTI = { o}
,
then not necessarily

ran CTI =#
,
nor TT

- '
= TI (unlike in the case dim Eco ↓ )

but only TT
"
= TI / ranch

.

/E-awp.bz#f- (Illustrating Rwk 2- 251
Let E=l•

.



⑧
i - iR-ight-Iift.aepewter : R :

(✗e- 1×4×31 .
- - ) 1- (0, ✗= ,Xz , -

- - - )

cleanly : herCRI -_ { o } ,
but nancy f- l?

in → e-LILE opacity :L :

⇐ i ,Xz , ✗3 , - - - ) 1- (✗21×31×4 ,
-
-- )

Then R
- '
=L / nance,

satisfies

RR
_ '
= TI and RR

"
= # fiance) .

/Df7/ Let E ,

YbeuurwedspausiT-E2danLT1-sY.Tisbnuu@dCo.pedel : ⇔ its ≤pentagram is finite ,

i - e.
,

I /Theme,,→y
: = 11TH : = sup

"" "
Y

sup 111711 < N
✗ c-dowltlx

=

✗c-down - -

✗€0
11×11=1

/E2.287 ( Recall Ex - 2.23)
- -

Cal II :(☒ 111-111 → (E ,
11-11)

,
✗ ↳ ✗

,
is bounded with 1111--11=1

.

Csf Let (11--111.11)=(4-10,13)
,
II. Ifat

.

Lil Differentiation ¥ :
d- to

, B) → Cleo , 131
f ↳ f

'

is unfounded ( i - e., not bounded) ; see exercise .

liil Anti - derivative T :C (Eu , D)→ Cleo , 13 ) :

✗

11TH/
•
= sup I /

◦

fltldt / ≤ 11-1110 tf c- CLEO , I])
✗ C- [oil]

Because of
"

≤ I (f≠o1
,
we have 11TH ≤1

.

Also
'

111-111
,
= sup

✗

✗ c- [◦, ,]
↳It = Sup ✗

= e-
,

✗c-[41]

and
,
since 11111N = 1

,
we obtain 111-11=1

.

-I a



Liii) Multiplication operator T :C ( Io, D)→ Cleo , is ) by ③
argument has 111-11=1

,
because

111711N = sup 1×-91×11 ≤ 11fan
,
with equality for f-=L .

✗c- [oil]

KÑ9 Let E
, Y be normed spaces ,T:*≥dowCT )

→ Y a

linear operator thenthe following statements are equivalent :

Lil T is continuous

liil T is continuous at some ✗
◦ t dow CTI

.

Liii ) There exists c c- (o , a) s -t -

111711 ≤ C 11×11 f-✗ C- down CT)
.

Liv ) T is bounded

-

PI ( is ⇒ Lii ) obvious .

ii)=i : Sfep ProveT is continuous at ✗ =o .

For this
,
let @a) u ≤ dow CT) be a sequence s -

t
. ✗in →o

,

→ 0
.

Then ( by 2.10
(b))

, (✗ntxo)n→ ✗
◦ ,
n→o

,
and by linearity

and continuity at ✗o ,
we get

u→ a

Txu + Txo = Tint ✗ol
°

Txo
,
so Txu→ o (again ,

by 2- 10 ( bl) .Step : Fwm step 1 we get ( E - ctcuteniun ,
with E=1 )

78>0 : V-✗ c- doinCTI with 11×11<8 : 111711 < 1 * 1

Hence ,
for all ◦ ≠ ✗ c- down CT)

, by linearity :

*I

11TH = 21¥ 111-(2%7) If < f- 11×11
.

-

has norm = { < or

(iiy : we know that 111711 ≤CKXH
,
so

sup
"

≤ c < • .

✗ c- domct)
11×11

✗ to
u→ a

Civil : Let Gulu
≤ down CTI with Xu→ ×

,
then

11Th -Tx 11=11Tin-✗111<-111-11 - llxu - ✗ 11 % ☐•



⑦/Lemm Lett belinear and dim doin (T) <o .
Then T is bounded

.

PI T is continuous : Fix ( finite ! ) basis of doin CTI , expand
✗ C- dow CTI wit . this basis , and use linearity to deduce
( sequential ) continuity _

The claim follows from Thin .

2- 29 ☒

|Theoum2-3 ( Boundedlivewexfensiun_) Let E be a normed

space ,
and Ya Banach ( ! ) space. Let T

: ☒→ Y be a

bounded linear operator _ Let ¥ be the completion of E.
Then there exists a bounded linear extension F : É→ Y

of T
,
which is unique if ☒ is identified with a ( dense)

subspace of its completion É ,
i.e . I = W in Theorem 2- 13 .

Moreover
,
we have 11TH = 11TH

.

/ C 2-327 Let I be a normed space and Ya Band space .

-

Let T : I ≥ dom LTI → Y be a bounded linear operator with

dow CTI C-€ a chest linear subspace .

Then there exists

a unique bounded linear extension F : ☒→ Y of T .

Moreover
,
we have 111=11--111-11

.

-
-
-

Pf3 / : Because of denseness ,
the completion Z of doin (T)

and É of * an isometrically isomorphic ( check ! ) _Vlog ,
we identify 2- = É .

Also identify # with a dense linear

subspace of É ,
so that down CTI C-I C-E.The claim follows

firm Theorem 2- 31 with F : = F /* .

18

Pf(ofThm.2- '

.

We identify € with a dense subspace of É .

Let ✗ c-É
.

Then there exists a sequence Kulu≤E
with

✗55£ in É .
Since Kulu is a Cauchy sequence ,

(Txu)
u is

a Candy sequence in Y because



④
I /Txu -Txmll = 11T (✗n- ✗m ) 11 ≤ 11TH - 11 ✗n - ✗will .

Using that Y is a Banach space , then exists YET s -t .

T✗u¥y in Y .

Define Fx : = y (then 1=1 E- T : take
constant sequences ! ) .

We have to check several things :

Lil Vtredefiueduess ,

i :-.
, independence of approximating self - :

w→ N

Let ✗ in -5¥ in É _

As _
above

,
7- y

'

c- Yet . Tai → y
'
.

Then we have

lltxu-Txm
'

II ≤ 11TH .tl/n-xinlf
.

In the limit u , in → so we get My - y ' 11=0
,
so y=y !

Lii ) Linearity : Let ✗ i→→Ñ ,
✗n

' -5%1
.
Then (by 2- to (b) a cell ,

✗ ✗I ✗
'

Xu
' Text ✗ '

×
' ta

,
✗
'
c- It

,
and so ( by clef . of F)

F (✗✗ + a'✗ 'I = him T(✗ ✗ut ✗
'

xu
'

) = him ✗Txu + him ✗
'

Txu '

↳ N u→ a u→ a

= ✗Fx c- ✗ Fx !

Liii) N = As F is an extension
,
we have 111=11 d- 11TH

,
since

11TH = sup
1¥11 É ≥E
11×11

≥ sup
11T¥

✗c-*
11×11
= sup
¥"

= yip
.

✗ C-I ✗ c-I 11×4
✗ ⇒ 0 ✗≠ 0 ✗€0

On the other hand
,
since 11-11 is continuous [Thin .

2- local)
,

11Till = him IIFXUII = Liu 11Th If ≤ him 11TH . 11hr11
we o u→ N n→ so

✗uC- I
= 11TH - limllxulf = 11TH - 11×11

.

→ N

so
,
"

,

≤ 11TH t ✗ c-É
,
hence 111=11 ≤ 11TH

,
so 111=11--111-11

.

Liv ) Uniqueness : The fact that we defined

Fx : = him Txm is necessary to ensure
into

continuity at × . ☒



/Defi / Let E , Y be normed spaces . Define
⑦

BLCXIY ) : = {T :E→Y / T is linear and bounded }
and set BLCE) : = BLUE ,

E)
.

Warnings Notation varies - other choices :BCITY) , LCE , Y) ,
. . _

.

|Theoum2-/ (BLLEIY ) , 11-11#→y) is a normed space .
If¥ is complete , then so is BL(E , Y)

.

-
- -

PI lil First of all , BLLEIYI is a IK- vectorspace
with

zero element 10 : = 0 : * → Y
✗ (→ 0

For T, ,I c- BLCE ,Y ) and ✗ C- It
,
defineT

, +Tz and ✗T ,

by +Tz) × : = T,
✗ TIX

f-✗ c- I .
(A) ✗ = = ✗T

,
×

Then clearly Titta ,

✗T
,
: I→ Y are linear .

Iii ) 11.11
#→y

is a norm on BL CITY) :

C) 11TH
#→y

≥o ✓ and if 11TH
#→5- °,then 111711=0 7h c-E

,

so Tx = o th c-€
,
and so 1-= 0 1=0) .

(b) We have

11×1-11 =

sup "¥¥" = sup
"✗T

0--1✗c-I
kill

*→Y o #✗C-I

= sup 1×1 -

= 1×1 . 11TH

0 #✗ c-☒

Also
,
/ +Tix 11 = 1117×+1×11 ≤ 11T,✗ 11+111-2×11 ,

so

11T , +111 ≤ sup (
"

+ ) ≤ 111TH + 11th
.

0 #✗ c-*

Hence
,
if T

, ,Tz C- BLCE ,Y) , then ✗T,
andTitta

are bounded
,
so Titta

,
✗T

,
C- BLCE

, Y)
( vectorspace

! )
,
and 11-11

#→y
is a norm .



Liii ) Assume Y is complete . We prove completeness ④
of BLLII , Y) .

Let (Tn )n⇔w≤ BLAT Y) be a

Cauchy sequence ( wit . It 'll#→ y ) .

For every ✗ C- ¥ and kit c- IN, we have lltnx -Text/ ≤ 11Th-Tell-11×1!
↳
'

te>ofNew tkil ≥N Fx c-E : I /Tnx -Text/≤ El /✗ If ☒ )
.

This implies that (Tr×)kw≤ Y is a Candy seq.@ YI

for every ✗ c-I
,
and

,
since Y is complete , there is

some limit him Tux = : Tx EY
.

k→ so

This defines a map T :#→ Y
✗ ↳Tx : = himTrx

k-so

(a)T is linear
,
since : Leta

,
✗
'
c- It

,
✗
,
✗
'

C-E ,
then

1- (✗✗ c- ✗
'

×
' ) = Liu Trek ✗ c- ✗

'

✗
' / = him (✗Tis✗+✗

'

Tux ' )
k-sa k -sa

= ✗Tx c- ✗
'

Tx '

(b) T is bounded
,

and the norm limit of theTn 's :

Taking the limit d-> ou in C- 1 above gives

11Tux -Tx 11 ≤ Ekxll and so

the > o F NE IN the≥N : 11Th
-TH ≤ E **1

This gives two things
:

←
by #

(e) T is bounded i The C- BLCEIT)
,
Tu-TtBUE , Yl

and BLLE , YI is a vector space , so

1-= Tk - (Th -T) c- BLCITY)
.

TREE in 11 - It
#→y ☒

Note: Compare also with the pwofs of Tim
1.31 (& exercise:)

and Tim . I -20 ( fer p
= a) .

- -



④

z.EEEEEEEEspa-eefdefim-tiuu2-35-l.itII be a normed space .

A liuearfuuctioualn
( o#-) is a linear operator l : I≥ doin (e) → 1kg .

The dudspaI is #
*
: = BLCE

,
1K)

.

Notations for the norm on #
*
: K - E-→*

= : 11 ' E-* = : 11-11
*

= : 11.11
.

/Ne / ☒* consists of the bo⇒led ( equivalently , contiguous ) linear

functionals ; *
*
is therefore also called thet~po-gicaldu.amnot to be confused with the algebraic dual of old linear

functionals
,
E

'
: = { fi #→ It / f linear } = Hour

#
(E

,
1K)

,
common

in Linear Algebra !

( (¥2.36 / (totem . 2-341
.

( E- *
,
II.¥*) is a Bauch space

- -

( whether * is complete or not) .

/E✗2T Let ☒= C. ([a , b) ) ( with a < b c- Irl equipped
with Il - Ho

@ f For FEE , let
b

I (f) = = faflxldx c- 1K

This is clearly a linear functional l
: * → It with

Il (f) I ≤ fabhfnxtdx ≤ Ilf% ( b- at * 1
≤ llflbn

so 1111¥* ≤ (b-al ,

and f ≤ 1- gives equality in# 1
,
so 11111
#
= b-a.

Cbl For fEE and toe [a, b]
,

let F-
◦

(f) : = f HI C- It
.

This gives a linear functional § : I→ 1K
,
called the

Drina IEEE ,
with 1%6-11=11-4-11 ≤ Ilf%

,
and again equality for f = 1- So 11%1 /

**
= 1

.

/Ñ3 Boundedness ( i.e.
,
continuity ) of E-◦ depends on the

word on E.
For ex -

, Oto is Et bounded ,
if E is equipped

with toe Lt_ norm ( Itf 111 = So
'

IfG) I dx) .

8

8



/NÑ Let E , Y be normed spaces
. We write ⑤

☒ ≈ Y ( ou ☒ ≈ Y) iff E is isometrically isomorphic to Y .

Me# Let pe [
e-
, a) and f- + f- =/ Then @ e)

*
≤ I ?

More precisely the map
let ≥ y

-
- Cynlu ↳ fy c- @ D)*

,

fy(✗ \ : = Ixuyn ,
✗ ELP

uC- IN

is a bijective isometry
-

PI (a) Casein : Let ✗ = ⇔*welp ,
f e @ P1

*

.

We work with the canonical (Schauder) basis (en) new fault ( see 2.15)
Then ✗ can be written as a 11 - Up - convergent series ✗ = [✗new

UfIN

since f is continuous (wit . If- Hpl and linear ,
N

f(×1=f(him Exueu) = If Kuen) = [ ✗ufceu)
. * ,

N → do 5- ( nf/W ut IN

For N C- IN ( fixed)
,
define I : = ( in)uc-*,

£ LP by
lfceu)/

9-

In : = {☒ if u ≤ 14 and flew/ ≠ ◦

0 otherwise
N

Apply 1 to É :
f (E) = [ lfceu) it ☒* I

n-7

so that 0 ≤ f- (E) ≤ ltfllep,* - 11×-11
p ,

where ( compute ! /

11×711, = ( É /flea, /
&-"

F)
'

IP
\

v7

Since f- = 1- ¥ ⇔ p
=¥,
( take note ! /

,
we have plot-11=7 , so

N N

C-*) ⇒ [ If Cent /
9-
≤ If Heep,*

([ lfcen)F) "P
n- f

u-7

⇒ ( Élfceu) / f)"9- ≤ 111-4
up,*

KNEW ***)
u -4



Hence
,
the map g- :

@ f)* → I 9- ④
f (→ C- (en)) new

is well- defined
,
and

Lil J is linear

liil 11 Jfllq
= If (flew))*µ Hey ≤ Iff 11¢ pg # by ☒**1

Liii ) J is onto /surjective. If y = (yn)u C-I 9-
,

define

fy :
IP → It

✗ =Gulu↳ fy (x1 : = [ XuYu
UEIN

Clearly , fy is linear . It is well - defined :[ lxnynl ≤ llxllpllyllq
by Holder 's inequality , so

new

ltfyllep,#
≤ 11411g

and so fye @ D)
*

.

But fyceu) = Yu tht IN , so J ( fy ) = y .

Civ ) ⇐ I & Holder imply :

Fft @ D)
*
Fx C- IP : If 6-11 ≤ 11×14, ' 11 (flea)) new key

⇒ Kfk
@pg
#
≤ ItJflfq ¥

So 11 Jfk = HfK¢pg* ,
and J is an isometric isomorphism .

Che uuap in the statement
of the term .

is J
"

) .

(b) The case p=1 is analogous ,
but instead of defining In ,

use

I flew ≤ Mfk
@a)*

'

Ke?!
This implies 11 lfleullulf ≤ 11ft@e)* ,

which replaces ***1
,

and the properties of J follow as above .
☒

-

- -

112¥37 cat (G)
*
≈ It ( see exercise )

(b) The map I
1-
→ (C)*

,
y
↳ fy ,

defined (asiuthm
←2.3s) by

fycxl = [ ✗uyn ,
✗ Elf

, y
Eet

u€ IN

is well - defined (Hilde ! )
,
linear

,
isometric

,
butu onto !

In other words :@d)
*
is strictly " larger

"

than lʰ ! ( see later /
-

-
-



⑤2. 5 Hilbert spaces
- - -

•

The main new feature is the
"

geometry
"

from the scalar

product
/DefT Let E be a CK-1 vectorspace .

A map < •

,
. >

: * ✗ E-→ It is a scalar pwdiet
( or inner protect ) : ⇔

(it 2x , ✗ > 20 tx c- E
,
and <×

,
✗7=0 => ✗ = o

Cp°aedeft) ( non-degenerate )

Lii / <×
,
✗ytpz >

= ✗ <✗ it > xp <×, Z> tripc-It , they, 2- c-☒

Chetty )
Liii / Lay > = LÑ they C- I

(*
,
2-
i
>) is an inner product space ( ou pre - Hilbert space )- - - - -

-

Note: If # = IR ,
Iii) & Ciii) imply that <

•

,
. > is bilinear

If
,
however

,
# = Q

,
Iii ) & Ciii ) give that

<✗ ✗ IY >
= I Lay > trace ,

×, ye# (
conjugate
linear )

Then L .
,
. > is called sneqqui-Uw (

"

I ± - linear " )
Waxman : In literator also : <✗ × , y >

= ✗ <×, y > & <× , ✗y > =ñ<× , y>

/ LEZ.lt/(Caucly-Schwar--(Bu-yako-sky)iue-quality-)---
Let ☒ be an inner product space .

Then

¢-5) / <× , y> I ≤ (✗ex >
"2
<y, y>

"2
they c- II

with equality iff ✗ & y are linearly dependent

Pw See Linear Algebra ( and/or Aaa1- 3) . ☒



I Let II be an inner product space .

④

Then ☒ is a normed space
with norm 11×11 : = <✗ is>

"2
.

All nations & results from topological , metric , and normed

spaces are available .

In particular, the scalar product
< •

,
• > : ☒ ✗ ☒ → It is continuous

.

-

PI Lif Half fulfills all axioms of a norm ,
see LA (or do ! /

Iii ) Continuity of <
•

,
• > : * ✗I → It :

Note that ☒ ✗E is a novel space ( f. ex. with

norm 11 (✗ ay)ll≥
: = 11×(1+11411) , hence STI .

coat . enough .

So let ✗uÉ
, ✗
i be two cour. seq. 's in It .

Then

Kxuiyu> -<Key > I ≤ I <Xu ,Yu > - <Xu , y > It I <✗u , y > - <✗ , y > I

= Kxu
, yn

-

y > I + I <✗u - ✗ , y > I

% 11 ✗all - Ilya - -111 + 11411 - Kiu -✗ 11 → 0°
~¥¥0
< a

→ 0→ 0

since sup llxull
La ( as (a)u converges & 11-11 cent . ) .

☒

uc- IN

/ Defim-tiuz.TL A complete inner product space is
-

-

called a Hit space

Node ' Hence
, any

Hilbert space is also a Banach spay
( for the other direction ,

see 2. 46 below )
.



1ñ / Let E be an inner product space .
④

Then there exists a Hilbert space É ,
a dense subspace

w ≤ É
,

and a unitary map U
: I→ W

.

( U is unitary i.⇔ U is an isomorphism with

<× ,y >⇐
= <Ux

,Uy ≥⇐ they c-E)
-
-

- -

Ipf : see the pf 's ofTim's 2. 13 & 2- 14 _

Additional aspect here : Define a scalar product on

É : = { equivalence classes I of candy sequences inE} :

<I
,I¥

: = him <✗ u , Yu¥
n-s do

with Gulu
,
(yn) u ≤ E being representatives of the

equivalence classes E and F ,
and U :
I → W

✗↳ I

where I is the equivalence class of
the constant representative Cx , × ,× , - - - - ) ☒

/E7 (a) 12--171^1 ) is a Hilbert space
with scalar product <× ,y> : = I In yn ,

where

hf IN

✗ = (✗a)u , Y
=④ u

.

Of course
,
I
≥

( { e- , . . ,N }) = e
"
is also a Hilbert space .

Cbl Ctu
, 1) is an inner product space with the

A
scalar product <f , g > : = f#gcxldx

0

but not a Hilbert space ( proof -analogous to Ex . 1 . If (b) 1 .
(Applying Thin . 2.44 to this example gives 22 ([o, D)

,
see next chapter ) .

·



(c) IP for
p -1-2

is not an inner product space , because ⑤
of the following theorem :

(Theoum2 / ( Jerde -VIET ) Let CE
, kill be a normed

space . Then
I is an inner product space with 11.11 = < .

,
. >
"2 iff

II. K satisfies thepa-gogqmnideuti-ty.tl/-y1f2-llx-ylf2--2(11×112+114112 ) they C-E.

--

PI : Elementary computation ( du !)
⇐ : Define inner product (1) by polarisation :

¥ (11×+4112-11×-7112) # = 112
<✗ 'Y>

= = { ± ( 11×+4112-11×-7112 _c÷( llxtiyll≥- Kx - iyli ) It -_ 1C
We verify that this definition satisfies axioms of an inner product :
(it symmetry and definiteness are obvious ( check !)
(d) Bi - /sesqui - linearity follows from parallelogram identity (here only

#= 1121
Lay > c- <✗ it> = 4- ( 11×+4112-11×-711<+11×-1 -2112-11×-2-112 )

= { ( K ✗ +
'# IF lfx - '¥112 )

= 2 < × , ¥} C- I

2- =o in (1) ⇒ <× , y >
= 2 <× , ¥ > If

(1) d 121 ⇒ < ✗ iy >
+ <✗ez> = <✗ , ytz > (3)

(2) with Zy
instead of y

" <✗ ' ZY > = 2< × , y >
@ 1

By induction from
③ I & ( y)

:
<✗ IUY >

= u <✗ iy >
tu C- two (5)

2- = -y in (3) ⇒ <✗ay >
= - < ×

,
-

y> ⇒ (5) holds the ≥

Let wet 2) { ol and use (5) with ¥ instead of ✗ ( writing ✗ : = "= ) :

<×
,
✗y>

= u < × , ¥ > = Xm Lxi ¥ > = ✗ <×
, y > .

This holds for all ✗ c-¢
,
and thus far all ✗ c- IR by continuity (2-10)

☒

I



⑤/ Definition / Let ☒ be an inner product space , and *≤€
( not necessarily sub#ad)

cat ✗ey c-I are orthogonal = ⇔ <✗ iy >
= 0

.
In symbols :

Hmm

b4 orthogonal complement ◦+A : At : = { ✗ c-I / ✗ 1- a ta c-A }- -
~ -

(c) Let J to be an index set
,
and for all ✗ c- J

,

let ex c-I
.

We call { ex}←- an ethno veil set Gvf=iy ) : ⇔

Lex
, ep > = I, this c-J

( and orthogonal if Lea
, ep > = o txtp )

(d) { ex /✗≤g- is an od-uouovwulbaais-CONBIovc.eupatentbouquet set
: ⇔ ( i ) { ex}

• ←g-
is an orthonormal set .

( ii ) " completeness
"

: If Lea
,
✗ > = ◦ far some ✗ C-I

and ad ✗ c-J
,
then ✗ =o ( I.e. : The zero vector

is the only vector orthogonal to all ex 's ) .

/LemF2 Let * be an inner perdu d- space .

(a) Let A ≤I be a subset ( not necessarily subspace ) Then At is
a closed ( linear ) subspace in € .

(b) F-very
orthonormal set { eat

*g-
is linearly independent .

PI (a) See exercises .

(b) Assume É ✗jeg .

=
◦ for some u C-IN

,
some ✗=

,
. . ,4uE It , and somej=c

✗e-
,
-
-

,
✗
u C- J with ✗ j f- ✗ n tjtk . Then we have

◦ = <em ,
o > = Lean

,

É ✗jeg. >
= ÉXj<¥g .

> = in
j= j=i the = 1

,
. .

,
n
☒

8nj

Next we prove
two lemmas/ lemmata as preparation

for Theorem 2.51 :



|Le1( Uncountable series ) Let ¢ -1-5 be an index set
-
- --

and 0 ≤ can < • the J .

Then

Eca : = sup Icx < a

✗ C-J Jo C- J ✗ c-Jo

Ito / < 0

implies c✗=o for all but coubhg many ✗ 's
.

Nate: The definition agrees with the usual one , if J is countable .

pw Define the sets so : = { ✗ c- J I ca ≥ I}
Sn: = { ✗ c- J I ÷ > ex ≥¥ }

,

u c- IN

Clav Isnt < o tu two

True
,
since

, if this was
violated for some u c- IN

,
then

-2g ≥ -24--0 .

But then { ✗ c-J / Cx >o} = Usa is
✗ C- J ✗ C- Sn naw

,

a countable union of finite sets ,
hence countable ☒

ILemuu2.si#(SeIesInBeaccHiIetspaI)
(a) Let E be a Banach space

and consider a sequence (✗a)new ≤I.
NThen

-211*11 < • ⇒ I xu : = him (I ✗u) exists in E.
UEIN in C-IN N→ •

"= C

(b) Let € be a Hilbert space , and let (a) new ≤I be a sequence of

pairwise orthogonal vectors ( i.e. an orthogonal family ) .
Then -211*112 < a ⇔ [ ✗u exists in I

UEIN NESN

( Note : Recall that 11€12 ) .

_ -

-

PI Let Su : = Exj fun c- IN .
Since # is complete , we have :

j=c

¥µ✗u exists ⇔ (E)
n
is Cauchy ( in E)

.

@ I Let m≥u
.

Then

U U

118m- sink = 11-21-11 ≤ -211×511 = 6m - Gu
j=uti g- = Uti



with in : = Éllxgll . But by the assumption , E)new ≤ IR ⑤
j=,

converges in IR , and
hence is candy .

(b) consider again the sequence of partial sums §'n)u .

Let u≥ u
,

then
m in

Hsm-Suit? It É g- 112=-2 <✗i ,xn > = -211×1-112 = In - in
j=u- i j , k=u -11 j=u- 1

with In -
_ = Élfxi IT .

Hence
,
( Falu is Cauchy (inE) iff .

j=c
(Tn)new is Cauchy Lin IR) ☒

/ theorems/ Let E be an inner product space , ✗ c-I, and { ex /⇔
an orthonormal set . Then :

11×112 ≥ Ikea
,
× > I

≥

(Breed 's inequality ) .

✗ C-J

If * is even a Hilbert space ,
and if {ex bees is even an ONB

,

then
✗ = [ Lex

,
× > ex

✗ c-J

where at most countably many terms ace to , and

11×112 = Ikea
,
× > I

≥

( Parse equality ) .

✗C-J

-

- -

P€ Let Jo ≤J be any finite
subset

.

Then we can write ✗ as

follows :
✗ = [ Lex , × >ex + ( x - [ Lex ,× > ex )

✗ C- Jo ✗C-Jo

-7 7.x
Using that { ex /✗ c- jy is an orthonormal set

, we get :

Lulu > =L [ Lexi > ex
,
[ Lepa >ep> = [ <⇒ < ep.se> Len

, ep >✗C- Jo BEJo ✗
, p c- Jo

= [ LeastLex
,
×> = Ikea ,x > 12

,✗C- Jo
✗ C- To



Lu ,v > = Lu , ✗
- u > = Luis > - Lu , u > ④

= I <⇒ Lex
,
×> - <Ucu> = o

.

✗ C- Jo

Heure , we can estimate 11×112 :

11×112--2 utv, utv > = Luau> + <Yu> ≥ [ Kes ,
× > 12 t Jo ≤J

,To ✗C-Jo
7501 < •

Taking sup over all finite subsets Jo ≤J gives Bessel 's inequality.
Now

,
Lemma 2- 49 ⇒ 7 NEIN u{ a} and tu C- J the { 1 , _ . , N} s- t .

w

*f -21 Lex , × > I
'
= [ Kean

,
× > 12 ≤ 11×112 <a ( using Bessel 's

✗ c- J n - e

ineq. )
then ☒ \ and Leuven 2- 50lb) (which requires co=pUtew )
imply that w

✗
'

: = [ Lean
,
× > ear exists in ✗

.

5- (

we need to prove that ✗ =✗
'

:

we have ✗ - ✗
'

team then C- { 1, . . , W } :

ur

Lean
,
✗ - ✗

'
> = Lean

,
× > - Lean

,
×
'
> = Lean ,x >

- [Lea
,

✗ > Lean
,
em>

n-7
=o fun c- { 1 , - - ,

it} ¥
If ✗& / ✗u Int { e- , _ , it} } then we have :

it ☒ 1

Lea
,
✗ - ×

' > = Lex ,✗ >
- [Lea ,

×>

Ce⇒> = Lea
,
× > = o

u-7

÷
Taken together

,
we have ✗ - ✗

'

tea tats
%? ✗= × !

Moreover (if N < a ,
no limits are needed ) :

11×112=1/ him Écesj ,x >eg. /[
"Eiht - him If Écej , × >eg.li

u→Nj= , → a j=c

= him { ÉLeg,x > ex; , Éceas ,✗ > ein)n→N j=, KT

or
= him ÉÉT><em ,

× >

a;÷
= Ikea,i✗ > ij-4 4-I
j =,

¥ Ike . ,× > 12
✗ C- J

-

IFE

.



Lemma 2.50 (b) and Theorem 2.51 gives ⑤
/ cowllaiy.is# Let E be a Hilbert space

and { ex/*g- an orthonormal set
- -

inE

Caf If (a)
✗ c-g-
≤ It with -2 Iconic •

,
then Ige, is well- defined in E

✗C-J ✗C-J

(b) If J is countable
,
and { ex / ✗ £ J} is even an orthonormal basis CONBI

,

then { ex / ✗←g- is a Schanck basis .

ÑeJ# Every Hilbert space * ≠ { o} has an ONB . Moreover,
I separable ⇔ then exists a countable ONB

.

-

-
-

PI. The existence of an ONB in the her
- separable case will be

proven
later (when Zorn's Lemma is available )

.

Suppose there exists a countable ONB . By Cor . 2- 52lb 1
,
this

is a Schauder basis .

Thus
,
E is separable by Lemma 2. 16

.

✓

"

⇒ Let { ✗u Int IN } be dense in II. We construct an ONB using the

GI-nsch-midfpweedune-i.li/Ifx,--o
,
define e , : = ¥7,1otherwise , use ✗no with no : = ninth c-in /✗n≠c} )

'

Lii / Throw away
all xu's that are linearly dependent of ee .

Let u , -- = win { kc- IN / ✗a& span { ee}} > no be the smallest index

of the remaining elements .

Set

e-
z
: = Xu

,

- <e , Yu , > e, and ez : =
E-
KIK

^

Liii) Throw away all xu's that are linearly dependent
of { e ≥

,
ez} .

Let uz : = win { here I ✗a& span { eyed } > n ,
be the smallest index of the remaining elements .

Set

É
}
: = ✗nice, ,Xu, > e ,

- Lea
,
✗n
,
> ez

and e }
: =
E-
11511 '

Civ) continue this pwcedn.im :
This terminates iff dim# < • .

It is clear
,
that { en} *µ is

an orthonormal set . Also, span {en / new } is dense in E because



each ✗u is a finite linear combination of en's .
It remains ⑤

to pwve
that this is a basis : Assume there is ye E such that

y f- en
tu

. By denseness , Fcykln
≤
span { en tu c- IN / such that

h→ a

Yu→ y in
E. Thus < y , yn >

=
o the and

114112 = <y,y >
= him Ly ,yn > =o ☒

b-so ÷

/ Definitions Let E ,
E

'

be inner product spaces .

E
,
E
'
are unitarily , ⇔ 7 isometric isomorphism U : I-I

'

equivalent

Note: U isometric & linear ⇒ U preserves scalar products :

< ✗ay >*
= < Ux

,Uy>± ,
Kx

, y c-* ( follows from polarisation,
see proof of Thin . 2. 46 )

/Theoum2- Let I be a Hilbert space . If u : = dim I < • then

* is unitarily equivalent to 1K
"

( with Euclidean scalar product ) .

If dim # = O and E is separable , then# is unit . equiv .

told
- -

PI. 2"ᵈc : Fix a countable ONB { en/new (exists byThun -

2- 53 b/c

€ is separable )and consider the map u : € → 12

✗ ↳ (Len , ✗ 7) u C- IN
( if U is well - defined by Bessel 's inequality , and linear .
(iil U is surjective by Cor

.
2.52 Caf

Ciii ) U is isometric (⇒ injective / by Parse val 's equality .
I&ca Analogous ☒

/Thei57(P≈je¥ntheorem ) Let E be a Hilbert space

and A C- E a closed subspace .

Then : Far all ✗ c-I

there exists a unique a c- A and a unique w c- At

such that ✗ = a + w

-



The proof relies on : ⑤
/ Lemma2.si# Let * , A be as in Thu .

2-55
.

For
every ✗ c-E there exists a unique

a C- A such that

distcx
,
A) = Kx - all .

That is
,
a is the

"

closest element
"

to ✗ in A
.

Pf(25 : Existence : Let d : = dlx , A- I = iuf 11×-711
.

YEA
There exists a sequence (yn)new≤A s-t .

⇐I D= him Kx - yall ( by def. of
"

inf
"

; (yulu is a

→ a Fd minimizing 9- rent )
Using the parallelogram identity
Kutv K2 = 2 ( Kull? + Kult ) - Hu - v11

≥

(Thu . 2-461 we get

llyn -Yuli = 11 (yn- ✗It G-Ym) 112

= 2(Kyu- ✗112+11×-4my
≥

) - 112 ✗ - Yun
- Yuk

?

= Kayu -✗ licks - ymli) - 411 × - Ym+¥ 112
**I

≤ 2( Kyu- ✗112+11ym- ✗ 1,2 ) - ya
pay

→ 0
, men

→ • ( by ☒1) .

Hence
,
(Yulin is Cauchy ,

so (*complete ) Fat# : Yu → a ,n→•
But (yufu C- A and A is closed , so at A

,
and D= llx -all

by * and continuity of the norm

Uniqueness : Assume there exists (Yu
'

)u ≤ A with

him llyn
'
- ✗ 11=D and a' = Lim Yu

'

→ a u→o

Replacing you by Yin
'
in ☒*1 gives

11 a - a'll
≥
= Lim Lim Kyu - yin

' 112
→ a m→o

≤ him him 2 ( then-✗ lit Ily 'm - ✗ IT ) - Yd
≥
= o

→• w →•

⇒ a=a
' ☆



Reach : Note that the proof works if It is closed and ⑤
conic ( not necessarily a subspace /.

Pf(uf2-5 Existence : Far given ✗ c-I, let ac- A be defined

by Lemma 2- 56 , and set w
: = ✗ - a. Need to prove

: w c-At

let } c- It and YEA . Then

KWIIZ ≤ 11 ✗ - (a +3×3112 = Kwlit 11 }yÑ - 2 Re Cw, Zy> .

so far ◦ ≠ y c-A we have 1312 _ 2Re<¥y'
>

a- ◦

lil Fw } = t c- IR this gives

E- 2Re{Y,# t ≥o *c- c- K
This implies Re<w, y > =o .

If It = 112 we are done
,

since ✗ C- It was arbitrary .

Far # = e we also consider the following case :
Iii ) Far } = it , t c- IR :

+2 + 2ImY>
t o_0 Kt c- IR

so Im < way > = o for every y c-A. Together
with ( if

this gives <w, y >
= o and so

wc-A.tv#ueuess--.Assume there are a
,
a

'

c- A and W
,
W
'EA
+

with a tie = ✗ = a 't w
'

.
Then a - a

'
= w

'
- V.Then a=a

'

and w=w
'

as An A+ { o} . IF It ☒

|Reoucrie-R.epusentatiu-hm.tt/Ibea Hilbert

space ,
and let l c-**

.
Then there exists a unique yet #

such that llxl = Lye ,
× > t✗ c-I * 1

and Kell
#
= Kye 11

.

-
- -



If: If here _- ☒ ⇒ 1=0 and term .

tone with ye=o .⑤
Assume therefor here f- E. Note that Keolis closed .

Existence of Ye : FromThur .

2.55 we know Creve)+ 7- { o}
-
-

and this allows to choose ◦ ≠ ✗◦ C- Creve)? Define

ye
: = - ✗

◦ c-*

(if so ☒ 1 holds for every ✗C- Kev l ( ✗◦ the-l )

(ie) Let ✗ = ✗ Xo , ✗ C- It
_ Then llxl = * llxol and

<Ye , ×
> = { a-

✗◦
,
✗ ✗ o> = f¥⇒✗<xoxo > = ✗ lcxul ,

so l and Lye
,

. > agree on span { here, a} .

Liii) But span { here , xu } = # because
,
for all ✗ c-$

,

✗ = (x - %¥i%i-%¥, - ×.
- -

C- Kev e c- span {% }

since ⇔
l ( x - ecxoixo) = llxl -

# lcxol =◦
.llxol

So l = <Ye ,
• > on € by Lil , ( iil , and the linearity

of land

<Ye ,
• >

.

U-uiq.ve#ye-: Assume there exists ye
'

c- € with

l= Lye
'

,
. >

.
Then

,
for ereuy ✗C-

E
,

O = llxf - lcxl
- -

= <ye
-

ye
'

,
× >

Lye , × > Lye
'

,
× >

Choose ✗ = ye - ye
'

,
so that 0=11 ye

- ye 'll
≥

,
so ye

-

ye !
Nov we have

Hell
,
= sup

% Hye ,,
◦⇔ᵗ*FÉ



Note that ye to since here f-E. Hence ,
we may

⑥

choose ✗ = ye in
sup

above :

Hell
*
≥

I
= ",, ' = Kye 11"""

heuu
, Hell# = 11yell ☒

/ Covy2-58_- / Let E be a Hilbert space . Then the map

J : ☒
*

→ I

e. ye

defined by Tim . 2- 57 is a semi - linear
,
isometric bijection

( linear for It = IR , conjugate linear far *= e) .

-
-

PI Let × ,PEK ,
and le

,
la C- ☒* with lj = <yj , • > ,

i - e
.

Jclj ) = Yj far g- = 1,2 .

Then

✗ let plz = ✗ <ye ,
• > + p <Yz ,

. > = <Ey, + f-Ya , • >

So J(✗letplz ) = I J (f) + B-Jlla ) ( by uniqueness in 2.571
Hence

,
J is semi - linear

_

That J is an isometry was proved
in 2-57 (⇒ J injective) . Also

,
J is onto /surjective :

For ye E , ly : = Ly, • 7 C- E-
*

( use C- S
,
or Lem .

2-42
,
to

prove continuity) and silly ) = y ( by uniqueness i. 2- 57 ) ☒

- -


