
/EÑÑ ( al consider !
-

Cc : = { ✗ = cxjlg.tw/xjc-C-Vjc-1W,audxj--ofououhgfiuifely many j 's }
( see also exercise , the index

'

c
' stands for

"

compact support
"

;
also : )

Let em: =L . _ _ , 0 , 1,0 , _ . . / with a
e- at the with. position .

Claim ? B = = { en In c- IN } is a Hamel basis farce

(b) Even though It is separable ,
then exists no countable Hamel

basis for It (see exercise / .

|TheoÑ Every vector space ☒ f- { o } has
a Hamel basis

PI : Uses Zorn 's Lemma g see later .

/Coy 2-5-7 II has infinite dimension iff For every u c- IN

there exists ten C- E such that I Mul = n and ten is linearly iudep:

Pf Existence of Hamel
basis with 1131 = a ☒

/ Exa=p6 Infinite dimensional vector spaces :
cc

,
IP

,
CCI ) ( where ∅ ≠# ≤ Ird open )

2.2 .
Banach Spaces
In- m

/Deftvn2_7 Let ☒ be a vectorspace .
A map *

→ Io
, a)

- -

✗ I→ 11×11
is a uovm_ :⇔

C) 11×11>0 to f- ✗ C-*

(at 117×11=1×1.11×11 trick E- c-E (⇒ 11×11--0)

(3) 11×+411 ≤ 11×11 +11yd tx- y C- E-

(E
,
11-4) is called a normal space- - - -

If only (2) and (3) hold ,
II. It is called a semim

- -



/ReTl Let E be a normed space .

Then dcx
, y ) : = 11×-44 ⑤

is a metric on E. Thus all topological notions and results

from the theory
of metric spaces are

available
.

A base of the norm topology on € :

{ BECH I ✗EE ,Kew} = { ✗ + BEG / ✗c-E, K c- IN /
[ KiIeEem of sets A

,
B : At B : = { a+ b la c- d-

,
b c- B }

and at B : = { a } + BY

fWag. / Not every
metric convector spaces / comes

fwm a norm.

/E✗_ampU2 @ f IP is a normed space with 11-11=11
- Xp Kp c- It , a]

Cbl CCE ; It) ( where E is a compact Hausdorff space ) is a
normed space with yfg : = Hf% : = sup IfG) I

✗C-€

(c) IRD
,
ed are normed spaces for de 1W (wit . p

- norm /

¥2 Let E be normed space . Then the following

maps are
continuous =

@ 1 Nurse : E→ Io ,a)

✗ 11×11

(b) Addition : ☒ ✗E →I

C- -41 ✗+y
@ I scaiw-mulh-ph.cat : * ✗ *→E

C. ✗ Its ✗✗

PI (a) Let (a)*µ c-It
with ✗n→ ✗

,
k -so

,
i.e.
,

If ✗n-✗¢→ 0
,
k → • ( see Cor . 1.8)

.

Hence
,
the claim

follow from reinventing quality :

111×4-1411 I ≤ 11×+44

(b)
,
( of see exercise ☒



⑤efi / A complete normed space LE , HH) is
called a Beach space

/F-xamp.us# I (a) All spaces in Ex -

2.9 are Banach spaces
-
-

I

(b) Let € : = ( ( [o
, D) with E-uuvm 11-111

≥
: = /

◦

lfltlldt .

Then (E ,
It-1k ) is not a Banach space ( recall Ex .

1. 11 Cbl)
.

Ñe3T Every normed space I can be completed , so
that

☒ is isometric to a dense linear subspace 1×1 of a Banach space É,
which is unique up to

isometric isomorphisms .

-
-
-

PI Analogous to the proof of Theown 1.14 . Nate :The isometry
is even a linear bijection ( hence ,

an isomorphism) in this

case ( see section 2- 3 below) .

IDefim-tr.vn#/ Let E be a normed space . A sequence ten)u≤
I

-

is called a (SEM) basis in I : ⇔ Far all +c- I there

exists a sequence (a) new
≤ K such that

him 11 × - Éxuen /1--0
N → N u= 1

Notation : ✗ = Einen
,
infiniteli combination ,cozreugeutseuiesuc.IN

111¥ : Linear independenceu required for Schauder basis

/Examp4 I Let p c- [ 1 ,a) . Then (en)*µ with eu : = Cq . -10,79 . . . )
- -

( the 1 inthe n'th position) is a (Schauder) basis ofIP :

For ✗ = (xn)new
C- l P we have

N 0

If × - Ixuenlf
"
= -21×4PET .

u=/ in= Nt 1

Note: This construction fails for Ñ !

↓



④/ Lemmu2 Let E be a normed space .

Then

II has a (Schauder ) basis ⇒ I is separable

P± Let It;=Q ,
if It = 112

, resp . Ito : = + i ④ far It = ¢
.

Define

N

An : = { Exuen in Elko for ut {1, - in}}
u= 1

Then the union A : = U A µ is dense in *
,

and countable ☒
N C- IN

/Remak2 The implication
"

⇐
"

in Lemma 2.16 does not hold

(Enflo
,
1973 )

(Remwk2-# All norms in finite -dimensional spaces are equivalent .

That is
,
for norms II. It and 111.111 on It

"

then exists constants

C
,
E > 0 such that

c. 11×11 ≤ 111×111 ≤ c- 11×11 txt # ?

(see exercise )

/Reoum- / Let E be a normed space , and FEE a finite
- dim

.

subspace . Then F is complete and closed .

-

-

PI Let u : = dim F < 0 .

Fix a basis { e≥ , . . , en} inF. For every

✗ c- F there exists unique ✗ = (✗
=) . .in) c- It

"

s -t . ✗ = Étjej
.

j =,
Let 111×111 : = It Étjejlf to = (x≥ ,

. .

,
a) c- K

"

.

j-4

Then the normed spaces ( F , 11-111
and ( IK

"

,
111.111) are isometrically

isomorphic via ✗↳ ✗
. Now

,
K
"

is closed and complete wit .

the Euclidean norm
,
and all norms in 1K

"
are equivalent ( by

2. 18)
.
Hence

,
( IK

"

,
111.111) is closed and complete , and , because

of the isometry ,
so is (F, 11.111 .

BE

As a preparation for Theorem 2.21 we prove
the following
lemma :



I / ( Rniesnlemua ,
19181 Let E be a normed space , ⑤

and U f- a closed ( ! ) subspace .

Then
,
troll ✗ c- Coil)

,
there

exists ✗
✗
c- E) U such that

11×+11 = 1- and llx ,
- u 11 ≥ ✗ true

-

-
-

PI Let ✗ c- ☒ IU (open ! / Then
7 & > ◦

! B{✗ (✗ I ≤E) V. Hence

d : = diet (× , U) = iuf 11×-411 ≥ ex so far all ✗ c- EIU .

Ut U

since ◦ < ✗ < 1 there exists v4 c- U sat . I ≤ 11×-4×11 ≤ .

Hence
, y : = ¥, ,,

≥ ¥ .

Define ×
,
: = 86--4 ) c- E)u ( ! )

By definition
of & ,

we have 11×+11=8.11×-4×11--1 , and

1k¢ - all = 1186--4×1 - all = 118 ✗
- Cut guilt = g- Kx - Cu,

-F) 11

≥ yd ≥✗ tu c-U ☒ ¥

Warning 1.26 illustrates the following general result :

Meomn2 Let # be a normed space .

Then

13,1T = { ✗ c-I 111×11<-1} compact ⇔ dim I < a.

PI
"

: Let u - = dim E- < • .
Fwm (the pwof A) Thin 2.19 ?

I is isometric to ( IK
"

,
111.111) .The statement follows from Heine -

Borel for ( IK "
,
I - 1) and the equivalence of norms .

: Assume ( for contradiction) that dim #=D .
Will prove

:

this implies BÑ is nad seq_ compact , by constructing a sequence
new in BÑ with Convergent subsequences :

lit Let × ,
c- E be arbitrary ,

sat . Kick -- 1.Let vi. = span {×, } f- I

be the closed ( ! ) subspace spanned by × , ,
Riesz

'

Lemma
,

applied with D= £ , gives existence of ✗a c-E) U, s -t .

11×211--1 and 11×2-411 ≥ £ .

Let Uz : = span { ×, ,✗a } 9- E.

E



( iif Let vi. = span { ✗± , _ . , ×} f- II be the closed subspace ④
of the vectors constructed before . Again , by Riesz

'

Leming
then exists ✗ne , c- *14 sat . Hint , 11=1 and distant , ,Un) ≥É .

By assumption ,
diw E- = •

,
hence this procedure does not stop .

We get a sequence (a) new ≤ 13,10T s.t.tl/u-xm1l2-1-z-Vn-- in .

Clearly , (✗ulnew has no convergent subsequence - contradicting the
(seq-1 compactness of Belt § ☒

◦

peiat.rs/Defiui-h#2--2/Let € , Y be vector spaces (over
the same field 1kt

,

Eo ≤E a ( linear) subspace ,
and T :# ◦ → Y

.

Lil T is a ( linear) operator :⇔
1- (✗✗ +py)

= ✗Text + pT(41 tape# , they C-Eo

Lii ) doin CT) -

_

= DCT) = = Eo is the domain of T
--

'

Liii) ran CTI = = RLT) : = 1- (Eo) is the izygeof
Civ) her CT) : = NCT ) : = { ✗ C- Eo / Tx = o } is the herd

Cornellspay) of T
(w) U≤ doin CTI a subspace ,

1-1
,

:
° → Y is the restriction of T to u

✗ ↳ Tx
- - -

(ri) w ≥ doin CTI a vector space ,
F : w→ Y linear with

F- / done,,
= T is called a (1) linear extension ofT to it .

/ExaT Some linear operators :
(a) Identity ◦pewter on vector

space ☒
:

TI : = TIE :
* → I

✗ 1- ✗


