also
$$f(x_k) \xrightarrow{k \to \infty} f(x_k) \vee$$

(b) Ann: f with stelig.
 $\Rightarrow \exists \forall \forall \forall \forall ffen wit f'(\forall) with offen in \mathbb{X} .
Lemma lo.6
 $\Rightarrow \exists x \in f'(\forall), so does \forall Ungebungen \mathcal{U} von $x;$
 $\mathcal{U} \cap (f'(\forall))^{C} \neq \phi$ (I)
 $n. \forall \exists abe. Ungebungsboosis$
 $\{\mathcal{U}_k: k \in \mathbb{N}\}$ von $x;$
 $setze \quad \widetilde{\mathcal{U}_k}:= (\cap \mathcal{U}_j) \Rightarrow \quad @! \quad \widetilde{\mathcal{U}_k} \supseteq \quad \widetilde{\mathcal{U}_{k+1}} \quad \forall k \in \mathbb{N}$
 $(\exists \mid \widetilde{\mathcal{U}_k} \mid Ungebung von $x, \forall k \in \mathbb{N}$
 $(\exists \mid \widetilde{\mathcal{U}_k} \mid Ungebung von $x, \forall k \in \mathbb{N}$
 $(\exists \mid \widetilde{\mathcal{U}_k} \mid Ungebung von $x, \forall k \in \mathbb{N}$
 $(\exists \mid \widehat{\mathcal{U}_k} \mid Ungebung von $x, \forall k \in \mathbb{N}$
 $(\exists \mid \widehat{\mathcal{U}_k} \mid Ungebung von $x, \forall k \in \mathbb{N}$
 $(\exists \mid \widehat{\mathcal{U}_k} \mid \widehat{\mathcal{U}$$$$$$$$

10.21 - Bemerhug

(al Bop. für folgenstetige, aber nicht stetige Flit, siehe Präsenzüburg. (6) Verally. von Folgen auf gerichtete Indexmengen J (statt N): (Xj)jeJ (Netz). Dann gilt (ohre I. AA!): fuelzstelig (=) f stelig Eine Indexwenge J ist gerichtet : (3) J Relation & auf J unil · jaj ¥je J (veflexiv) · jak ~ kal => jal Vj, h, lEJ (framen the) · ¥j, keJ JleJ: jol xkal

284