

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. Dr. Thomas Ø. Sørensen Version 0.2

FA 1 Handout SoSe 2022 26. April 2022

This is an overview of material on METRIC AND TOPOLOGICAL SPACES (Ana2).

TO BE UPDATED - CHECK DATE AND VERSION

Metric and Topological Spaces

Let X be a (non-empty) set (for example $X = \mathbb{R}^d$ or any subset of \mathbb{R}^d), and let $\mathcal{P}(X)$ be the family of all subsets of X (its power set).

Definition 1 (Topology; topological space). A family of subsets of $X, \mathcal{T} \subseteq \mathcal{P}(X)$, is called a topology (on X) if and only if ('iff')

- (i) $\emptyset, X \in \mathcal{T}$.
- (*ii*) $A_1, A_2 \in \mathcal{T} \Rightarrow A_1 \cap A_2 \in \mathcal{T}$.

(iii) For any index set $I: (A_j \in \mathcal{T} \text{ for all } j \in I) \Rightarrow \bigcup_{j \in I} A_j \in \mathcal{T}.$

The pair (X, \mathcal{T}) is called a topological space (often just X), and $A \subseteq X$ is open : $\Leftrightarrow A \in \mathcal{T}$.

Remark 1. By induction, (ii) is equivalent to:

(*ii*) For any $n \in \mathbb{N}$: $(A_j \in \mathcal{T} \text{ for all } j = 1, \dots, n) \Rightarrow \bigcap_{j=1}^n A_j \in \mathcal{T}.$

Definition 2 (Coarser/finer topologies). Let $\mathcal{T}_1, \mathcal{T}_2$ be topologies on X. We say that \mathcal{T}_1 is finer than \mathcal{T}_2 , and \mathcal{T}_2 is coarser than \mathcal{T}_1 , iff $\mathcal{T}_2 \subset \mathcal{T}_1$.

Example 1. 1. Indiscrete topology: $\mathcal{T} := \{\emptyset, X\}.$

- 2. Discrete topology: $\mathcal{T} := \mathcal{P}(X)$.
- 3. All topologies are finer than the indiscrete, and coarser than the discrete topology.
- 4. Euclidean (or standard) topology \mathcal{T}_E on $\mathbb{R}^d, d \in \mathbb{N}$: $A \subseteq \mathbb{R}^d$ is open (in $(\mathbb{R}^d, \mathcal{T}_E)$) iff $\forall x \in A \exists \varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq A$, where $B_{\varepsilon}(x) := \{y \in \mathbb{R}^d \mid |x y| < \varepsilon\}$ is the Euclidean ball of radius $\varepsilon > 0$ about $x \in \mathbb{R}^d$.

Definition 3 (Induced / relative topology). Let (X, \mathcal{T}) be a topological space, and let $A \subseteq X$ (not necessarily open!). The relative (or induced) topology \mathcal{T}_A on A is

$$\mathcal{T}_A := \left\{ B \subseteq A \, \Big| \, \exists C \in \mathcal{T} \text{ with } B = C \cap A \right\} \subseteq \mathcal{P}(A) \,.$$

Remark 2. 1. \mathcal{T}_A is a topology on A.

2. If $A \notin \mathcal{T}$ and $B \in \mathcal{T}_A$, then it may happen that $B \notin \mathcal{T}$. Example: Let $X = \mathbb{R}$ with the standard topology \mathcal{T}_E , A = [0, 1]. Then $B := [0, \frac{1}{2}] \in \mathcal{T}_A$ but $B \notin \mathcal{T}_E$.

Definition 4 (Closed set; neighbourhood; Hausdorff space; limit/accumulation point; closure; interior point; interior; boundary point; boundary; dense). Let (X, \mathcal{T}) be a topological space, $A \subseteq X$, $x \in X$.

- (i) The set A is called closed (in X, or, correctly, in (X, \mathcal{T})) iff $A^c := X \setminus A \in \mathcal{T}$ (that is, the complement A^c of A is open (in X)).
- (ii) A set $U \subseteq X$ (not necessarily open) is called a neighbourhood of x iff $\exists A \in \mathcal{T}$ such that $x \in A$ and $A \subseteq U$.
- (iii) The (topological) space X (or, correctly, (X, \mathcal{T})) is called a Hausdorff space iff For all $x, y \in X, x \neq y$, there exist neigbourhoods U_x of x and U_y of y such that $U_x \cap U_y = \emptyset$.
- (iv) The point x is called a limit point of A (or accumulation point) iff For all neighbourhoods U of $x: U \cap A \neq \emptyset$.
- (v) The closure \overline{A} of A is $\overline{A} := \{x \in X \mid x \text{ limit point of } A\}.$
- (vi) The point x is called a boundary point of A iff For all neighbourhoods U of x: $U \cap A \neq \emptyset$ and $U \cap A^c \neq \emptyset$.
- (vii) The boundary ∂A of A is $\partial A := \{x \in X \mid x \text{ boundary point of } A\}.$
- (viii) The point x is called an interior point of A iff There exists a neighbourhood U of x such that $U \subseteq A$.
 - (ix) The interior A° of A is $A^{\circ} := \{x \in X \mid x \text{ interior point of } A\}.$
 - (x) The set A is dense in X (correctly, in (X, \mathcal{T})) iff $\overline{A} = X$.

Remark 3.

- 1. According to this definition, every point of A is a limit point of A. Hence, $A \subseteq \overline{A}$.
- 2. Note that $\overline{A} = A \cup \partial A$ and $A^{\circ} = A \setminus \partial A$.

Lemma 1. Let X be a topological space, $A \subseteq X$.

- (i) A is open iff $\forall x \in A : x$ is an interior point of A.
- (ii) A is closed iff $A = \overline{A}$.
- (iii) \overline{A} and ∂A are closed.

Definition 5 (Base; subbase; neighbourhood base).

Let (X, \mathcal{T}) be a topological space.

(i) A family $\mathcal{B} \subseteq \mathcal{T}$ is called a base (or basis) for (the topology) \mathcal{T} iff \mathcal{T} consists of unions of sets from \mathcal{B} .

- (ii) A family $S \subseteq T$ is called a subbase (or subbasis) for (the topology) T iff finite intersections of sets from S form a base for T.
- (iii) A family $\mathcal{N} \subseteq \mathcal{T}$ is called a neighbourhood base (or neighbourhood basis) at $x \in X$ iff Every $N \in \mathcal{N}$ is a neighbourhood of x and for every neighbourhood U of x there exists $N \in \mathcal{N}$ with $N \subseteq U$.

Example 2. Consider \mathbb{R}^d with the standard topology. Let $x \in \mathbb{R}^d$.

- 1. The family $\{B_{1/n}(x) \mid n \in \mathbb{N}\}$ is a neighbourhood base at x.
- 2. The family $\{B_{1/n}(q) \mid n \in \mathbb{N}, q \in \mathbb{Q}^d\}$ is a base for the standard topology.

Lemma 2. Let $S \subseteq \mathcal{P}(X)$. Then there exists a topology $\mathcal{T}(S)$ on X such that

- (i) S is a subbase for $\mathcal{T}(S)$.
- (ii) $\mathcal{T}(\mathcal{S})$ is the coarsest topology containing \mathcal{S} . That is,

$$\mathcal{T}(\mathcal{S}) = \bigcap_{\mathcal{T} \supseteq \mathcal{S}; \mathcal{T} \text{ topology}} \mathcal{T}.$$

The topology $\mathcal{T}(\mathcal{S})$ is called the topology generated by \mathcal{S} .

Definition 6 (Product topology). Let $I \neq \emptyset$ be an arbitrary (!) index set. For every $\alpha \in I$, let $(X_{\alpha}, \mathcal{T}_{\alpha})$ be a topological space. The product topology on the Cartesian product space,

$$\sum_{\alpha \in I} X_{\alpha} := \left\{ f : I \to \bigcup_{\alpha \in I} X_{\alpha} \, \middle| \, \forall \alpha \in I : f(\alpha) \in X_{\alpha} \right\}$$
(1)

is the one generated by the family

$$\left\{ \left. \bigotimes_{\alpha \in I} A_{\alpha} \right| \forall \alpha \in I : A_{\alpha} \in \mathcal{T}_{\alpha}, \text{ and } A_{\alpha} \neq X_{\alpha} \text{ for at most finitely many } \alpha's \right\}$$

Remark 4. If I is finite, then the condition $A_{\alpha} \neq X_{\alpha}$ for at most finitely many α 's' is always fulfilled.

Definition 7 (Metric; metric space). A map $d: X \times X \to [0, \infty[$ is called a metric (on X) iff

(i) $d(x,y) \ge 0 \quad \forall x, y \in X$, with d(x,y) = 0 iff x = y.

(*ii*)
$$d(x, y) = d(y, x) \quad \forall x, y \in X.$$

(iii) $d(x,y) \le d(x,z) + d(z,y) \quad \forall x, y, z \in X.$

If d is a metric on X, then (X, d) is called a metric space (often just X).

Definition 8 (Induced metric; open (metric) ball; open set; Cauchy sequence; convergent sequence; limit; complete (metric) space). Let (X, d) be a metric space.

(i) Let $Y \subseteq X$. The map $d_Y := d|_{Y \times Y} : Y \times Y \to [0, \infty[$ is called the induced metric (on Y).

- (ii) The set $B_{\varepsilon}(x) := \{y \in X \mid d(x, y) < \varepsilon\}$ is called the open (metric) ball of radius $\varepsilon > 0$ about x. (More correctly: $B_{\varepsilon}(x; d)$.)
- (iii) A set $A \subseteq X$ is called open (in the metric space (X, d)) iff For every $x \in A$ there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq A$.
- (iv) A sequence $(x_n)_{n \in \mathbb{N}} \subseteq X$ is called a Cauchy sequence (or, is said to be Cauchy (!)) (in X, or, in (X, d)) iff

For every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for every $n, m \geq N : d(x_n, x_m) < \varepsilon$.

- (v) A sequence $(x_n)_{n\in\mathbb{N}} \subseteq X$ is called convergent (or, is said to converge) (in X, or, in (X,d)) iff There exists $x \in X$ such that $\lim_{n\to\infty} d(x_n,x) = 0$ (which is equivalent to: $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} : x_n \in B_{\varepsilon}(x)$). In this case, $(x_n)_{n\in\mathbb{N}}$ is said to converge to x, and x is called its limit. We write $\lim_{n\to\infty} x_n = x$ or $x_n \to x, n \to \infty$.
- (vi) The space X (more correctly, (X, d)) is called complete (is a complete metric space) iff every Cauchy sequence in X converges. That is: For all Cauchy sequences $(x_n)_{n\in\mathbb{N}}\subseteq X$ there exists $x\in X$ (!) such that $\lim_{n\to\infty} x_n = x$.

Remark 5. Completeness is not a topological notion! See Exercise (??)

Definition 9. Let (X, d) be a metric space, let $A \subseteq X, x \in X$.

- (i) The (extended) number diam(A) := $\sup_{a,b\in A} d(a,b) \in [0,\infty]$ is called the diameter of A.
- (ii) The number dist $(x, A) := \inf_{a \in A} d(x, a)$ is called the distance of x to A.

Lemma 3. Let X be a complete metric space, and let $A \subseteq X$. Then A is closed iff A is complete.

(More precisely/correctly: Assume (X, d) is a complete metric space, $A \subseteq X$. Then A is closed in (X, d) iff (A, d_Y) is a complete metric space.