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MEASURE AND INTEGRATION THEORY

Let X be a non-empty set (for example X = R? or any subset of R?), and let P(X) be
the family of all subsets of X (its power set).

Definition 1 (c-algebra). A family of subsets of X, A C P(X), is called a o-algebra
(on X ) if and only if ("iff’)

(i) X € A.

(ii)) Ac A= X\ Ae A

(iii) (A; € A forallj €N) = U2, 4; € A,
The pair (X, A) is called a measurable space, and A C X is measurable 1< A € A.
Proposition 1 (Generated o-algebras; Borel-(o-)algebra).

(i) For any family B C P(X) there exists a smallest o-algebra o(B) containing B (that
is, o(B) D B, and if C is a o-algebra with C D B, then C D o(B)), given by

o(B) := N A. (1)

ACP(X),A o-algebra,ADB
We call o(B) the o-algebra generated by B.

(i) Let (X,T) be a topological space (for example, a metric space (X, d) with the topology
Ta generated by the metric d). The o-algebra o(T) is called the Borel-o-algebra (or
Borel-algebra) (on (X,7T)), denoted B(X) (more correct would be: B(X,T)), and
B C X is a Borel-set (or Borel or Borel-measurable) < B € B(X).

(7ii) For a measurable space (X, A) and a subset B C X (not necessarily measurable), the
induced o-algebra (or trace-o-algebra) on B is defined by Ap :={BNA|Aec A}.
If Be A, then Ag C A.



Example 1 (Borel-algebra on RY, R, R, R>(). Let X := R? with the usual topology
Teua, generated by the Euclidean metric | - |. We denote B¢ := B(R?) := o(Tgua) the
Borel-algebra on R?, and write B := B! when there is no risk of confusion. We denote
Bso = B'g., := {Rso N A| A € B'}. Tt is the Borel-algebra of Rsq (with the topology
on Rsq the one induced from R). For R := R U {—oo} U {+00}, we denote B(R) :=
o(B' U {{—o00}} U {{+00}}). It is the Borel-algebra on R for the usual topology on R.
Finally, BZO = {KZO NA |, A € B(R)} ( = B(RZO))

Definition 2 ((Positive) measure).

(i) Let A be a o-algebra on X. A map p: A — [0,00] is called a (positive) measure
(on X, or on (X, A)) iff

(1) u(0) =
(ii) For all A; € A, j € N, with A; VA, =0 for j #k:

i [_j Aj) = i_oj 1(A;)  (o-additivity) . (2)

The triple (X, A, 1) is called a measure space.

(ii) A measure p (or, more correctly, a measure space (X, A, p)) is called finite (or
bounded ) iff 1(X) < oo, and o-finite iff there exists (X;)jen, X; € A, X = U2, X
with p(X;) < oo for all j € N.

Example 2 (Lebesgue-Borel measure on R?). There exists a unique measure, called

the Lebesgue-Borel measure A%, on B? so that for all rectangles Q := )(;l:l[aj, b;) C RY
—o00 < a; < b; < oo, holds

1:[ (bj — aj) (3)

Furthermore, A\? is translation and rotation invariant, and o-finite.

Definition 3 ((u-)Null sets; complete measure). Let (X, A, 1) be a measure space.
(i) A subset N C X is called a (p-)null set iff N € A and u(N) = 0.
(i) (X, A, ) (or just ) is called complete iff all subsets of null sets are null sets.

Theorem 1 (Completion of measure). Let (X, A, u) be a measure space. Then there
exists a smallest complete measure space (X, A, Ti) (called the completion of (X, A, 1))
containing (X, A, 1) (that is, A D A, fi|4 = u, and [ is complete).

Example 3 (Lebesgue measure on R?). The completion of (R?, B4, A%) (which is not
in itself complete) is denoted (R?, B4, A?). Elements of B? are called Lebesgue-measurable
(subsets of R?), and M is called (d—dimensional) Lebesgue measure. One has

B'={BUN|B e B3N € B! with \Y(N) =0, N C N}. (4)

Furthermore, A € B iff for all € > 0 there exists U C R? open and C' C R? closed, with
C' C AcC U, such that M(U\ C) <e.
Note, in particular, that B¢ C B¢ C P(RY).



Definition 4 (Measurable maps and functions).

(i) Let (X, A), (Y,C) be measurable spaces. A map f : X — Y is called (A-C-)measurable
iff [7XC) € A for all C € C. We denote by M(X,Y) the set of all A-C-measurable
maps. (More correct would be M((X, A), (Y,C)).)

(ii) In the special case (Y,C) = (R,B'), we denote M(X) := M(X,R) the set of all
measurable functions f: X — R, and M (X) :={f € M(X)|f > 0}. Note that
M (X) = M(X,Rx0) = M((X, A), (R0, Bxo))-

(iii) In the special case (Y,C) = (R, B(R)), we denote M(X) := M(X,R) the set of
all measurable numerical (or extended real-valued) functions f : X — R, and

M (X) = {f € M(X)| f > 0}. Again, M(X) = M(X, Bso).

(iv) We denote by M(X,C) the set of all complex functions f : X — C such that
R(f),3(f) € M(X,R).

Remark 1. One has

M(X)={f: X > R|f((~00,a)) € A for all a € R}, (5)
and similarly with (—oo, a) replaced with (—oo, al, (a,00), or[a,o0). Analogous statements
hold for M(X).

We denote, for a € R,
{f <a}:=f"((=00,0)) = {x € X | f(z) € (~00,0a) }, (6)

and similarly for other types of intervals.

Definition 5 (Distribution function).
Let (X, A, 1) be a measure space. For f € M(X), we call the function p;: R — R given

by
up(t) == u({f > 1)) = p({z € X | f(2) > t}) (7)
the distribution function of f (relative to p).

Definition 6 (Almost everywhere (a.e.); f =g a.e.).
Let (X, A, p) be a measure space.

(i) A mathematical statement QQ = Q(x) (which is assumed to make sense for allx € X )
is said to hold (p-) almost everywhere (a.e., or p-a.e.) iff there exists a (pu-)null set

N such that Q(z) is true/holds for all x € X \ N.

(ii) Let f,g : X — M (M € {R, R, R,R>0,C}) be measurable, then f = g a.e. iff
f(x) = g(x) a.e. This defines an equivalence relation ~,... on M(X,M).

Definition 7 (Step functions).
Let (X, A) be a measurable space. A function f: X — R is called a step function iff there
exists N €N, Ay,..., Ay € A, and ay,...,an € R such that

N
f = Z anﬂAn . (8)
n=1



Here, 1p is the characteristic (or indicator) function of (the set) B, given by 1p(z) =1
if v € B, and equal 0 otherwise (x ¢ B).

Note that step functions are measurable by definition. We denote the set of all non-negative
step functions by

E+::{f:X—>]R’f20,fstepfunctz'on}. 9)

Theorem 2 (Approximating measurable functions by step functions). Let (X, .A)
be a measurable space. Then f € M(X,R) iff there exists a sequence (fn)nen of step func-
tions f, : X — R with [ = lim,_, fn (pointwise on X ). If f € M+(X), then the
sequence can be chosen monotone (f, / f), and if f is a bounded function, then the
sequence can be chosen such that the convergence is uniform on X.

Definition 8 (Definition and properties of Lebesgue integral).
Let (X, A, ) be a measure space.

1. Let f € E. (f >0, f step function), with f = >N a,la,, A, € A,a, €R. Then

[ ran= [ f@aut Zanu ] (10)

is the (u-)integral of f over X. It is independent of the representation in (8)).

2. Let f € M (X) (f : X = [0,00], measurable), and let (f,)nen C Ey be an appro-
zimating sequence as in Theorem[3. Then

[ ran= [ r@aut) =t ([ o) elosd

is the (u-)integral of f over X. The limit is well-defined, since the sequence
([ fadp)nen C [0,00] is non-decreasing. The limit is independent of the chosen
sequence (fn)nen-

8. For f: X = R, let fy := max{£f,0} (so f=fr—f|fl=fr+Ff) Then f
is (u-)integrable over X :& f e M(X) and [y fidp < oo, [ f-dp < co. In this

/fdu —/f ) dpa(z /f+du /f-dMGR (12)

is the (u-)integral of f over X. We denote the set of integrable functions by

L= LNX) =LY p) = LYX, p) = LYX, A, p) = {f X — ]R’f p-integrable },
D= LUX) = LY (u) = LYX, p) == LYX, A, ) :={f : X = R| f p-integrable } .

4. For Ae A, and f € L' (or f e LY), let [, fdu:= [, fladpu.

5. Properties of the integral:

(a) For f € L, f >0, one has: [ fdp=0% f =0 p-a.e.
(b) The map f v~ [y fdu from LY to R is linear and monotone.



(c) For f € L1,
| /X fdu| < /X |fldp  (triangle inequality) . (13)
(d) For f € L', f >0, and all € > 0,
p{f>e}) < i/xfdu (Chebyshev’s inequality) . (14)
Proposition 2 (Riemann versus Lebesgue interal in R).

For f :[a,b] = R (a,b € R,a < b) Riemann-integrable, denote fab f(z)dx the Riemann-
integral of f over [a,b].

1. For f :[a,b] — R Riemann-integrable there exists g : R — R measurable, with f = g
a.e. on [a,b] such that

/a ’ fla)de = /[ , g(z) dN\\(z). (15)

2. Let f :]0,00) = R be measurable, and continuous on (0,00). Then

/fﬂ[lyoo)d)\l— lim/ f(z)dz, (16)
R n—oo 1
1
/ flogd\ = lim [ f(a)de. (17)
R n—00 1/n
In particular,
/ 2 dM\ (7)) <00 & a> -1, (18)
[0,1]
/ 2?d\(r) <00 & b< 1. (19)
[1,00)
Also,
*®sinx T sinx | 4
/0 . dx_2_l%ggo(/[0ﬁ] . ' (7)) , (20)

/}Re””2 d\'(z) = /. (21)

In what follows, let (X, .4, 1) be any measure space.

Definition 9 (Essential supremum). For a measurable function f : X — R the essen-
tial supremum of f is

esssupf = esssupy f = inf{s € R| f(z) < s p-a.e }

= inf{ sup f(x) ‘ N C X, N p-null set } : (22)
zeX\N

Definition 10 (The semi-normed spaces LP(X), p € [1,0]).
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(1) Forp € [1,00), let
LP = LP(X) = LP(u) = LP(X, p) = LP(X, A, )
::{f:X%C)feM(X,(C),/X\f\pdu<oo} (23)

and, for f € LP(X), let
1/p
1= ([ 1P an<oo) ™. (21)

(ii) For p = oo, let
L= L2(X) 1= L2(p) = L(X, ) == L2(X, A, )
={f:X = C|feM(X,C), esssupy|f| < o0}, (25)
and, for f € L2(X), let
1flloc = esssupx|f]. (26)

Then, for all p € [1,00], || - ||, is a semi-norm on LP(X): ||f|l, = 0 < f ~4e O
(which does not mean f =0).

Theorem 3 (Minkowski and (generalised) Holder inequalities).

(i) (Minkowski) Let p € [1,00], then || f + gllp < [[fllp + llgllp for all f,g € LP(X).

(i) (Holder) Let p,q € [1,00], with % + % = 1. Then, for all f € LP(X),g € LI(X),
| 1sald < 11lblgl 27)

(iii) (Generalied Holder) Letn € N (n > 2), and let py, ..., p, € [1,00], and letp € [1, 0]
satisfy % =", L. Then, for all f; € LPI(X), j=1,...,n,

=15,
IT14], < T - o8)
j=1 i1

() (Interpolation in LP-spaces). Let 1 < p <r < ¢ < oo, f € LP(X)N LIX). Let
0 € (0,1) with+ =2+ %9. Then f € L7(X), and

b
£l < A1 LAl (29)
Hence, for f : X — C measurable, the set
Fp={pelloo]|feLV(X)} CR (30)

18 an interval.

(v) Let p € [1,00], f € LP(X)NL®X). Then f € NgpLUX), and limgo0 || fll, =
1/ 1loo-



Theorem 4 (The normed spaces LF(X), p € [1,]).

Forp € [1,00], the relation ~,_ .. defines an equivalence relation on LP(X), and |-||, defines
a norm on the quotient vector space LP(X), which makes (LP(X), | - ||,) @ Banach space.
Forp =2, L*(X) is a Hilbert space, with inner/scalar product (f, g) == [y f(x)g(x)dp(z).

Remark 2. By abuse of notation we will call f € LP(X) functions when we should really
be talking about equivalence classes (this abuse of notation/language is well established).

Theorem 5 (a.e. convergent subsequences).

Let p € [1,00], and assume (f;)jen C LP(X), f € LP(X), satisfy lim; o || f; — fll, = 0.
Then there exists a subsequence (fj, )ken with limy_,o f;, () = f(x) a.e., that is, the
subsequence (f;, )ken converges pointwise to f for p-almost every x € X.

Theorem 6 (Denseness of step functions in L7(X)).
Let p € [1,00), then the linear subspace of step functions,

E:=span{ls|A e A u(A) < oo} (31)

N
={9: X =Clg=> ayla,, NeNA,...,Ay € A pu(4;) < o0,as,...,ay € C}

n=1

is dense in LP(X): For all f € LP(X) and all ¢ > 0, there exists g € E such that
1f = gll, <e.

Definition 11 (Locally integrable functions). Let (X,7T) be a topological space, and
let 1 be a measure on (X,o(T)). (Ezample: R? with Lebesque(-Borel) measure.) For p €
[1,00], we denote

LP

loc

(X) = {f:X—>C‘f e M(X,C), fe LK) forall K C X compact}. (32)

Theorem 7 (Monotone convergence / Beppo Levi). Let (fj)en, fj : X = R, be a
sequence of measurable functions with

0<fi<fo<lfy<. ... (33)

Then, with f(z) = lim; . f;(x),

i [ = [ ran. (34)
The possibility that both sides are +00 is included.

Theorem 8 ((Lebesgue) Dominated convergence). Let (f;)jen, fj : X = R, be a
sequence of measurable functions. Assume there exists g € L'(X) such that | f;(x)| < g(x)
for a.e. v € X and all j € N, and that f(x) :=lim; . f;(z) exists a.e. on X.

Then

lim /X fidp= /X fdp. (35)

In this case both sides are finite.

Theorem 9 (Fatou’s Lemma). Let (f;)jen, f; : X = R, be a sequence of measurable
functions, with f;j(x) >0 a.e. on X for all j € N. Then

/X (h%nf 1) dugh%nf( /X fidp). (36)
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Theorem 10 (Continuity and differentiability of parameter-dependent inte-
grals). Let (M,d) be a metric space, (X, A, 1) a measure space, and f : M x X - R a
map satisfying
(i) The map x — f(t,x) is z’ntegable forallt € M.
Let F': M — R be given by F(t) := [y f(t,x)du(z).
1. Let ty € M, and assume furthermore:
(ii) The map t — f(t,z) is continuous at ty for all x € X.

(iii) There exists integrable an function g : X — [0, 00| such that |f(t,x)| < g(z) for
allte M and v € X.

Then F s continuous at ty:

lim F'(t) _hm /ft:c du(z :/ (1 tof(t,x))d/,b(a:)

t—to t—to

- /X F(to, ) dp(x) = Flto) (37)

2. Let M =1 C R be an open interval, and assume (i) holds. Assume furthermore that
(ii") The map t — f(t,x) is differentiable on I for all x € X.

(iii") There exists an integrable function g : X — [0,00] such that |%{(t,x)| < g(x)
forallte M and z € X.

Then F' is differentiable on I, the map x — % (t x) is integrable for allt € I, and
d dF of
= /X f(tx) du(x)) = F'(1) = (1) / S Lo)du(r).(38)

Definition 12 (Product-o-algebra).
Let (X;,A;), 7 =1,...,n, be measurable spaces. The product-o-algebra

n

XA =A®...0 A, :=0(p1,....pn) (39)
j=1

(on X = X;.Lzl X;) is the smallest o-algebra such that the projections p; : X — Xj,
= (21,...,T,) — xj, are all measurable.

Example 4. B¢ = B'® ... ® B! (d times). However, B D Bl ® ... ® BL.

Theorem 11 (Product measure).

Let (X, Aj,pj), j=1,...,n, be o-finite (!) measure spaces, and let X := X?Zl X;. Then
there exists a unique measure p = @ ;1= 1 @ ... @ iy, (called the product measure
(of pa, .oy pin)) on A= ®7_,Aj such that

n

(éw)( ) ﬁ ) forallAj € A;,5=1,. (40)

J=1

Furthermore, (X, A, n) is o-finite.



Theorem 12 (Fubini-Tonelli).
Let (X;,A;j,15), j = 1,2, be o-finite (!) measure spaces, and let (X, A,n) = (X; X
Xo, A1 @ Ag, ji1 @ pg). Let f + X — R (or C) be A-measurable. Then is, for all g €
{%(.f‘F)?%(f*>7%(f+)7%(f*)}7 the functz’ons

X1 = [0,00] , 21 g1, 2) dpa(x2) (41)

X2

X2 — [07 OO] , T > g('xl?x?) d:ul(xl) (42>
X1

A1-measurable, respectively, As-measurable. Furthermore,

1. (Tonelli) If f > 0 a.e. (thatis, f(X \ N) C [0,00], u(N) =0), then
[ @ aut) = [ ([ foa) dualen)) )
:/X ( . f($17$2)d/i1(x1)> dpz(2) - (43)

Note: It is possible that all three integrals are +00.

2. (Fubini) If one of the three integrals
Jr@naney [ ([ 1) ) )
[ ([ 15wl dne) ) dues (44)
X2 X1

is finite, then they are all finite, and holds.

Theorem 13 (Layer Cake Principle). Let (X, A, 1) be a o-finite measure space, and
let B> be the Borel-algebra of R>q. Let v be a measure on Bsg such that ¢(t) := v([0,t))
is finite for allt > 0, and let f : X — Rs be A-Bso-measurable. Then

/ch(f(fv))du(w) :/R pfr € X[ f(x) > t}) dv(t). (45)

Recall that pg(t) = pu({f > t}) is the distribution function of f relative to fi.
In particular, if f € LP(X), then (by choosing dv(t) = ptP~1d\(t))

Juran=p [ o> mana. (10
X R>o
and if f € LY(X) with f >0, then (by choosing p = 1)

[ fau=[ s> ano, (47)
Also (by choosing p the Dirac measure 6, at x € X, and p=1),

flx) = / 1gs~n(z) dX'(t) (Layer Cake Representation of f). (48)
RZO
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Theorem 14 (Transformation formula for \9).
Let U C R? be open, and ¢ : U — o(U) C R a diffeomorphism. Then, for all f €
L (p(U), A7),

/ Fly) Xy / f(p(x))| det(Dg(x))| d\(z). (49)

Lemma 1 (Notation and certain concrete integrals in R?).

1. For x € RY r > 0, we denote B4(x) := B,.(z) := {y € Rde—y] < r}, and

wq = AYB1(0)) = A(B1(0)). One has wy = %2/3-1 with T'(z) = [ 7 et dt,
z > 0, the Gamma-function.
2. One has

/ lz|*d\(z) < 0 & a>—d, (50)

B1(0)
/ lz|*d\(z) <0 & a< —d, (51)

RN\ By (0)

1
————dM@2) <0 & a>—d. 52
fo 2

Definition 13 (Spaces of differentiable functions on R?). Denote, for k € N,
CO(RY) := C(RY) := C(R%,C) := {f ‘R = C ‘ f is continuous }, (53)
C*(R?) := {f ‘R C ‘ f is k times continuous differentiable } , (54)
C=(RY) = () C*RY, (55)
keN

and define, for f € C(R?), the support of f by supp(f) := {x € Re| f(x) # 0}. Denote,
for k € NU{oo},

CH(RY) := {f c C*(RY) ’supp(f) C R? is compact } (56)
Theorem 15 (Denseness of C*(R?) in LP(R?)).

1. The set C.(R?) is dense in LP(R?) with respect to || - ||, for 1 < p < oo.
More precisely: For all f € LP(R?), 1 < p < oo, and alle > 0 there exists ¢ € C.(R?)
with ||¢ — f|l, < . Note: The result fails in L°°(R?).
2. The set C=(RY) is dense in LP(R?) with respect to || - ||, for 1 < p < .
Again, the result fails in L>=(R?).
8. As a consequence, C*(RY) is dense in LP(R?) with respect to || - ||, for 1 < p < oo,
and all k € NU {oo}.
Again, the result fails in L>°(R?).
Remark 3 (Notation in Rd) We will most often write [p, f(x)dx or [ f(z)dz or
simply [ fdx instead of fRd x) d\4(x) from now on. Also, we will often use the notation

|A| == X(A) for the Lebesgue( Borel) measure of a (measurable) set A C R, This way,
for the distribution function of f : R? — R (relative to Lebesgue measure A\*) we have

A =2({f > t}) = X({z e R | f(2) > t}) = {f > t}]. (57)
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