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Prolégomènes francophones

Toute oeuvre qui se destine aux hommes ne devrait jamais être écrite que sous le nom

de Οὖτίς. C’est le nom par lequel Όδυσσεύς (Ulysse) s’est présenté au cyclope Polyphème

dont il venait de crever l’oeil. Rares sont les moments de l’Odyssée où Όδυσσεύς com-

munique son véritable nom ; il est le voyageur anonyme par excellence et ne sera reconnu

qu’à la fin de son périple par ceux qui ont fidèlement préservé sa mémoire. Mais que

vient faire un tel commentaire au début d’un livre de mathématiques ? Toutes les ac-

tivités de pensée nous amènent, un jour ou l’autre, à nous demander si nous sommes

bien les propriétaires de nos pensées. Peut-on seulement les enfermer dans un livre et y

associer notre nom ? N’en va-t-il pas pour elles comme il en va de l’amour ? Aussitôt

possédées, elles perdent leur attrait, aussitôt enfermées elles perdent vie. Plus on touche

à l’universel, moins la possession n’a de sens. Les Idées n’appartiennent à personne et la

vérité est ingrate : elle n’a que faire de ceux qui la disent. Ô lecteur ! Fuis la renommée !

Car, aussitôt une reconnaissance obtenue, tu craindras de la perdre et, tel Don Quichotte,

tu t’agiteras à nouveau pour te placer dans une vaine lumière. C’est un plaisir tellement

plus délicat de laisser aller et venir les Idées, de constater que les plus belles d’entre elles

trouvent leur profondeur dans l’éphémère et que, à peine saisies, elles ne sont déjà plus

tout à fait ce qu’on croit. Le doute est essentiel à toute activité de recherche. Il s’agit non

seulement de vérifier nos affirmations, mais aussi de s’étonner devant ce qui se présente.

Sans le doute, nous nous contenterions d’arguments d’autorité et nous passerions devant

les problèmes les plus profonds avec indifférence. On écrit rarement toutes les interro-

gations qui ont jalonné la preuve d’un théorème. Une fois une preuve correcte établie,

pourquoi se souviendrait-on de nos errements ? Il est si reposant de passer d’une cause à

une conséquence, de voir dans le présent l’expression mécanique du passé et de se libérer

ainsi du fardeau de la mémoire. Dans la vie morale, personne n’oserait pourtant penser

ainsi et cette paresse démonstrative passerait pour une terrible insouciance. Ce Petit

Livre Magnétique présente une oeuvre continue et tissée par la mémoire de son auteur au

cours de trois années de méditation. L’idée qui l’a constamment irrigué est sans doute

qu’une intuition a plus de valeur qu’un discours abstrait et parfaitement rigoureux. À

l’instar de Bergson, on peut en effet penser que les abstractions énoncent du monde ce

qu’il a de plus insignifiant. Avec lui, on peut aussi croire qu’un discours trop bien rodé

et trop systématique peut être le signe d’un manque d’idées et d’intuitions. Une fois

déshabillé, ce type de discours, aussi paresseux que soporifique, exprime, dans sa perfec-

tion même, une recherche d’approbation. Et quoi de plus absurde que de rechercher des

suffrages quand on s’intéresse authentiquement à la vérité ? Ce livre fait ainsi le pari

que la singularité des exemples peut être une source d’intuitions fertiles et que, depuis

cette singularité, on peut graduellement progresser vers quelques énoncés précis dont la

généralité est à la mesure des exemples. Ici, démarches scientifique et existentielle cöınci-

dent. Quelle différence en effet entre une psychologie enrichie par des épreuves et des

théorèmes façonnés par des exemples ? Quelle différence entre une existence passée à

iv



l’imitation des conventions et des théorèmes sans âmes ? Il est de bon ton, en notre

temps, de faire montre de nos capacités à changer sans cesse de thème de réflexion et

à butiner ici et là ce qui se décolle sans effort de la surface des choses ; mais pourquoi

courir après les modes, si nous voulons durer ? Pourquoi vouloir changer, puisque la

réalité elle-même est changement ? Ô lecteur, prends le temps de juger des articulations

et du développement des concepts pour t’en forger une idée vivante ! Si ce livre fait nâıtre

le doute et l’étonnement, c’est qu’il aura rempli son oeuvre.

À Aarhus, le 10 juin 2015
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Preface

This little book was born in September 2012 during a summer school in Tunisia orga-

nized by H. Najar. I would like to thank him very much for this exciting invitation! This

book also (strictly) contains my lecture notes for a master’s degree. It is aimed to be a

synthesis of recent advances in the spectral theory of the magnetic Schrödinger operator.

It is also the opportunity for the author to rethink, simplify and sometimes correct the

ideas of his papers and to present them in a more unified way. Therefore this book can

be considered as a catalog of concrete examples of magnetic spectral asymptotics. Since

this book is involved with many notions from Spectral Theory, Part 1 provides a concise

presentation of the main concepts and strategies used in this book as well as many exam-

ples. Part 2 is devoted to an overview of some known results and to the statement of the

main theorems proved in this book. Many point of views are used to describe the discrete

spectrum, as well as the eigenfunctions, of the magnetic Laplacian in function of the (non

necessarily) semiclassical parameter: naive powers series expansions, Feshbash-Grushin

reductions, WKB constructions, coherent states decompositions, normal forms, etc. It

turns out that, despite of the simplicity in the expression of the magnetic Laplacian, the

influence of the geometry (smooth or not) and of the space variation of the magnetic

field often give rise to completely different semiclassical structures that are governed by

effective Hamiltonians reflecting the magnetic geometry. In this spirit, two generic exam-

ples are presented in Part 4 for the two dimensional case and three canonical examples

involving a boundary in three dimensions are given in Part 5. A feature underlined in

this book is that many asymptotic problems related to the magnetic Laplacian lead to

a dimensional reduction in the spirit of the famous Born-Oppenheimer approximation

and therefore Part 3 is devoted to a simplified theory to get access to the essential ideas.

Actually, in the attempt to understand the normal forms of the magnetic Schrödinger

operator, one may be tempted to make an analogy with spectral problems coming from

the waveguides framework: this is the aim of Part 6.

The reader is warned that this book gravitates towards ideas so that, at some point,

part of the arguments might stay in the shadow to avoid too heavy technical details.

Last but not least, I would like to thank my collaborators, colleagues or students for

all our magnetic discusssions: Z. Ammari, V. Bonnaillie-Noël, B. Boutin, C. Cheverry,

M. Dauge, N. Dombrowski, V. Duchêne, F. Faure, S. Fournais, B. Helffer, F. Hérau,

P. Hislop, P. Keraval, Y. Kordyukov, D. Krejčǐŕık, Y. Lafranche, L. Le Treust, F. Méhats,

J-P. Miqueu, T. Ourmières-Bonafos, N. Popoff, K. Pravda-Starov, M. P. Sundqvist, M.

Tušek, J. Van Schaftingen and S. Vũ Ngo.c. This book is the story of our discussions.
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CHAPTER 0

A magnetic story

Γνῶθι σεαυτόν.

1. A magnetic realm

1.1. Once upon a time... Let us present two reasons which lead to the analysis of

the magnetic Laplacian.

The first motivation arises in the mathematical theory of superconductivity. A model

for this theory (see [181]) is given by the Ginzburg-Landau functional:

G(ψ,A) =

∫
Ω

|(−i∇+ κσA)ψ|2 − κ2|ψ|2 +
κ2

2
|ψ|4 dx+ κ2

∫
Ω

|σ∇×A− σB|2 dx ,

where Ω ⊂ Rd is the place occupied by the superconductor, ψ is the so-called order pa-

rameter (|ψ|2 is the density of Cooper pairs), A is a magnetic potential and B the applied

magnetic field. The parameter κ is characteristic of the sample (the superconductors of

type II are such that κ >> 1) and σ corresponds to the intensity of the applied magnetic

field. Roughly speaking, the question is to determine the nature of the minimizers. Are

they normal, that is (ψ,A) = (0,F) with ∇ × F = B (and ∇ · F = 0), or not? We

can mention the important result of Giorgi-Phillips [84] which states that, if the applied

magnetic field does not vanish, then, for σ large enough, the normal state is the unique

minimizer of G (with the divergence free condition). When analyzing the local minimality

of (0,F), we are led to compute the Hessian of G at (0,F) and to analyze the positivity

of:

(−i∇+ κσA)2 − κ2 .

For further details, we refer to the book by Fournais and Helffer [76] and to the papers

by Lu and Pan [137, 138]. Therefore the theory of superconductivity leads to investigate

the lowest eigenvalue λ1(h) of the Neumann realization of the magnetic Laplacian, that

is (−ih∇+ A)2, where h > 0 is small (κ is assumed to be large).

The second motivation is to understand at which point there is an analogy between the

electric Laplacian −h2∆ +V (x) and the magnetic Laplacian (−ih∇+ A)2. For instance,

in the electric case (and in dimension one), when V admits a unique and non-degenerate

minimum at 0 and satisfies lim inf
|x|→+∞

V (x) > V (0), we know that the n-th eigenvalue λn(h)

exists and satisfies:

(0.1.1) λn(h) = V (0) + (2n− 1)

√
V ′′(0)

2
h+O(h2) .

1



Therefore a natural question arises:

“Are there similar results to (0.1.1) in pure magnetic cases?”

In order to answer this question this book develops a theory of the Magnetic Harmonic

Approximation. Concerning the Schrödinger equation in presence of magnetic field the

reader may consult [8] (see also [41]) and the surveys [148], [65] and [100].

Jointly with (0.1.1) it is also well-known that we can perform WKB constructions

for the electric Laplacian (see the book of Dimassi and Sjöstrand [53, Chapter 3]). Un-

fortunately such constructions do not seem to be possible in full generality for the pure

magnetic case (see the course of Helffer [91, Section 6] and the paper by Martinez and

Sordoni [144]) and the naive localization estimates of Agmon are no more optimal (see

[112], the paper by Erdős [63] or the papers by Nakamura [151, 152]). For the magnetic

situation, such accurate expansions of the eigenvalues (and eigenfunctions) are difficult

to obtain. In fact, the more we know about the expansion of the eigenpairs, the more

we can estimate the tunnel effect in the spirit of the electric tunnel effect of Helffer and

Sjöstrand (see for instance [110, 111] and the papers by Simon [183, 184]) when there

are symmetries. Estimating the magnetic tunnel effect is still a widely open question

directly related to the approximation of the eigenfunctions (see [112] and [33] for electric

tunneling in presence of magnetic field and [16] in the case with corners). Hopefully the

main philosophy living throughout this book will prepare the future investigations on this

fascinating subject. In particular we will provide the first examples of magnetic WKB

constructions inspired by the recent work [20]. Anyway this book proposes a change of

perspective in the study of the magnetic Laplacian. In fact, during the past decades, the

philosophy behind the spectral analysis was essentially variational. Many papers dealt

with the construction of quasimodes used as test functions for the quadratic form associ-

ated with the magnetic Laplacian. In any case the attention was focused on the functions

of the domain more than on the operator itself. In this book we systematically try to in-

verse the point of view: the main problem is no more to find appropriate quasimodes but

an appropriate (and sometimes microlocal) representation of the operator. By doing this

we will partially leave the min-max principle and the variational theory for the spectral

theorem and the microlocal and hypoelliptic spirit.

1.2. What is the magnetic Laplacian? Let Ω be a Lipschitzian domain in Rd.

Let us denote A = (A1, · · · , Ad) a smooth vector potential on Ω. We consider the 1-form

(see [6, Chapter 7] for a brief introduction to differential forms):

ωA =
d∑

k=1

Ak dxk .

We introduce the exterior derivative of ωA:

σB = dωA =
∑

1≤k<`≤d

Bk` dxk ∧ dx` ,

2



with

Bk` = ∂kA` − ∂`Ak .
For further use, let us also introduce the magnetic matrix MB = (Bk`)1≤k,`≤d. In dimen-

sion two, the only coefficient is B12 = ∂x1A2 − ∂x2A1. In dimension three, the magnetic

field is defined as

B = (B1, B2, B3) = (B23,−B13, B12) = ∇×A .

We will discuss in this book the spectral properties of some self-adjoint realizations of

the magnetic operator:

Lh,A,Ω =
d∑

k=1

(−ih∂k + Ak)
2 ,

where h > 0 is a parameter (related to the Planck constant). We notice the fundamental

property, called gauge invariance:

e−iφ/h(−ih∇+ A)eiφ/h = −ih∇+ A +∇φ

so that

(0.1.2) e−iφ/h(−ih∇+ A)2eiφ/h = (−ih∇+ A +∇φ)2 ,

where φ ∈ H1(Ω,R).

Before describing important spectral results obtained in the last twenty years, let us

discuss some basic properties of the magnetic Laplacian when Ω = Rd.

First, we can observe that the presence of a magnetic field increases the energy of the

system in the following sense.

Theorem 0.1. Let A : Rd → Rd be in L2
loc(Rd) and suppose that f ∈ L2

loc(Rd) is such

that (−i∇+ A)f ∈ L2
loc(Rd). Then |f | ∈ H1

loc(Rd) and

|∇|f || ≤ |(−i∇+ A)f | , almost everywhere.

The inequality of Theorem 0.1 is called diamagnetic inequality and a proof may be

found for instance in [76, Chapter 2].

The following proposition also gives an idea of the effect of the magnetic on the

magnetic energy.

Proposition 0.2. Let A ∈ C∞(Rd,Rd). Then, for all ϕ ∈ C∞0 (Rd), we have, for all

k, ` ∈ {1, · · · , d},

QA(ϕ) :=

∫
Rd
|(−i∇+ A)ϕ|2 dx ≥

∣∣∣∣∫
Rd
Bk`|ϕ|2 dx

∣∣∣∣ .
Proof. We have

[Dxk + Ak, Dx` + A`] = −iBk` ,

3



and thus, for all ϕ ∈ C∞0 (Rd),

〈[Dxk + Ak, Dx` + A`]ϕ, ϕ〉L2(Rd) = −i
∫
Rd
Bk`|ϕ|2 dx .

By integration by parts, it follows that∣∣〈[Dxk + Ak, Dx` + A`]ϕ, ϕ〉L2(Rd)

∣∣ ≤ ‖(Dxk + Ak)ϕ‖L2(Rd)‖(Dx` + A`)ϕ‖L2(Rd)

and thus∣∣〈[Dxk + Ak, Dx` + A`]ϕ, ϕ〉L2(Rd)

∣∣ ≤ ‖(Dxk + Ak)ϕ‖2
L2(Rd) + ‖(Dx` + A`)ϕ‖2

L2(Rd) .

The conclusion easily follows. �

It is classical that Lh,A,Rd = (−ih∇ + A)2, acting on C∞0 (Rd), is essentially self-

adjoint (see [76, Theorem 1.2.2]). Let us describe its spectrum when d = 2, 3 and when

the magnetic field is constant. The reader may find some reminders about spectral theory

in Chapter 1.

1.2.1. Where is the magnetic field? We started with a given 1-form and then we

defined the magnetic field as its exterior derivative. The reason for this comes from the

expression of the magnetic Laplacian, involving only the vector potential. In fact, one

could start from a closed 2-form σ and define a 1-form ω such that dω = σ. Let us recall

how we can do this with the help of classical concepts from differential geometry. We

summarize this with the following lemma.

Lemma 0.3 (Poincaré’s lemma). Let p ≥ 1 and σ be a closed p-form defined (and smooth)

in a neighborhood of 0 and define

ωx(·) =

∫ 1

0

tp−1σtx(x, ·) dt .

Then, we have dω = σ.

Proof. The reader may skip this proof and read instead the forthcoming examples.

Nevertheless, we recall these classical details for further use (especially, see Chapter 5

where we recall some basic concepts). Note that the proof may done thanks to a direct

computation.

We introduce the family ϕt(x) = tx, for t ∈ [0, 1]. For t ∈ (0, 1], this is a family of

smooth diffeomorphisms. Introducing Xt(x) = t−1x, we have

d

dt
ϕt = Xt(ϕt) .

We notice that

σx = ϕ∗1σ − ϕ∗0σ =

∫ 1

0

d

dt
ϕ∗tσ dt ,

4



where ∗ denotes the pull back of the form. Then, by definition of the Lie derivative, we

find

σx =

∫ 1

0

ϕ∗tLXtσ dt ,

We apply the general Cartan formula

LXσ = d(ιXσ) + ιX dσ ,

where ιX means that we replace the first entry of the form by X. Since σ is closed

( dσ = 0), we get

σx =

∫ 1

0

ϕ∗t d(ιXtσ) dt ,

and we deduce (by commuting d with the pull back and the integration):

σx = d

∫ 1

0

ϕ∗t ιXtσ dt .

Then, by homogeneity, we find∫ 1

0

ϕ∗t ιXtσ dt =

∫ 1

0

tp−1σtx(x, ·) dt .

�

When the magnetic 2-form is constant, a possible vector potential is given by

〈A(x), ·〉Rd =

∫ 1

0

σB(tx, ·) dt =
1

2
σB(x, ·) .

This choice of vector potential is called Lorentz gauge. Explicitly we have

A(x) =
1

2
MBx ,

where MB is the d× d anti-symmetric matrix (Bk`).

1.2.2. From the magnetic matrix to the magnetic field. Note that, in dimension three,

we have, with the usual vector product:

MBx = B× x = Bx .

Let us discuss here the effect of changes of coordinates on the magnetic form. If Φ is a

local diffeomorphism, we let x = Φ(y) and

Φ∗ωA =
d∑
j=1

Aj dyj , where A = (dΦ)TA(Φ) .

Since the exterior derivative commutes with the pull-back, we get

d(Φ∗ωA) = Φ∗σB .

In the new coordinates y, the new magnetic matrix is given by

MB = (dΦ)TMBdΦ .
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In the case of dimension three, we may write the relation between the field B and the

field B. We have

〈MBy, z〉R3 = 〈B × y, z〉R3 = 〈y × z,B〉R3 ,

and also

〈MBy, z〉R3 = 〈dΦ(y)× dΦ(z),B〉R3 .

It is a classical exercise to see that

〈dΦ(y)× dΦ(z),B〉R3 = det(dΦ)〈y × z, (dΦ)−1B〉R3 .

Thus we get the formula

∇y ×A = B = det(dΦ)(dΦ)−1B , or B = d̃ΦB ,

where d̃Φ is the adjugate matrix of dΦ.

1.2.3. Constant magnetic field in dimension two. In dimension two, thanks to the

gauge invariance (0.1.2), when B = 1, we may assume that the vector potential is given

by

A(x1, x2) = (0, x1) ,

so that

Lh,A,R2 = h2D2
x1

+ (hDx2 + x1)2 , with the notation D = −i∂ .

By using the partial Fourier transform Fx2 7→ξ2 (normalized to be unitary), we get

Fx2 7→ξ2Lh,A,R2F−1
x2 7→ξ2 = h2D2

x1
+ (hξ2 + x1)2 .

Then, we introduce the unitary transform

Tf(x̃1, x̃2) = f(x̃1 − hξ̃2, ξ̃2) ,

and we get the operator, acting on L2(R2
x̃1,ξ̃2

),

TFx2 7→ξ2Lh,A,R2F−1
x2 7→ξ2T

−1 = h2D2
x̃1

+ x̃2
1 .

We recognize a rescaled version of the harmonic oscillator (see for instance Chapter 2,

Section 1) and we deduce that the spectrum of Lh,A,R2 is essential and given by the set

of the Landau levels

{(2n− 1)h, n ∈ N∗} .
Let us underline that each element of the spectrum is an eigenvalue of infinite multiplicity.

1.2.4. Constant magnetic field in dimension three. In dimension three, we are easily

reduced to the investigation of

(0.1.3) Lh,A,R3 = h2D2
x1

+ (hDx2 + x1)2 + h2D2
x3
,

and, thanks to partial Fourier transforms with respect to x2 and x3 and then to a transvec-

tion with respect to x1, we again get that the magnetic Laplacian is unitary equivalent

6



to the operator, acting on L2(R3
x̃1,ξ̃2,ξ3

),

h2D2
x̃1

+ x̃2
1 + h2ξ2

3 .

In this case, the spectrum of the magnetic Laplacian is essential and given by the interval

[h,+∞) .

This can be seen by using appropriate Weyl’s sequences.

1.2.5. Higher dimensions. Let us briefly discuss the case of higher dimension. We

would like to generalize the simplified form given in (0.1.3).

For Q ∈ O(d), we let x = Qy and, modulo a unitary transform, the magnetic Laplacian

becomes (
−ih∇y +

1

2
QTBQy

)2

.

By the classical diagonalization result for anti-symmetric matrices, there exists an element

Q ∈ O(d) such that QTBQ is bloc diagonal, with 2 by 2 blocs in the form

(
0 βj
−βj 0

)
,

with j = 1, . . . ,
⌊
d
2

⌋
and βj > 0. By applying the analysis of dimension two, we get, by

separation of variables that the bottom of the spectrum is given by hTr+B where

Tr+B =

b d2c∑
j=1

|βj| .

When d = 3, since the Hilbert-Schmidt norm is preserved by rotation, we have Tr+B =

‖B‖.

1.3. Magnetic wells. When the magnetic field is variable (say in dimension two

or three), it is possible to approximate the spectrum thanks to a local approximation of

the magnetic field by the constant field. From the classical point of view, this means

that, locally, the motion of the particle is well described (on a small time scale) by the

cyclotron motion (see the discussion in Chapter 7, Section 2.1). In particular, if the

magnetic field is large enough at infinity and if its norm admits a positive minimum, we

have the estimate

(0.1.4) λ1(h) = b0h+ o(h) ,

where b0 > 0 is either the minimum of |B| in dimension two, or the minimum of ‖B‖ in

dimension three. This result was proved by Helffer and Morame in [104, Theorem 1.1].

One calls the point where the minimum is obtained a “magnetic well”.

As suggested a few lines ago, the semiclassical limit should have something to do with

the classical mechanics. At some point, one should be able to interpret the semiclassical

approximations of the magnetic eigenvalues from a classical point of view. In many cases,

the classical interpretation turns out to be difficult in the magnetic case (in presence

of a boundary for instance). The main term in the asymptotic expansion of λ1(h) is

7



related to the cyclotron motion or equivalently to the approximation by the constant

magnetic field. But, in the classical world (see for instance [11] or [39] in a nonlinear

context), it is known that the cyclotron motion is not enough to describe the fancy

dynamics in variable magnetic fields that give rise to magnetic bottles, magnetic bananas

or magnetic mirror points. The moral of these rough classical considerations is that, to get

the classical-quantum correspondence, one should go further in the semiclassical expansion

of λ1(h) and also consider the next eigenvalues. Roughly speaking, the magnetic motion,

in dimension three, can be decomposed into three elementary motions: the cyclotron

motion, the oscillation along the field lines and the oscillation within the space of field

lines. The concept of magnetic harmonic approximation developed through out this book

is an attempt to reveal, at the quantum level, these three motions in various geometric

settings without a deep understanding of the classical dynamics (one could call this

a semiquantum approximation). To stimulate the reader, let us give two examples of

semiclassical expansions tackling these issues. In dimension two, if the magnetic field

admits a unique minimum at q0 that is non degenerate and that the magnetic field is

large enough at infinity, we have

λn(h) = b0h+

[
θ2D(q0)

(
n− 1

2

)
+ ζ2D(q0)

]
h2 +O(h3)

where

(0.1.5) b0 = min
R2

B , θ2D(q0) =

√
detHessq0B

b2
0

,

and where ζ2D(q0) is another explicit constant. Here the term b0h is related to the

cyclotron motion and θ2D(q0)
(
n− 1

2

)
h2 is related to the magnetic drift motion (the

oscillation in the space of field lines). This expansion has been obtained by different

means in [97, 101, 174]. We will present one of them in this book.

In dimension three, by denoting b = ‖B‖ and assuming again the uniqueness and non-

degeneracy of the minimum at q0, we have the following striking asymptotic expansion

λn(h) = b0h+ σ3D(q0)h
3
2 +

[
θ3D(q0)

(
n− 1

2

)
+ ζ3D(q0)

]
h2 +O(h

5
2 )

where

(0.1.6) b0 = min
R3

b , σ3D(q0) =

√
Hessq0b (B,B)

2b2
0

, θ3D(q0) =

√
detHessq0b

Hessq0b (B,B)
,

and where ζ3D(q0) is again an explicit constant. In this case, b0h is related with the

cyclotron motion, the term σ3D(q0)h
3
2 with the oscillation along field lines and θ3D(q0)h2

within the oscillation in the space of field lines. This asymptotic expansion in dimension

three has been obtained in [102]. We will not provide the proof of this one (that is largely

beyond the scope of this book).
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1.4. The magnetic curvature. Let us now discuss the influence of geometry (and

especially of a boundary) on the spectrum of the magnetic Laplacian, in the semiclassical

limit. Before introducing the definition of the concrete model operators, let us first

present the nature of some known results.

1.4.1. Constant magnetic field. In dimension two the constant magnetic field (with

intensity 1) case is treated when Ω is the unit disk (with Neumann condition) by Bauman,

Phillips and Tang in [10] (see [13] and [64] for the Dirichlet case). In particular, they

prove a two terms expansion in the form

(0.1.7) λ1(h) = Θ0h−
C1

R
h3/2 + o(h3/2) ,

where Θ0 ∈ (0, 1) and C1 > 0 are universal constants. This result, which was conjectured

in [12, 52], is generalized to smooth and bounded domains by Helffer and Morame in

[104] where it is proved that:

(0.1.8) λ1(h) = Θ0h− C1κmaxh
3/2 + o(h3/2) ,

where κmax is the maximal curvature of the boundary. Let us emphasize that, in these

papers, the authors are only concerned by the first terms of the asymptotic expansion of

λ1(h). In the case of smooth domains the complete asymptotic expansion of all the eigen-

values is done by Fournais and Helffer in [75]. When the boundary is not smooth, we may

mention the papers of Jadallah and Pan [119, 158]. In the semiclassical regime, we refer

to the papers of Bonnaillie-Noël, Dauge and Fournais [14, 15, 19] where perturbation

theory is used in relation with the estimates of Agmon. For numerical investigations the

reader may consider the paper [16].

In dimension three the constant magnetic field case (with intensity 1) is treated by

Helffer and Morame in [106] under generic assumptions on the (smooth) boundary of Ω:

λ1(h) = Θ0h+ γ̂0h
4/3 + o(h4/3) ,

where the constant γ̂0 is related to the magnetic curvature of a curve in the boundary

along which the magnetic field is tangent to the boundary. The case of the ball is analyzed

in details by Fournais and Persson in [77].

1.4.2. Variable magnetic field. The case when the magnetic field is not constant can

be motivated by anisotropic superconductors (see for instance [36, 4]) or the liquid crystal

theory (see [107, 108, 169, 167]). For the case with a non vanishing variable magnetic

field, we refer to [137, 166] for the first terms of the lowest eigenvalue. In particular

the paper [166] provides (under a generic condition) an asymptotic expansion with two

terms in the form:

λ1(h) = Θ0b
′h+ C2D

1 (x0,B, ∂Ω)h3/2 + o(h3/2) ,

where C2D
1 (x0,B, ∂Ω) depends on the geometry of the boundary and on the magnetic

field at x0 and where b′ = min
∂Ω

B = B(x0). When the magnetic field vanishes, the first
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analysis of the lowest eigenvalue is due to Montgomery in [149] followed by Helffer and

Morame in [103] (see also [159, 96, 98]).

In dimension three (with Neumann condition on a smooth boundary), the first term of

λ1(h) is given by Lu and Pan in [138]. The next terms in the expansion are investigated

in [168] where we can find in particular an upper bound in the form

λ1(h) ≤ ‖B(x0)‖s(θ(x0))h+ C3D
1 (x0,B, ∂Ω)h3/2 + C3D

2 (x0,B, ∂Ω)h2 + Ch5/2 ,

where s is a spectral invariant defined in the next section, θ(x0) is the angle of B(x0)

with the boundary at x0 and the constants C3D
j (x0,B, ∂Ω) are related to the geometry

and the magnetic field at x0 ∈ ∂Ω. Let us finally mention the recent paper by Bonnaillie-

Noël-Dauge-Popoff [17] which establishes a one term asymptotics in the case of Neumann

boundaries with corners.

1.5. Some model operators. It turns out that the results recalled in Section 1.4

are related to many model operators. Let us introduce some of them.

1.5.1. De Gennes operator. The analysis of the magnetic Laplacian with Neumann

condition on R2
+ makes the so-called de Gennes operator to appear. We refer to [47]

where this model is studied in details (see also [76]). For ζ ∈ R, we consider the Neumann

realization on L2(R+) of

(0.1.9) L
[0]
ζ = D2

t + (ζ − t)2 .

We denote by ν
[0]
1 (ζ) the lowest eigenvalue of L[0](ζ). It is possible to prove that the

function ζ 7→ ν
[0]
1 (ζ) admits a unique and non-degenerate minimum at a point ζ

[0]
0 > 0,

shortly denoted by ζ0, and that we have

(0.1.10) Θ0 := min
ξ∈R

ν
[0]
1 (ζ) ∈ (0, 1) .

The proof is recalled in Chapter 2, Section 4.

1.5.2. Montgomery operator. Let us now introduce another important model. This

one was introduced by Montgomery in [149] to study the case of vanishing magnetic

fields in dimension two (see also [159] and [106, Section 2.4]). This model was revisited

by Helffer in [92], generalized by Helffer and Persson in [109] and Fournais and Persson

in [78]. The Montgomery operator with parameter ζ ∈ R is the self-adjoint realization

on R of:

(0.1.11) L
[1]
ζ = D2

t +

(
ζ − t2

2

)2

.

1.5.3. Popoff operator. The investigation of the magnetic Laplacian on dihedral do-

mains (see [163]) leads to the analysis of the Neumann realization on L2(Sα, dt dz) of:

(0.1.12) Le
α,ζ = D2

t +D2
z + (t− ζ)2 ,
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where Sα is the sector with angle α,

Sα =
{

(t, z) ∈ R2 : |z| < t tan
(α

2

)}
.

1.5.4. Lu-Pan operator. Let us present a last model operator appearing in dimension

three in the case of smooth Neumann boundary (see [138, 105, 18] and (0.1.3)). We

denote by (s, t) the coordinates in R2 and by R2
+ the half-plane:

R2
+ = {(s, t) ∈ R2, t > 0} .

We introduce the self-adjoint Neumann realization on the half-plane R2
+ of the Schrödinger

operator LLP
θ with potential Vθ:

(0.1.13) LLP
θ = −∆ + Vθ = D2

s +D2
t + V 2

θ ,

where Vθ is defined for any θ ∈ (0, π
2
) by

Vθ : (s, t) ∈ R2
+ 7−→ t cos θ − s sin θ .

We can notice that V 2
θ reaches its minimum 0 all along the line t cos θ = s sin θ, which

makes the angle θ with ∂R2
+. We denote by s1(θ) or simply s(θ) the infimum of the

spectrum of LLP
θ . In [76] (and [105, 138]), it is proved that s is analytic and strictly

increasing on
(
0, π

2

)
.

2. A connection with waveguides

2.1. Existence of a bound state for the Lu-Pan operator. Among other things

one can prove (cf. [105, 138]):

Lemma 0.4. For all θ ∈
(
0, π

2

)
there exists an eigenvalue of LLP

θ below the essential

spectrum which equals [1,+∞).

A classical result combining an estimate of Agmon (cf. [2]) and a theorem due to

Persson (cf. [162]) implies that the corresponding eigenfunctions are localized near (0, 0).

This result is slightly surprising since the existence of the discrete spectrum is related to

the association between the Neumann condition and the partial confinement of Vθ. After

translation and rescaling, we are led to a new operator:

hD2
s +D2

t + (t− ζ0 − sh1/2)2 −Θ0 ,

where h = tan θ. Then one can reduce the (semiclassical) analysis to the so-called Born-

Oppenheimer approximation:

hD2
s + ν

[0]
1 (ζ0 + sh1/2)−Θ0 .

This last operator is very easy to analyze with the classical theory of the harmonic

approximation and we get (see [18]):
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Theorem 0.5. The lowest eigenvalues of LLP
θ admit the following expansions:

(0.2.1) sn(θ) ∼
θ→0

∑
j≥0

γj,nθ
j

with γ0,n = Θ0 et γ1,n = (2n− 1)

√
(ν

[0]
1 )′′(ζ0)

2
.

s1(θ) 1.0001656284 0.99987798948 0.99910390126 0.99445407220

Figure 1. First eigenfunction of LLP
θ for θ = ϑπ/2 with ϑ = 0.9, 0.85, 0.8

et 0.7.

2.2. A result by Duclos and Exner. Figure 1 can make us think to a broken

waveguide (see [171]). Indeed, if one uses the Neumann condition to symmetrize LLP
θ and

if one replaces the confinement property of Vθ by a Dirichlet condition, we are led to the

situation described in Figure 2. This heuristic comparison reminds the famous paper [58]

(0,0) 2θ θ(− π
sin θ

, 0)

Dirichlet

Ωθ Ω+
θ

Neumann

Figure 2. Waveguide with corner Ωθ and half-waceguide Ω+
θ .

where Duclos and Exner introduce a definition of standard (and smooth) waveguides and

perform a spectral analysis. For example, in dimension two (see Figure 3), a waveguide

of width ε is determined by a smooth curve s 7→ c(s) ∈ R2 as the subset of R2 given by:

{c(s) + tn(s), (s, t) ∈ R× (−ε, ε)} ,
12



where n(s) is the normal to the curve c(R) at the point c(s).

Figure 3. Waveguide Figure 4. Broken guide

Assuming that the waveguide is straight at infinity but not everywhere, Duclos and

Exner prove that there is always an eigenvalue below the essential spectrum (in the case

of a circular cross section in dimensions two and three). Let us notice that the essential

spectrum is [λ,+∞) where λ is the lowest eigenvalue of the Dirichlet Laplacian on the

cross section. The proof of the existence of discrete spectrum is elementary and relies on

the min-max principle. Letting, for ψ ∈ H1
0(Ω),

q(ψ) =

∫
Ω

|∇ψ|2 dx ,

it is enough to find ψ0 such that q(ψ0) < λ‖ψ0‖L2(Ω). Such a function can be constructed

by considering a perturbed Weyl sequence associated with λ.

2.3. Waveguides and magnetic fields. Bending a waveguide induces discrete

spectrum below the essential spectrum, but what about twisting a waveguide? This

question arises for instance in the papers [125, 129, 62] where it is proved that twisting

a waveguide plays against the existence of the discrete spectrum. In the case without

curvature, the quadratic form is defined for ψ ∈ H1
0(R× ω) by:

q(ψ) = ‖∂1ψ − ρ(s)(t3∂2 − t2∂3)ψ‖2 + ‖∂2ψ‖2 + ‖∂3ψ‖2 ,

where s 7→ ρ(s) represents the effect of twisting the cross section ω and (t2, t3) are

coordinates in ω. From a heuristic point of view, the twisting perturbation seems to act

“as” a magnetic field. This leads to the natural question:

“Is the spectral effect of a torsion the same as the effect of a magnetic field?”

If the geometry of a waveguide can formally generate a magnetic field, we can conversely

wonder if a magnetic field can generate a waveguide. This remark partially appears in

[54] where the discontinuity of a magnetic field along a line plays the role of a waveguide.

More generally it appears that, when the magnetic field cancels along a curve, this curve

becomes an effective waveguide.
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3. General presentation of the book

3.1. Elements of spectral theory and examples. In Part 1, we recall basic the-

orems of spectral theory (see Chapter 1) and we deal with many examples to understand

how they may be applied in practice (Chapter 2). Since the aim of this book is to in-

vestigate the semiclassical limit, we discuss elementary examples in Chapter 3. Then, in

Chapter 4, we introduce the localization techniques that will very often appear in the

sequel and we again provide many examples of applications. In Chapter 5, we introduce

the Birkhoff normal forms for the semiclassical electric Laplacian. We recall there the

basics of pseudo-differential calculus (without going to far into the details). This presen-

tation will be quite helpful when investigating the semiclassical magnetic Laplacian in

two dimensions (see Chapter 15). This will lead us to use standard tools from microlocal

analysis. Our presentation of these technics will be minimalist, the aim being to give the

flavor of these tools and to see how they can be used in practice.

3.2. Main theorems. In Part 2, we present the main theorems proved in the book.

The vocabulary and the concepts introduced in Part 1 aimed at preparing to understand

the statements. Chapter 6 deals with spectral reductions. We start the discuss some

properties of a particular operator. In Chapter 6, Section 1 we present a model related

to vanishing magnetic fields in dimension two. Due to an inhomogeneity of the magnetic

operator, this model leads to a “microlocal reduction” and therefore to the investigation

of an effective symbol. Then, this pedagogical example lead (and actually has led, in the

last years) to a more general framework. In Chapter 6, Section 2 we provide a general

and elementary theory of the “magnetic Born-Oppenheimer approximation” which is

a systematic semiclassical reduction to model operators (under generic assumptions on

some effective symbols). We also provide the first known examples of pure magnetic

WKB constructions. In Chapter 7 we discuss the semiclassical asymptotics of magnetic

eigenvalues in two dimensions. The results related to the effects of boundaries in three

dimensions are stated in Chapter 8. In Chapter 9 we describe some results occurring

in the theory of waveguides. Finally, Chapter 10 is devoted to the presentation of non-

linear results involving magnetic fields (magnetic Sobolev constants) and waveguides in

two dimensions (Schrödinger dynamics).

3.3. Spectral reductions. Part 3 is devoted to the proofs of semiclassical results

related to the Born-Oppenheimer approximation. The Born-Oppenheimer approximation

itself is discussed in Chapters 11 and 12, whereas elementary WKB constructions are

analyzed in Chapter 13 in the spirit of dimensional reduction.

3.4. Normal forms philosophy and the magnetic semi-excited states. Parts

4 (dimension two) and 5 (dimension three) deal with the proofs of magnetic semiclassical

asymptotics in various geometric and magnetic settings. Let us informally describe the

strategy behind these results.

14



As we will see in this book, there is a non trivial connection between the discrete

spectrum, the possible magnetic field and the possible boundary. In fact normal form

procedures are often deeply rooted in the different proofs, not only in the semiclassical

framework. This connection will be exemplified in Chapters 14, 15, 17, 18, 19 (inspired

from results of five studies [55], [174], [170], [165], [23]). The methods are even cast into

a non linear framework in Chapter 16 where the p-eigenvalues of the magnetic Laplacian

are analyzed in two dimensions.

3.4.1. From the magnetic semi-excited states... We now describe the philosophy of the

proofs of asymptotic expansions for the magnetic Laplacian with respect to a parameter

h. Let us distinguish between the different conceptual levels of the analysis. Our anal-

ysis uses the standard construction of quasimodes, localization techniques and a priori

estimates of Agmon type satisfied by the eigenfunctions. These “standard” tools, which

are used in most of the papers dealing with λ1(h), are not enough to investigate λn(h)

due to the spectral splitting arising sometimes in the subprincipal terms. In fact such a

fine behavior is the sign of a microlocal effect. In order to investigate this effect, we use

normal form procedures in the spirit of the Egorov theorem. It turns out that this normal

form strategy also strongly simplifies the construction of quasimodes. Once the behavior

of the eigenfunctions in the phase space is established, we use the Feshbach-Grushin ap-

proach to reduce our operator to an electric Laplacian. Let us comment more in details

the whole strategy.

The first step to analyze such problems is to perform an accurate construction of

quasimodes and to apply the spectral theorem. In other words we look for pairs (λ, ψ) such

that we have ‖(Lh−λ)ψ‖ ≤ ε‖ψ‖. Such pairs are constructed through an homogenization

procedure involving different scales with respect to the different variables. In particular

the construction uses a formal power series expansion of the operator and an Ansatz

in the same form for (λ, ψ). The main difficulty in order to succeed is to choose the

appropriate scalings.

The second step aims at giving a priori estimates satisfied by the eigenfunctions.These

are localization estimates à la Agmon (see [2]). To prove them one generally needs to

have a priori estimates for the eigenvalues which can be obtained with a partition of

unity and local comparisons with model operators. Then such a priori estimates, which

are in general not optimal, involve an improvement in the asymptotic expansion of the

eigenvalues. If we are just interested in the first terms of λ1(h), these classical tools are

enough.

In fact, the major difference with the electric Laplacian arises precisely in the analysis

of the spectral splitting between the lowest eigenvalues. Let us describe what is done in

[75] (dimension two, constant magnetic field) and in [172] (non constant magnetic field).

In [75, 172] quasimodes are constructed and the usual localization estimates are proved.

Then the behavior with respect to a phase variable needs to be determined to allow a

dimensional reduction. Let us underline here that this phenomenon of phase localization
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is characteristic of the magnetic Laplacian and is intimately related to the structure of

the low lying spectrum. In [75] Fournais and Helffer are led to use the pseudo-differential

calculus and the Grushin formalism. In [172] the approach is structurally not the same.

In [172], in the spirit of the Egorov theorem (see [60, 179, 142]), we use successive

canonical transforms of the symbol of the operator corresponding to unitary transforms

(change of gauge, change of variable, Fourier transform) and we reduce the operator,

modulo remainders which are controlled thanks to the a priori estimates, to an electric

Laplacian being in the Born-Oppenheimer form (see [40, 140] and more recently [18]).

This reduction enlightens the crucial idea that the inhomogeneity of the magnetic operator

is responsible for its spectral structure.

3.4.2. ... to the Birkhoff procedure. As we suggested above, our magnetic normal

forms are close to the Birkhoff procedure and it is rather surprising that it has never

been implemented to enlighten the effect of magnetic fields on the low lying eigenvalues of

the magnetic Laplacian. A reason might be that, compared to the case of a Schrödinger

operator with an electric potential, the pure magnetic case presents a specific feature:

the symbol “itself” is not enough to generate a localization of the eigenfunctions. This

difficulty can be seen in the recent papers by Helffer and Kordyukov [97] (dimension

two) and [99] (dimension three) which treat cases without boundary. In dimension two,

they prove that if the magnetic field has a unique and non-degenerate minimum, the n-th

eigenvalue admits an expansion in powers of h
1
2 of the form:

λn(h) ∼ hmin
R2

B(q) + h2(c1(2n− 1) + c0) +O(h
5
2 ) ,

where c0 and c1 are constants depending on the magnetic field (see the discussion in

Section 1.3). In Chapter 15 (whose main ideas are presented in Chapter 5), we extend

their result by obtaining a complete asymptotic expansion which actually applies to more

general magnetic wells and allows to describe larger eigenvalues.

3.5. The spectrum of waveguides. We consider the question:

“What is the spectral influence of a magnetic field on a waveguide ?”

We answer this question in Chapter 20. Then, when there is no magnetic field, we would

also like to analyze the effect of a corner on the spectrum and present a non smooth

version of the result of Duclos and Exner (see Chapter 21). For that purpose we also

present some results concerning the semiclassical triangles in Chapter 21.

Finally, in Chapter 22, we cast the linear technics into a non linear framework to

investigate the existence of global solutions to the cubic non linear Schrödinger equation

in a bidimensional waveguide.
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Part 1

Methods and examples





CHAPTER 1

Elements of spectral theory

It will neither be necessary to deliberate nor

to trouble ourselves, as if we shall do this

thing, something definite will occur, but if

we do not, it will not occur.

Organon, On Interpretation, Aristotle

This chapter is devoted to recall basic tools in spectral analysis.

1. Spectrum

1.1. Spectrum of an unbounded operator. Let L be an unbounded operator on

a separable Hilbert space (H, 〈·, ·〉) with domain Dom (L), dense in H. Let us first recall

the following two definitions.

Definition 1.1. The operator (L,Dom (L)) is closed if and only if

Dom (L) 3 un → u ∈ H, Lun → v =⇒ u ∈ Dom (L), Lu = v .

Definition 1.2. The adjoint of (L,Dom (L)) is defined as follows. We let

Dom (L∗) := {u ∈ Dom (L), v 7→ 〈Lv, u〉 is continuous on Dom (L)}

and, for u ∈ L∗, L∗u is defined (thanks to the Riesz theorem) as the unique element in H

such that for all v ∈ H, 〈Lv, u〉 = 〈v,L∗u〉.

We say that (L,Dom (L)) is self-adjoint when (L∗,Dom (L∗)) = (L,Dom (L)).

Proposition 1.3. The operator (L∗,Dom (L∗)) is always a closed operator (i.e. with

closed graph). If (L,Dom (L)) is closable, then Dom (L∗) is dense and (L∗)∗ = L, where

L is the smallest closed extension of L.

Definition 1.4. An operator is said to be Fredholm if its kernel is finite dimensional, its

range is closed and with finite codimension.

We now recall the following definitions of its spectrum sp(L), its essential spectrum

spess(L) and its discrete spectrum spdis(L).

Definition 1.5. We define

(1) the spectrum: λ ∈ sp(L) if and only if (L− λ Id) is not invertible, with bounded

inverse, from Dom (L) onto H,
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(2) the essential spectrum: λ ∈ spess(L) if and only if (L−λ Id) is not Fredholm from

Dom (L) into H,

(3) the discrete spectrum: spdis(L) = sp(L) \ spess(L).

Note that we have obviously spess(L) ⊂ sp(L). For the convenience of the reader, let

us recall the proof of some classical lemmas (see [175, Chapter VI] and [132, Chapter

3]) which can also be treated as exercises.

Lemma 1.6. If L is self-adjoint, we have the equivalence: λ ∈ sp(L) if and only if there

exists a sequence (un) ∈ Dom (L) such that ‖un‖H = 1, (un) and (L− λ Id)un →
n→+∞

0 in

H.

Proof. Let us notice that if there exists a sequence (un) ∈ Dom (L) such that

‖un‖H = 1, (un) and (L − λ Id)un →
n→+∞

0 then λ ∈ sp(L) (if not we could apply the

bounded inverse and get a contradiction).

If λ /∈ R, since L is self-adjoint, L − λ is invertible (with bounded inverse since L is

closed). Now, for λ ∈ R, if there is no sequence (un) ∈ Dom (L) such that ‖un‖H = 1,

(un) and (L− λ Id)un →
n→+∞

0, then we can find c > 0 such that

‖(L− λ)u‖ ≥ c‖u‖, ∀u ∈ Dom (L) .

Therefore L− λ is injective with closed range. But, since L− λ = (L− λ)∗, the range of

L− λ is dense in H and so L− λ is surjective.

�

Lemma 1.7 (Weyl criterion). If L is self-adjoint, we have the equivalence: λ ∈ spess(L)

if and only if there exists a sequence (un) ∈ Dom (L) such that ‖un‖H = 1, (un) has no

subsequence converging in H and (L− λ Id)un →
n→+∞

0 in H.

Proof. If λ ∈ sp(L) \ spess(L), the operator L− λ is Fredholm. Let (un) ∈ Dom (L)

such that ‖un‖H = 1 and (L − λ Id)un →
n→+∞

0. The operator L − λ : ker(L − λ)⊥ →
range(L − λ) is injective with closed range. Therefore, there exists c > 0 such that, for

all w ∈ ker(L− λ)⊥, ‖(L− λ)w‖ ≥ c‖w‖. We write un = vn + wn, with vn ∈ ker(L− λ)

and wn ∈ ker(L − λ)⊥. We have ‖(L − λ)un‖2 = ‖(L − λ)vn‖2 + ‖(L − λ)wn‖2 and we

deduce that wn → 0. Moreover (vn) is bounded in finite dimension, thus there exists a

converging subsequence of (un).

Conversely, let us assume that λ ∈ sp(L) and that all sequence (un) ∈ Dom (L) such

that ‖un‖H = 1 and (L−λ)un →
n→+∞

0 has a converging subsequence.The kernel ker(L−λ)

is finite dimensional. Indeed, if it were of infinite dimension, one could construct a infinite

orthonormal family (un) of ker(L − λ) and in particular we would get un ⇀ 0 that is a

contradiction. Let us now check that there exists c > 0 such that, for all u ∈ ker(L−λ)⊥,

‖(L− λ)u‖ ≥ c‖u‖. If not, there exists a normalized sequence (un) in ker(L− λ)⊥ such

that ‖(L−λ)un‖ → 0. By assumption, we may assume that (un) converges towards some
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u∞ that necessarily belongs to ker(L− λ)⊥. But since L− λ is closed (it is self-adjoint),

we have (L− λ)u∞ = 0 so that u∞ = 0 and this is a contradiction. We deduce that the

image of L− λ is closed.

�

Lemma 1.8. If L is self-adjoint, the discrete spectrum is formed by isolated eigenvalues

of finite multiplicity and conversely.

Proof. Let us consider λ ∈ sp(L) \ spess(L). There exists a Weyl sequence (un) of

unit vectors such that (L − λ)un → 0. We may assume that (un) converges to some u

and we get (L− λ)u = 0. The eigenvalue λ has finite multiplicity. Let us prove that it is

isolated. If it were not the case, then one could consider a non stationnary sequence λn
tending to λ. Moreover, one could find a sequence (un) of unit vectors such that:

‖(L− λn)un‖ ≤
|λ− λn|

n
.

By assumption, we may assume that (un) converges towards some u and thus one would

get (L− λ)u = 0 and so

〈(L− λn)u, un〉 = (λ− λn)〈u, un〉 .

By the Cauchy-Schwarz inequality, we find that 〈un, u〉 → 0 and we get u = 0 that is a

contradiction.

For the converse, we have just to prove that the image of L − λ is closed when λ is

an isolated eigenvalue of finite multiplicity. This fact is a consequence of the spectral

theorem (see Theorem 1.16).

�

1.2. The example of the magnetic Laplacian.

1.2.1. Recalling the Lax-Migram theorem. Let us recall the famous Lax-Milgram the-

orem that will allows the definition of many operators in this book. We refer to the book

by Helffer [93, Section 3.3] for a proof.

Theorem 1.9 (Lax-Milgram). Let us consider two Hilbert spaces V and H such that

V ⊂ H with continuous injection and with V dense in H. If B is a continuous sesquilinear

form on V that is coercive, i.e.

∃α > 0, B(u, u) ≥ α‖u‖2
V ,

then we may define an operator (L,Dom (L)) whose domain is

Dom (L) := {u ∈ V : v 7→ B(u, v) is continuous on V for the topology of H}

and such that, for u ∈ Dom (L),

B(u, v) = 〈Lu, v〉H, ∀v ∈ V .
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The operator L : Dom (L) → H is bijective and its inverse is continuous. Moreover

Dom (L) is dense in H.

If B is also Hermitian, then L is self-adjoint and its domain is dense in V.

Note that this theorem is directly related to the Friedrichs procedure (see for instance

[175, p. 177]).

1.2.2. The Dirichlet realization. Let us consider the following sesquilinear form, de-

fined for u, v ∈ V = H1
0(Ω), by:

Bh,A(u, v) =

∫
Ω

(−ih∇+ A)u (−ih∇+ A)v dx .

We have obviously

∀u ∈ V, Bh,A(u, u) + ‖u‖2
H ≥ ‖u‖2

H

and this involves the coercivity on V. For this shifted sesquilinear form, V is an Hilbert

space. Here the domain of L is given by

Dom (LDir
h,A) =

{
u ∈ H1

0(Ω) : Lh,Au ∈ L2(Ω)
}
.

The self-adjoint operator L = LDir
h,A satisfies

〈LDir
h,Au, v〉 = Bh,A(u, v), ∀u ∈ Dom (LDir

h,A), ∀v ∈ H1
0(Ω) .

When Ω is regular, we have the characterization:

Dom (LDir
h,A) = H1

0(Ω) ∩ H2(Ω) .

Note that we could have defined the initial quadratic form on C∞0 (Ω) but this space is not

complete for the H1
0(Ω)-norm. Completing C∞0 (Ω) for the norm induced by the quadratic

form and then defining the self-adjoint operator L is called the Friedrichs procedure.

1.2.3. The Neumann realization. We consider the other quadratic form defined by:

Qh,A(u) =

∫
Ω

|(−ih∇+ A)u|2 dx, u ∈ H1(Ω) .

We can define a self-adjoint operator LNeu
h,A whose domain is given by:

Dom (LNeu
h,A) =

{
u ∈ H1(Ω) : Lh,Au ∈ L2(Ω), (−ih∇+ A)u · n = 0, on ∂Ω

}
.

When Ω is regular, this becomes:

Dom (LNeu
h,A) =

{
u ∈ H1(Ω) : u ∈ H2(Ω), (−ih∇+ A)u · n = 0, on ∂Ω

}
.

1.2.4. Riesz-Fréchet-Kolmogorov criterion and compact resolvent. Let us recall a cri-

terion of relative compactness in Lp (see [30]).

Theorem 1.10 (Riesz-Fréchet-Kolmogorov). Let Ω ⊂ RN be an open set and F a

bounded subset of Lp(Ω), with p ∈ [1,+∞). We assume that

∀ε > 0, ∃ω ⊂⊂ Ω, ∀f ∈ F , ‖f‖Lp(Ω\ω) ≤ ε
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and that

∀ε > 0,∀ω ⊂⊂ Ω, ∃δ > 0, δ < dist(ω, {Ω), ∀|h| ≤ δ, ∀f ∈ F , ‖τhf − f‖Lp(ω) ≤ ε ,

where τhf(x) = f(x+ h)− f(x).

By using a density argument and the Taylor formula, we can get the following propo-

sition (see [30, Proposition 9.3]).

Proposition 1.11. Let p ∈ (1,+∞) and u ∈ Lp(Ω). Then u ∈ W1,p(Ω) if and only if,

for all ω ⊂⊂ Ω and h ∈ (0, dist(ω, {Ω)), we have

‖τhu‖Lp(ω) ≤ C|h| .

In this case, we can take C = ‖∇u‖Lp(Ω).

Let us provide a useful criterion for the compactness of a resolvent.

Proposition 1.12. An operator (L,Dom (L)) has compact resolvent if and only if the

injection (Dom (L), ‖ · ‖L) ↪→ H is compact.

Proof. Thanks to the closed graph theorem, for z /∈ sp(L), (L− z)−1 : (H, ‖ · ‖H)→
(Dom (L), ‖ · ‖L) is bounded. �

Proposition 1.13. Let us consider two Hilbert spaces V and H such that V ⊂ H with

continuous injection and with V dense in H. Assume that B is a continuous, coercive and

Hermitian sesquilinear form on V and if L denotes the self-adjoint operator associated

with B. Let us denote by ‖ · ‖B the norm induced by B, i.e. ‖u‖B =
√
B(u, u), and by

‖ · ‖L the graph norm on Dom (L).

If (Dom (B), ‖ · ‖B) ↪→ H is compact, then L has compact resolvent.

Proof. By the Cauchy-Schwarz inequality, (Dom (L), ‖ · ‖L) → (Dom (B), ‖ · ‖B) is

bounded. The conclusion follows since the compact operators form a ideal of the set of

bounded operators. �

1.2.5. Reminder about compact operators. In the following theorem, we recall some

fundamental facts about compact operators. In particular, we will notice that the non

zero spectrum of a compact operator is discrete.

Theorem 1.14 (About the Fredholm alternative). Let L ∈ L(H) be a compact operator.

Then, we have

(1) If H is of infinite dimension, then 0 ∈ sp(L).

(2) dim (ker(L− Id)) is finite.

(3) range(L− Id) is closed.

(4) ker(L− Id) = {0} iff range(L− Id) = H.

(5) If λ ∈ sp(L) \ {0}, L − λ is a Fredholm operator (and thus λ belongs to the

discrete spectrum).
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(6) The elements of sp(L) \ {0} are isolated and the only accumulation point of the

spectrum is 0.

If Ω is bounded and Lipschitzian, the form domains H1
0(Ω) and H1(Ω) are com-

pactly embedded in L2(Ω) (their unit balls satisfy the assumptions of the Riesz-Fréchet-

Kolmogorov criterion, see [30] for details). Therefore LDir
h,A and LNeu

h,A have compact re-

solvents. Therefore these operators have discrete spectra. We can consider the non

decreasing sequences of their eigenvalues.

Exercise 1.15. We consider L = LDir
h,A when Ω is bounded and regular. Let us take λ an

eigenvalue of L (λ ∈ R since L is self-adjoint). As we said ker(L−λ) has finite dimension.

Since P is self-adjoint, we can write:

range(L− λ) = ker(L− λ)⊥ .

Prove that the image of L− λ is closed by using that K = (L− λ+ i)−1 is compact.

2. Min-max principle and spectral theorem

2.1. Statement of the theorems. We state a theorem which will be one of the

fundamental tools in this book.

Theorem 1.16. Let us assume that (L,Dom (L)) is a self-adjoint operator. Then, if

λ /∈ sp(L), we have:

‖(L− λ)−1‖ ≤ 1

dist(λ, sp(L))
.

Remark 1.17. A proof using the “spectral theorem” can be found in [176] and [121,

Section VI.5] . An immediate consequence of this theorem is that, for all ψ ∈ Dom (L):

‖ψ‖dist(λ, sp(L)) ≤ ‖(L− λ)ψ‖ .

In particular, if we find ψ ∈ Dom (L) such that ‖ψ‖ = 1 and ‖(L − λ)ψ‖ ≤ ε, we get:

dist(λ, sp(L)) ≤ ε.

Proof. This result may be proved without the general spectral theorem. Let us

provide the elements of the proof. Let us first establish the result when L is bounded

and normal (i.e. [L,L∗] = 0). For that purpose, we will use the results of the following

exercises.

Exercise 1.18. If P is a polynomial, we have λ ∈ sp(L) iff P (λ) ∈ sp(L).

Exercise 1.19. We define the spectral radius as

ρ(L) = sup
λ∈sp(L)

|λ| .

(1) By using the convergence of a Neumann series, prove that

ρ(L) = lim sup
n→+∞

‖Ln‖
1
n
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and then ρ(L) = infn ‖Ln‖
1
n .

(2) By using ‖L∗L‖ = ‖L‖2, prove that ρ(L) = ‖L‖ and deduce ‖P (L)‖ = ‖P‖∞
where ‖ · ‖∞ is the uniform norm on the spectrum K of L that is compact.

(3) By using the Stone-Weierstrass theorem, extend this equality to continuous func-

tions on K. If f is a continuous function on K, explain how we may define f(L).

If λ /∈ sp(L), the function r : K 3 z 7→ (z − λ)−1 is continuous and the result follows

when L is bounded and normal as soon as we have noticed that r(L) = (L− λ)−1.

Now, let us assume that L is self-adjoint with domain Dom (L). This is not difficult

to prove that L± i Id is invertible. We introduce the function, called Cayley transform,

g(x) =
x− i
x+ i

, x ∈ R

and the bounded and unitary operator

g (L) := U := (L− iId) (L + iId)−1 .

In particular g(L) is normal. Easy computations provide that g : sp (L) 7→ sp (g(L)) is

bijective. Then, for µ /∈ sp(L), we define, on sp (g (L)),

f(y) =
1

g−1(y)− µ
.

From the case of bounded and normal operators, we infer that

‖f(g(L))‖ ≤ ‖f‖∞,sp(g(L)) = ‖(· − µ)−1‖∞,sp(L) .

It remains to write that f(g(L)) = (L−µ)−1 by noticing that g−1(U)(Id−U) = i(U + Id)

(that implies that g−1(U) = L on Dom (L)) and (g−1(U)− µ)f(U) = Id, where g−1(U) is

understood in the sense of functional calculus of bounded and normal operators.

�

As a consequence of the proof of Theorem 1.16, we may deduce the Stone theorem.

Theorem 1.20. Let (L,Dom (L)) a self-adjoint operator. For all ψ0 ∈ Dom (L), there

exists a unique local C1-solution t 7→ S(t)ψ0 of the equation

ψ′(t) = iLψ(t), ψ(0) = ψ0 .

This solution is global and, for all t ∈ R, ‖S(t)ψ0‖ = ‖ψ0‖. For all t ∈ R and for all

ψ0 ∈ Dom (L), we have S(t)ψ0 ∈ Dom (L). We denote S(t) = eitL and (eitL)t∈R is a

semi-group.

Proof. We let S(t) = eitg
−1(U), where g−1(U) is defined in the proof of Theorem 1.16.

We have S ′(t) = ig−1(U)S(t) = iS(t)g−1(U) so that, for ψ ∈ Dom (L), S ′(t)ψ = iS(t)Lψ.

Let us prove that, for all t ∈ R and ψ ∈ Dom (L), we have S(t)ψ ∈ Dom (L) and that

LS(t)ψ = S(t)Lψ. We have, for all ϕ ∈ H and ψ ∈ Dom (L),

〈g−1(U)eitg
−1(U)ϕ, ψ〉 = 〈eitg−1(U)ϕ,Lψ〉 .

27



This implies, by definition, that eitg
−1(U)ϕ ∈ Dom (L∗) = Dom (L) and that Leitg

−1(U)ϕ =

g−1(U)eitg
−1(U)ϕ. The proof of the uniqueness and of the group property is left to the

reader. �

Exercise 1.21. The aim of this exercise is to investigate the functional calculus of a

simple self-adjoint operator on L2(R) and provide an explicit functional calculus. Let us

recall the expression of the Fourier transform on R. For ψ ∈ S(R), we let, for all ξ ∈ R,

Fψ(ξ) =
1√
2π

∫
R
e−ixξψ(x) dx .

It is well-known that F extends to an isometry of L2(R) and that, for all ψ ∈ S ′(R),

F(Dxψ) = ξF(ψ)

that may be written as FDxF−1 = ξ. In other words, the self-adjoint operator Dx with

domain H1(R) is diagonalized thanks to the Fourier transform.

Let us now consider a smooth function on R denoted by δ bounded as well as its

derivatives and such that there exists δ0 > 0 such that δ ≥ δ0.

(1) Solve the equation δDx(δψ) = ξψ for ξ ∈ R.

(2) For ψ ∈ S(R), we let

Fδ(ψ)(ξ) =
1√
2π

∫
R
δ(x)−1eiξ

∫ x
0 δ−2(y) dyψ(x) dx .

Prove that Fδ is unitary in L2(R).

(3) Prove that it diagonalizes the operator δDxδ and that F−1
δ DξFδ =

∫ x
0
δ−2(y) dy.

We now give a standard method to estimate the discrete spectrum and the bottom of

the essential spectrum of a self-adjoint operator L on an Hilbert space H. We recall first

the definition of the Rayleigh quotients of a self-adjoint operator L.

Definition 1.22. The Rayleigh quotients associated with the self-adjoint operator L on

H of domain Dom (L) are defined for all positive natural number n by

µn(L) = sup
ψ1,...,ψn−1

inf
u∈span(ψ1,...,ψn−1)⊥

u∈Dom (L),u6=0

〈Lu, u〉H
〈u, u〉H

.

Lemma 1.23. If L is self-adjoint with non negative spectrum, we have µ1(L) ≥ 0.

Proof. Let us assume that µ1(L) < 0. We may define the sesquilinear form B(u, v) =

〈(L − µ1(L))−1u, v〉 on H and it is non negative. Thus, the Cauchy-Schwarz inequality

provides, for u, v ∈ H,

|〈(L− µ1(L))−1u, v〉| ≤ 〈(L− µ1(L))−1u, u〉
1
2 〈(L− µ1(L))−1v, v〉

1
2 .

We take v = (L− µ1(L))−1u and deduce for all u ∈ H,

‖(L− µ1(L))−1u‖ ≤ ‖(L− µ1(L))−1‖
1
2 〈(L− µ1(L))−1u, u〉

1
2 .
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and thus, for all v ∈ Dom (L),

‖v‖ ≤ ‖(L− µ1(L))−1‖
1
2 〈v, (L− µ1(L))v〉

1
2 .

By definition of µ1(L) we may find a sequence (vn) such that ‖vn‖ = 1 such that

〈Lvn, vn〉 → µ1(L) and we get a contradiction. �

The following statement gives the relation between Rayleigh quotients and eigenval-

ues.

Theorem 1.24. Let L be a self-adjoint operator of domain Dom (L). We assume that L

is semi-bounded from below. Then the Rayleigh quotients µn of L form a non-decreasing

sequence and one of the following holds

(1) µn(L) is the n-th eigenvalue (counted with mutliplicity) eigenvalue of L and L

has only discrete spectrum in (−∞, µn(L)].

(2) µn(L) is the bottom of the essential spectrum and, for all j ≥ n, µj(L) = µn(L).

Proof. Let us provide an elementary proof which does not use the so-called spectral

projections. First it is easy to see that the sequence (µn) is non-decreasing. Then, we

notice that

(1.2.1) a < µn =⇒ (−∞, a) ∩ spess(L) = ∅ .

Indeed, if λ ∈ (−∞, a) were in the essential spectrum, by Lemma 1.8 and thanks to Weyl

sequences, for all N ≥ 1 and ε > 0, we could find an orthonormal family (uj)j∈{1,...,N} such

that ‖(L−λ)uj‖ ≤ ε√
N

. Then, given n ≥ 1 and taking N ≥ n, for all (ψ1, . . . , ψn−1) ∈ H,

there exists a non zero u in the intersection span(u1, . . . , uN) ∩ span(ψ1, . . . , ψn−1)⊥. We

write u =
∑N

j=1 αjuj and notice that

〈Lu, u〉H
〈u, u〉H

≤ λ+
‖(L− λ)u‖
‖u‖

≤ λ+

(
N∑
j=1

‖(L− λ)uj‖2

) 1
2

≤ λ+ ε

and thus µn ≤ λ + ε. For ε small enough, we get µn ≤ a, that is a contradiction. If γ is

the infimum of the essential spectrum (suppose that it is not empty), we have µn ≤ γ.

Note also that if µn = +∞ for some n, then the essential spectrum is empty. This implies

the second point.

It remains to prove the first point. Thus, we assume that µn < γ. By using the same

considerations as above, if a < µn, the number of eigenvalues (with multiplicity) lying in

(−∞, a) is less than n − 1. Let us finally show that, if a ∈ (µn, γ), then the number of

eigenvalues in (−∞, a) is at least n. If not the direct sum of eigenspaces associated with

eigenvalues below a would be generated by ψ1, . . . , ψn−1 and

µn ≥ inf
u∈span(ψ1,...,ψn−1)⊥

u∈Dom (L),u6=0

〈Lu, u〉H
〈u, u〉H

≥ a ,
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where we have used Lemma 1.23 and that sp(L|F ) ⊂ [a,+∞), with F = span(ψ1, . . . , ψn−1)⊥.

�

A consequence of this theorem (or of its proof) which is often used is the following

proposition.

Proposition 1.25. Suppose that there exists a ∈ R and an n-dimensional space V ⊂
DomL such that

〈Lψ, ψ〉H ≤ a‖ψ‖2 .

Then, we have:

λn(L) ≤ a .

2.2. Examples of applications. Let us provide some applications of the min-max

principle.

2.2.1. Sturm-Liouville’s theory. We consider the following operator Dxg(x)Dx+V (x),

with g, V ∈ C∞([0, 1]), g ≥ c > 0 on [0, 1] and domain{
ψ ∈ H1

0((0, 1)) : (Dxg(x)Dx + V (x))ψ ∈ L2((0, 1))
}
.

It is clearly a self-adjoint operator, denoted by L, with compact resolvent. Therefore,

we may consider the non decreasing sequence of its eigenvalues (λn)n≥1. By the Cauchy-

Lipshitz theorem, we also notice that these eigenvalues are simple. For all n ≥ 1, let us

consider an eigenfunction un associated with λn. Notice that 〈un, um〉 = 0 if n 6= m and

that the zeros of un are simple and thus isolated.

Proposition 1.26. For all n ≥ 1, the function un admits exactly n− 1 zeros in (0, 1).

Proof. Let us denote by Zn the number of zeros of un in (0, 1).

Let us prove that Zn ≤ n − 1. If the eigenfunction un admits at least n zeros in

(0, 1), denoted by z1, . . . , zn+1 and we may define (un,j)j=0,...,n by un,j(x) = un(x) for

x ∈ [zj, zj+1] and un,j(x) = 0 elsewhere. It is clear that these functions belong to the

form domain of L and that they form an orthogonal family. We may establish (by using

an integration by parts) that

∀v ∈ spanj∈{0,...,n}un,j, Q(v) ≤ λn‖v‖2
L2((0,1)) .

By the min-max principle, we get λn+1 ≤ λn and this contradicts the simplicity of the

eigenvalues.

Let us now prove that Zn ≥ Zn−1 + 1. It is sufficient to prove that if un−1 is zero in

z0 and z1, then un vanishes in (z0, z1). Indeed, this would imply that un vanishes at least

Zn−1 + 1 times. For that purpose we introduce W (f1, f2) = g (f ′1f2 − f1f
′
2) and compute

W (un−1, un)′ = (λn − λn−1)un−1un .

We have W (un−1, un)(z0) = W (un−1, un)(z1) = 0, thus W (un−1, un)′ vanishes somewhere

in (z0, z1) and so does un.
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The conclusion follows easily. �

2.2.2. Another example coming from spheric coordinates.

Notation 1.27. For α ∈ (0, π), let us consider the operator on L2
((

0, 1
2

)
, sin(αϕ) dϕ

)
defined by

Pα = − 1

sin(αϕ)
∂ϕ sin(αϕ)∂ϕ ,

with domain

Dom (Pα) =
{
ψ ∈ L2

(
(0, 1

2
), sin(αϕ) dϕ

)
,

1

sin(αϕ)
∂ϕ sin(αϕ)∂ϕψ ∈ L2

(
(0, 1

2
), sin(αϕ) dϕ

)
, ∂ϕψ

(
1
2

)
= 0, ψ(0) = 0

}
.

We denote by ν1(α) its first eigenvalue.

The aim of this section is to establish the following lemma.

Lemma 1.28. There exists c0 > 0 such that for all α ∈ (0, π):

ν1(α) ≥ c0 .

Proof. We consider the associated quadratic form pα:

pα(ψ) =

∫ 1
2

0

sin(αϕ)|∂ϕψ|2 dϕ .

We have the elementary lower bound:

pα(ψ) ≥
∫ 1

2

0

αϕ

(
1− (αϕ)2

6

)
|∂ϕψ|2 dϕ ≥ 1

2

∫ 1
2

0

αϕ|∂ϕψ|2 dϕ ,

since 0 ≤ αϕ ≤ π
2
. We are led to analyze the lowest eigenvalue γ ≥ 0 of the operator on

L2
((

0, 1
2

)
, ϕ dϕ

)
defined by − 1

ϕ
∂ϕϕ∂ϕ with Dirichlet condition at ϕ = 0 and Neumann

condition at ϕ = 1
2
. Let us prove that γ > 0. If it were not the case, the corresponding

eigenvector ψ would satisfy:

− 1

ϕ
∂ϕϕ∂ϕψ = 0 ,

so that

ψ(ϕ) = c lnϕ+ d, with c, d ∈ R .

The boundary conditions provide c = d = 0 and thus ψ = 0. By contradiction, we infer

that γ > 0. We deduce that

pα(ψ) ≥ γ

2

∫ 1
2

0

αϕ|ψ|2 dϕ ≥ γ

2

∫ 1
2

0

sin(αϕ)|ψ|2 dϕ .

By the min-max principle, we conclude that, for all α ∈ (0, π),

ν1(α) ≥ γ

2
=: c0 > 0 .

�
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2.2.3. An example with small magnetic field. In this section, we let

Ω = B(0, 1) ⊂ R2 , A0(x1, x2) =
1

2
(x2,−x1) ,

and we consider the magnetic Neumann Laplacian LNeu
αA0

on Ω with α > 0.

Proposition 1.29. If µ(α) denotes the lowest eigenvalue of LNeu
αA0

, we have

µ(α) =
α2

|Ω|

∫
Ω

|A0(x)|2 dx +O(α
5
2 ) .

Proof. Let us first notice that A0(x)·n(x) = 0 on ∂Ω and that ∇·A0 = 0. Therefore

the magnetic Neumann condition (−i∇+ αA0)ψ ·n = 0 becomes ∇ψ ·n = 0 on ∂Ω. In

particular, we notice that the domain is independent from α (due to our special choice

of gauge). By using the test function ψ = 1 and the min-max principle, we get

µ(α) ≤ α2

|Ω|

∫
Ω

|A0(x)|2 dx .

Let us now consider a L2-normalized eigenfunction ψα associated with µ(α). We have∫
Ω

|(−i∇+ αA0)ψα|2 dx = µ(α) = O(α2) .

By using a classical inequality, we get that, for all ε > 0, we have∫
Ω

|(−i∇+ αA0)ψα|2 dx ≥ (1− ε)‖∇ψα‖2
L2(Ω) − ε−1α2|Ω|max

x∈Ω
|A0(x)|2 .

Taking ε = α, we deduce that

‖∇ψα‖2
L2(Ω) = O(α) .

We have

‖∇ψα‖2
L2(Ω) =

∥∥∥∥∇(ψα − 1

|Ω|

∫
Ω

ψα dx

)∥∥∥∥2

L2(Ω)

≥ λ2(−∆Neu,Ω)

∥∥∥∥ψα − 1

|Ω|

∫
Ω

ψα dx

∥∥∥∥2

L2(Ω)

,

where λ2(−∆Neu,Ω) is the second Rayleigh quotient associate with the Neumann Lapla-

cian on Ω and we used the fact that ψα − 1
|Ω|

∫
Ω
ψα dx is orthogonal to the constant

functions and the min-max principle. We now use that the first eigenvalue of the Neu-

mann Laplacian (that is 0) on Ω is simple and associated with the constant functions.

This fact will be explained in general in Section 3 and is also known as the Poincaré

inequality. We deduce that

(1.2.2)
∥∥ψα − ψα∥∥L2(Ω)

= O(α
1
2 ) , ψα =

1

|Ω|

∫
Ω

ψα dx .

We have, for all ε > 0,∫
Ω

|(−i∇+ αA0)ψα|2 dx

≥ (1− ε)
∫

Ω

| − i∇ψα + αA0ψα|2 dx− ε−1α2|Ω|max
x∈Ω
|A0(x)|2

∥∥ψα − ψα∥∥2

L2(Ω)
.
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Then we notice that∫
Ω

| − i∇ψα + αA0ψα|2 dx

= ‖∇ψα‖2
L2(Ω) + α2|ψα|2

∫
Ω

|A0(x)|2 dx + 2αImψα〈∇ψα,A0〉L2(Ω) .

Thanks to the Green-Riemann formula and the fact that ∇ ·A0 = 0 and A0 · n = 0, we

get

〈∇ψα,A0〉L2(Ω) = 0 ,

so that we find ∫
Ω

| − i∇ψα + αA0ψα|2 dx ≥ α2|ψα|2|Ω|
∫

Ω

|A0(x)|2 dx .

We take ε = α
1
2 and, with (1.2.2), we deduce that

µ(α) =

∫
Ω

|(−i∇+ αA0)ψα|2 dx ≥ α2(1− α
1
2 )|ψα|2

∫
Ω

|A0(x)|2 dx− Cα
5
2 .

By using again (1.2.2), we get that

|ψα| =
1

|Ω| 12
+O(α

1
2 ) ,

and the conclusion follows. �

Remark 1.30. The result of Proposition 1.29 may be easily generalized to smooth do-

mains by choosing a vector potential A0 such that

∇ ·A0 = 0 , in Ω , A0 · n = 0 , on ∂Ω .

Such a vector potential may be found by minimizing
∫

Ω
|A − ∇ϕ|2 dx for ϕ ∈ H1(Ω)

for the initial A such that ∇ × A = B. Moreover, for this particular choice of vector

potential, the domain does not depend on the parameter α and we may apply the analytic

perturbation theory (see Chapter 2, Section 5) to get the analyticity of µ(α).

2.3. Persson’s theorem. Let us give a characterization of the bottom of the essen-

tial spectrum in the Schrödinger case (see [162] and also [76]).

Theorem 1.31. Let V be real-valued, semi-bounded potential and A ∈ C1(Rn) a magnetic

potential. Let LA,V be the corresponding self-adjoint, semi-bounded Schrödinger operator.

Then, the bottom of the essential spectrum is given by:

inf spess(LA,V ) = Σ(LA,V ) ,

where:

Σ(LA,V ) = sup
K⊂Rn

[
inf
‖φ‖=1

〈LA,V φ, φ〉L2 |φ ∈ C∞0 (Rn \K)

]
.

Let us notice that generalizations including the presence of a boundary are possible.
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In fact, we will not really need this theorem in this book, but only the following

criterion.

Proposition 1.32. Let Ω ⊂ Rd a non empty open set. Let us consider a quadratic form

Q defined on the dense subset Dom (Q) ⊂ L2(Ω), bounded from below by 1 and such

that (Dom (Q),
√

Q(·)) is an Hilbert space. We denote by (L,Dom (L)) the corresponding

self-adjoint operator. For all R > 0, we let ΩR = Ω ∩B(0, R) and ιR : ψ → ψ|ΩR.

We assume that

(1) For all M ≥ 0 and R > 0, ιR ({ψ ∈ Dom (Q) : Q(ψ) ≤M}) is a precompact part

of L2(ΩR).

(2) For all smooth cutoff function χ supported in a neighborhood of 0 and for all ψ ∈
Dom (Q), χψ ∈ Dom (Q). Moreover, for all smooth cutoff function 0 ≤ χ ≤ 1

being 0 in B(0, 1) and 1 on {B(0, 2) and for all ε > 0, there exists R0 > 0 such

that for all R ≥ R0 and all ψ ∈ Dom (L),

Q(χRψ) ≤ 〈Lψ, χ2
Rψ〉L2(Ω) + ε‖ψ‖2

L2(Ω), with χR(x) = χ
(
R−1x

)
(3) There exist µ ∈ R and R0 > 0 such that for all R ≥ R0, all ψ ∈ Dom (Q) and

all χ supported in {B(0, R),

Q(χψ) ≥ µ‖χψ‖2
L2(Ω) .

Then we have inf spess (L) ≥ µ.

Proof. Let us consider λ ∈ sp(L) with λ < µ. We shall prove that λ is in the discrete

spectrum. Let us introduce a sequence (ψn)n≥0 ⊂ Dom (L) such that we have

‖ψn‖L2(Ω) = 1 and ‖(L− λ)ψn‖L2(Ω) → 0 .

Let us show that (ψn)n≥0 is precompact in L2(Ω). There exists N ≥ 0 such that, for all

n ≥ N , ‖(L−λ)ψn‖L2(R) ≤ ε. Then we notice that that there exists R0 > 0 such that for

all R ≥ R0 and all n ≥ N , we have

Q(χRψn) ≤ 〈Lψn, χ2
Rψn〉L2(Ω) + ε‖ψn‖2

L2(Ω)

so that

Q(χRψn) ≤ λ‖χRψn‖2
L2(Ω) + 2ε .

We get

(µ− λ)‖χRψn‖2
L2(Ω) ≤ 2ε .

Up to choosing R0 larger, we have, for all R ≥ R0 and all n ∈ N,

(µ− λ)‖χRψn‖2
L2(Ω) ≤ 2ε

that implies

(µ− λ)‖ψn‖2
L2(Ω∩{B(0,2R0)) ≤ 2ε
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Now, we use the precompactness of the sequence (ι2R0(ψn))n∈N and this enough to con-

clude that (ψn) is a precompact part of L2(Ω). It remains to use Proposition 1.7. �

Exercise 1.33. Prove the lower bound of the infimum of the essential spectrum in The-

orem 1.31 by using Proposition 1.32.

The following exercise may be done to prepare the understanding of the next propo-

sition.

Exercise 1.34. If A ∈ L2
loc, we recall that H1

A(Rd) denotes

{ψ ∈ L2(Rd) : (−i∇+ A)ψ ∈ L2(Rd)} .

(1) Prove that, equipped with the scalar product,

〈φ, ψ〉H1
A(Rd) =

∫
Rd

(−i∇+ A)φ (−i∇+ A)ψ dx +

∫
Rd
φψ dx ,

it is a Hilbert space.

(2) Prove that C∞0 (Rd) is dense in H1
A(Rd).

Let us now provide an estimate of the essential spectrum of an electro-magnetic

Laplacian when we assume that the electric potential is “small” (sufficiently integrable)

at infinity.

Proposition 1.35. Let d ≥ 3. Let us consider A ∈ L2
loc(Rd,Rd) and V ∈ L

p
p−2 (Rd),

where p ∈ (2, 2∗) and 2∗ = 2d
d−2

. Then, the quadratic form, defined for ϕ ∈ H1
A(Rd), by

QA,V (ϕ) =

∫
Rd
|(−i∇+ A)ϕ|2 dx +

∫
Rd
V |ϕ|2 dx ,

is well-defined, bounded from below and closed. Moreover, for all ε > 0, there exists R > 0

such that, for all ψ ∈ H1
A(Rd) with suppψ ⊂ {D(0, R), we have

(1.2.3) QA,V (ψ) ≥ (1− ε)QA(ψ) .

If A is linear, we have inf spess(LA,V ) ≥ sup1≤k<`≤d |Bk`| where LA,V is the operator

associated with the (closed) form QA,V .

When d = 2, the same results hold if V ∈ Lq(Rd) for some q > 1.

Proof. First we notice that, for ψ ∈ H1
A(Rd),∫

Rd
|V ||ψ|2 dx ≤ ‖V ‖

L
p
p−2 (Rd)

‖ψ‖2
Lp(Rd) ≤ C‖V ‖

L
p
p−2 (Rd)

‖|ψ|‖2
H1(Rd) ,

where we used the Hölder inequality and the Sobolev embedding H1(Rd) ⊂ Lp(Rd). Then,

the diamagnetic inequality implies that∫
Rd
|V ||ψ|2 dx ≤ C‖V ‖

L
p
p−2 (Rd)

QA(ψ) .
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Thus the quadratic form is well-defined on H1
A(Rd). Note that, this argument also show

that, if ψ is supported in {D(0, R), we have∫
Rd
|V ||ψ|2 dx ≤ C‖V ‖

L
p
p−2 ({D(0,R))

QA(ψ) .

This implies (1.2.3). Let us now prove that the quadratic form is bounded from below.

We have ∫
Rd
|V ||ψ|2 dx ≤ C‖V ‖

L
p
p−2 (Rd)

‖ψ‖2
Lp(Rd) ,

and by interpolation, we get

‖ψ‖2
Lp(Rd) ≤ ‖ψ‖

2θ
L2(Rd)‖ψ‖

2(1−θ)
L2∗ (Rd)

,

for θ ∈ (0, 1) defined by 1
p

= θ
2

+ 1−θ
2

. With the Sobolev embedding and the diamagnetic

inequality, we get

‖ψ‖2
Lp(Rd) ≤ C‖ψ‖2θ

L2(Rd)QA(ψ)1−θ .

We recall the convexity inequality

∀a, b ≥ 0, ∀θ ∈ (0, 1), aθb1−θ ≤ θa+ (1− θ)b ,

that implies

∀ε, ∀a, b ≥ 0, ∀θ ∈ (0, 1), aθb1−θ ≤ θε−1a+ (1− θ)ε
θ

1−θ b ,

It follows that

‖ψ‖2
Lp(Rd) ≤ C

(
θε−1‖ψ‖2

L2(Rd) + (1− θ)ε
θ

1−θQA(ψ)
)

and the lower bound follows by taking ε small enough.

The estimate of the essential spectrum comes from Proposition 1.32 ((2) comes from

the formula (4.1.1) that will be proved later) and Proposition 0.2.

We leave the case d = 2 as an exercise. �

3. Simplicity and Harnack’s inequality

This section is devoted to establish the simplicity of the lowest eigenvalue of operators

in the form −∆ + V . For that purpose, we will use the following version of the Harnack

inequality.

Proposition 1.36. Let Ω be an non empty open set of Rd and V ∈ C∞(Ω). Let us fix

a ball D ⊂⊂ Ω. Then, there exists C > 0 such that, for all positive function u ∈ C∞(Ω)

solution of

(−∆ + V )u = 0, on Ω ,

we have

max
D

u ≤ C min
D

u .
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Proof. Let us provide an elementary proof inspired by the presentation by Evans

(see [67, p. 351]). Let D ⊂⊂ Ω and χ a smooth cutoff function supported in Ω and being

1 in a neighborhood of D. For notation simplicity, in this proof, we will denote by C all

the constants that only depends on Ω, V , χ and D.

We write v = lnu and notice that, on Ω,

(1.3.1) −∆v − |∇v|2 + V = 0 .

We let w = |∇v|2. We want to get a bound on w on D that only depends on D and

V . We consider x0 ∈ Ω where the maximum of z = χ4w is attained. Note here that the

presence of the cutoff function is due to the fact that we do not know if the maximum

of w is reached in Ω (it might be on the boundary). If v is not constant on D, we have

z(x0) > 0 and thus χ(x0) > 0, w(x0) > 0. Indeed, if z(x0) = 0, we get that, for all x ∈ D,

w(x) = 0. Therefore we assume that z(x0) > 0.

Since z is maximal at x0 ∈ Ω, we have

(1.3.2) ∇z(x0) = 0, ∆z(x0) ≤ 0 .

We deduce from the second inequality that

χ4(x0)∆w(x0) ≤ −(∆χ4)(x0)w(x0)− 2∇χ4(x0) · ∇w(x0) .

By using the first equality in (1.3.2) and χ(x0) 6= 0, we find

χ(x0)∇w(x0) + 4w(x0)∇χ(x0) = 0 .

We find

(1.3.3) χ4(x0)∆w(x0) ≤ Cw(x0) .

We obtain by a simple computation

∆w = 2|∇2v|2 + 2
d∑

k=1

(∂kV − ∂kw) ∂kv ,

where |∇2v|2 is the sum of the squares of the elements of the Hessian matrix of v. In

particular, on D, we have

∆w ≥ 2|∇2v|2 − C|∇v| − 2∇w · ∇v

and, at x0, we find, by using again the first equality in (1.3.2),

χ4(x0)∆w(x0) ≥ 2χ4(x0)|∇2v(x0)|2 − Cw(x0)
1
2 − Cχ3(x0)w(x0)

3
2 .

With (1.3.3) we get

χ4(x0)|∇2v(x0)|2 ≤ Cχ3(x0)w(x0)
3
2 + Cw(x0) + Cw(x0)

1
2

Then, by using (1.3.1), we find w2(x0) ≤ C + |∇2v(x0)|2 and thus

χ4(x0)w(x0)2 ≤ Cχ3(x0)w(x0)
3
2 + Cw(x0) + Cw(x0)

1
2 + Cχ4(x0) .
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We infer

(χ4(x0)w(x0)− Cχ3(x0)w(x0)
1
2 )w(x0) ≤ Cχ4(x0) + Cw(x0) .

If χ4(x0)w(x0) − Cχ3(x0)w(x0)
1
2 ≤ 0, then χ(x0)w(x0)

1
2 ≤ C and the reader can go to

(1.3.4). If not, we can write

(χ4(x0)w(x0)− Cχ3(x0)w(x0)
1
2 )χ4(x0)w(x0) ≤ Cχ4(x0) + Cw(x0) .

so that (
χ4(x0)w(x0)− Cχ3(x0)w(x0)

1
2

2

)2

≤ Cχ4(x0) + Cw(x0) .

We find

χ4(x0)w(x0) ≤ Cχ2(x0) + Cw(x0)
1
2

and we can play the same game to find

χ4(x0)w(x0)
1
2 ≤ Cχ2(x0) .

In any case, we get

(1.3.4) χ4(x0)w(x0) ≤ C .

In particular, since x0 is the maximum of z, we get

∀x ∈ D, |∇v(x)|2 ≤ C .

We infer that

∀x,y ∈ D, |v(x)− v(y)| ≤
√
C|x− y| ≤

√
Cdiam(D)

so that

∀x,y ∈ D, u(x)

u(y)
≤ C

and the conclusion follows. �

Corollary 1.37. Let Ω be an non empty open set of Rd and V ∈ C∞(Ω). Let us fix a ball

D ⊂⊂ Ω. Then, there exists C > 0 such that, for all function u ≥ 0 belonging to C∞(Ω)

and solution of

(−∆ + V )u = 0, on Ω ,

we have

max
D

u ≤ C min
D

u .

Proof. We apply Proposition 1.36 to uε = u+ ε and make ε go to 0. �

Corollary 1.38. Let Ω be an non empty open connected set of Rd and V ∈ C∞(Ω). We

also assume that V ≥ 1. We define{
ψ ∈ H1(Ω) :

√
V ψ ∈ L2(Ω)

}
.
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and the quadratic form

∀ψ ∈ Dom (QV ), QV (ψ) =

∫
Ω

|∇ψ|2 + V (x)|ψ|2 dx .

If LV denotes the associated self-adjoint operator, and if the infimum of its spectrum

belongs to the discrete spectrum, then it is simple and there exists an associated eigen-

function that is positive on Ω.

Proof. We first notice that (see [76, Proposition 2.1.2]), if ψ ∈ H1(Ω), then we have

|ψ| ∈ H1(Ω) and

‖∇|ψ|‖L2(Ω) ≤ ‖∇ψ‖L2(Ω) .

Let ψ be an eigenfunction associated with λ1. We have QV (|ψ|) ≤ QV (ψ) so that, by the

min-max principle and using that λ1 is the smallest Rayleigh quotient, we find that |ψ|
is also an eigenfunction associated with λ1. By an elliptic regularity argument, u = |ψ|
is smooth on Ω since it satisfies

−∆u+ (V − λ1)u = 0 .

If u vanishes at x0, then, by the Harnack inequality, it must vanish in a neighborhood

of x0. By a connexity argument, u is identically zero if it vanishes at some point of Ω.

Therefore, all the eigenfunctions associated with λ1 do not vanish in Ω. If λ1 were of

multiplicity at least two, we would consider u1 and u2 two orthogonal eigenfunctions.

But this is impossible since they do not vanish in Ω.

�

39





CHAPTER 2

Examples

Bene quidam dixit de amico suo : dimidium animae

suae. Nam ego sensi animam meam et animam illius

unam fuisse animam in duobus corporibus, et ideo

mihi horrori erat vita, quia nolebam dimidius vivere

et ideo forte mori metuebam, ne totus ille moreretur,

quem multum amaveram.

Confessiones, Augustinus

This chapter aims at exemplifying some questions discussed in Chapter 1.

1. Harmonic oscillator

Before going further we shall discuss the spectrum of the harmonic oscillator which we

will encounter many times in this book. We are interested in the self-adjoint realization

on L2(R) of:

Hharm = D2
x + x2 .

This operator is defined as the self-adjoint operator associated with the quadratic form

defined by

Qharm(ψ) = ‖ψ′‖2 + ‖xψ‖2, ψ ∈ B1(R) ,

where

B1(R) = {ψ ∈ L2(R) : ψ′ ∈ L2(R), xψ ∈ L2(R)} .
Note that B1(R) is an Hilbert space for the scalar product

〈u, v〉B1(R) =

∫
R
u′v′ dx+

∫
R
x2uv dx .

Exercise 2.1. Prove that B1(R) is dense in L2(R) and that C∞0 (R) is dense in B1(R).

The domain of Hharm is given by

Dom (Hharm) = {ψ ∈ B1(R), (D2
x + x2)ψ ∈ L2(R)} .

The domain of the operator can be characterized with the following proposition.

Proposition 2.2. We have

Dom (Hharm) = {ψ ∈ L2(R) : ψ′′ ∈ L2(R), x2ψ ∈ L2(R)} .
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Proof. Let us provide an instructive proof. We use the difference quotients method

(see [30, Theorem 9.25]). Let us consider ψ ∈ Dom (Hharm). It is sufficient to prove that

ψ′′ ∈ L2(R). There exists f ∈ L2(R) such that, in the sense of distributions, we have

∀ϕ ∈ S(R), 〈(D2
x + x2)ψ, ϕ〉 = 〈f, ϕ〉

so that

∀ϕ ∈ S(R), 〈∂xψ, ∂xϕ〉+ 〈xψ, xϕ〉 = 〈f, ϕ〉 ,
where the bracket is now the L2-bracket.

Since ψ ∈ B1(R) and that S(R) is dense in B1(R), we can extend this equality:

∀ϕ ∈ B1(R), 〈∂xψ, ∂xϕ〉+ 〈xψ, xϕ〉 = 〈f, ϕ〉 .

Let us define the difference quotient

Qhϕ(x) =
ϕ(x+ h)− ϕ(x)

h
, x ∈ R, h 6= 0 .

If ϕ ∈ B1(R), then Qhϕ ∈ B1(R). We get

∀ϕ ∈ B1(R), 〈∂xψ, ∂xQhϕ〉+ 〈xψ, xQhϕ〉 = 〈f,Qhϕ〉 .

We find

〈∂xψ, ∂xQhϕ〉 = −〈∂xQ−hψ, ∂xϕ〉
and

〈xψ, xQhϕ〉 = −〈xQ−hψ, xϕ〉 − 〈ψ(x− h), xϕ〉 − 〈xψ, ϕ(x+ h)〉 .
We find, for all ϕ ∈ B1(R) and h 6= 0,

〈∂xQ−hψ, ∂xϕ〉+ 〈xQ−hψ, xϕ〉 = −〈f,Qhϕ〉 − 〈ψ(x− h), xϕ〉 − 〈xψ, ϕ(x+ h)〉 .

and we apply this equality to ϕ = Q−hψ. We deduce

〈∂xQ−hψ, ∂xQ−hψ〉+ 〈xQ−hψ, xQ−hψ〉

= −〈f,QhQ−hψ〉 − 〈ψ(x− h), xQ−hψ〉 − 〈xψ,Q−hψ(x+ h)〉.

Then we notice that

|〈f,QhQ−hψ〉| ≤ ‖f‖L2(R)‖QhQ−hψ‖L2(R)

≤ ‖f‖L2(R)‖∂xQ−hψ‖L2(R)

≤ 1

2

(
‖f‖2

L2(R) + ‖∂xQ−hψ‖2
L2(R)

)
,

where we have used Proposition 1.11. We can deal with the other terms in the same way

and we get

‖∂xQ−hψ‖2
L2(R) + ‖xQ−hψ‖2

L2(R)

≤ 1

2

(
‖f‖2

L2(R) + ‖∂xQ−hψ‖2
L2(R) + ‖ψ‖2

L2(R) + ‖xQ−hψ‖2
L2(R) + ‖ψ‖2

B1(R) + |h|‖ψ‖2
H1(R)

)
.
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We deduce that

‖Q−h∂xψ‖2
L2(R) + ‖xQ−hψ‖2

L2(R) ≤ ‖f‖2
L2(R) + ‖ψ‖2

L2(R) + ‖ψ‖2
B1(R) + |h|‖ψ‖2

H1(R) .

We may again use Proposition 1.11 and we deduce that ∂xψ ∈ H1(R) and xψ ∈ H1(R). �

The self-adjoint operator Hharm has compact resolvent since B1(R) is compactly em-

bedded in L2(R). Its spectrum is a sequence of eigenvalues which tends to +∞. Let us

explain how we can get the spectrum of Hharm. We let:

a =
1√
2

(
d

dx
+ x

)
, a∗ =

1√
2

(
− d

dx
+ x

)
.

We have:

[a, a∗] = aa∗ − a∗a = 1 .

We let:

f0(x) = e−x
2/2 .

We investigate the spectrum of a∗a. We have: af0 = 0. We let fn = (a∗)nf0. This is easy

to prove that a∗afn = nfn and that afn = nfn−1.

Exercise 2.3. Prove that the (fn) form a Hilbertian basis of L2(R). These functions are

called Hermite’s functions.The eigenvalues of Hharm are the numbers 2n+ 1, n ∈ N. They

are simple and associated with the normalized Hermite’s functions.

Exercise 2.4. This exercise is an example of exact WKB expansions. We will recognize

Laguerre’s polynomials. We wish to study the 2D harmonic oscillator: −∆ + |x|2.

(1) Write the operator in terms of radial coordinates.

(2) Explain how the spectral analysis can be reduced to the study of:

−∂2
ρ − ρ−1∂ρ + ρ−2m2 + ρ2 ,

on L2(ρdρ) with m ∈ Z.

(3) Perform the change of variable t = ρ2.

(4) For which α is t 7→ tαe−t/2 an eigenfunction ?

(5) Conjugate the operator by t−m/2et/2. On which space is the new operator Lm

acting ? Describe the new scalar product.

(6) Find eigenvalues of Lm by noticing that RN [X] is stable by Lm.

(7) Conclude.

2. A δ-interaction

In this section we discuss a model on the line related to the so-called δ-interactions.

The reader is referred to [5, Chapter II.2] and to [29, 70, 71, 32, 68] where the spectral

properties of δ-interactions are analyzed. Let us define, for ψ ∈ H1(R),

qδ(ψ) =

∫
R
|ψ′(y)|2 dy − |ψ(0)|2 .
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Proposition 2.5. The quadratic form qδ is well defined and semi-bounded from below.

Moreover, there exists C > 0 such that
√
qδ(·) + C‖ · ‖2

L2(R) is a norm equivalent to

‖ · ‖H1(R).

Proof. Let us recall the classical Sobolev embedding:

∃C > 0, ∀u ∈ H1(R), ‖u‖2
L∞(R) ≤ C‖u‖2

H1(R) = C(‖u‖2
L2(R) + ‖u′‖2

L2(R)) .

We apply this inequality to u(x) = v(λx) for λ > 0 and v ∈ H1(R). Choosing the

appropriate λ we get

‖v‖2
L∞(R) ≤ 2C‖v‖L2(R)‖v′‖L2(R)

and thus, for all ε ∈ (0, 1),

‖v‖2
L∞(R) ≤ C

(
ε−1‖v‖2

L2(R) + ε‖v′‖2
L2(R)

)
.

We deduce that, for all ψ ∈ H1(R),

(2.2.1) qδ(ψ) ≥ −Cε−1‖ψ‖2
L2(R) + (1− Cε)‖ψ′‖2

L2(R) .

Choosing ε small enough, the conclusion follows. �

Proposition 2.6. If Lδ denotes the self-adjoint operator associated with qδ, we have

Dom (Lδ) =
{
u ∈ H1(R) : H2(R \ {0}) and u′(0+)− u′(0−) = −u(0)

}
.

Moreover we have spess(L
δ) = [0,+∞) and spdis(L

δ) = {−1
4
}.

Proof. By definition, we have, for all u ∈ Dom (Lδ) and v ∈ H1(R),

〈Lδu, v〉 = bδ(u, v) .

For, v ∈ C∞0 (R \ {0}), we get, in D′(R \ {0}), Lδu = −u′′ ∈ L2(R \ {0}) so that we

deduce u ∈ H2(R \ {0}). We deduce that u′(0+) and u′(0−) are well defined by Sobolev

embedding. Then, for all v ∈ C∞0 (R), an integration by parts gives

bδ(u, v) = −
∫
R
u′′v dx+ (u′(0+)− u′(0−) + u(0))v(0) .

But, we have 〈Lδu, v〉 = −
∫
R u
′′v dx and thus u′(0+)− u′(0−) + u(0) = 0. Conversely, if

u ∈ H1(R) ∩ H2(R \ {0}) satisfies this jump condition, it is in the domain.

Let us show that 0 ∈ spess(L
δ). We consider χR(x) = χ1(R−1(x−R)) with χ1 a smooth

cutoff function supported in [0,+∞). We get ‖LδχR‖L2(R) tends to 0 when R → +∞.

We apply the Weyl criterion. If we use χR,ξ(x) = eixξχR(x), for ξ ∈ R, we find that

ξ2 ∈ spess(L
δ) so that [0,+∞) ⊂ spess(L

δ). Let us now establish the converse inclusion.

Let us consider λ ∈ sp(Lδ) with λ < 0. We shall prove that λ is in the discrete

spectrum. For that purpose, we use Proposition 1.32: the first item comes from (2.2.1)

and the fact that H1((a, b)) is compactly embedded in L2((a, b)), the second item from
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the formula

〈Lδψ, χ2
Rψ〉L2(R) = qδ(χRψ)− ‖χ′Rψ‖2

L2(R)

and the third from the fact that the Laplacian is non negative.

Finally, if λ ∈ spdis(L
δ), we may easily solve the eigenvalue equation and we find that

λ = −1
4

is associated with the eigenfunction ψ(x) = e−|x|/2. �

Exercise 2.7. For x ≥ 0, we introduce the quadratic form qx defined for ψ ∈ H1(R) by

(2.2.2) qx(ψ) =

∫
R
|ψ′(y)|2 dy − |ψ(−x)|2 − |ψ(x)|2 .

(1) Prove that qx is semi-bounded from below.

(2) We introduce the associated self-adjoint operator denoted by Dx. Prove that

Dom (Dx) =
{
ψ ∈ H1(R) ∩ H2(R \ {±x}) : ψ(±x+)− ψ(±x−) = −ψ(±x)

}
.

(3) Show that, for all x ≥ 0, the essential spectrum of Dx is given by

spess(Dx) = [0,+∞) .

(4) For x ≥ 0, we denote by µ1(x) the lowest eigenvalue of Dx and by ux the

corresponding positive and L2-normalized eigenfunction. Establish the following

properties

(a) For x ≥ 0, we have

µ1(x) = −
(

1

2
+

1

2x
W (xe−x)

)2

,

where W : [−e−1,+∞) → [−1,+∞) is the Lambert function, i.e. the

inverse of [−1,+∞) 3 w 7→ wew ∈ [−e−1,+∞).

(b) The second eigenvalue µ2(x) only exists for x > 1 and is given by

µ2(x) = −
(

1

2
+

1

2x
W (−xe−x)

)2

.

(c) µ1(x) =
x→0
−1 + 2x+O(x2),

(d) µ1(x) =
x→+∞

−1
4
− e−x

2
+O(xe−2x), µ2(x) =

x→+∞
−1

4
+ e−x

2
+O(xe−2x),

(e) For all x ≥ 0, −1 ≤ µ1(x) < −1
4

and for all x > 1, µ2(x) > −1
4
,

(f) µ1 admits a unique minimum at 0,

(g) For all x ≥ 0 and all ψ ∈ H1(R), we have qx(ψ) ≥ −‖ψ‖2,

(h) R(x) = ‖∂xux‖2
L2(Ry) defines a bounded function for x > 0.

(i) ‖∂yux‖2
L2(Ry) defines a bounded function for x ≥ 0.

3. Robin Laplacians

In this section, we discuss some properties of a model closely related to the δ-

interaction.
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3.1. Robin Laplacian on an interval. Let us define, for ψ ∈ H1(R+),

qR
γ (ψ) =

∫ +∞

0

|ψ′(y)|2 dy − |ψ(0)|2 .

Proposition 2.8. The quadratic form qR
0 is well-defined on H1(R+) and bounded from

below. If LR
0 denotes the self-adjoint operator associated with qR

0 , we have

Dom (LR
0 ) =

{
u ∈ H1(R+) : H2(R+) and ψ′(0) = −ψ(0)

}
.

Moreover, we have spess(L
R
0 ) = [0,+∞) and spdis(L

R
0 ) = {−1} and the L2-normalized

eigenfunction associated with −1 is 2
1
2 e−x.

Proof. The definition of the operator and the characterization of the domain follows

as for the δ-interaction. The characterization of the essential spectrum also follows from

the same arguments. Let us just determine the discrete spectrum. We want to solve

−ψ′′ = −ω2ψ , ψ′(0) = −ψ(0) ,

with ψ ∈ H2(R+) and ω > 0. Thus, we have ψ(x) = Ae−ωx so that, with the boundary

condition, ω = 1. �

Let us now introduce a model that can be useful in practice (see for instance [131,

69, 161, 94, 95]). For T > 0 and ψ ∈ H1((0, T )) with ψ(T ) = 0, we let

qR,T
0 (ψ) =

∫ T

0

|ψ′(y)|2 dy − |ψ(0)|2 .

We would like to investigate the behavior of the lowest eigenvalue when T → +∞.

Proposition 2.9. The quadratic form qR,T
0 is well-defined on {ψ ∈ H1((0, T )) , ψ(T ) = 0}

and bounded from below. If LR,T
0 denotes the self-adjoint operator associated with qR,T

0 ,

we have

Dom (LR,T
0 ) =

{
u ∈ H1((0, T )) : H2((0, T )) and ψ′(0) = −ψ(0) , ψ(T ) = 0

}
.

The operator LR,T
0 has compact resolvent and there exists only one negative eigenvalue

λ1(T ) as soon as T is large enough and its satisfies, for all ε > 0,

λ1(T ) =
T→+∞

−1 +O(e−2(1−ε)T ) .

A corresponding eigenfunction is

ψT (x) =
√

2
{
e−ωT x + e−2ωTT eωT x

}
, ωT =

√
−λ1(T ) ,

and we have, for all ε > 0,

‖e−ωT x − e−x‖2
L2((0,T )) = O(T 3e−(1−ε)4T ) ,

and

‖e−2ωTT eωT x‖2
L2((0,T )) = O

(
Te−(1−ε)2T ) .
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Proof. Let us just describe the negative spectrum (the considerations of domain are

left to the reader as an exercise). We want to solve

−ψ′′ = −ω2ψ , ψ′(0) = −ψ(0) , ψ(T ) = 0 ,

where ω > 0. We have

ψ(x) = Aeωx +Be−ωx .

The boundary conditions lead to

AeωT +Be−ωT = 0 , A(ω + 1) +B(1− ω) = 0 .

This leads to the condition

FT (ω) = ω − 1 + e−2ωT (ω + 1) = 0 .

We consider the function FT on [0 +∞). We have F (0) = 0 and lim
ω→+∞

FT (ω) = +∞. We

get

F ′T (ω) = 1 + e−2ωL(1− 2T − 2Tω) ,

and

F ′′T (ω) = −4Le−2ωT (1− T − Tω) .

If T > 1
γ
, we have, for all ω > 0, F ′′T (ω) > 0. Thus, F ′T is increasing from 2(1 − T ) to

1 and F ′T has only one zero zT in (0,+∞). We deduce that FT decreases on (0, zT ) and

increases on (zT ,+∞). For T > 1, FT admits a unique zero ωT in (0,∞). Therefore there

is a unique non negative eigenvalue that is λ1(T ) = −ω2
T .

By using Proposition 2.8 and the min-max principle, we have

∀T > 0 , λ1(T ) ≥ −1 .

By using the test function 2
1
2χ(T−1x)e−x, with χ a smooth function being 1 on |x| ≤ 1−ε

and 0 for x ≥ 1, and the min-max principle, we get the wished upper bound. The

estimates of the first eigenfunction easily follows. �

3.2. Robin Laplacian on a weighted space. Let B ∈ R, T > 0 such that BT < 1
3
.

Consider the self-adjoint operator, acting on L2
(
(0, T ); (1−Bτ) dτ

)
and defined by

(2.3.1) LR,T
B = −(1−Bτ)−1∂τ (1−Bτ)∂τ = −∂2

τ +B(1−Bτ)−1∂τ ,

with domain

(2.3.2) Dom (L
{R,T}
B ) = {u ∈ H2(0, T ) : u′(0) = −u(0) and u(T ) = 0} .

The operator L
{R,T}
B is the Friedrichs extension in L2

(
(0, T ); (1−Bτ) dτ

)
associated with

the quadratic form defined for u ∈ V {T}h , by

q
{R,T}
B (u) =

∫ T

0

|u′(τ)|2(1−Bτ) dτ − |u(0)|2 .
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The operator LR,T
B has a compact resolvent. The strictly increasing sequence of the

eigenvalues of LR,T
B is denoted by

(
λn(LR,T

B )
)
n∈N∗

.

It is easy to compare the spectra of LR,T
B and LR,T

0 as B goes to 0.

Lemma 2.10. There exists T0 > 0 and C such that for all T ≥ T0, for all B ∈
(−1/(3T ), 1/(3T )) and n ∈ N∗, there holds,∣∣∣λn(LR,T

B )− λn(LR,T
0 )

∣∣∣ ≤ CBT
( ∣∣λn(LR,T

0 )
∣∣+ 1

)
.

Proof. The proof follows from a direct comparison of the quadratic forms. �

The next proposition states a two-term asymptotic expansion of the eigenvalue λ1(LR,T
B ).

Proposition 2.11. There exists T0, ε0, C > 0 such that for all T ≥ T0, for all B ∈
(−ε0T

−1, ε0T
−1) there holds,∣∣∣λ1(LR,T

B )− (−1−B)
∣∣∣ ≤ CB2 .

Proof. It is sufficient to use the quasimode vT (τ) = χ(T−1τ)e−τ with χ a smooth

cutoff function supported in
(
−1

2
, 1

2

)
. We get, by an explicit computation,

‖
(
LR,T
B − (−1−B)

)
vT‖L2((0,T );(1−Bτ) dτ) ≤ CB2 .

Therefore, thanks to the spectral theorem, there is an eigenvalue close to −1−B modulo

O(B2). But, with Lemma 2.10 and Proposition 2.9, we notice that the second eigenvalue

of LR,T
B is larger than −1

2
(when T is large enough and |BT | < ε0). Thus, this eigenvalue

close to −1−B must be the first one. �

4. De Gennes operator and applications

4.1. About the de Gennes operator. The analysis of the two dimensional mag-

netic Laplacian with Neumann condition on R2
+ makes the so-called de Gennes operator

to appear. We refer to [47] where this model is studied in details (see also [76]). This

operator is defined as follows. For ζ ∈ R, we consider the Neumann realization L
[0]
ζ in

L2(R+) associated with the operator D2
t + (ζ − t)2 with domain

(2.4.1) Dom (L
[0]
ζ ) =

{
u ∈ B1(R+) :

(
D2
t + (t− ζ)2

)
u ∈ L2(R+), u′(0) = 0

}
.

Remark 2.12. Note that, by the difference quotient method, we may establish that{
u ∈ B1(R+) :

(
D2
t + (t− ζ)2

)
u ∈ L2(R+)

}
⊂ H2(R+) ,

so that, with a Sobolev embedding, u′(0) is well defined.

The operator L
[0]
ζ has compact resolvent by standard arguments. By the Cauchy-

Lipschitz theorem, all the eigenvalues are simple.

Notation 2.13. The lowest eigenvalue of L
[0]
ζ is denoted ν

[0]
1 (ζ).
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Lemma 2.14. The function ζ 7→ ν
[0]
n (ζ) is analytic.

Proof. The family (L
[0]
ζ )ζ∈R is analytic of type (A) in the sense of Kato (see [121, p.

375]) and thus one might directly apply the analytic perturbation theory. Nevertheless,

let us provide an elementary proof. Let us fix ζ1 ∈ R and prove that ν
[0]
n is continuous at

ζ1. We have, for all ψ ∈ B1(R+),∣∣∣Q[0]
ζ (ψ)−Q

[0]
ζ1

(ψ)
∣∣∣ ≤ |ζ2 − ζ2

1 |‖ψ‖2 + 2|ζ − ζ1|‖t
1
2ψ‖2

so that ∣∣∣Q[0]
ζ (ψ)−Q

[0]
ζ1

(ψ)
∣∣∣ ≤ |ζ2 − ζ2

1 |‖ψ‖2 + 4|ζ − ζ1|Q[0]
ζ1

(ψ) + 4ζ2
1 |ζ − ζ1|‖ψ‖2 .

We deduce that

Q
[0]
ζ (ψ) ≤ (1 + 4|ζ − ζ1|)Q[0]

ζ1
(ψ) + 4ζ2

1 |ζ − ζ1|‖ψ‖2 + |ζ2 − ζ2
1 |‖ψ‖2

and

Q
[0]
ζ (ψ) ≥ (1− 4|ζ − ζ1|)Q[0]

ζ1
(ψ)− 4ζ2

1 |ζ − ζ1|‖ψ‖2 − |ζ2 − ζ2
1 |‖ψ‖2 .

It remains to apply the min-max principle and we get the comparisons between the

eigenvalues. We shall now prove the analyticity. Let us fix ζ1 ∈ R and z ∈ C \ sp(L
[0]
ζ1

).

We observe that t(L
[0]
ζ1
− z)−1 is bounded with a uniform bound with respect to z in a

compact avoiding the spectrum so that for ζ close enough to ζ1, L
[0]
ζ − z is invertible.

Indeed, we can write

L
[0]
ζ − z = L

[0]
ζ1
− z + 2(ζ1 − ζ)t+ ζ2 − ζ2

1

=

(
Id + 2(ζ1 − ζ)t

(
L

[0]
ζ1
− z
)−1

+ (ζ2 − ζ2
1 )
(
L

[0]
ζ1
− z
)−1
)(

L
[0]
ζ1
− z
)
.

By using the expression of the inverse and the fact that the domain of L
[0]
ζ does not depend

on ζ, we infer that ζ 7→ (L
[0]
ζ −z)−1 ∈ L

(
L2(R+),

(
Dom (L

[0]
ζ1

), ‖ · ‖
L

[0]
ζ1

))
is analytic near

ζ1, uniformly for z in a compact. Since L
[0]
ζ has compact resolvent and is self-adjoint, the

application, defined as a Riemannian integral,

PΓ(ζ) =
1

2iπ

∫
Γ

(L
[0]
ζ − z)−1 dz

is the projection on the space generated by the eigenfunctions associated with eigenvalues

enclosed by the smooth contour Γ. It is possible to consider a contour which encloses

only ν
[0]
n (ζ1) and, thus, only ν

[0]
n (ζ) as soon as ζ is close enough to ζ1. We leave the last

details to the reader. �

We may now consider the L2-normalized and positive eigenfunction u
[0]
ζ = u[0](·, ζ)

associated with ν
[0]
1 (ζ) and that depends on ζ analytically.

Proposition 2.15. The function u
[0]
ζ belongs to S(R+).
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Proof. This is a consequence of the following (by using difference quotients). If

u ∈ Bk(R) is such that L
[0]
ζ u = f with f ∈ Bk−1(R+), then u ∈ Bk+1(R+). We have

denoted

Bk(R+) =
{
u ∈ L2(R+) : xα∂βxu ∈ L2(R+), α + β ≤ k

}
.

Then, we notice that u
[0]
ζ ∈

⋂
k≥0

Bk(R+) ⊂ S(R+). �

We have used the notion of holomorphic functions valued in a Banach space. The

aim of the following exercises is to prove that all the natural definitions of holomorphy

coincide.

Exercise 2.16. Let B be a Banach space and Ω ⊂ C an open set. We say that f : Ω→ B

is holomorphic if, for all z0 ∈ Ω, f(z)−f(z0)
z−z0 converges when z goes to z0. We say that f is

weakly holomorphic on Ω if, for all ` ∈ B∗, ` ◦ f is holomorphic on Ω.

(1) Let us assume that f is weakly holomorphic on Ω and consider, for z0 ∈ Ω and

r > 0 such that D(z0, r) ⊂ Ω,

C :=

{
f(z)− f(z0)

z − z0

, z ∈ D(z0, r) \ {z0}
}
.

Prove that ` (C) is bounded for all ` ∈ B∗.

(2) Deduce that C is bounded by using the Banach-Steinhaus theorem.

(3) By using the Cauchy-formula and the Hahn-Banach theorem, prove that f is

holomorphic on Ω.

Exercise 2.17. Let B be a Banach space and H be a Hilbert space. Let Ω ⊂ C an open

set.

(1) By using the Banach-Steinhaus theorem, the Cauchy formula and the Hahn-

Banach theorem show that if f : Ω→ L(B,H) is such that Ω 3 z 7→ 〈f(z)ψ, ϕ〉H
is holomorphic for all ψ ∈ B and ϕ ∈ H, then f is holomorphic.

(2) If (L,Dom (L)) is a closed operator on a Hilbert space H, show that Ω 3 z 7→
R(z) = (L − z)−1 is holomorphic on the resolvent set as well as if R is valued

(H, ‖ · ‖H) or in (Dom (L), ‖ · ‖L) (where ‖ · ‖L is the graph norm).

Lemma 2.18. ζ 7→ ν
[0]
1 (ζ) admits a unique minimum and it is non degenerate.

Proof. An easy application of the min-max principle gives:

lim
ζ→−∞

ν
[0]
1 (ζ) = +∞ .

Let us now show that:

lim
ζ→+∞

ν
[0]
1 (ζ) = 1 .
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The de Gennes operator is equivalent to the operator−∂2
t +t2 on (−ζ,+∞) with Neumann

condition at −ζ. Let us begin with upper bound. An easy and explicit computation gives:

ν
[0]
1 (ζ) ≤ 〈(−∂2

t + t2)e−t
2/2, e−t

2/2〉L2((−ζ,+∞)) →
ζ→+∞

1 .

Let us investigate the converse inequality. Let us prove some concentration of u
[0]
ζ near

0 when ζ increases (the reader can compare this with the estimates of Agmon of Section

2). We have ∫ +∞

0

(t− ζ)2|u[0]
ζ (t)|2 dt ≤ ν

[0]
1 (ζ) .

If λ(ζ) is the lowest Dirichlet eigenvalue, we have:

ν
[0]
1 (ζ) ≤ λ(ζ) .

By monotonicity of the Dirichlet eigenvalue with respect to the domain, we have, for

ζ > 0:

λ(ζ) ≤ λ(0) = 3 .

It follows that: ∫ 1

0

|u[0]
ζ (t)|2 dt ≤ 3

(ζ − 1)2
, ζ ≥ 2 .

Let us introduce the test function: χ(t)u
[0]
ζ (t) with χ supported in (0,+∞) and being 1

for t ≥ 1. We have

〈(−∂2
t + (t− ζ)2)χ(t)u

[0]
ζ (t), χ(t)u

[0]
ζ (t)〉L2(R) ≥ ‖χ(·+ ζ)u

[0]
ζ (·+ ζ)‖2

L2(R) = ‖χu[0]
ζ ‖

2
L2(R)

= 1 +O(|ζ|−2).

Moreover, we get:

〈(−∂2
t +(t−ζ)2)χ(t)u

[0]
ζ (t), χ(t)u

[0]
ζ (t)〉L2(R) = 〈(−∂2

t +(t−ζ)2)χ(t)u
[0]
ζ (t), χ(t)u

[0]
ζ (t)〉L2(R+) .

We have:

〈(−∂2
t + (t− ζ)2)χ(t)u

[0]
ζ (t), χ(t)u

[0]
ζ (t)〉L2(R+) = ν

[0]
1 (ζ)‖χu[0]

ζ ‖
2 + ‖χ′u[0]

ζ ‖
2

which can be controlled by the concentration result. We infer that, for ζ large enough,

ν
[0]
1 (ζ) ≥ 1− C|ζ|−1 .

From these limits, we deduce the existence of a minimum strictly less than 1.

We now use the Feynman-Hellmann formula which will be established later (see Sec-

tion 6). We have:

(ν
[0]
1 )′(ζ) = −2

∫
t>0

(t− ζ)|u[0]
ζ (t)|2 dt .

For ζ < 0, we get an increasing function. Moreover, we see that ν(0) = 1. The minima

are obtained for ζ > 0.
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We can write that:

(ν
[0]
1 )′(ζ) = 2

∫
t>0

(t− ζ)2u
[0]
ζ (u

[0]
ζ )′ dt+ ζ2u

[0]
ζ (0)2 .

This implies:

(ν
[0]
1 )′(ζ) = (ζ2 − ν [0]

1 (ζ))u
[0]
ζ (0)2 .

Let ζc a critical point for ν
[0]
1 . We get:

(ν
[0]
1 )′′(ζc) = 2ζcu

[0]
ζc

(0)2 .

The critical points are all non degenerate. They correspond to local minima.We conclude

that there is only one critical point and that is the minimum. We denote it ζ0 and we

have ν
[0]
1 (ζ0) = ζ2

0 . �

We let:

(2.4.2) Θ0 = ν
[0]
1 (ζ0), C1 =

(u
[0]
ζ0

)2(0)

3
.

−1 0 1 2 3 4 5
0

2

4

6

8

10

Figure 1. ζ 7→ ν
[0]
k (ζ), for k = 1, 2, 3, 4

4.2. Magnetic wall. Let us now explain how we can investigate the spectral prop-

erties of a Hamiltonian with the following discontinuous magnetic field

B(x, y) = b11R−(x) + b21R+(x) ,

where b = (b1, b2) ∈ R2. An associated vector potential is given by :

A(x, y) = (0, ab(x)), ab(x) = b1x1R−(x) + b2x1R+(x) .

The magnetic Hamiltonian is

Lb = (−i∇−A)2 = D2
x + (Dy − ab(x))2 .

We will see that this example (inspired from [115]) will give the flavor of many spectral

methods related to the theory of ODE’s. In particular, we will investigate the relation

between the essential and the discrete spectrum (how many are the eigenvalues below the
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essential spectrum?) by using the so-called Sturm-Liouville theory, the min-max principle

and some special functions related to the de Gennes operator.

We notice that Lb = L−b so that we may assume that b2 ≥ 0. If S denotes the

symmetry (x, y) 7→ (−x, y), we have SLb1,b2S = L−b2,−b1 = Lb2,b1 . For B > 0, we

introduce the L2-unitary transform

UBψ(x, y) = B−1/2ψ(B−1/2x,B−1/2y)

and we have

U−1
B LbUB = B−1LBb .

These considerations allow the following reductions:

(1) If b1 or b2 is zero we may assume that b1 = 0 and, if b2 6= 0, we may assume that

b2 = 1. We call the case (b1, b2) = (0, 1) the “magnetic wall”.

(2) If b1 and b2 have opposite signs and |b1| 6= |b2|, we may only consider the case

|b1| < |b2| and then b1 < 0 < b2 = 1. We call this case the “trapping magnetic

step”.

(3) If b1 and b2 are such that |b1| = |b2|, we may only consider the cases (b1, b2) =

(1, 1) and (b1, b2) = (−1, 1).

(4) If b1 and b2 have the same sign, we may assume that 0 < b1 < b2 = 1. We call

this case the “non-trapping magnetic step”.

In order to perform the spectral analysis, we can use the translation invariance in the y-

direction and thus the direct integral decomposition (see [176, XIII.16]) associated with

the Fourier transform with respect to y, denoted by Fy,

FyLbF−1
y =

∫ ⊕
k∈R

hb(k) dk ,

where

hb(k) = D2
x + Vb(x, k), with Vb(x, k) = (k − ab(x))2 .

The domain of hb(k) is given by

Dom (hb(k)) = {ψ ∈ Dom (qb(k)) : (D2
x + Vb(x, k))ψ ∈ L2(R)} ,

where the quadratic form qb(k) is defined by

qb(k)(ψ) =

∫
x∈R
|ψ′(x)|2 + |(k − Vb(x, k))ψ|2 dx .

We have:

sp(Lb) =
⋃
k∈R

sp(hb(k)) .

Notation 2.19. We denote by λb,n(k) the n-th Rayleigh quotient of hb(k). We recall that

if λb,n(k) is strictly less than the infimum of the essential spectrum, it coincides with the

n-th eigenvalue of hb(k).
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We restrict ourselves to the case b = (0, 1). Since we have Vb(x, k) = k2 for x ≤ 0

and limx→+∞ Vb(x, k) = +∞, we easily deduce the following proposition.

Proposition 2.20. For b = (0, 1) and k ∈ R, the essential spectrum of hb(k) is given by

spess(hb(k)) = [k2,+∞) .

Moreover we have sp(Lb) = [0,+∞).

In fact, we can prove slightly more.

Proposition 2.21. For b = (0, 1) and k ∈ R, the operator hb(k) has no embedded

eigenvalues in its essential spectrum.

Proof. Let us consider λ ≥ k2 and ψ ∈ Dom (hb(k)) such that:

(2.4.3) − ψ′′ + (k − ab(x))2ψ = λψ .

For x < 0, we have −ψ′′ = (λ−k2)ψ whose only solution in L2(R−) is zero. But since the

solutions of (2.4.3) belongs to H2
loc and are in C1(R), this implies that ψ(0) = ψ′(0) = 0

and thus ψ = 0 by the Cauchy-Lipschitz theorem. �

Let us now describe the discrete spectrum, that is the eigenvalues λ < k2. Since, for

k ≤ 0, we have qb(k) ≥ k2, we deduce the following proposition by the min-max principle.

Proposition 2.22. For b = (0, 1) and k ≤ 0, we have

sp(hb(k)) = spess(hb(k)) = [k2,+∞) .

Therefore we must only analyze the case when k > 0. The following lemma is a

reformulation of the eigenvalue problem.

Lemma 2.23. The eigenvalues λ < k2 of hb(k) are exactly the λ such that there exists a

non zero function ψ ∈ L2(R+) satisfying{
−ψ′′(x) + (x− k)2ψ = λψ(x),(2.4.4a)

ψ′(0)−
√
k2 − λψ(0) = 0 .(2.4.4b)

Moreover, the eigenfunctions of hb(k) can only vanish on R+. The eigenvalues of hb(k)

are simple.

Proof. We consider hb(k)ψ = λψ. Since ψ ∈ L2(R−), there exists A ∈ R such that,

for x ≤ 0, ψ(x) = Aex
√
k2−λ. Then we have to solve −ψ′′+Vb(x, k)ψ = λψ for x ≥ 0 with

the transmission conditions

ψ(0) = A and ψ′(0) = A
√
k2 − λ

or equivalently

ψ′(0)−
√
k2 − λψ(0) = 0 .
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In particular, A cannot be zero. The simplicity is a consequence of the Cauchy-Lipschitz

theorem. �

Lemma 2.24. The functions R+ 3 k 7→ λb,n(k) are non decreasing.

Proof. We use the translation x = y + k to see that hb(k) is unitarily equivalent to

D2
y + Ṽ (y, k) with Ṽ (y, k) = 1(−∞,−k)(y)k2 + 1(−k,+∞)(y)y2. For 0 < k1 < k2, we have:

Ṽ (y, k2)− Ṽ (y, k1) = 1(−k2,−k1)(y)y2 + 1(−∞,−k2)(y)k2
2 − 1(−∞,−k1)(y)k2

1

≥ 1(−k2,−k1)(y)k2
1 + 1(−∞,−k2)(y)k2

2 − 1(−∞,−k1)(y)k2
1

= 1(−∞,−k2)(y)k2
2 − 1(−∞,−k2)(y)k2

1 ≥ 0 .

By the min-max principle, we infer the desired monotonicity. �

The next lemma is a consequence of the Sturm-Liouville theory.

Lemma 2.25. Let n ∈ N be such that λb,n(k) < k2. Then, the corresponding eigenspace is

one dimensional and is generated by a normalized function ψb,n(k), depending analytically

on k, which has exactly n− 1 zeros which are positive.

Proof. We have only to explain the part of the statement concerned with the zeros.

Thanks to Lemma 2.23, one knows that the zeros are necessarily positive. Then, we

apply the strategy of the proof of Proposition 1.26 (the integrability at infinity replaces

the cancellation of the eigenfunction). �

Notation 2.26. We let E0 = 0 and for n ≥ 1, En = 2n− 1.

By using the harmonic approximation in the semiclassical limit (see Chapter 1, Section

1 and, in this chapter, Sections 1.2 and 3.1; see also [53]), we can prove the following

lemma.

Lemma 2.27. For all n ≥ 1, we have

lim
k→+∞

λb,n(k) = En .

In particular, for k large enough, we have λb,n(k) ≤ En < k2.

Let us now prove that the n-th band function lies between the two consecutive Landau

levels En−1 and En.

Proposition 2.28. For all n ≥ 1 and for all k > 0 such that λb,n(k) < k2 we have

λb,n(k) ∈ (En−1, En).

Proof. By Lemmas 2.24 and 2.27, we have λb,n(k) < En (the strict inequality comes

from the analyticity). It remains to prove that λb,n(k) > En−1. We have clearly λb,1(k) >

E0. Let us introduce hD(ζ) the Dirichlet realization on R+ of D2
t + (t − ζ)2 and its

eigenvalues (µD` (ζ))`≥1. For n ≥ 2, we consider the function ϕn(t) = ψb,n(t + zn,1(k))
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which satisfies hD(k − zn,1(k))ϕn = λb,n(k)ϕn and has exactly n − 2 zeros on R+. By

the Sturm’s oscillation theorem, ϕn is the (n − 1)-th eigenfunction of hD(k − zn,1(k)).

Therefore we have λb,n(k) = µDn−1(k − zn,1(k)). Moreover for all ` ≥ 1 and ζ ∈ R,

µD` (ζ) > E` (see [50]). This provides the desired conclusion. �

Notation 2.29. We recall (modulo a slight adaptation of the last section) that, for all

` ≥ 1, the function ν
[0]
` admits a unique and non-degenerate minimum at ζ = ζ

[0]
`−1,

denoted by Θ`−1 that belongs to (E`−1, E`). Moreover, ζ
[0]
`−1 is also the unique solution of

the equation ν
[0]
` (ζ) = ζ2 (see Figure 4.1).

Proposition 2.30. For all n ≥ 1, the equation λb,n(k) = k2 has a unique non negative

solution, k = ζ
[0]
n−1, such that, locally, for k > kn, λb,n(k) < k2. Moreover we have

λb,n(ζ
[0]
n−1) = Θn−1.

Proof. Thanks to Lemma 2.27, we can define kn = max{k ≥ 0 : λb,n(k) = k2}.
By continuity, we have, for all k > kn, λb,n(k) < k2. Let us now prove the uniqueness.

Let us consider a solution k̃n ≥ 0. For all integer p ≥ p0 with p0 large enough, we have

λb,n

(
k̃n + 1

p

)
<
(
k̃n + 1

p

)2

. Let us now consider the eigenvalue equation

(2.4.5) D2
xϕn,p + (k̃n,p − ab(x))2ϕn,p = λn,pϕn,p ,

where ϕn,p = ψb,n(k̃n,p), k̃n,p = k̃n + 1
p

and λn,p = λb,n(k̃n,p). Let us investigate the limit

p → +∞. As seen in the proof of Lemma 2.23, we know that there exists α ∈ R∗ such

that, for x ≤ 0,

ϕn,p(x) = αex
√
k̃2
n,p−λn,p .

We can relate the de Gennes eigenfunctions to the Weber functions (see for instance [1]).

Notation 2.31. We denote by U(a, x) the first Weber parabolic special function which is

solution of the linear ODE:

−y′′(x) +
1

4
x2y(x) = −ay(x) .

It decays exponentially for x→ +∞. We let Û = Re (U).

By solving (2.4.5) on x ≥ 0 and using the parabolic cylinder Û function, we find that

there exits β such that, for x ≥ 0,

ϕn,p(x) = βÛ

(
−λn,p

2
;
√

2(x− k̃n,p)
)
.

Since ϕn,p 6= 0, we have (α, β) 6= (0, 0) and ϕn,p is C1 at x = 0, we get the transmission

condition: √
k̃2
n,p − λn,pÛ

(
−λn,p

2
;−k̃n,p

√
2

)
−
√

2Û ′
(
−λn,p

2
;−k̃n,p

√
2

)
= 0 .
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By continuity and taking the limit p→ +∞, we get

Û ′

(
− k̃

2
n

2
;−k̃n

√
2

)
= 0 .

Notice that the function x 7→ Û
(
− k̃2

n

2
;
√

2(x− k̃n)
)

solves the differential equation{
− y′′(x) + (x− k̃n)2y(x) = k̃2

ny(x)

y′(0) = 0 and y(0) 6= 0

Moreover it belongs to S(R+).

Therefore, there exists ` ≥ 1 such that ν
[0]
` (k̃n) = k̃2

n, and therefore k̃n = ζ
[0]
`−1 and

k̃2
n = Θ`−1. By Proposition 2.28, we know that k̃2

n = λb,n(k̃n) ∈ [En−1, En]. Moreover, we

recall that Θ`−1 ∈ (E`−1, E`). This implies that ` = n. �

Corollary 2.32. For n ≥ 1 and ζ
[0]
n−1 < k < ζ

[0]
n , the operator hb(k) admits n simple

eigenvalues below the threshold of its essential spectrum.

5. Towards analytic families

5.1. Kato-Rellich’s theorem. In Section 4, we proved that (L
[0]
ζ )ζ∈R is an “analytic

family”. In fact, this comes from the general theory of Kato (see [121, Chapter 7] and

also the older reference [178]).

Theorem 2.33. Let us consider a family of self-adjoint operators with compact resolvents

(Lζ)ζ∈R. We assume that the family is of type (A), i.e.

(1) the domain Dom (Lζ) does not depend on ζ,

(2) for all ζ1 ∈ R, there exists r > 0, such that for all u ∈ Dom (Lζ), ζ 7→ Lζu is

analytic in B(ζ1, r).

Let ζ1 ∈ R and Γ a smooth contour avoiding the spectrum of Lζ1. There exists r > 0 such

that if |ζ − ζ1| ≤ r, Γ avoids the spectrum of Lζ and

PΓ(ζ) =
1

2iπ

∫
Γ

(Lζ − z)−1 dz

is analytic near ζ1 and coincides with the orthogonal projection on the direct sum of the

eigenspaces associated with the eigenvalues of Lζ.

Moreover, if µ is an eigenvalue of Lζ1, with multiplicity m, then, in a neighbor-

hood of ζ1, the eigenvalues of Lζ can be represented as the union of m analytic curves

(νk(ζ))k∈{1,...,m} crossing at µ and there exists a corresponding analytic family of eigen-

functions (wk(ζ))k∈{1,...,m}.

Proof. Let ζ1 ∈ R and K be a compact set avoiding the spectrum of Lζ1 . For z ∈ K,

we write

Lζ − z = Lζ1 − z + Lζ − Lζ1 =
(
Id + (Lζ − Lζ1) (Lζ1 − z)−1) (Lζ1 − z) .
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We let

Dzζ = (Lζ − Lζ1) (Lζ1 − z)−1 = (Lζ − Lζ1) (Lζ1 − i)
−1 (Lζ1 − i) (Lζ1 − z)−1

and

A(ζ) = (Lζ − Lζ1) (Lζ1 − i)
−1 , B(z) = (Lζ1 − i) (Lζ1 − z)−1

so that

Dzζ = A(ζ)B(z) .

We have already seen in Exercise 2.17 that B is analytic. Let us show that A is analytic.

In order to see this, we have just to notice that it is pointwise analytic, i.e. ζ 7→ A(ζ)ψ

is analytic for all ψ ∈ Dom (Lζ1). Indeed, if this is the case, for all v ∈ H, we may find a

sequence An of linear applications such that

A(ζ)v =
∞∑
n=0

(ζ − ζ1)nAn(v) , ζ ∈ B(ζ1, r) .

By using the Cauchy formula (in the spirit of Exercise 2.16) or the Cauchy inequalities

(with the Banach-Steinhaus theorem), we infer that ζ 7→ A(ζ) is analytic and

A(ζ) =
∞∑
n=0

(ζ − ζ1)nAn, with A0 = 0 .

We will denote by RA > 0 the convergence radius of this series.

Then we have Id +Dzζ = Id + A(ζ)B(z) and we notice that it is invertible for ζ close

enough to ζ1, uniformly in z ∈ K. Let us write

Id + A(ζ)B(z) =
∞∑
k=1

(ζ − ζ1)kak(z) ak(z) = AkB(z) ,

where the ak(z) satisfy, for r ∈ (0, RA),

rk‖ak(z)‖ ≤ ‖B‖L∞(K)M = M̃ .

We may consider the formal inverse of the power series
∑∞

k=1(ζ − ζ1)kak(z), denoted by∑
k≥0(ζ−ζ1)kbk(z) where the sequence (bk(z))k≥1 is defined through the Cauchy product.

It is a classical exercise to see that

b0(z) = 1, |bk(z)| ≤ M̃(M̃ + 1)k−1

rk
, k ≥ 1 ,

so that the convergence radius of
∑

k≥0(ζ − ζ1)kbk(z) is at least r′ = r
M̃+1

> 0. Moreover

the convergence is uniform for z ∈ K and on D
(
ζ1,

r′

2

)
. We have

(Id + A(ζ)B(z))−1 =
∞∑
k≥0

(ζ − ζ1)kbk(z) .

We get

(Lζ − z)−1 = (Lζ1 − z)−1
∞∑
k≥0

(ζ − ζ1)kbk(z) ,
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uniformly with respect to z ∈ K. It remains to integrate with respect to z on Γ.

Let us consider an eigenvalue µn(ζ1) of multiplicity m and a contour Γ enclosing only

µn(ζ1). Let us show that PΓ(ζ) has constant rank m as soon as ζ is close to ζ1. We use

an argument of Kato (see [121, I.4.6]). We choose r > 0 such that, for ζ ∈ D(ζ1, r), we

get ‖PΓ(ζ)− PΓ(ζ1)‖ < 1. We let P = PΓ(ζ) and Q = PΓ(ζ1). We let

U = QP + (Id−Q)(Id− P ) ∈ L (range(P ), range(Q))

V = PQ+ (Id− P )(Id−Q) ∈ L (range(Q), range(P ))

and notice that UV = V U = Id − (P − Q)2. Thus UV and V U are invertible, so are U

and V and then range(P ) = range(Q).

If u1, . . . , um is an eigenbasis associated with µn, the family (PΓ(ζ)uk)k∈{1,...,m} is a

basis of the range of PΓ(ζ) (for ζ close enough to ζ1).

If we let vk(ζ) = PΓ(ζ)uk, we notice that vk is analytic. Since range(PΓ(ζ)) is stable

by Lζ , the spectrum of Lζ enclosed in Γ is nothing but the spectrum of the restriction

of PΓ(ζ) to this finite dimensional subspace. We may also orthonormalize the family

(PΓ(ζ)uk)k∈{1,...,m} to get an orthonormal basis depending on ζ analytically and the in-

vestigation is reduced to a finite dimensional matrix depending on ζ analytically. In this

case the analytic representation of the eigenvalues and eigenfunctions is well-known (see

[121, Chapter II, Theorem 6.1]).

�

5.2. An application to the Lu-Pan operator. Let us recall that LLP
θ is defined

by:

LLP
θ = −∆ + Vθ = D2

s +D2
t + Vθ ,

where Vθ is defined for any θ ∈ (0, π
2
) by

Vθ : (s, t) ∈ R2
+ 7−→ (t cos θ − s sin θ)2 .

We can notice that Vθ reaches its minimum 0 all along the line t cos θ = s sin θ, which

makes the angle θ with ∂R2
+. We denote by Dom (LLP

θ ) the domain of Lθ and we consider

the associated quadratic form QLP
θ defined by:

QLP
θ (u) =

∫
R2

+

(
|∇u|2 + Vθ|u|2

)
ds dt ,

whose domain Dom (QLP
θ ) is

Dom (QLP
θ ) = {u ∈ L2(R2

+), ∇u ∈ L2(R2
+),

√
Vθ u ∈ L2(R2

+)}.

Let sn(θ) denote the n-th Rayleigh quotient of LLP
θ . Let us recall some fundamental

spectral properties of LLP
θ when θ ∈

(
0, π

2

)
.

It is proved in [105] that spess(L
LP
θ ) = [1,+∞) and that θ 7→ s1(θ) is non decreasing.

Thanks to Corollary 1.38, we know that s1(θ) is a simple eigenvalue for
(
0, π

2

)
. It is possible
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to prove that, modulo a rotation and a rescaling, depending on θ analytically, that LLP
θ

is an analytic family (it satisfies (1) and (2) in Theorem 2.33). As a consequence (we do

not really need to care about the essential spectrum since s1 is strictly below), we deduce

that θ 7→ s1(θ) is analytic. Then, we can show that the function (0, π
2
) 3 θ 7→ s1(θ) is

increasing (see [138, Lemma 3.6] and Chapter 4, Section 6.2 where a close problem is

analyzed).

5.3. The return of the Robin Laplacian. Let us continue the investigation of

the model introduced in Section 3.2.

Lemma 2.34. There exists T0 > 0 such that for all T ≥ T0, the functions

(−1/(3T ), 1/(3T )) 3 B 7→ λ1

(
LR,T
B

)
, (−1/(3T ), 1/(3T )) 7→ u

{T}
B

are analytic. Here u
{T}
B is the corresponding positive and normalized eigenfunction λ1

(
LR,T
B

)
.

Proof. Let us use the change of function u = (1 − Bτ)−
1
2 ũ, since the new Hilbert

space becomes L2((0, T ), dτ), the form domain is still independent from the parameter

and the expression of the operator depends on B analytically:

(2.5.1) L̃R,T
B = −(1−Bτ)−

1
2∂τ (1−Bτ)∂τ (1−Bτ)−

1
2 = −∂2

τ −
B2

4(1−Bτ)2
,

with the new Robin condition at 0 given by ũ′(0) =
(
−1− B

2

)
ũ(0) and ũ(T ) = 0. The

price to pay is that the domain of the operator depends on B through the B-dependent

boundary condition. Note that the associated quadratic form is defined on H1(0, T ) by

(2.5.2) Q̃R,T
B (ψ) =

∫ T

0

|∂τψ|2 dτ −
∫ T

0

B2

4(1−Bτ)2
|ψ|2 dτ −

(
1 +

B

2

)
|ψ(0)|2 .

Thus the form domain does not depend on the parameter. This family is called a type

(B) family and there is a standard procedure to transform a type (B) family into a type

(A) family (see [121, Chapter VII, Theorem 4.2]). �

6. Examples of Feynman-Hellmann formulas

In this section, we give examples of the so-called Feynman-Hellmann formulas (that

we used in Section 4).

6.1. De Gennes operator. Let us prove propositions which are often used in the

study of the magnetic Laplacian.

For ρ > 0 and ζ ∈ R, let us introduce the Neumann realization on R+ of:

L
[0]
ρ,ζ = −ρ−1∂2

τ + (ρ1/2τ − ζ)2 .

By scaling, we observe that L
[0]
ρ,ζ is unitarily equivalent to L

[0]
ζ and that L

[0]
1,ζ = L

[0]
ζ (the

corresponding eigenfunction is u
[0]
1,ζ = u

[0]
ζ ).
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Remark 2.35. The introduction of the scaling parameter ρ is related to the Virial

theorem (see [191]) which was used by physicists in the theory of superconductivity (see

[56] and also [4, 36]). We also refer to the papers [168] and [172] where it is used many

times.

The domain of L
[0]
ρ,ζ is {u ∈ B2(R+), u′(0) = 0} and is independent from ρ and ζ so

that the family
(
L

[0]
ρ,ζ

)
ρ>0,ζ∈R

is an analytic family of type (A) (with respect to ρ and

with respect to ζ1). The lowest eigenvalue of L
[0]
ρ,ζ is ν

[0]
1 (ζ) and we will denote by uρ,ζ the

corresponding normalized eigenfunction:

u
[0]
ρ,ζ(τ) = ρ1/4u

[0]
ζ (ρ1/2τ) .

In order to lighten the notation and when it is not ambiguous we will write L for L
[0]
ρ,ζ , u

for u
[0]
ρ,ζ and ν for ν

[0]
1 (ζ).

The main idea is now to take derivatives of:

(2.6.1) Lu = νu

with respect to ρ and ζ. Taking the derivative with respect to ρ and ζ, we get the

following proposition.

Proposition 2.36. We have:

(2.6.2) (L− ν)∂ζu = 2(ρ1/2τ − ζ)u+ ν ′(ζ)u

and

(2.6.3) (L− ν)∂ρu =
(
−ρ−2∂2

τ − ζρ−1(ρ1/2τ − ζ)− ρ−1τ(ρ1/2τ − ζ)2
)
u .

Moreover, we get:

(2.6.4) (L− ν)(Su) = Xu ,

where

X = −ζ
2
ν ′(ζ) + ρ−1∂2

τ + (ρ1/2τ − ζ)2

and

S = −ζ
2
∂ζ − ρ∂ρ .

Proof. Taking the derivatives with respect to ζ and ρ of (2.6.1), we get:

(L− ν)∂ζu = ν ′(ζ)u− ∂ζLu

and

(L− ν)∂ρu = −∂ρL .
We have: ∂ζL = −2(ρ1/2τ − ζ) and ∂ρL = ρ−2∂2

τ + ρ−1/2τ(ρ1/2τ − ζ). �

1Note that it may be extended into a holomorphic family near each (ρ, ζ). Thus the family is holomorphic
with respect to (ρ, ζ) (by Hartogs’ theorem) and not only partially.

61



Taking ρ = 1 and ζ = ζ0 in (2.6.2), we deduce, with the Fredholm alternative:

Corollary 2.37. We have

(L
[0]
ζ0
− ν(ζ0))v

[0]
ζ0

= 2(t− ζ0)u
[0]
ζ0
,

with

v
[0]
ζ0

=
(
∂ζu

[0]
ζ

)
|ζ=ζ0

.

Moreover, we have ∫
τ>0

(τ − ζ0)(u
[0]
ζ0

)2 dτ = 0 .

Corollary 2.38. We have, for all ρ > 0:∫
τ>0

(ρ1/2τ − ζ0)(u
[0]
ρ,ζ0

)2 dτ = 0

and: ∫
τ>0

(τ − ζ0) (∂ρu)ρ=1,ζ=ζ0
u dτ = −ζ0

4
.

Corollary 2.39. We have:

(L
[0]
ζ0
− ν(ζ0))S0u =

(
∂2
τ + (τ − ζ0)2

)
u

[0]
ζ0
,

where:

S0u = −
(
∂ρu

[0]
ρ,ζ

)
|ρ=1,ζ=ζ0

− ζ0

2
v

[0]
ζ0
.

Moreover, we have:

‖∂τu[0]
ζ0
‖2 = ‖(τ − ζ0)u

[0]
ζ0
‖2 =

Θ0

2
.

The next proposition deals with the second derivative of (2.6.1) with respect to ζ.

Proposition 2.40. We have:

(L
[0]
ζ − ν

[0]
1 (ζ))w

[0]
ζ0

= 4(τ − ζ0)v
[0]
ζ0

+ ((ν
[0]
1 )′′(ζ0)− 2)u

[0]
ζ0
,

with

w
[0]
ζ0

=
(
∂2
ζu

[0]
ζ

)
|ζ=ζ0

.

Moreover, we have: ∫
τ>0

(τ − ζ0)v
[0]
ζ0
u

[0]
ζ0

dτ =
2− (ν

[0]
1 )′′(ζ0)

4
.

Proof. Taking the derivative of (2.6.2) with respect to ζ (with ρ = 1), we get:

(L
[0]
ζ − ν

[0]
1 (ζ))∂2

ζu
[0]
ζ = 2ν ′(ζ)∂ζu

[0]
ζ + 4(τ − ζ)∂ζu

[0]
ζ + (ν ′′(ζ)− 2)u

[0]
ζ .

It remains to take ζ = ζ0 and to write the Fredholm alternative. �

6.2. Lu-Pan operator (bis). The following result was initially obtained in [18].
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Proposition 2.41. For all θ ∈
(
0, π

2

)
, we have

s1(θ) cos θ − s′1(θ) sin θ > 0 .

Moreover, we have

lim
θ→π

2
θ<π

2

s′1(θ) = 0 .

Proof. For γ ≥ 0, we introduce the operator

LLP
θ,γ = D2

s +D2
t + (t(cos θ + γ)− s sin θ)2

and we denote by s1(θ, γ) the bottom of its spectrum. Let ρ > 0 and α ∈ (0, π
2
) satisfy

cos θ + γ = ρ cosα and sin θ = ρ sinα.

We perform the rescaling t = ρ−1/2t̂, s = ρ−1/2ŝ and obtain that LLP
θ,γ is unitarily equivalent

to:

ρ(D2
ŝ +D2

t̂ + (t̂ cosα− ŝ sinα)2) = ρLLP
α .

In particular, we observe that s1(θ, γ) = ρs1(α) is a simple eigenvalue: there holds

(2.6.5) s1(θ, γ) =
√

(cos θ + γ)2 + sin2 θ s1

(
arctan

(
sin θ

cos θ + γ

))
.

Performing the rescaling t̃ = (cos θ + γ)t, we get the operator L̃LP
θ,γ which is unitarily

equivalent to LLP
θ,γ :

L̃LP
θ,γ = D2

s + (cos θ + γ)2D2
t̃ + (t̃− s sin θ)2 .

We observe that the domain of L̃LP
θ,γ does not depend on γ ≥ 0. Denoting by ũθ,γ the

L2-normalized and positive eigenfunction of L̃LP
θ,γ associated with s1(θ, γ), we write:

L̃LP
θ,γũ

LP
θ,γ = s1(θ, γ)ũLP

θ,γ .

Taking the derivative with respect to γ, multiplying by ũLP
θ,γ and integrating, we get the

Feynman-Hellmann formula:

∂γs1(θ, γ) = 2(cos θ + γ)

∫
R2

+

|Dtũ
LP
θ,γ|2 dx ≥ 0 .

We deduce that, if ∂γs1(θ, γ) = 0, then Dtũ
LP
θ,γ = 0 and ũLP

θ,γ only depends on s, which is

a contradiction with ũLP
θ,γ ∈ L2(R2

+). Consequently, we have ∂γs1(θ, γ) > 0 for any γ ≥ 0.

An easy computation using formula (2.6.5) provides:

∂γs1(θ, 0) = s1(θ) cos θ − s′1(θ) sin θ .

The function s1 is analytic and increasing. Thus we deduce:

∀θ ∈
(

0,
π

2

)
, 0 ≤ s′1(θ) <

cos θ

sin θ
s1(θ) .
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We get:

0 ≤ lim inf
θ→π

2
θ<π

2

s′1(θ) ≤ lim sup
θ→π

2
θ<π

2

s′1(θ) ≤ 0,

which ends the proof. �
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CHAPTER 3

First semiclassical examples

Nous appelons ici intuition la sympathie par

laquelle on se transporte à l’intérieur d’un

objet pour cöıncider avec ce qu’il a d’unique

et par conséquent d’inexprimable.

La pensée et le mouvant, Bergson

In this chapter, we give the first semiclassical examples of this book. In particular,

we essentially deal with the electric Laplacian in dimension one:

(i) we prove a version of the Weyl law,

(ii) we start the discussion about the harmonic approximation.

1. Semiclassical estimate of the number of eigenvalues

In this section we explain how we can estimate the number of eigenvalues of the

operator hh = h2D2
x+V (x) below a given energy threshold, by using the spirit of partitions

of unity and reduction to local models.

1.1. Two examples. If (L,Dom (L)) is a self-adjoint operator and E ∈ R, we recall

that N (L, E) denotes the number of eigenvalues of L below E.

If L = HDir
h = h2D2

x is the Dirichlet Laplacian on (0, 1). The domain is just H2(0, 1)∩
H1

0(0, 1) and the operator has compact resolvent. We may easily compute the eigenvalues:

λn
(
HDir
h

)
= h2n2π2 , n ∈ N \ {0} ,

so that, for E > 0,

N
(
HDir
h , E

)
∼
h→0

√
E

πh
=

1

2πh

∫
{(x,ξ)∈(0,1)×R: ξ2≤E}

dx dξ .

In the same way, we may explicitly compute the eigenvalues when L = Hharm
h = h2D2

x+x2

(see Chapter 2, Section 1). We have

λn
(
Hharm
h

)
= (2n− 1)h , n ∈ N \ {0} ,

so that, for E > 0,

N
(
Hharm
h , E

)
∼
h→0

E

2h
=

1

2πh

∫
{(x,ξ)∈R2: ξ2+x2≤E}

dx dξ .
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From these examples, one could guess the more general formula:

N (hh, E) ∼
h→0

1

2πh

∫
{(x,ξ)∈R2: ξ2+V (x)≤E}

dx dξ =
1

πh

∫
R

√
(E − V )+ dx .

1.2. Weyl’s law in one dimension. We propose to prove the following version

of the Weyl law in dimension one (see Remark 3.2). It generalizes the previous two

asymptotic formulas.

Proposition 3.1. Let us consider V : R → R a piecewise Lipschitzian with a finite

number of discontinuities which satisfies:

(1) V tends to `±∞ when x→ ±∞ with `+∞ ≤ `−∞,

(2)
√

(`+∞ − V )+ belongs to L1(R).

We consider the operator hh = h2D2
x + V (x) and we assume that the function (0, 1) 3

h 7→ E(h) ∈ (−∞, `+∞) satisfies

(1) for any h ∈ (0, 1), {x ∈ R : V (x) ≤ E(h)} = [xmin(E(h)), xmax(E(h))],

(2) h1/3(xmax(E(h))− xmin(E(h))) →
h→0

0,

(3) E(h) →
h→0

E0 ≤ `+∞.

Then we have:

N(hh, E(h)) ∼
h→0

1

πh

∫
R

√
(E0 − V )+ dx .

Proof. We consider a subdivision of the real axis (sj(h
α))j∈Z, which contains the

discontinuities of V , such that there exists c > 0, C > 0 such that, for all j ∈ Z and

h > 0, chα ≤ sj+1(hα)− sj(hα) ≤ Chα, where α > 0 is to be determined. We introduce

Jmin(hα) = min{j ∈ Z : sj(h
α) ≥ xmin(E(h))} ,

Jmax(hα) = max{j ∈ Z : sj(h
α) ≤ xmax(E(h))} .

For j ∈ Z we may introduce the Dirichlet (resp. Neumann) realization on (sj(h
α), sj+1(hα))

of h2D2
x + V (x) denoted by hDir

h,j (resp. hNeu
h,j ). The so-called Dirichlet-Neumann bracket-

ing (i.e. the application of the min-max principle and easy domain inclusions, see [176,

Chapter XIII, Section 15]) implies:

Jmax(hα)∑
j=Jmin(hα)

N(hDir
h,j , E(h)) ≤ N(hh, E(h)) ≤

Jmax(hα)+1∑
j=Jmin(hα)−1

N(hNeu
h,j , E(h)) .

Let us estimate N(hDir
h,j , E(h)). If qDir

h,j denotes the quadratic form of hDir
h,j , we have:

qDir
h,j(ψ) ≤

∫ sj+1(hα)

sj(hα)

h2|ψ′(x)|2 + Vj,sup,h|ψ(x)|2 dx, ∀ψ ∈ C∞0 ((sj(h
α), sj+1(hα))) ,

where

Vj,sup,h = sup
x∈(sj(hα),sj+1(hα))

V (x) .
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We infer that

N(hDir
h,j , E(h)) ≥ #

{
n ≥ 1 : n ≤ 1

πh
(sj+1(hα)− sj(hα))

√
(E(h)− Vj,sup,h)+

}
so that:

N(hDir
h,j , E(h)) ≥ 1

πh
(sj+1(hα)− sj(hα))

√
(E(h)− Vj,sup,h)+ − 1

and thus:

Jmax(hα)∑
j=Jmin(hα)

N(hDir
h,j , E(h)) ≥

1

πh

Jmax(hα)∑
j=Jmin(hα)

(sj+1(hα)− sj(hα))
√

(E(h)− Vj,sup,h)+ − (Jmax(hα)− Jmin(hα) + 1) .

Let us consider the function

fh(x) =
√

(E(h)− V (x))+

and analyze∣∣∣∣∣∣
Jmax(hα)∑
j=Jmin(hα)

(sj+1(hα)− sj(hα))
√

(E(h)− Vj,sup,h)+ −
∫
R
fh(x) dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
Jmax(hα)∑
j=Jmin(hα)

∫ sj+1(hα)

sj(hα)

√
(E(h)− Vj,sup,h)+ − fh(x) dx

∣∣∣∣∣∣
+

∫ xmax(E(h))

sJmax (hα)

fh(x) dx+

∫ sJmin(hα)

xmin(E(h))

fh(x) dx

≤

∣∣∣∣∣∣
Jmax(hα)∑
j=Jmin(hα)

∫ sj+1(hα)

sj(hα)

√
(E(h)− Vj,sup,h)+ − fh(x) dx

∣∣∣∣∣∣+ C̃hα .

Using the trivial inequality |√a+ −
√
b+| ≤

√
|a− b|, we notice that

|fh(x)−
√

(E(h)− Vj,sup,h)+| ≤
√
|V (x)− Vj,sup,h| .

Since V is Lipschitzian on (sj(h
α), sj+1(hα)), we get:∣∣∣∣∣∣

Jmax(hα)∑
j=Jmin(hα)

∫ sj+1(hα)

sj(hα)

√
(E(h)− Vj,sup,h)+ − fh(x) dx

∣∣∣∣∣∣ ≤ (Jmax(hα)−Jmin(hα)+1)C̃hαhα/2 .

This leads to the optimal choice α = 2
3

and we get the lower bound:

Jmax(h2/3)∑
j=Jmin(h2/3)

N(hDir
h,j , E(h)) ≥ 1

πh

(∫
R
fh(x) dx− C̃h(Jmax(h2/3)− Jmin(h2/3) + 1)

)
.
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Therefore we infer

N(hh, E(h)) ≥ 1

πh

(∫
R
fh(x) dx− C̃h1/3(xmax(E(h))− xmin(E(h))− C̃h

)
.

We notice that: fh(x) ≤
√

(`+∞ − V (x))+ so that we can apply the dominate convergence

theorem. We can deal with the Neumann realizations in the same way. �

Remark 3.2. Classical results (see [176, 179, 53, 194]) impose a fixed security distance

below the edge of the essential spectrum (E(h) = E0 < l+∞) or deal with non-negative

potentials, V , with compact support. Both these cases are recovered by Proposition 3.1.

In our result, the maximal threshold for which one can ensure that the semiclassical

behavior of the counting function holds is dictated by the convergence rate of the potential

towards its limit at infinity, through the assumption

h1/3(xmax(E(h))− xmin(E(h))) →
h→0

0.

More precisely, assume that l−∞ > l+∞ so that xmin(E(h)) ≥ xmin(l+∞) is uniformly

bounded for E(h) in a neighborhood of l+∞. Then

(i) If l+∞ − V (x) ≤ Cx−γ for any x ≥ x0 and given x0, C > 0 and γ > 2, then one can

choose E(h) = l+∞ − Chρ and xmax(E(h)) ≤ h−ρ/γ, provided ρ < γ/3.

(ii) If l+∞ − V (x) ≤ C1 exp(−C2x) for any x ≥ x0 and given x0, C1, C2 > 0, then one

can choose E(h) = l+∞ − C1 exp(C2h
−1/3 × o(h)) and the assumption is satisfied.

2. Harmonic approximation in dimension one

We illustrate the application of the spectral theorem in the case of the electric Lapla-

cian Lh,V = −h2∆ + V (x). We assume that V ∈ C∞(R,R), that V (x) → +∞ when

|x| → +∞ and that it admits a unique and non degenerate minimum at 0. This exam-

ple is also the occasion to understand more in details how we construct quasimodes in

general. From a heuristic point of view, we guess that the lowest eigenvalues correspond

to functions localized near the minimum of the potential (this intuition comes from the

classical mechanics). Therefore we can use a Taylor expansion of V near 0:

V (x) =
V ′′(0)

2
x2 +O(|x|3) .

We can then try to compare h2D2
x + V (x) with h2D2

x +
V ′′(0)

2
x2.

Proposition 3.3. For all n ≥ 1, there exists a sequence (µn,j) such that, for all J ≥ 1,

there exists h0, C > 0 such that, for all h ∈ (0, h0),

dist

(
h

J∑
j=0

µn,jh
j
2 , sp(Lh,V )

)
≤ Ch

J+1
2 .

Moreover we have µn,0 =
√

V ′′(0)
2

.
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Proof. For an homogeneity reason, we try the rescaling x = h1/2y. The electric

operator becomes:

Lh,V = hD2
y + V (h1/2y) .

Let us use the Taylor formula:

V (h1/2y) ∼ V ′′(0)

2
hy2 +

∑
j≥3

hj/2
V (j)(0)

j!
yj .

This provides the formal expansion:

Lh,V ∼ h

(
L0 +

∑
j≥1

hj/2Lj

)
,

where

L0 = −∂2
y +

V ′′(0)

2
y2 .

We look for a quasimode and an eigenvalue in the form

u ∼
∑
j≥0

uj(y)hj/2, µ ∼ h
∑
j≥0

µjh
j/2 .

Let us investigate the system of PDE that we get when solving in the formal series:

Lh,V u ∼ µu .

We get the equation:

L0u0 = µ0u0 .

Therefore we can take for (µ0, u0) a L2-normalized eigenpair of the harmonic oscillator.

Then we solve:

(L0 − µ0)u1 = (µ1 − L1)u0 .

We want to determine µ1 and u1. We can verify that H0 − µ0 is a Fredholm operator so

that a necessary and sufficient condition to solve this equation is given by:

〈(µ1 − L1)u0, u0〉L2 = 0 .

Lemma 3.4. Let us consider the equation:

(3.2.1) (L0 − µ0)u = f ,

with f ∈ S(R) such that 〈f, u0〉L2 = 0. The (3.2.1) admits a unique solution which is

orthogonal to u0 and this solution is in the Schwartz class.

Proof. Let us just sketch the proof to enlighten the general idea. We know that

we can find u ∈ Dom (H0) and that u is determined modulo u0 which is in the Schwartz

class. Therefore, we have: y2u ∈ L2(R) and u ∈ H2(R). Let us introduce a smooth cutoff

function χR(y) = χ (R−1y). χRy
2u is in the form domain of H0 as well as in the domain

of H0 so that we can write:

〈L0(χRy
2u), χRy

2u〉L2 = 〈[L0, χRy
2]u, χRy

2u〉L2 + 〈χRy2u(µ0u+ f), χRy
2u〉L2 .
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The commutator can easily be estimated and, by dominate convergence, we find the

existence of C > 0 such that for R large enough we have:

‖χRy3u‖2 ≤ C .

The Fatou lemma involves:

y3u ∈ L2(R) .

This is then a standard iteration procedure which gives that ∂ly(y
ku) ∈ L2(R). The

Sobolev injection (Hs(R) ↪→ Cs− 1
2 (R) for s > 1

2
) gives the conclusion.

�

This determines a unique value of µ1 = 〈L1u0, u0〉L2 . For this value we can find a

unique u1 ∈ S(R) orthogonal to u0.

This is easy to see that this procedure can be continued at any order.

Let us consider the (µj, uj) that we have constructed and let us introduce:

UJ,h =
J∑
j=0

uj(y)hj/2, µJ,h = h
J∑
j=0

µjh
j/2 .

We estimate:

‖(Lh,V − µJ,h)UJ,h‖ .
By using the Taylor formula and the definition of the µj and uj, we have:

‖(Lh,V − µJ,h)UJ,h‖ ≤ CJh
(J+1)/2 ,

since h(J+1)/2‖y(J+1)/2UJ,h‖ ≤ CJh
(J+1)/2 due to the fact that uj ∈ S(R). The spectral

theorem implies:

dist (µJ,h, spdis(Lh,V )) ≤ CJh
(J+1)/2 .

�

3. Helffer-Kordyukov’s toy operator

Let us now give an explicit example of construction of quasimodes for the magnetic

Laplacian in R2. We investigate the operator:

Lh,A = (hD1 + A1)2 + (hD2 + A2)2 ,

with domain

DomLh,A = {ψ ∈ L2(R2) :
(
(hD1 + A1)2 + (hD1 + A2)2

)
ψ ∈ L2(R2)} .

Let us state an easy lemma.

Lemma 3.5. We have

Qh,A(ψ) ≥
∣∣∣∣∫

R2

hB(x)|ψ|2 dx

∣∣∣∣ , ∀ψ ∈ C∞0 (R2) .
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Proof. This is a consequence of Proposition 0.2. �

Proposition 3.6. Consider A ∈ C∞(R2,R2) such that ∇ × A(x) = B(x) →
|x|→+∞

+∞.

Then, Lh,A has compact resolvent.

Proof. This is an application of Theorem 1.10 and Proposition 1.13. �

Let us now give a simple example inspired by [97]. Let us choose A such that

B = 1 + x2 + y2. We take A1 = 0 and A2 = x + x3

3
+ y2x. We study the Friedrichs

extension of

Lex
h,A = h2D2

x +

(
hDy + x+

x3

3
+ y2x

)2

.

Proposition 3.7. There exists c ∈ R such that for all m ∈ N, there exists Cm > 0 and

h0 > 0 such that, for h ∈ (0, h0),

dist
(
h+ (2m+ 1 + c)h2, spdis(L

ex
h,A)

)
≤ Cmh

3 .

Proof. Let us try the rescaling x = h1/2u, y = h1/2v. We get a new operator:

Lh,A = hD2
u + h

(
Dv + u+ h

u3

3
+ hv2u

)2

.

Let us conjugate by the partial Fourier transform with respect to v ; we get the unitarily

equivalent operator:

L̂h,A = hD2
u + h

(
ξ + u+ h

u3

3
+ huD2

ξ

)2

.

Let us now use the transvection: u = ǔ− ξ̌, ξ = ξ̌. We have:

Du = Dǔ, Dξ = Dǔ +Dξ̌ .

We are reduced to the study of:

Ľh,A = hD2
ǔ + h

(
ǔ+ h

(ǔ− ξ̌)3

3
+ h(ǔ− ξ̌)(Dξ +Dǔ)

2

)2

We can expand Ľh,A in formal power series:

Ľh,A = hP0 + h2P1 + . . . ,

where P0 = D2
ǔ + ǔ2 and P1 = 2

3
ǔ(ǔ− ξ̌)3 + (ǔ− ξ̌)(Dξ̌ +Dǔ)

2ǔ+ ǔ(ǔ− ξ̌)(Dξ̌ +Dǔ)
2.

Let us look for quasimodes in the form

λ ∼ hλ0 + h2λ1 + . . . , ψ ∼ ψ0 + hψ1 + . . .

We solve the equation:

P0ψ0 = λ0ψ0 .

We take λ0 = 1 and ψ0(ǔ, ξ̌) = g0(ǔ)f0(ξ̌) where g0 is the first normalized eigenfunction

of the harmonic oscillator. f0 is a function to be determined. The second equation of the
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formal system is:

(P0 − λ0)ψ1 = (λ1 − P1)ψ0 .

The Fredholm condition gives, for all ξ̌:

〈(λ1 − P1)ψ0, g0〉L2(Rǔ) = 0 .

Let us analyze the different terms which appear in this differential equation. There should

be a term in ξ̌3. Its coefficient is: ∫
R
ǔg0(ǔ)2 dǔ = 0 .

For the same parity reason, there is no term in ξ̌. Let us now analyze the term in Dξ̌.

Its coefficient is:

〈(Dǔǔ+ ǔDǔ)g0, ǔg0〉L2(Rǔ) = 0 ,

for a parity reason. In the same way, there is no term in ξ̌D2
ξ̌
. The coefficient of ξ̌Dξ̌ is:

2

∫
R
(ǔDǔ −Dǔǔ)g0g0 dǔ = 0 .

The compatibility equation is in the form:

(aD2
ξ̌

+ bξ̌2 + c)f0 = λ1f0 .

It turns out that (exercise):

a = b = 2

∫
R
ǔ2g2

0 dǔ = 1 .

In the same way c can be explicitly found. This leads to a family of choices for (λ1, f0):

We can take λ1 = c+ (2m+ 1) and f0 = gm the corresponding Hermite function.

This construction provides us a family of quasimodes (which are in the Schwartz class)

and we can apply the spectral theorem. �

Remark 3.8. One could continue the expansion at any order and one could also consider

the other possible values of λ0 (next eigenvalues of the harmonic oscillator).

Remark 3.9. The fact that the construction can be continued as much as the appearance

of the harmonic oscillator is a clue that our initial scaling is actually the good one. We

can also guess that the lowest eigenfunctions are concentrated near zero at the scale h1/2

if the quasimodes approximate the true eigenfunctions.
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CHAPTER 4

From local models to global estimates

Zeno’s reasoning, however, is fallacious, when he

says that if everything when it occupies an equal

space is at rest, and if that which is in locomotion

is always occupying such a space at any moment,

the flying arrow is therefore motionless. This

is false, for time is not composed of indivisible

moments any more than any other magnitude is

composed of indivisibles.

Physics, Aristotle

In this chapter we introduce the notions of partition of unity and of localization and

provide some examples.

1. A localization formula

We explain in this section how we can perform a reduction of the magnetic Laplacian

to local models.

1.1. Partition of unity and localization formula. The presentation is inspired

by [43].

Lemma 4.1. There exists C > 0 such that for all R > 0, there exists a family of smooth

cutoff functions (χj,R)j∈Z2 on Rd such that∑
j

χ2
j,R = 1,

∑
j

‖∇χj,R‖2 ≤ CR−2 .

Moreover, the support of χj,R is a ball of center xj and radius R.

Proof. We may consider a cutoff function χ being 1 on B(0, 1) and 0 away from

B(0, 1). We let

SR(x) =
∑
j∈Z2

χ2

(
x−Rj
R

)
.

There exists N > 0 such that for all R > 0 and all x ∈ Rd, SR(x) ≤ N . Moreover, we

have SR(x) ≥ 1 for all x ∈ Rd and thus we may define

χj,R(x) =
χ
(
x−Rj
R

)
SR(x)

.
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It remains to notice that

∇SR(x) = 2R−1
∑
j

χj,R

(
x−Rj
R

)
∇χj,R

(
x−Rj
R

)
so that

‖∇SR(x)‖ ≤ 2D
∑
j

1B(Rj,R)(x) .

By using support considerations, we get
∑

j 1B(Rj,R)(x) ≤ N and ‖∇SR(x)‖ ≤ D̃R−1 and

easy arguments provide the control of the gradients. �

The following formula is sometimes called, by a slight abuse, “IMS formula” and

allows to localize the electro-magnetic Laplacian.

Proposition 4.2. We have

(4.1.1)

∀ψ ∈ Dom (Lh,A,V ) , ∀χ ∈ C∞0 (Rd) , Qh,A,V (χψ) = 〈Lh,A,V ψ, χ2ψ〉L2 + ‖(∇χ)ψ‖2
L2 ,

and

(4.1.2) ∀ψ ∈ Dom (Qh,A,V ) , Qh,A,V (ψ) =
∑
j

Qh,A,V (χj,Rψ)− h2
∑
j

‖∇χj,Rψ‖2 .

Proof. The proof is easy and instructive. By a density argument, it is enough to

prove the formulas for ψ ∈ Dom (Lh,A,V ).

We let P = hDk + Ak and χ = χj,R. We estimate

〈Pψ, Pχ2ψ〉L2 = 〈χPψ, [P, χ]ψ〉L2 + 〈χPψ, Pχψ〉L2

= 〈χPψ, [P, χ]ψ〉L2 + 〈Pχψ, Pχψ〉L2 + 〈[χ, P ]ψ, Pχψ〉L2

= 〈Pχψ, Pχψ〉L2 − ‖[P, χ]ψ‖2 + 〈χPψ, [P, χ]ψ〉L2 − 〈[P, χ]ψ, χPψ〉L2 .

Taking the real part, we find

〈Pψ, Pχ2ψ〉L2 = ‖Pχψ‖2 − ‖[P, χ]ψ‖2 .

We have [P, χ] = −ih∂kχ and it remains to sum over k and integrate by parts.

To get (4.1.2), we write

〈Lh,A,V ψ, ψ〉L2 =
∑
j

〈Lh,A,V ψ, χ2
j,Rψ〉L2 ,

and we apply (4.1.1). �

Let us illustrate a possible use of (4.1.1).

Exercise 4.3. Consider
(
−∆x + V (x), C∞0 (RN)

)
where V ∈ C0(RN ,R).

(1) Give the domain of the adjoint.

(2) Prove that this operator is symmetric.
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(3) We recall that a symmetric operator (with dense domain) is closable and that,

by definition, it is essentially self-adjoint if its closure is self-adjoint. We also

recall the characterization: (L,Dom (L)) is self-adjoint iff ker(L∗ ± i) = {0}.
Prove that

(
−∆x + V (x), C∞0 (RN)

)
is essentially self-adjoint. For that purpose,

we will notice that the elements of the above kernels are in H2
loc(RN). One will

use a cutoff function χR(x) = χ(R−1x) with χ ∈ C∞0 (Rd) being 1 near 0.

1.2. Harmonic approximation in dimension one (bis). In this section, we con-

tinue the analysis started in Chapter 1, Section 1. We recall that the operator is expressed

as Lh,V = h2D2
x + V .

Proposition 4.4. We have

λ1(Lh,V ) = h

√
V ′′(0)

2
+O(h6/5) .

Proof. There exist δ0 > 0, ε0 > 0, C > 0 such that:

V (x) ≥ δ0 for |x| ≥ ε0

and ∣∣∣∣V (x)− V ′′(0)

2
x2

∣∣∣∣ ≤ C|x|3 for |x| ≤ ε0 .

We introduce a partition of unity on R with balls of size r > 0 and centers xj and such

that:

(4.1.3)
∑
j

χ2
j,r = 1,

∑
j

χ′2j,r ≤ Cr−2.

We may assume that x0 = 0 and that there exists c > 0 such that, for all j 6= 0, |xj| ≥ cr.

This localization formula gives

Qh,V (ψ) =
∑
j

Qh,V (χj,rψ)− h2
∑
j

‖χ′j,rψ‖2 ≥
∑
j

Qh,V (χj,rψ)− Ch2r−2‖ψ‖2 .

There exists c̃ > 0 such that for j 6= 0, we have

Qh,V (χj,rψ) ≥ min(δ0, c̃r
2)‖χj,rψ‖2 .

Moreover, by using a Taylor expansion and then the min-max principle for the harmonic

oscillator, we get

Qh,V (χ0,rψ) ≥
∫
R
|hDx(χ0,rψ)|2 +

V ′′(0)

2
x2|χ0,rψ|2 dx− Cr3‖χ0,rψ‖2

≥

(
h

√
V ′′(0)

2
− Cr3

)
‖χ0,rψ‖2.

We choose r = hρ for some ρ > 0 and we optimize the remainders by taking 2− 2ρ = 3ρ

and thus ρ = 2
5
. �
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1.3. Magnetic example. As we are going to see, the localization formula is very

convenient to prove lower bounds for the spectrum. We consider an open bounded set

Ω ⊂ R3 and the Dirichlet realization of the magnetic Laplacian LDir
h,A. Then we have the

lower bound for the lowest eigenvalues.

Proposition 4.5. For all n ∈ N∗, there exist h0 > 0 and C > 0 such that for h ∈ (0, h0):

λn(h) ≥ min
Ω
‖B‖h− Ch5/4 .

Proof. We introduce a partition of unity with radius R > 0 denoted by (χj,R)j. Let

us consider an eigenpair (λ, ψ). We have:

Qh,A(ψ) =
∑
j

Qh,A(χj,Rψ)− h2
∑
j

‖∇χj,Rψ‖2

so that:

Qh,A(ψ) ≥
∑
j

Qh,A(χj,Rψ)− CR−2h2‖ψ‖2

and:

λ‖ψ‖2 ≥
∑
j

Qh,A(χj,Rψ)− CR−2h2‖ψ‖2 .

It remains to provide a lower bound for Qh,A(χj,Rψ). We choose R = hρ with ρ > 0,

to be chosen. We approximate the magnetic field in each ball by the constant magnetic

field Bj:

‖B−Bj‖ ≤ C‖x− xj‖ .
In a suitable gauge (using Lemma 0.3), we have:

‖A−Alin
j ‖ ≤ C‖x− xj‖2 ,

where C > 0 does not depend on j but only on the magnetic field. Then, we have, for

all ε ∈ (0, 1):

Qh,A(χj,Rψ) ≥ (1− ε)Qh,Alin
j

(χj,Rψ)− C2ε−1R4‖χj,Rψ‖2 .

From the min-max principle, we deduce:

Qh,A(χj,Rψ) ≥
(
(1− ε)‖Bj‖h− C2ε−1h4ρ

)
‖χj,Rψ‖2 .

Optimizing ε, we take ε = h2ρ−1/2 and it follows:

Qh,A(χj,Rψ) ≥
(
‖Bj‖h− Ch2ρ+1/2

)
‖χj,Rψ‖2 .

We now choose ρ such that 2ρ+1/2 = 2−2ρ. We are led to take ρ = 3
8

and the conclusion

follows. �

Exercise 4.6. This exercise aims at proving (0.1.4).

(1) Let Ω be a bounded subset of R2 with 0 ∈ Ω. Assume that the magnetic field

has a positive minimum at 0 and consider the Dirichlet magnetic Laplacian.

By using a test function ψ in the form ψ(x) = χ(x)e−ρ|x|
2/h with ρ > 0 to be

76



determined and χ a smooth cutoff function near 0, prove that

λ1(h) = hmin
Ω
B + o(h) .

(2) Prove the same kind of asymptotic expansion in dimension three.

2. Agmon-Persson estimates

2.1. Agmon formula. This section is devoted to the Agmon formula in the semi-

classical framework. We refer to the classical references [2, 3, 90, 110, 111].

Proposition 4.7. Let Ω be an open domain in Rm with Lipschitzian boundary. Let

V ∈ C0(Ω,R), A ∈ C0(Ω,Rm) and Φ a real valued Lipschitzian and bounded function

on Ω. Then, for u ∈ Dom (Lh,A,V ) (with Dirichlet or magnetic Neumann condition), we

have:∫
Ω

|(−ih∇+ A)eΦu|2 dx+

∫
Ω

(
V − h2|∇Φ|2e2Φ

)
|u|2 dx = Re 〈Lh,A,V u, e2Φu〉L2(Ω) .

Proof. We give the proof when Φ is smooth. Let us use the Green-Riemann formula:

m∑
k=1

〈(−ih∂k + Ak)
2u, e2Φu〉L2 =

m∑
k=1

〈(−ih∂k + Ak)u, (−ih∂k + Ak)e
2Φu〉L2 ,

where the boundary term has disappeared thanks to the boundary condition. In order

to lighten the notation, we let P = −ih∂k + Ak.

〈Pu, Pe2Φu〉L2 = 〈eΦPu, [P, eΦ]u〉L2 + 〈eΦPu, PeΦu〉L2

= 〈eΦPu, [P, eΦ]u〉L2 + 〈PeΦu, PeΦu〉L2 + 〈[eΦ, P ]u, PeΦu〉L2

= 〈PeΦu, PeΦu〉L2 − ‖[P, eΦ]u‖2 + 〈eΦPu, [P, eΦ]u〉L2 − 〈[P, eΦ]u, eΦPu〉L2 .

We deduce:

Re
(
〈Pu, Pe2Φu〉L2

)
= 〈PeΦu, PeΦu〉L2 − ‖[P, eΦu]‖2 .

This is then enough to conclude.

�

In fact we can prove a more general localization formula (which generalizes Proposi-

tions 4.5 and 4.7).

Proposition 4.8 (“Localization” of P 2 with respect to A). Let (H, 〈·, ·〉) be a Hilbert

space and two unbounded operators P and A defined on a domain D ⊂ H. We assume

that P is symmetric and that P (D) ⊂ D, A(D) ⊂ D and A∗(D) ⊂ D. Then, for ψ ∈ D,

we have:

(4.2.1) Re 〈P 2ψ,AA∗ψ〉 = ‖P (A∗ψ)‖2 − ‖[A∗, P ]ψ‖2 + Re 〈Pψ, [[P,A],A∗]ψ〉

+ Re
(
〈Pψ,A∗[P,A]ψ〉 − 〈Pψ,A[P,A∗]ψ〉

)
.
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2.2. Agmon-Persson estimates. It turns out that the estimates of Agmon are

closely related to the estimates of Persson. These estimates state that, if an eigenfunc-

tion of the electro-magnetic Laplacian is associated with a discrete eigenvalue less than

the bottom of the essential spectrum, then it has an exponential decay. The following

proposition is very convenient in concrete situations.

Proposition 4.9. Let V ∈ C0(Ω,R) bounded from below and A ∈ C1(Ω,Rm). Let us also

assume that there exists R0 > 0, µ∗ ∈ R, h0 ∈ (0, 1) such that, for all h ∈ (0, h0) and for

all ψ ∈ Dom (Lh,A,V ) with support in {D(0, R0), we have

Qh,A,V (ψ) ≥ µ∗‖ψ‖2 .

Then, for h ∈ (0, h0), we have inf spess(Lh,A,V ) ≥ µ∗. Moreover, if ψ is an eigenfunction

associated with µ < µ∗, then for all ε ∈ (0,
√
µ∗ − µ), we have eε|x|ψ ∈ L2(Ω) and even

eε|x|ψ ∈ Dom (Qh,A,V ).

Proof. The first part of the statement is a consequence of Proposition 1.32.

Let ε ∈ (0,
√
µ∗ − µ). We introduce χm(y) = χ(m−1y), with χ a smooth cutoff

function being 1 in a (suitable) neighborhood of 0. With Proposition 4.7, we deduce that

Qh,A,V (eεχm(|x|)|x|ψ) ≤ µ‖eεχm(|x|)|x|ψ‖2 + ‖(eεχm(|x|)|x|)′ψ‖2 .

But we have

‖(eεχm(|x|)|x|)′ψ‖2 = ε2‖
(
m−1χ′(m−1|x|)|x|∇|x|+ χm(|x|)∇|x|

)
ψ̃‖2 ,

where ψ̃ = eεχm(|x|)|x|ψ. We deduce, for all γ ∈ (0, 1),

‖(eεχm(|x|)|x|)′ψ‖2 ≤ ε2
(
(1 + γ−1)‖χ′‖2

∞ + (1 + γ)
)
‖eεχm(|x|)|x|ψ‖2 .

We choose γ = ‖χ′‖∞ so that

‖(eεχm(|x|)|x|)′ψ‖2 ≤ ε2 (1 + ‖χ′‖∞)
2 ‖eεχm(|x|)|x|ψ‖2 .

We get

(4.2.2) Qh,A,V (eεχm(|x|)|x|ψ) ≤
(
µ+ ε2 (1 + ‖χ′‖∞)

2
)
‖eεχm(|x|)|x|ψ‖2 .

We consider a partition of the unity χ2
R,1 + χ2

R,2 = 1 with
∑2

j=1 |∇χR,j| ≤ CR−2 and

supp(χR,2) ⊂ {B(0, R) (with R ≥ R0). With the localization formula, we find

Qh,A,V (eεχm(|x|)|x|ψ) ≥ Qh,A,V (χR,1e
εχm(|x|)|x|ψ) + Qh,A,V (χR,2e

εχm(|x|)|x|ψ)

− CR−2‖eεχm(|x|)|x|ψ‖2 ,

so that

Qh,A,V (eεχm(|x|)|x|ψ) ≥ Qh,A,V (χR,1e
εχm(|x|)|x|ψ) + µ∗‖χR,2eεχm(|x|)|x|ψ‖2

− CR−2‖eεχm(|x|)|x|ψ‖2 .
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We deduce the existence of C(R, ε) > 0 such that, for all m ≥ 1,(
µ∗ − µ− ε2 (1 + ‖χ′‖∞)

2 − CR−2
)
‖χR,2eεχm(|x|)|x|ψ‖2 ≤ C(R, ε)‖ψ‖2 .

We choose χ such that µ∗ − µ− ε2 (1 + ‖χ′‖∞)2 ≥ µ∗−µ
2

> 0. Then, for R large enough,

we find c(R, ε) > 0 such that, for all m ≥ 1,

c(R, ε)‖χR,2eεχm(|x|)|x|ψ‖2 ≤ C(R, ε)‖ψ‖2 .

We get the existence of C̃(R, ε) > 0 such that, for all m ≥ 1,

(4.2.3) ‖eεχm(|x|)|x|ψ‖2 ≤ C̃(R, ε)‖ψ‖2 .

Then, we take the limit m→ +∞ and use the Fatou lemma. To get the control of eε|x|ψ

in the norm of the quadratic form we use (4.2.2). �

3. Applications

3.1. Harmonic approximation in dimension one (ter). We continue the anal-

ysis of Section 1.2. With Proposition 3.3, we have λn (Lh,V ) = O(h).

Proposition 4.10. For all ε ∈ (0, 1), there exists C > 0 and h0 > 0 such that, for all

h ∈ (0, h0),

(4.3.1) ‖eεΦ0/hψ‖2 ≤ C‖ψ‖2, Qh,V (eεΦ0/hψ) ≤ Ch‖ψ‖2,

where Φ0 =
∣∣∣∫ x0 √V (y) dy

∣∣∣.
Proof. The proof follows from the same strategy as the one of Proposition 4.9.

For ε ∈ (0, 1), we introduce Φ = εΦ0 and χm(y) = χ(m−1y), with χ a smooth cutoff

function being 1 in a neighborhood of 0. Let us consider an eigenvalue λ (= O(h)) and

an associated eigenfunction ψ. We have

Qh,V (eεχm(Φ0)Φ0/hψ) ≤ λ‖eεχm(Φ0)Φ0/hψ‖2 + h2‖(eεχm(Φ0)Φ0/h)′ψ‖2 .

We have, for all γ ∈ (0, 1),

‖h(eεχm(Φ0)Φ0/h)′ψ‖2 = ‖χ′m(Φ0)Φ′0Φ0ψ̃ + χm(Φ0)Φ′0ψ̃‖2

≤ ε2(1 + γ−1)‖χ′m(Φ0)Φ0

√
V ψ̃‖2 + ε2(1 + γ)‖χm(Φ0)

√
V ψ̃‖2

≤ ε2
(
(1 + γ−1)‖χ′‖2

∞ + (1 + γ)
)
‖
√
V ψ̃‖2,

with ψ̃ = eεχm(Φ0)Φ0/hψ. We choose γ = ‖χ′‖∞ and we get

‖h(eεχm(Φ0)Φ0/h)′ψ‖2 ≤ ε2 (1 + ‖χ′‖∞)
2 ‖
√
V ψ̃‖2 .

Given ε ∈ (0, 1), we may find χ such that ‖χ′‖∞ small enough so that there exists η̃ > 0

such that 1− ε2 (1 + ‖χ′‖∞)2 ≥ η̃. We get

Qh,η̃V (eεχm(Φ0)Φ0/hψ) ≤ Ch‖eεχm(Φ0)Φ0/hψ‖2
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and thus ∫
R
η̃V e2εχm(Φ0)Φ0/h|ψ|2 dx ≤ Ch‖eεχm(Φ0)Φ0/hψ‖2 .

Given C0 > 0, we write∫
R
V e2εχm(Φ0)Φ0/h|ψ|2 dx =

∫
|x|≥C0h1/2

V e2εχm(Φ0)Φ0/h|ψ|2 dx+

∫
|x|≤C0h1/2

V e2εχm(Φ0)Φ0/h|ψ|2 dx .

Using the quadratic approximation of V at 0 and the fact that V admits a unique and

non degenerate minimum, we deduce that there exists c > 0 such that for all C0 > 0,

there exist C, h0 > 0 such that, for h ∈ (0, h0) and all m ≥ 1,∫
|x|≤C0h1/2

V e2εχm(Φ0)Φ0/h|ψ|2 dx ≤ Ch‖ψ‖2

and ∫
|x|≥C0h1/2

V e2εχm(Φ0)Φ0/h|ψ|2 dx ≥ cC2
0h

∫
|x|≥C0h1/2

e2εχm(Φ0)Φ0/h|ψ|2 dx .

Taking C0 large enough, we deduce that∫
|x|≥C0h1/2

e2εχm(Φ0)Φ0/h|ψ|2 dx ≤ C‖ψ‖2 .

We deduce that there exist C > 0, h0 > 0 such that, for all m ≥ 1 and h ∈ (0, h0),

‖eεχm(Φ0)Φ0/hψ‖2 ≤ C‖ψ‖2 .

Then we consider the limit m → +∞ and use the Fatou lemma. We deduce the first

estimate in (4.3.1). We easily deduce that

(4.3.2) Qh,V (eεΦ0/hψ) ≤ Ch‖ψ‖2.

�

Exercise 4.11. Prove that for all ζ ∈ R, we have∫
R+

e2t|u[0]
ζ (t)|2 dt < +∞, and

∫
R+

e2t|(u[0]
ζ )′(t)|2 dt < +∞ .

Proposition 4.12. For all n ≥ 1, there exists a sequence (µn,j) such that, for all J ≥ 1,

there exists h0, C > 0 such that, for all h ∈ (0, h0),

λn (Lh,V ) ∼
∑
j≥0

µn,jh
j
2 .

Proof. For N ≥ 1, we may define a family of eigenpairs ((λn(Lh,V ), ψn,h))n=1,...,N

such that (ψn,h)n=1,...,N is an orthonormal family. We let

EN(h) = span
n=1,...,N

ψn,h .
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We leave as an exercise to check that the elements of EN(h) still satisfy the estimates of

Agmon (4.3.1). By using these estimates of Agmon, we easily get that, for all ψ ∈ EN(h),

Qh,V (ψ) ≥
∫
R
h2|Dxψ|2 +

V ′′(0)

2
x2|ψ|2 dx− Ch3/2‖ψ‖2 .

Then, the min-max principle implies

λN(Lh,V ) ≥ (2N − 1)h

√
V ′′(0)

2
− Ch3/2 .

Then, the expansion at any order of the n-th eigenvalue follows from Proposition 3.3. �

It turns out that the estimates of Agmon are related to the so-called WKB construc-

tions. We provide an example of such a construction in the following proposition (see

[53, Chapter 3] for further details and generalizations).

Proposition 4.13. For all n ≥ 1, there exist a neighborhood of 0 denoted by V and a

smooth function an,0 defined on V and h0, C > 0 such that, for all h ∈ (0, h0),∥∥∥∥∥
(
Lh,V − (2n− 1)h

√
V ′′(0)

2

)
χan,0e

−Φ0/h

∥∥∥∥∥ ≤ Ch2 ,

with Φ0 =
∣∣∣∫ x0 √V (y) dy

∣∣∣ and χ a smooth cutoff function being 1 near 0.

Proof. Let us compute

(4.3.3) Lh,V
(
a0e
−Φ0/h

)
=
(
h2D2

xa0 − 2hDxa0DxΦ0 + ha0Φ′′0 − (Φ′0)2a0 + V a0

)
e−Φ0/h

and we solve

Lh,V
(
a0e
−Φ0/h

)
= λha0e

−Φ0/h .

We have (Φ′0)2 = V . Then, we consider

Φ′0∂xa0 + ∂x(Φ
′
0a0) = λa0 .

We have to solve this equation in a neighborhood of 0 (so that Φ′0 only vanishes at 0). It

can be explicitly solved on x > 0 and x < 0. Since we look for a smooth function a0 we

can check that this implies λ = (2n− 1)
√

V ′′(0)
2

, for n ≥ 1. Moreover an,0 behaves like sn

near 0. Finally, we write(
Lh,V − (2n− 1)h

√
V ′′(0)

2

)
χan,0e

−Φ0/h

= χ

(
Lh,V − (2n− 1)h

√
V ′′(0)

2

)
an,0e

−Φ0/h + [Lh,V , χ]an,0e
−Φ0/h.

With support considerations, the second term in the r.h.s. is O(h∞). By using (4.3.3),

the first term in the l.h.s. is O(h2). �
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Proposition 4.13 can be used to prove that there are no odd powers of h
1
2 in the

expansion given in Proposition 4.12.

3.2. A model with parameter. The estimates of Agmon may be useful to analyze

the dependence of eigenvalues with respect to some parameters, especially when the

dependence of the quadratic form on the parameters is not clear. In this section, we

deal with a simple example of such a situation. For a ∈ [0, 1], we consider the Friedrichs

extension La of the differential operator, acting on C∞0 (R2),(
Dx + ay + y(x2 + y2)

)2
+D2

y .

We recall that the domain of the associated quadratic form Qa is

Dom (Qa) =
{
ψ ∈ L2(R2) : Dyψ ∈ L2(R2), (Dx + ay + y(x2 + y2))2ψ ∈ L2(R2)

}
.

The magnetic field is Ba(x) = a+ |x|2 and tends to +∞ when |x| → +∞. In particular,

with Proposition 3.6, La has compact resolvent. We recall that is comes from the lower

bound

(4.3.4) Qa(ψ) ≥
∫
R2

(a+ |x|2)|ψ|2 dx ≥
∫
R2

|x|2|ψ|2 dx .

We consider its lowest eigenvalue λ(a).

Proposition 4.14. There exists C > 0 such that, for all a ∈ [0, 1],

|λ(a)− λ(0)| ≤ Ca .

Proof. Let us consider a normalized eigenfunction ua associated with λ(a). From

the lower bound (4.3.4) and Proposition 4.9, we have e|x|u0 ∈ L2(R2).Then we have

Qa(u0) = Q0(u0) + 2aRe 〈(Dx + y(x2 + y2))u0, yu0〉L2(R2) + a2‖yu0‖2
L2(R2) ,

so that

λ(a) ≤ Qa(u0) ≤ λ(0) + 2a
√

Q0(u0)‖yu0‖L2(R2) + a2‖yu0‖2
L2(R2) ,

and we deduce the upper bound. Now, we know that there exists C0 > 0 such that for

all a ∈ [0, 1],

(4.3.5) λ(a) ≤ λ(0) + C0a ≤ λ(0) + C0 .

From the a-independent bounds (4.3.4) and (4.3.5) and from the proof of Proposition 4.9,

we deduce that there exists C > 0 such that, for all a ∈ [0, 1],

(4.3.6)

∫
R2

e2|x||ua|2 dx ≤ C .

More precisely, it comes from the fact that, for all µ∗ ≥ 2 + λ0 + C0, there exists R0 > 0

such that, for all ψ supported in {B(0, R0) and all a ∈ [0, 1], we have Qa(ψ) ≥ µ∗‖ψ‖2
L2(R2).

We also notice that the constant in (4.2.3) does not depend on a ∈ [0, 1].
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In the same way as previously, we have

Q0(ua) = λ(a)− 2Re 〈〈(Dx + ay + y(x2 + y2))ua, yua〉L2(R2) + a2‖yua‖2
L2(R2) ,

and thus

λ(0) ≤ Q0(ua) ≤ λ(a) + 2a
√

Qa(ua)‖yua‖L2(R2) + a2‖yua‖2
L2(R2) .

The conclusion easily follows since Qa(ua) = λ(a) ≤ λ(0) + C0 and with the uniform

estimate (4.3.6). �

3.3. Pan-Kwek’s operator. We prove Theorem 6.14.

3.3.1. Changing the parameters. To analyze the family of operatorsMNeu
x,ξ depending

on parameters (x, ξ), we introduce the new parameters (x, η) using a change of variables.

Let us introduce the following change of parameters:

P(x, ξ) = (x, η) =

(
x, ξ +

x2

2

)
.

A straight forward computation provides that P : R2 → R2 is a C∞-diffeomorphism such

that:

|x|+ |ξ| → +∞⇔ |P(x, ξ)| → +∞ .

We have MNeu
x,ξ = NNeu

x,η , where:

NNeu
x,η = D2

t +

(
(t− x)2

2
− η
)2

,

with Neumann condition on t = 0. Let us denote by νNeu
1 (x, η) the lowest eigenvalue of

NNeu
x,η , so that:

µNeu
1 (x, ξ) = νNeu

1 (x, η) = νNeu
1 (P(x, ξ)) .

We denote by Dom (QNeu
x,η ) the form domain of the operator and by QNeu

x,η the associated

quadratic form.

3.3.2. Existence of a minimum for µNeu
1 (x, ξ). To prove Theorem 6.14, we establish

the following result:

Theorem 4.15. The function R×R 3 (x, η) 7→ νNeu
1 (x, η) admits a minimum. Moreover

we have:

lim inf
|x|+|η|→+∞

νNeu
1 (x, η) ≥ νMo > min

(x,η)∈R2
νNeu

1 (x, η) .

To prove this result, we decompose the plane in subdomains and analyze in each part.

Lemma 4.16. For all (x, η) ∈ R2 such that η ≥ x2

2
, we have:

−∂xνNeu
1 (x, η) +

√
2η∂ην

Neu
1 (x, η) > 0 .

Thus there is no critical point in the area {η ≥ x2

2
}.
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Proof. The Feynman-Hellmann formulas provide:

∂xν
Neu
1 (x, η) = −2

∫ +∞

0

(
(t− x)2

2
− η
)

(t− x)u2
x,η(t) dt,

∂ην
Neu
1 (x, η) = −2

∫ +∞

0

(
(t− x)2

2
− η
)
u2
x,η(t) dt.

We infer:

−∂xνNeu
1 (x, η)+

√
2η∂ην

Neu
1 (x, η) =

∫ +∞

0

(t−x−
√

2η)(t−x+
√

2η)(t−x−
√

2η)u2
x,η(t) dt .

We have: ∫ +∞

0

(t− x−
√

2η)2(t− x+
√

2η)u2
x,η(t) dt > 0 .

�

Lemma 4.17. We have:

inf
(x,η)∈R2

νNeu
1 (x, η) < νMo .

Proof. We apply Lemma 4.16 at x = 0 and η = ηMo to deduce that:

∂xν
Neu
1 (0, ηMo) < 0 .

�

The following lemma is obvious:

Lemma 4.18. For all η ≤ 0, we have:

νNeu
1 (x, η) ≥ η2 .

In particular, we have

νNeu
1 (x, η) > νMo, ∀η < −

√
νMo .

Lemma 4.19. For x ≤ 0 and η ≤ x2

2
, we have:

νNeu
1 (x, η) ≥ ν

[1]
1 (0) > νMo .

Proof. We have, for all ψ ∈ Dom (QNeu
x,η ):

QNeu
x,η (ψ) =

∫
R+

|Dtψ|2 +

(
(t− x)2

2
− η
)2

|ψ|2 dt

and (
(t− x)2

2
− η
)2

=

(
t2

2
− xt+

x2

2
− η
)2

≥ t4

4
.

The min-max principle provides:

νNeu
1 (x, η) ≥ ν

[1]
1 (0) .
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Moreover, thanks to the Feynman-Hellmann theorem, we get:(
∂ην

[1]
1 (η)

)
η=0

= −
∫
R+

t2u0(t)2 dt < 0 .

�

Lemma 4.20. There exist C,D > 0 such that for all x ∈ R and η ≥ D such that
x√
η
≥ −1:

νNeu
1 (x, η) ≥ Cη1/2 .

Proof. For x ∈ R and η > 0, we can perform the change of variable:

τ =
t− x
√
η
.

The operator η−2NNeu
x,η is unitarily equivalent to:

N̂Neu
x̂,h = h2D2

τ +

(
τ 2

2
− 1

)2

,

on L2 ((−x̂,+∞)), with x̂ = x√
η

and h = η−3/2.

By using the harmonic approximation (see Section 1.2), we deduce

νNeu
1 (x, η) ≥ cη−3/2 ,

for η large enough. �

Lemma 4.21. Let uη be an eigenfunction associated with the first eigenvalue of LMo,+
η .

Let D > 0. There exist ε0, C > 0 such that, for all η such that |η| ≤ D, we have:∫ +∞

0

e2ε0t3|uη|2 dt ≤ C‖uη‖2 .

Proof. We leave the proof to the reader as an exercise: it is sufficient to apply

Proposition 4.9. �

Lemma 4.22. For all D > 0, there exist A > 0 and C > 0 such that for all |η| ≤ D and

x ≥ A, we have: ∣∣∣ν1(x, η)− ν [1]
1 (η)

∣∣∣ ≤ Cx−2 .

Proof. We perform the translation τ = t − x, so that NNeu
x,η is unitarily equivalent

to:

ÑNeu
x,η = D2

τ +

(
τ 2

2
− η
)2

,

on L2(−x,+∞). The corresponding quadratic form writes:

Q̃Neu
x,η (ψ) =

∫ +∞

−x
|Dτψ|2 +

(
τ 2

2
− η
)2

|ψ|2 dτ .
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Let us first prove the upper bound. We take ψ(τ) = χ0(x−1τ)uη(τ). The “IMS”

formula provides:

Q̃Neu
x,η (χ0(x−1τ)uη(τ)) = ν

[1]
1 (η)‖χ0(x−1τ)uη(τ)‖2 + ‖(χ0(x−1τ))′uη(τ)‖2 .

Jointly min-max principle with Lemma 4.21, we infer that:

ν1(x, η) ≤ ν
[1]
1 (η) +

‖(χ0(x−1τ))′uη(τ)‖2

‖χ0(x−1τ)uη(τ)‖2

≤ ν
[1]
1 (η) +

Cx−2

e2cε0x3 .

Let us now prove the lower bound. Let us now prove the converse inequality. We denote

by ũx,η the positive and L2-normalized groundstate of ÑNeu
x,η . On the one hand, with the

localization formula (4.1.1), we have:

Q̃Neu
x,η (χ0(x−1τ)ũx,η) ≤ ν1(x, η)‖χ0(x−1τ)ũx,η‖2 + Cx−2 .

On the other hand, we notice that:∫ +∞

−x
t4|ũx,η|2 dτ ≤ C,

∫ −x
2

−x
t4|ũx,η|2 dτ ≤ C ,

and thus: ∫ −x
2

−x
|ũx,η|2 dτ ≤ C̃x−4 .

We infer that:

Q̃Neu
x,η (χ0(x−1τ)ũx,η) ≤ (ν1(x, η) + Cx−2)‖χ0(x−1τ)ũx,η‖2 .

We deduce that:

ν
[1]
1 (η) ≤ ν1(x, η) + Cx−2 .

�

We have proved in Lemmas 4.18-4.20 and 4.22 that the limit inferior of ν1(x, η) in

these areas are not less than νMo. Then, we deduce the existence of a minimum with

Lemma 4.17.

3.4. Other applications.

3.4.1. Helffer-Kordyukov’s operator. Let us now apply the Agmon estimates to the

model introduced in Chapter 3, Section 3.

Proposition 4.23. There exist C̃ > 0, h0 > 0, ε > 0 such that, for h ∈ (0, h0) and (λ, ψ)

an eigenpair of Lex
h,A satisfying λ ≤ h+ Ch2, we have:∫

R2

eεh
−1/4|x||ψ|2 dx ≤ C̃‖ψ‖2 .
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Proof. We consider an eigenpair (λ, ψ) as in the proposition and we use the Agmon

identity, jointly with the localization formula (with balls of size h3/8):

Qex
h,A(eΦ/hδψ)− h2−2δ‖∇ΦeΦ/hδψ‖2 = λ‖eΦ/hδψ‖ ,

where δ > 0 and Φ are to be determined. For simplicity we choose Φ(x) = ε‖x‖. We

infer that: ∫
R2

(hB(x, y)− h− Ch2 − 2ε2h2−2δ)|eΦ/hδψ|2 dx dy ≤ 0 .

We recall that B(x, y) = 1 +x2 + y2. We choose δ so that hh2δ = h2−2δ and we get δ = 1
4
.

We now split the integral into two parts: ‖x‖ ≥ C0h
1/4 and ‖x‖ ≤ C0h

1/4. If ε is small

enough, we infer that:

‖eΦ/h1/4

ψ‖ ≤ C̃‖ψ‖ .
�

3.4.2. Robin Laplacian in one dimension. Consider the first L2-normalized eigenfunc-

tion uTB of LR,T
B (defined in Chapter 2, Section 3). By using Proposition 2.11 and the fact

that the Dirichlet problem on (0, T ) is positive, deduce the following proposition.

Proposition 4.24. There exists T0, ε0 > 0, α > 0 and C > 0 such that for all T ≥ T0,

for all B ∈ (−ε0T
−1, ε0T

−1) there holds,

‖eατuTB‖L2
(

(0,T );(1−Bτ) dτ
) ≤ C .

Let us give an example of application (that we state for a further use). By using

Lemma 2.34, the “Feynman-Hellmann” formulas and Proposition 4.24, it is possible to

prove the following lemma.

Lemma 4.25. There exist T0, ε0, C > 0 such that for all T ≥ T0 and B ∈ (−ε0T
−1, ε0T

−1),∣∣∣∂Bλ1

(
L̃R,T
B

)∣∣∣ ≤ C ,(4.3.7)

‖∂Bũ{T}B ‖L2((0,T ),dτ) ≤ C .(4.3.8)

3.4.3. Semiclassical Robin Laplacian. Let Ω be a bounded, simply connected and

smooth domain in dimension two. We consider the Robin Laplacian

(4.3.9) LRob
h = −h2∆ ,

with domain

(4.3.10) Dom (LRob
h ) = {u ∈ H2(Ω) : n · h

1
2∇u+ u = 0 on ∂Ω} .

The associated quadratic form is given by

∀u ∈ H1(Ω) , QRob
h (u) =

∫
Ω

|h∇u|2 dx− h
3
2

∫
∂Ω

|u|2 ds(x) ,
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where ds is the surface measure of the boundary. Note that, by a classical trace theorem

(see for instance [30, Lemma 9.9] in the case of a straight boundary), the quadratic form

QRob
h is well-defined and bounded from below.

The following proposition (see [94]) states that the eigenfunctions associated to (semi-

classically) negative eigenvalues are concentrated in a neighborhood of size h
1
2 of the

boundary.

Proposition 4.26. Let ε0 ∈ (0, 1) and α ∈ (0,
√
ε0). There exist constants C > 0 and

h0 ∈ (0, 1) such that, for h ∈ (0, h0), if uh is a normalized eigenfunction of LRob
h with

eigenvalue µ ≤ −ε0h, then,∫
Ω

(
|uh(x)|2 + h|∇uh(x)|2

)
exp

(
2α dist(x, ∂Ω)

h
1
2

)
dx ≤ C .

Proof. We leave the proof as an exercise and only notice that it is a consequence

(modulo a partition of the unity with balls of size Rh
1
2 with R large enough) of the fact

that, if the support of u avoids the boundary, we have QRob
h (u) ≥ 0. �
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CHAPTER 5

Birkhoff normal form in dimension one

Cut away all that is excessive, straighten all

that is crooked, bring light to all that is over-

cast, labour to make all one glow of beauty.

Enneads, I. 6. 9, Plotinus

This chapter is an invitation to symplectic geometry and pseudo-differential calculus.

Therefore we do not try to be the most general as possible and focus on an elementary

application (the Birkhoff normal form in dimension one) that will be very helpful in

Chapter 15. Since we only wish to highlight the main aspects of the proofs, we will

often keep some details in the shadow and refer to the nice introductions to semiclassical

analysis [53, 142, 194].

1. Symplectic geometry and pseudo-differential calculus

1.1. A Darboux-Moser-Weinstein result.

1.1.1. Some definitions. Let us recall basic concepts related to differential forms. We

mainly refer to [194, Appendix B] for a concise introduction and to [6, Chapter 7] for

more details. We present the concepts when the dimension is even (and equals to 2d),

even if most of them do not depend on the parity of the dimension. If κ : R2d → R2d is

smooth mapping, the pull-back by κ of a m-differential form ω in R2d, denoted by κ∗ω,

is the m-differential form defined by

∀(u1, . . . , um) ∈ (R2d)m, (κ∗ω)x(u1, . . . , um) = ωκ(x)(dκx(u1), . . . , dκx(um)) ,

where dκx is the usual differential of κ at the point x.

We say that κ is symplectic when

κ∗ω0 = ω0 , with ω0 = dξ ∧ dx .

In other words, κ is symplectic if it preserves the canonical symplectic form ω0 in R2d.

If X is a vector field on R2d and φs the associated flow, that is φ′ = X(φ), the Lie

derivative of a m-differential form ω is by definition

LXω = (∂sφ
∗
sω)s=0 .

The Lie derivative may be expressed thanks to the Cartan formula:

LXω = d(ιXω) + ιX dω ,
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where ιX associate to a m-differential form ω the m − 1-differential form obtained by

replacing the first entry of ω by X.

Let us provide an abstract and fundamental example of symplectic mapping. Let

us consider a smooth function H (the Hamiltonian) and the vector field defined XH

by dH(·) = ω0(·, XH). The flow associated with XH , denoted by φs = esXH , is called

the Hamiltonian flow and, for all s, we have φ∗sω0 = ω0. In other words, for all s, the

application φs : (x, ξ) 7→ esXH (x, ξ) is symplectic. This can be seen from the Cartan

formula. Finally, we will use the standard definition of the Poisson bracket of smooth

functions:

{f, g} = ω0(∇f,∇g) = ∂ξf · ∂xg − ∂xf · ∂ξg .

1.1.2. A lemma. The aim of this section is to prove the following classical lemma.

Lemma 5.1. Let us consider ω0 and ω1 two 2-forms on R2d which are closed and non

degenerate. Let us assume that ω1 = ω0 on {0} × Ω where Ω is a bounded open set of

R2d−1. In a neighborhood of {0} × Ω there exists a change of coordinates ψ1 such that:

ψ∗1ω1 = ω0 and ψ1 = Id +O(x2
1) .

Proof. The reader is referred to [145, p. 92].

Let us begin to explain how we can find a 1-form σ on R2d such that, in a neighborhood

of {0} × Ω,

τ = ω1 − ω0 = dσ and σ = O(x2
1) .

In other words, we want to establish an explicit Poincaré lemma. For that purpose we

introduce the family of diffeomorphisms (φt)0<t≤1 defined by

φt(x1, x̃) = (tx1, x̃)

and we let

φ0(x1, x̃) = (0, x̃) .

We have

(5.1.1) φ∗0τ = 0 and φ∗1τ = τ .

Let us denote by Xt the vector field associated with φt. We have

Xt =
dφt
dt

(φ−1
t ) = (t−1x1, 0) = t−1x1e1 .

Let us compute the Lie derivative of τ along Xt,

d

dt
φ∗t τ = φ∗tLXtτ .

From the Cartan formula, we have,

LXt = ι(Xt) dτ + d(ι(Xt)τ) .
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Since τ is closed on R2d, we have dτ = 0. Therefore it follows that

(5.1.2)
d

dt
φ∗t τ = d(φ∗t ι(Xt)τ) .

We consider the 1-form

σt = φ∗t ι(Xt)τ = x1τφt(x1,x2,ξ1,ξ2)(e1,∇φt(·)) = O(x2
1) .

We see from (5.1.2) that the map t 7→ φ∗t τ is smooth on [0, 1]. To conclude, let σ be

the 1-form defined on a neighborhood of {0} ×Ω by σ =
∫ 1

0
σt dt; it follows from (5.1.1)

and (5.1.2) that:
d

dt
φ∗t τ = dσt and τ = dσ .

Finally we use a standard deformation argument due to Moser. For t ∈ [0, 1], we let

ωt = ω0 + t(ω1 − ω0) .

The 2-form ωt is closed and non degenerate (up to choosing a neighborhood of x1 = 0

small enough). We look for ψt such that

ψ∗tωt = ω0 .

For that purpose, let us determine a vector field Yt such that

d

dt
ψt = Yt(ψt).

By using again the Cartan formula, we get

0 =
d

dt
ψ∗tωt = ψ∗t

(
d

dt
ωt + ι(Yt) dωt + d(ι(Yt)ωt)

)
.

This becomes

ω0 − ω1 = d(ι(Yt)ωt) .

We are led to solve:

ι(Yt)ωt = −σ .
By non degeneracy of ωt, this determines Yt. Since Yt vanishes on {0} × Ω, there exists

a neighborhood of {0} ×Ω small enough in the x1-direction such that ψt exists until the

time t = 1 and satisfies ψ∗tωt = ω0. Since σ = O(x2
1), we get ψ1 = Id +O(x2

1). �

1.2. Pseudo-differential calculus.

1.2.1. Symbols. Here we refer to [53, Chapter 7] and [194, Chapter 4].

A function m : R2d → [0,∞) is an order function if there exist constants N0, C0 > 0

such that

m(X) ≤ C0〈X − Y 〉N0m(Y )

for any X, Y ∈ R2d. For δ ∈
(
0, 1

2

)
, the symbol class Sδ(m) is the space of smooth

h-dependent functions ah : R2d → C such that

∀α ∈ N2d, |∂αxah(x)| ≤ Cαh
−|α|δm(x), ∀h ∈ (0, 1].
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We let S(m) = S0(m). For a classical symbol ah = a(x, ξ;h) ∈ Sδ(m), the Weyl quanti-

zation of a is defined as:

(5.1.3) Opwh a (ψ)(x) =
1

(2πh)d

∫
R2d

ei〈x−y,ξ〉/ha

(
x+ y

2
, ξ

)
ψ(y) dy dξ, ∀ψ ∈ S(Rd) .

It can be proved that the integral in (1.7) is actually convergent thanks to a succession

of integrations by parts and that Opwh (a) sends S(Rd) into S(Rd).

If m1 and m2 are order functions and a ∈ Sδ(m1), b ∈ Sδ(m2), we may define the

Moyal product of a and b by letting

a ? b(x, ξ) = e
ih
2
ω0(Dx,Dξ,Dy ,Dη)a(x, ξ)b(y, η)|(y,η)=(x,ξ)

and

a ? b ∈ Sδ(m1m2) , Opwh (a ? b) = Opwh (a)Opwh (b) ,

as operators defined on S(Rd). Note that the verification is just a computation using the

inverse Fourier transform when a and b belong to S(Rd).

Moreover, thanks to the exponential expression and by the Taylor formula, the Moyal

product can be expanded in the sense of the S(m1m2)-topology as

a ? b = ab+
h

2i
{a, b}+OS(m1m2)(h

1−2δ) .

We recall the so-called Borel’s theorem: If (aj)j≥0 is a sequence of symbols in Sδ(m),

there exists a symbol in Sδ(m) such that

a ∼
+∞∑
j=0

hjaj, in Sδ(m) .

We will sometimes use the Calderon-Vaillancourt theorem: If a ∈ S(1), then Opwh (a)

is a bounded operator from L2(Rd) to L2(Rd) and

‖Opwh a‖ ≤
∑
|α|≤Md

sup
Rd
‖∂αa‖ .

Another important and classical theorem in the pseudo-differential theory is the G̊arding

inequality : If a ∈ S(1) is a real symbol such that a ≥ 0, then there exists C > 0, h0 > 0

such that, for all ψ ∈ L2(Rd) and h ∈ (0, h0),

〈Opwh aψ, ψ〉 ≥ −Ch‖ψ‖2 .

1.2.2. Egorov theorems. We now recall the classical result (see for instance [194, The-

orem 11.1] and [179, Théorème IV.10]).

Theorem 5.2 ([194, Theorem 11.1, Remark (ii)]). Let P and Q be h-pseudo-differential

operators on Rd, with P ∈ S(1) and Q ∈ S(1). Then the operator e
i
h
QPe−

i
h
Q is a

pseudo-differential operator in S(1), and

e
i
h
QPe−

i
h
Q − Opwh (p ◦ κ) ∈ hS(1).
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Here p is the Weyl symbol of P , and the canonical transformation κ is the time-1 Hamil-

tonian flow associated to principal symbol of Q.

From this classical version of Egorov’s theorem, one can deduce the following refine-

ment that is useful when P does not belong to S(1) (see [102, Appendix]).

Theorem 5.3. Let P and Q be h-pseudo-differential operators on Rd, with P ∈ S(m)

and Q ∈ S(m′), where m and m′ are order functions such that:

(5.1.4) m′ = O(1); mm′ = O(1) .

Then the operator e
i
h
QPe−

i
h
Q is a pseudo-differential operator in S(m), and we have

e
i
h
QPe−

i
h
Q − Opwh (p ◦ κ) ∈ hS(1).

2. Birkhoff normal form

This section provide some insights concerning the semiclassical Birkhoff normal form

in the simple case of h2D2
x + V (x). We will consider

Opwh (H) = h2D2
x + V (x), H(x, ξ) = ξ2 + V (x) ,

where V is a standard symbol so that, for some order function m, H ∈ S(m). We recall

in Appendix 5 some elements of symplectic geometry as well as standard facts coming

from the pseudo-differential theory. If the reader wishes to go further in the proofs of

the results recalled there, he is referred to the books [53, 142, 194]. In this section we

follow the spirit of [37, 189] (see also [188]).

The aim of this section is to prove the following eigenvalue estimate (which improves

the result of Proposition 4.12).

Theorem 5.4. Let η ∈ (0, 1). There exists a smooth function f ? with compact support

arbitrarily small and satisfying |f ?(Z, h)| = O((Z + h)
3
2 ) as (Z, h) → 0 such that the

eigenvalues of the operators Opwh (H) and Opwh (|z|2)+f ? (Opwh (|z|2) , h) below hη coincide

modulo O(h∞). Moreover, if we let

Nh =
{
n ∈ N∗ : (2n− 1)h ≤ h

1
2

}
,

and if λn(h) is the n-th eigenvalue of Opwh (H) we have

λn(h) = (2n− 1)h+O(h
3
2 ) ,

uniformly for n ∈ Nh and h ∈ (0, h0).

2.1. Formal series and homological equations. We introduce the space of formal

series E = R[[x, ξ, h]]. We endow E with the Moyal product (compatible with the Weyl

quantization) denoted by ?.
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Notation 5.5. The degree of xαξβhl is α+β+2l. DN denotes the space of the monomials

of degree N . ON is the space of formal series with valuation at least N . For τ, γ ∈ E, we

denote adτγ = [τ, γ] = τ ? γ − γ ? τ . We notice that [ON1 ,ON2 ] ⊂ ON1+N2.

Lemma 5.6. We let z = x+ iξ. We have

E = ker{|z|2, ·} ⊕ Im{|z|2, ·},

where the Poisson bracket is given by

{f, g} =
∂f

∂ξ

∂g

∂x
− ∂f

∂x

∂g

∂ξ
=

1

i

(
∂f

∂z

∂g

∂z
− ∂f

∂z

∂g

∂z

)
,

where
∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Proof. The family
(
zαzβhγ

)
(α,β,γ)∈N3 is a basis of E . Then it is sufficient to notice

that {|z|2,DN} ⊂ DN and

{|z|2, zαzβ} =
2

i
(α− β)zαzβ.

�

Proposition 5.7. Given γ ∈ O3, there exist formal power series τ, κ ∈ O3 such that

eih
−1adτ (|z|2 + γ) = |z|2 + κ ,

with [κ, |z|2] = 0.

Proof. First, we notice ih−1adτ sends ON into ON+1 so that the exponential is well

defined in the formal series. Then, we proceed by induction. Let N ≥ 1. Assume that

we have, for N ≥ 1 and τN ∈ O3:

eih
−1adτN (|z|2 + γ) = |z|2 +K3 + · · ·+KN+1 +RN+2 +ON+3 ,

where Ki ∈ Di commutes with |z|2 and where RN+2 ∈ DN+2.

Let τ ′ ∈ DN+2. A computation provides:

eih
−1adτN+τ ′ (|z|2 + γ) = H0 +K3 + · · ·+KN+1 +KN+2 +ON+3,

with:

KN+2 = RN+2 + ih−1adτ ′|z|2 = RN+2 − ih−1ad|z|2τ
′ ,

We can write

RN+2 = KN+2 + ih−1ad|z|2τ
′ .

Note that ih−1ad|z|2 = {|z|2, ·}. With Lemma 5.6, we deduce the existence of τ ′ and KN+2

such that KN+2 commutes with |z|2. �

2.2. Quantizing. Let us now quantize the formal procedure.
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Proposition 5.8. There exists a real and compactly supported symbol c(x, ξ, h) and a

smooth function f ? with arbitrarily small compact support such that:

eih
−1Opwh (c)Opwh (H) e−ih

−1Opwh (c)

is a pseudo-differential operator in S(m) and

eih
−1Opwh (c)Opwh (H) e−ih

−1Opwh (c) = Nh + Opwh (sh) + h∞S(1) ,

(i) with Nh = Opwh (|z|2) + f ? (Opwh (|z|2) , h),

(ii) where sh is a symbol in S(m) whose Taylor series at (0, 0, 0) is zero.

Proof. Thanks to the Borel lemma, we may find a smooth function with compact

support c(x, ξ, h) whose Taylor series at (0, 0, 0) is the series τ given in Proposition 5.7.

In particular, Opwh (c) is a bounded self-adjoint operator (by, for instance, the Calderon-

Vaillancourt theorem). Then, we consider the conjugate operator

eih
−1Opwh (c)Opwh (H) e−ih

−1Opwh (c)

that is a pseudo-differential operator, with symbol Nh, by the Egorov theorem. By the

Taylor formula, we can write

eih
−1Opwh (c)Opwh (H) e−ih

−1Opwh (c) =
N∑
n=0

1

n!
adnih−1Opwh (c)Op

w
h (H)

+
h−N−1

N !

∫ 1

0

(1− t)Neith−1Opwh (c)adN+1
ih−1Opwh (c)Op

w
h (H) e−ith

−1Opwh (c) dt .

By the Egorov theorem, the integral remainder

h−N−1

N !

∫ 1

0

(1− t)Neith−1Opwh (c)adN+1
ih−1Opwh (c)Op

w
h (H) e−ith

−1Opwh (c) dt

is a pseudo-differential operator whose symbol admits a Taylor expansion in ON+1. More-

over, the symbol of
N∑
n=0

1

n!
adnih−1Opwh (c)Op

w
h (H)

admits a Taylor expansion that coincides with |z|2 + κ modulo ON+1. In other words,

the Taylor series of Nh is |z|2 + κ where κ is in the form
∑

k+`≥1 dk,`|z|2kh`. Using again

the Borel lemma, we may find a smooth function f(I, h) with compact support (as small

as we want) such that its Taylor series at (0, 0) is∑
k+`≥1

dk,`I
2kh` .

We have :

eih
−1Opwh (c)Opwh (H) e−ih

−1Opwh (c) = Opwh
(
|z|2
)

+ Opwh
(
f(|z|2, h)

)
+ Opwh (Rh) .

with Rh = Opwh (rh) where the Taylor series of rh at (0, 0, 0) is 0.
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Note that κ can also be written in the form
∑

k+`≥1 d
?
k,` (|z|2)

?k
h` and we may also

find a smooth function, with support arbitrarily small, f ?(I, h) with Taylor series∑
k+`≥1

d?k,`I
2kh` ,

and we have, by using the Taylor formula and the functional calculus of pseudo-differential

operators (see [53, Theorem 8.7] for a detailed presentation) to estimate the Taylor

remainder,

Opwh
(
|z|2
)

+ Opwh
(
f(|z|2, h)

)
= Opwh

(
|z|2
)

+ f ?(Opwh
(
|z|2
)
, h) + Opwh

(
R̃h

)
+ h∞S(1) ,

where R̃h = Opwh (r̃h) where the Taylor series of r̃h at (0, 0, 0) is 0. �

2.3. Microlocalizing. First, we get the following.

Lemma 5.9. We have:

N (Nh, β) = O(h−1) .

Proof. If the support of f ? is small enough, for all ε ∈ (0, 1), we have, for all

ψ ∈ C∞0 (R) and h small enough,

(5.2.1) 〈Nhψ, ψ〉 ≥ (1− ε)〈Opwh (|z|2)ψ, ψ〉 .

Thus, by the min-max principle, we infer that

N (Nh, β) ≤ N
(
Opwh (|z|2), (1− ε)−1β

)
and the result follows by counting the eigenvalues of the harmonic oscillator. �

Then, we may use the Weyl’s asymptotic estimate (see for instance Chapter 3, Propo-

sition 3.1).

Lemma 5.10. If β ∈
(

0, lim inf
|x|→+∞

V

)
, we have:

N (Opwh (H), β) = O(h−1) .

The following proposition is devoted to microlocalization estimates of the eigenfunc-

tions of Opwh (H) and Nh.

Proposition 5.11. Let η ∈ (0, 1), δ ∈
(
0, η

2

)
and χ a smooth cutoff function supported

away from a compact neighborhood of 0. Then, there exists h0 > 0 such that for all

h ∈ (0, h0), all eigenvalue λ of Opwh (H) or of Nh such that λ ≤ hη and all associated

eigenfunction ψ, we have

‖Opwh (χ(h−δ(x, ξ)))ψ‖L2(R) = O(h∞)‖ψ‖L2(R) .

Proof. Let us prove this for the eigenfunctions of Nh. We write the eigenvalue

equation

Nhψ = λψ .
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We have

NhOpwh (χ(h−δ(x, ξ))))ψ = λOpwh (χ(h−δx))ψ + [Nh,Opwh (χ(h−δ(x, ξ)))]ψ .

Taking the scalar product with Opwh (χ(h−δ(x, ξ)))ψ, we infer that

〈NhOpwh (χ(h−δ(x, ξ)))ψ,Opwh (χ(h−δ(x, ξ)))ψ〉L2(R) ≤ hη‖Opwh (χ(h−δ(x, ξ)))ψ‖2
L2(R)

+ 〈[Nh,Opwh (χ(h−δ(x, ξ)))]ψ,Opwh (χ(h−δ(x, ξ)))ψ〉L2(R) .

We use again the lower bound (5.2.1) to get

〈NhOpwh (χ(h−δ(x, ξ)))ψ,Opwh (χ(h−δ(x, ξ)))ψ〉L2(R)

≥ (1− ε)〈Opwh
(
|z|2
)
Opwh (χ(h−δ(x, ξ)))ψ,Opwh (χ(h−δ(x, ξ)))ψ〉 .

By a rescaling (x, ξ) = hδ(x̃, ξ̃), a support consideration and the G̊arding inequality with

semiclassical parameter h1−2δ, we get

〈Opwh
(
|z|2
)
Opwh (χ(h−δ(x, ξ)))ψ,Opwh (χ(h−δ(x, ξ)))ψ〉

≥ h2δ(1− Ch1−2δ)‖Opwh (χ(h−δ(x, ξ)))ψ‖2
L2(R) ,

so that we deduce

〈NhOpwh (χ(h−δ(x, ξ)))ψ,Opwh (χ(h−δ(x, ξ)))ψ〉L2(R)

≥ (1− ε)(h2δ − Ch1−2δ)‖Opwh (χ(h−δ(x, ξ)))ψ‖2
L2(R) ,

and thus

((1− ε)(h2δ − Ch)− hη)‖Opwh (χ(h−δ(x, ξ)))ψ‖2
L2(R)

≤ 〈[Nh,Opwh (χ(h−δ(x, ξ)))]ψ,Opwh (χ(h−δ(x, ξ)))ψ〉L2(R) .

The pseudo-differential operator [Nh,Opwh (χ(h−δ(x, ξ)))] has a symbol in the standard

class Sδ(m) (here we have δ ∈
(
0, 1

2

)
). Its symbol is supported in supp(χ(h−δ(x, ξ)))

modulo h∞Sδ(1) and its main term is of order h1−2δ. Therefore, if we consider a cutoff

function χ supported on a slightly bigger support than χ, we deduce

((1− ε)(h2δ − Ch)− hη)‖Opwh (χ(h−δ(x, ξ)))ψ‖2
L2(R) ≤ Ch1−2δ‖Opwh (χ(h−δ(x, ξ)))ψ‖2

L2(R) .

This implies the existence of δ̃ > 0 such that

‖Opwh (χ(h−δ(x, ξ)))ψ‖2
L2(R) ≤ Chδ̃‖Opwh (χ(h−δ(x, ξ)))ψ‖2

L2(R) .

Then the result follows by a iterative argument by replacing χ by χ. �

It is now easy to deduce the following corollary.

Corollary 5.12. Let η ∈ (0, 1), δ ∈
(
0, η

2

)
and χ a smooth cutoff function supported away

from a compact neighborhood of 0. Then, there exists h0 > 0 such that for all h ∈ (0, h0),
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for all ψ ∈ 1[−∞,hη)(Nh) or ψ ∈ 1[−∞,hη)(Op
w
h (H)), we have

‖Opwh (χ(h−δ(x, ξ)))ψ‖L2(R) = O(h∞)‖ψ‖L2(R) .

Proof. By Proposition 5.11, the estimate is clear when ψ is an eigenfunction. Thanks

to Lemmas 5.9 and 5.10, we have

dim range
(
1[−∞,hη)(Nh)

)
= O(h−1), dim range

(
1[−∞,hη)(Op

w
h (H))

)
= O(h−1) .

In particular, these numbers of eigenvalues below hη do not increase more than polyno-

mially in h−1. Then, the result follows by considering orthonormal bases of the spaces

range
(
1[−∞,hη)(Nh)

)
and range

(
1[−∞,hη)(Op

w
h (H))

)
and by applying Proposition 5.11 to

the elements of these bases. �

2.4. Spectral estimates. We have now all the elements to deduce Theorem 5.4.

It essentially follows from an application of the min-max principle. Let us consider the

sequence of the eigenvalues of Nh denoted by (λj(Nh))j≥1. We may consider an associated

orthonormal family of eigenfunctions (ψj,h)≥1. Let us consider a positive integer M less

than dim range
(
1[−∞,hη)(Nh)

)
. With the notations of Proposition 5.8, we let

ϕj,h = e−ih
−1Opwh (c)ψj,h

and we introduce

Vh = span
1≤j≤M

ϕj,h .

Then, with Proposition 5.8, for all ϕ ∈ Vh, we have

〈Opwh (H)ϕ, ϕ〉 ≤ λM(Nh)‖ψ‖2
L2(R) + 〈Opwh (sh)ψ, ψ〉+O(h∞)‖ψ‖2

L2(R) .

with ψ = eih
−1Opwh (c)ϕ. Thanks to Corollary 5.12 and the fact that the Taylor series

of sh with respect to (x, ξ, h) is zero at (0, 0, 0), we deduce, by symbolic calculus for

pseudo-differential operators, that

|〈Opwh (sh)ψ, ψ〉| = O(h∞)‖ψ‖2
L2(R) .

From the min-max principle, we infer that the M -th eigenvalue λM(h) of Opwh (H) satisfies:

λM(h) ≤ λM(Nh) +O(h∞) .

We leave the proof of the reverse inequality to the reader. The rest of the proof of the

theorem easily follows from the functional calculus for self-adjoint operators.
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Part 2

Main theorems





CHAPTER 6

Spectral reductions

The soul unfolds itself, like a lotus of countless petals.

The Prophet, Self-Knowledge, Khalil Gibran

In this chapter we introduce a model operator (depending on parameters). It appears

in dimension two when studying vanishing magnetic fields in the case when the cancella-

tion line of the field intersects the boundary. Though this model seems very specific, we

will see how it can lead to a quite general strategy: the (magnetic) Born-Oppenheimer

approximation and its relations to WKB constructions.

1. Vanishing magnetic fields and boundary

1.1. Why considering vanishing magnetic fields? A motivation is related to

the papers of R. Montgomery [149], X-B. Pan and K-H. Kwek [159] and B. Helffer and

Y. Kordyukov [96] (see also [103], [91] and the thesis of Miqueu [146]) where the authors

analyze the spectral influence of the cancellation of the magnetic field in the semiclassical

limit. Another motivation appears in the paper [54] where the authors are concerned

with the “magnetic waveguides” and inspired by the physical considerations [177, 89]

(see also [116]). In any case the case of vanishing magnetic fields can inspire the analysis

of non trivial examples of magnetic normal forms, as we will see later.

1.2. Montgomery operator. Without going into the details let us describe the

model operator introduced in [149]. Montgomery was concerned by the magnetic Lapla-

cian (−ih∇ + A)2 on L2(R2) in the case when the magnetic field B = ∇ ×A vanishes

along a smooth curve Γ. Assuming that the magnetic field non degenerately vanishes, he

was led to consider the self-adjoint realization on L2(R2) of

L = D2
t + (Ds − st)2 .

In this case the magnetic field is given by β(s, t) = s so that the zero locus of β is the

line s = 0. Let us write the following change of gauge:

LMo = e−i
s2t
2 L ei

s2t
2 = D2

s +

(
Dt +

s2

2

)2

.

The Fourier transform (after changing ζ in −ζ) with respect to t gives the direct integral:

LMo =

∫ ⊕
L

[1]
ζ dζ, where L

[1]
ζ = D2

s +

(
ζ − s2

2

)2

.
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Note that this family of model operators will be seen as special case of a more general

family in Section 2.2. Let us recall a few important properties of the lowest eigenvalue

ν
[1]
1 (ζ) of L

[1]
ζ (for the proofs, see [159, 92, 109]).

Proposition 6.1. The following properties hold:

(1) For all ζ ∈ R, ν
[1]
1 (ζ) is simple.

(2) The function ζ 7→ ν
[1]
1 (ζ) is analytic.

(3) We have: lim
|ζ|→+∞

ν
[1]
1 (ζ) = +∞.

(4) The function ζ 7→ ν
[1]
1 (ζ) admits a unique minimum at a point ζ

[1]
0 and it is non

degenerate.

We have:

(6.1.1) sp(L) = spess(L) = [νMo,+∞) ,

with νMo = ν
[1]
1 (ζ

[1]
0 ). With a finite element method and Dirichlet condition on the

artificial boundary, a upper-bound of the minimum is obtained in [109, Table 1] and the

numerical simulations provide νMo ' 0.5698 reached for ζ
[1]
0 ' 0.3467 with a discretization

step at 10−4 for the parameter ζ. This numerical estimate is already mentioned in [149].

In fact we can prove the following lower bound (see [21] for a proof using the Temple

inequality).

Proposition 6.2. We have: νMo ≥ 0.5.

If we consider the Neumann realization L
[1],+
ζ of D2

s +
(
ζ − s2

2

)2

on R+, then, by

symmetry, the bottom of the spectrum of this operator is linked to the Montgomery

operator:

Proposition 6.3. If we denote by ν
[1],+
1 (ζ) the bottom of the spectrum of L

[1],+
ζ , then

ν
[1],+
1 (ζ) = ν

[1]
1 (ζ) .

1.3. Generalized Montgomery operators. It turns out that we can generalize

the Montgomery operator by allowing an higher order of degeneracy of the magnetic

field. Let k be a positive integer. The generalized Montgomery operator of order k is the

self-adjoint realization on R defined by:

L
[k]
ζ = D2

t +

(
ζ − tk+1

k + 1

)2

.

The following theorem (which generalizes Proposition 6.1) is proved in [78, Theorem 1.3].

Theorem 6.4. ζ 7→ ν
[k]
1 (ζ) admits a unique and non-degenerate minimum at ζ = ζ

[k]
0 .

Notation 6.5. For real ζ, the lowest eigenvalue of L
[k]
ζ is denoted by ν

[k]
1 (ζ) and we denote

by u
[k]
ζ the positive and L2-normalized eigenfunction associated with ν

[k]
1 (ζ). We denote

in the same way its holomorphic extension near ζ
[k]
0 .
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1.4. A broken Montgomery operator.

1.4.1. Heuristics and motivation. As mentioned above, the bottom of the spectrum

of L is essential. This fact is due to the translation invariance along the zero locus of B.

This situation reminds what happens in the waveguides framework. Guided by the ideas

developed for the waveguides, we aim at analyzing the effect of breaking the zero locus

of B. Introducing the “breaking parameter” θ ∈ (−π, π], we will break the invariance of

the zero locus in two different ways:

(1) Case with Dirichlet boundary: LDir
θ . We let R2

+ = {(s, t) ∈ R2, t > 0} and con-

sider LDir
θ the Dirichlet realization, defined as a Friedrichs extension, on L2(R2

+)

of:

D2
t +

(
Ds +

t2

2
cos θ − st sin θ

)2

.

(2) Case with Neumann boundary: LNeu
θ . We consider LNeu

θ the Neumann realiza-

tion, defined as a Friedrichs extension, on L2(R2
+) of:

D2
t +

(
Ds +

t2

2
cos θ − st sin θ

)2

.

The corresponding magnetic field is B(s, t) = t cos θ − s sin θ. It cancels along

the half-line t = s tan θ.

Notation 6.6. We use the notation L•θ where • can be Dir, Neu.

1.4.2. Properties of the spectra. Let us analyze the dependence of the spectra of L•θ
on the parameter θ. Denoting by S the axial symmetry (s, t) 7→ (−s, t), we get:

L•−θ = SL•θS ,

where the line denotes the complex conjugation. Then, we notice that L•θ and L•θ are

isospectral. Therefore, the analysis is reduced to θ ∈ [0, π). Moreover, we get:

SL•θS = L•π−θ .

The study is reduced to θ ∈
[
0, π

2

]
.

We observe that at θ = 0 and θ = π
2

the domain of L•θ is not continuous.

Lemma 6.7. The family (L•θ)θ∈(0,π
2 ) is analytic of type (A).

The following proposition states that the infimum of the essential spectrum is the

same for LDir
θ , LNeu

θ and Lθ.

Proposition 6.8. For θ ∈
(
0, π

2

)
, we have inf spess(L

•
θ) = νMo.

In the Dirichlet case, the spectrum is essential.

Proposition 6.9. For all θ ∈
(
0, π

2

)
, we have sp(LDir

θ ) = [νMo,+∞).
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Notation 6.10. Let us denote by λ•n(θ) the n-th number in the sense of the Rayleigh

variational formula for L•θ.

The following proposition (the proof of which can be found in [159, Lemma 5.2])

states that LNeu
θ admits an eigenvalue below its essential spectrum when θ ∈

(
0, π

2

]
.

Proposition 6.11. For all θ ∈
(
0, π

2

]
, λNeu

1 (θ) < νMo.

1.5. Singular limit θ → 0.

1.5.1. Renormalization. Thanks to Proposition 6.11, one knows that breaking the

invariance of the zero locus of the magnetic field with a Neumann boundary creates a

bound state. We also would like to tackle this question for Lθ and in any case to estimate

more quantitatively this effect. A way to do this is to consider the limit θ → 0 which

reveals new model operators.

Notation 6.12. We let h = tan θ.

First, we perform a scaling:

(6.1.2) s = h−1(cos θ)−1/3σ, t = (cos θ)−1/3τ .

The operator LNeu
θ is thus unitarily equivalent to (cos θ)2/3L̂Neu

tan θ, where the expression of

L̂Neu
tan θ is given by:

(6.1.3) D2
τ +

(
hDσ +

τ 2

2
− στ

)2

.

1.5.2. New model operators. We are led to two families of one dimensional operators

on L2(R2
Neu) with two parameters (x, ξ) ∈ R2:

MNeu
x,ξ = D2

τ +

(
−ξ − xτ +

τ 2

2

)2

.

These operators have compact resolvents and are analytic families with respect to the

variables (x, ξ) ∈ R2.

Notation 6.13. We denote by µNeu
n (x, ξ) the n-th eigenvalue of MNeu

x,ξ .

Roughly speaking MNeu
x,−ξ is the operator valued symbol of (6.1.3), so that we expect

that the behavior of the so-called “band function” (x, ξ) 7→ µNeu
1 (x, ξ) determines the

structure of the low lying spectrum of MNeu
h,x,ξ in the limit h→ 0.

The following theorem (proved in Chapter 4, Section 3.3) states that the band function

admits a minimum and was initially proved in [21].

Theorem 6.14. The function R × R 3 (x, ξ) 7→ µNeu
1 (x, ξ) admits a minimum denoted

by µNeu
1

. Moreover we have

lim inf
|x|+|ξ|→+∞

µNeu
1 (x, ξ) ≥ νMo > min

(x,ξ)∈R2
µNeu

1 (x, ξ) = µNeu

1
.
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Remark 6.15. We have:

(6.1.4) µNeu

1
≤ µ

1
.

Numerical experiments lead to the following conjecture.

Conjecture 6.16. • The inequality (6.1.4) is strict.

• The minimum µNeu
1

is unique and non-degenerate.

Remark 6.17. Under Conjecture 6.16, it is possible to prove complete asymptotic ex-

pansions of the first eigenvalues of LNeu
θ . In fact, this can be done by using the magnetic

Born-Oppenheimer approximation (see Section 2).

2. Magnetic Born-Oppenheimer approximation

This section is devoted to the analysis of the operator on L2(Rm
s × Rn

t , ds dt):

(6.2.1) Lh = (−ih∇s + A1(s, t))2 + (−i∇t + A2(s, t))2 ,

We will assume that A1 and A2 are real analytic. We would like to describe the lowest

eigenvalues of this operator in the limit h→ 0 under elementary confining assumptions.

The problem of considering partial semiclassical problems appears for instance in the

context of [140, 123] where the main issue is to approximate the eigenvalues and eigen-

functions of operators in the form:

(6.2.2) − h2∆s −∆t + V (s, t) .

The main idea, due to Born and Oppenheimer in [27], is to replace, for fixed s, the

operator −∆t + V (s, t) by its eigenvalues µk(s). Then we are led to consider for instance

the reduced operator (called Born-Oppenheimer approximation):

−h2∆s + µ1(s)

and to apply the semiclassical techniques à la Helffer-Sjöstrand [110, 111] to analyze in

particular the tunnel effect when the potential µ1 admits symmetries. The main point

it to make the reduction of dimension rigorous. Note that we have always the following

lower bound:

(6.2.3) − h2∆s −∆t + V (s, t) ≥ −h2∆s + µ1(s) ,

which involves accurate estimates of Agmon with respect to s.

2.1. Electric Born-Oppenheimer approximation. Before dealing with the so-

called Born-Oppenheimer approximation in presence of magnetic fields, we shall recall

the philosophy in a simplified electric case.

2.1.1. Electric result. Let us explain the question in which we are interested. We shall

study operators in L2(R× Ω) (with Ω ⊂ Rn) in the form

Hh = h2D2
s −∆t + V (s, t) ,
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where V ∈ C∞(R×Ω) is a non negative potential (with V as a polynomial for simplicity).

The operator is defined as the self-adjoint extension associated with the quadratic form

Qh(ψ) =

∫
R×Ω

h2|∂sψ|2 + |∇tψ|2 + V (s, t)|ψ|2 ds dt .

We will also need the partial operator V(s) = −∆t + V (t, s) defined in the same way by

its quadratic form

qs(ϕ) =

∫
Ω

|∇tϕ|2 + V (s, t)|ϕ|2 dt .

We will assume that V (s, t) →
|t|→+∞

+∞. Moreover we will assume that (V(s))s∈R is an

analytic family of type (A) in the sense of Kato.

It can be shown that the lowest eigenvalue of V(s) denoted by ν(s) is simple (and

thus it is analytic).

Assumption 6.18. The function ν(s) admits a unique and non degenerate minimum ν0

at s0. Moreover, we have

lim inf
|s|→+∞

ν(s) > ν0 .

We want to analyze the low lying eigenvalues of Hh and we now try to understand the

heuristics. We hope that Hh can be described by its “Born-Oppenheimer” approximation:

HBO
h = h2D2

s + ν1(s) ,

which is an electric Laplacian in dimension one. Then, we guess that HBO
h is well approx-

imated by its Taylor expansion:

h2D2
s + ν(s0) +

ν ′′1 (s0)

2
(s− s0)2 .

In fact this heuristics can be made rigorous.

Assumption 6.19. For R ≥ 0, we let ΩR = R1+n \ B(0, R). We denote by HDir,ΩR
h the

Dirichlet realization on ΩR of h2D2
s + D2

t + V (s, t). We assume that there exist R0 ≥ 0,

h0 > 0 and ν∗0 > ν0 such that, for all h ∈ (0, h0),

λ
Dir,ΩR0
1 (h) ≥ ν∗0 .

Remark 6.20. In particular, due to the monotonicity of the Dirichlet realization with

respect to the domain, Assumption 6.27 implies that there exist R0 > 0 and h0 > 0 such

that for all R ≥ R0 and h ∈ (0, h0):

λDir,ΩR
1 (h) ≥ λ

Dir,ΩR0
1 (h) ≥ ν∗0 .

By using the Persson’s theorem (see Chapter 1, Proposition 1.31), we have the fol-

lowing proposition.

Proposition 6.21. Let us assume Assumption 6.27. There exists h0 > 0 such that for

all h ∈ (0, h0):

inf spess(Hh) ≥ ν∗0 .
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The following theorem is proved in Chapter 11.

Theorem 6.22. Under Assumptions 6.18 and 6.19, the n-th eigenvalue of Hh has the

expansion

λn(h) = ν(s0) + h(2n− 1)

(
ν ′′1 (s0)

2

)1/2

+O(h
3
2 ) .

2.1.2. Counting function. In the last theorem we are only interested in the low lying

spectrum. It turns out that the so-called Born-Oppenheimer reduction is a slightly more

general procedure (see [140, 123]) which provides in general an effective Hamiltonian

which describes the spectrum below some fixed energy level (and allows for instance to

estimate the counting function).

Notation 6.23. Given H a semi-bounded self-adjoint operator and a < inf spess(H), we

denote

N(H, a) = #{λ ∈ sp(H) : λ ≤ a} < +∞ .

The eigenvalues are counted with multiplicity.

The following theorem (see the proof in Chapter 11, Section 5) provides the asymp-

totics of the number of bound states (see the related works [9, 150, 57]).

Theorem 6.24. Let us assume that ν1 is bounded, that lim inf
|s|→+∞

ν1(s) > ν0. In addition,

if us denotes the positive and L2-normalized eigenfunction of V(s) associated with ν1(s),

we assume that R(s) = ‖∂sus‖2
L2(Rt) is bounded. Then, for E ∈

(
ν0, lim inf
|s|→+∞

ν1(s)

)
and if

ν2 ≥ E ′ > E, we have

N (Hh, E) ∼
h→0

1

πh

∫
R

√
(E − ν1(s))+ ds .

2.2. Magnetic case. We would like to understand the analogy between (6.2.1) and

(6.2.2). In particular even the formal dimensional reduction does not seem to be as clear

as in the electric case. Let us write the operator valued symbol of Lh. For (x, ξ) ∈ Rn×Rn,

we introduce the electro-magnetic Laplacian acting on L2(Rn, dt):

Mx,ξ = (−i∇t + A2(x, t))2 + (ξ + A1(x, t))2 .

Denoting by µ1(x, ξ) = µ(x, ξ) its lowest eigenvalue we would like to replace Lh by the

m-dimensional pseudo-differential operator:

µ(s,−ih∇s) .

This can be done modulo O(h) (see [143]). Nevertheless we do not have an obvious

comparison as in (6.2.3) so that the microlocal behavior of the eigenfunctions with respect

to s is not directly reachable (we can not directly apply the exponential estimates of

[141] due to the possible essential spectrum, see Assumption 6.27). In particular we

shall prove that the remainder O(h) is indeed small when acting on the eigenfunctions
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and then estimate it precisely. In addition, the point of view presented below is rather

self-contained and do not assume more that the elements of pseudo-differential calculus.

2.2.1. Eigenvalue asymptotics in the magnetic Born-Oppenheimer approximation. We

will work under the following assumptions. The first assumption states that the lowest

eigenvalue of the operator symbol of Lh admits a unique and non-degenerate minimum.

Assumption 6.25. - The function Rm×Rm 3 (x, ξ) 7→ µ(x, ξ) is continuous and

admits a unique and non degenerate minimum µ0 at a point denoted by (x0, ξ0)

and such that lim inf |x|+|ξ|→+∞ µ(x, ξ) > µ0.

- The family (Mx,ξ)(x,ξ)∈Rm×Rm can be extended into a holomorphic family of type

(A) in the sense of Kato [121, Chapter VII] in a complex neighborhood V0 of

(x0, ξ0).

- For all (x, ξ) ∈ V0 ∩ (Rm × Rm), µ(x, ξ) is a simple eigenvalue.

Assumption 6.26. Under Assumption 6.25, let us denote by Hessµ1(x0, ξ0) the Hessian

matrix of µ1 at (x0, ξ0). We assume that the spectrum of Hessµ1(x0, ξ0)(σ,Dσ) is simple.

The next assumption is a spectral confinement.

Assumption 6.27. For R ≥ 0, we let ΩR = Rm+n \ B(0, R). We denote by LDir,ΩR
h the

Dirichlet realization on ΩR of (−i∇t +A2(s, t))2 + (−ih∇s +A1(s, t))2. We assume that

there exist R0 ≥ 0, h0 > 0 and µ∗0 > µ0 such that for all h ∈ (0, h0):

λ
Dir,ΩR0
1 (h) ≥ µ∗0 .

We have the following proposition.

Proposition 6.28. Let us assume Assumption 6.27. There exists h0 > 0 such that, for

all h ∈ (0, h0),

inf spess(Lh) ≥ µ∗0 .

We can now state the theorem concerning the spectral asymptotics (see Chapter 12

and [20]).

Theorem 6.29. Under Assumptions 6.25, 6.26, 6.27 and assuming in addition that A1

and A2 are polynomials, for all n ≥ 1, there exist a sequence (γj,n)j≥0 and h0 > 0 such

that for all h ∈ (0, h0) the n-th eigenvalue of Lh exists and satifies:

λn(h) ∼
h→0

∑
j≥0

γj,nh
j/2 ,

where γ0,n = µ0, γ1,n = 0 and µ2,n is the n-th eigenvalue of 1
2
Hessx0,ξ0 µ1(σ,Dσ).

2.2.2. Coherent states. Let us recall the formalism of coherent states which play a

central role in the proof of Theorem 6.29. We refer to the books [74] and [42] for details

(see also [173]). We let:

g0(σ) = π−1/4e−|σ|
2/2
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and the usual creation and annihilation operators:

aj =
1√
2

(σj + ∂σj), a∗j =
1√
2

(σj − ∂σj)

which satisfy the commutator identities:

[aj, a
∗
j ] = 1, [aj, a

∗
k] = 0 if k 6= j .

We notice that

σj =
aj + a∗j√

2
, ∂σj =

aj − a∗j√
2

, aja
∗
j =

1

2
(D2

σj
+ σ2

j + 1) .

For (u, p) ∈ Rm × Rm, we introduce the coherent state

fu,p(σ) = eip·σg0(σ − u) ,

and the associated projection

Πu,pψ = 〈ψ, fu,p〉L2(Rm)fu,p = ψu,pfu,p ,

which satisfies

ψ =

∫
R2m

Πu,pψ du dp ,

and the Parseval formula

‖ψ‖2 =

∫
Rn

∫
R2m

|ψu,p|2 du dp dτ .

We recall that

ajfu,p =
uj + ipj√

2
fu,p

and

(aj)
`(a∗k)

qψ =

∫
R2m

(
uj + ipj√

2

)`(
uk − ipk√

2

)q
Πu,pψ du dp .

We recall that (see (12.1.1)):

Lh = (−i∇τ + A2(x0 + h1/2σ, τ))2 + (ξ0 − ih1/2∇σ + A1(x0 + h1/2σ, τ))2

and, assuming that A1 and A2 are polynomial:

Lh = L0 + h1/2L1 + hL2 + . . .+ (h1/2)MLM .

If we write the anti-Wick ordered operator, we get:

(6.2.4) Lh = L0 + h1/2L1 + hLW
2 + . . .+ (h1/2)MLW

M︸ ︷︷ ︸
LW
h

+hR2 + . . .+ (h1/2)MRM︸ ︷︷ ︸
Rh

,

where the Rj satisfy, for j ≥ 2:

(6.2.5) hj/2Rj = hj/2Oj−2(σ,Dσ)

and are the remainders in the so-called anti-Wick ordering. In the last formula the

notation Ok(σ,Dσ) stands for a polynomial operator with total degree in (σ,Dσ) less
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than k. We recall that

LW
h =

∫
R2m

Mx0+h1/2u,ξ0+h1/2p du dp .

2.2.3. A family of examples. In order to make our Assumptions 6.25 and 6.27 more

concrete, let us provide a family of examples in dimension two which is related to [109]

and the more recent result by Fournais and Persson [78]. Our examples are strongly

connected with [96, Conjecture 1.1 and below].

For k ∈ N \ {0}, we consider the operator the following magnetic Laplacian on

L2(R2, dx ds):

Lh,A[k] = h2D2
t +

(
hDs − γ(s)

tk+1

k + 1

)2

.

Let us perform the rescaling:

s = s, t = h
1

1+k t .

The operator becomes

h
2k+2
k+2

(
D2
t +

(
h

1
k+2Ds − γ(s)

tk+1

k + 1

)2
)
.

and the investigation is reduced to the one of

L
vf,[k]
h = D2

t +

(
h

1
k+2Ds − γ(s)

tk+1

k + 1

)2

.

Proposition 6.30. Let us assume that either γ is polynomial and admits a unique

minimum γ0 > 0 at s0 = 0 which is non degenerate, or γ is analytic and such that

lim infx→±∞ γ = γ∞ ∈ (γ0,+∞). For k ∈ N \ {0}, the operator L
[k]
h satisfies Assumptions

6.25, 6.26 and 6.27. Moreover we can choose µ∗0 > µ0.

Proof. Let us verify Assumption 6.25. The h
1
k+2 -symbol of L

[k]
h with respect to s is:

M[k]
x,ξ = D2

t +

(
ξ − γ(x)

tk+1

k + 1

)2

.

The lowest eigenvalue of M[k]
x,ξ, denoted by µ

[k]
1 (x, ξ), satisfies:

µ
[k]
1 (x, ξ) = (γ(x))

2
k+2ν

[k]
1

(
(γ(x))−

1
k+2 ξ

)
,

where ν
[k]
1 (ζ) denotes the first eigenvalue of

L
[k]
ζ = D2

t +

(
ζ − tk+1

k + 1

)2

.

We recall that ζ 7→ ν
[k]
1 (ζ) admits a unique and non-degenerate minimum at ζ = ζ

[k]
0

(see Theorem 6.4). The holomorphic extension can be deduced from the Lax-Milgram

theorem. Therefore Assumption 6.25 is satisfied. This is much more delicate (and beyond
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the scope of this book) to verify Assumption 6.27 and this relies on a basic normal form

procedure that we will use for our magnetic WKB constructions. �

3. Magnetic WKB expansions: examples

3.1. WKB analysis and estimates of Agmon. As we explained in Chapter 0,

Section 3.4.1, in many papers about asymptotic expansions of the magnetic eigenfunc-

tions, one of the methods consists in using a formal power series expansion. It turns

out that these constructions are never in the famous WKB form, but in a weaker and

somehow more flexible one. When there is an additional electric potential, the WKB

expansions are possible as we can see in [112] and [144]. The reason for which we

would like to have a WKB description of the eigenfunctions is to get a precise estimate

of the magnetic tunnel effect in the case of symmetries. Until now, such estimates are

only investigated in two dimensional corner domains in [15] and [16] for the numerical

counterpart. It turns out that the crucial point to get an accurate estimate of the ex-

ponentially small splitting of the eigenvalues is to establish exponential decay estimates

of Agmon type. These localization estimates are rather easy to obtain (at least to get

the good scale in the exponential decay) in the corner cases due to the fact that the

operator is “more elliptic” than in the regular case in the following sense: the spectral

asymptotics is completely drifted by the principal symbol. Nevertheless, let us notice

here that, on the one hand, the numerics suggests that the eigenvalues do not seem to

be simple and, on the other hand, establishing the optimal estimates of Agmon is still

an open problem. In smooth cases, due to a lack of ellipticity and to the multiple scales,

the localization estimates obtained in the literature are in general not optimal or rely on

the presence of an electric potential (see [151, 152]): the principal symbol provides only

a partial confinement whereas the precise localization of the eigenfunctions seems to be

determined by the subprincipal terms. Our WKB analysis (inspired by our paper [20]),

in the explicit cases discussed in this book, will give some hints for the optimal candidate

to be the effective Agmon distance.

3.2. WKB expansions for a canonical model. The following theorem states that

the first eigenfunctions of L
vf,[k]
h are in the WKB form. It turns out that this property is

very general and verified for the general Lh under our generic assumptions. Nevertheless

this general and fundamental result is beyond the scope of this book. We will only give

the flavor of such constructions for our explicit model. As far as we know such a result

was not even known on an example. Let us state one of the main results of this book

concerning the WKB expansions (see Chapter 13 and [20] for a more general statement

about Lh).

Theorem 6.31. Let us assume that either γ is polynomial and admits a unique min-

imum γ0 > 0 at s0 = 0 which is non degenerate, either γ is analytic and such that
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lim infx→±∞ γ = γ∞ ∈ (γ0,+∞). There exist a function Φ = Φ(s) defined in a neighbor-

hood V of 0 with ReΦ′′(0) > 0 and a sequence of real numbers (λvf
n,j)j≥0 such that the n-th

eigenvalue of L
vf,[k]
h satisfies

λvf
n (h) ∼

h→0

∑
j≥0

λvf
n,jh

j
k+2

in the sense of formal series, with λvf
n,0 = µ0 = ν

[k]
1 (ζ

[k]
0 ). Besides there exists a formal

series of smooth functions on V × Rn
t

avf
n (., h) ∼

h→0

∑
j≥0

avf
n,jh

j
k+2

with avf
n,0 6= 0 such that(

L
vf,[k]
h − λn(h)

)(
avf
n (·, h)e−Φ/h

1
k+2

)
= O (h∞) e−Φ/h

1
k+2

,

In addition, there exists c0 > 0 such that for all h ∈ (0, h0)

B
(
λvf
n,0 + λvf

n,1h
1
k+2 , c0h

2
k+2

)
∩ sp

(
L

vf,[k]
h

)
= {λvf

n (h)} ,

and λvf
n (h) is a simple eigenvalue.

Remark 6.32. In fact, if γ(s)−1γ(0) − 1 is small enough (weak magnetic barrier), our

construction of Φ can be made global, that is V = R. In this book, we will provide a

proof of this theorem when γ is a polynomial.

We will prove Theorem 6.31 in Chapter 13, Section 1.

3.3. Curvature induced magnetic bound states. As we have seen, in many

situations the spectral splitting appears in the second term of the asymptotic expansion

of the eigenvalues. It turns out that we can also deal with more degenerate situations.

The next lines are motivated by the initial paper [104] whose main result is recalled in

(0.1.8). Their fundamental result establishes that a smooth Neumann boundary can trap

the lowest eigenfunctions near the points of maximal curvature. These considerations are

generalized in [75, Theorem 1.1] where the complete asymptotic expansion of the n-th

eigenvalue of Lc
h,A = (−ih∇+ A)2 is provided and satisfies in particular:

(6.3.1) Θ0h− C1κmaxh
3/2 + (2n− 1)C1Θ

1/4
0

√
3k2

2
h7/4 + o(h7/4) ,

where k2 = −κ′′(0). In this book, as in [75], we will consider the magnetic Neumann

Laplacian on a smooth domain Ω such that the algebraic curvature κ satisfies the following

assumption.

Assumption 6.33. The function κ is smooth and admits a unique and non-degenerate

maximum.

In Chapter 13, Section 2 we prove that the lowest eigenfunctions are approximated

by local WKB expansions which can be made global when for instance ∂Ω is the graph of
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a smooth function. In particular we recover the term C1Θ
1/4
0

√
3k2

2
by a method different

from the one of Fournais and Helffer and we explicitly provide a candidate to be the

optimal distance of Agmon in the boundary. Since it is quite unusual to exhibit a pure

magnetic Agmon distance, let us provide a precise statement. For that purpose, let us

consider the following Neumann realization on L2(R2
+,m(s, t) ds dt), which is nothing but

the expression of the magnetic Laplacian in curvilinear coordinates,

(6.3.2) Lc
h = m(s, t)−1hDtm(s, t)hDt

+m(s, t)−1

(
hDs + ζ0h

1
2 − t+ κ(s)

t2

2

)
m(s, t)−1

(
hDs + ζ0h

1
2 − t+ κ(s)

t2

2

)
,

where m(s, t) = 1− tκ(s). Thanks to the rescaling

t = h1/2τ, s = σ ,

and after division by h the operator Lc
h becomes

Lc
h = m(σ, h1/2τ)−1Dτm(σ, h1/2τ)Dτ +m(σ, h1/2τ)−1Phm(σ, h1/2τ)−1Ph ,

on the space L2(m(σ, h1/2τ) dσ dτ) and where

Ph = h1/2Dσ + ζ0 − τ + h1/2κ(σ)
τ 2

2
.

Theorem 6.34. Under Assumption 8.13, there exist a function

Φ = Φ(σ) =

(
2C1

ν ′′1 (ζ0)

)1/2 ∣∣∣∣∫ σ

0

(κ(0)− κ(s))1/2 ds

∣∣∣∣
defined in a neighborhood V of (0, 0) such that ReΦ′′(0) > 0, and a sequence of real

numbers (λc
n,j) such that

λc
n(h) ∼

h→0

∑
j≥0

λc
n,jh

j
4 .

Besides there exists a formal series of smooth functions on V,

ac
n ∼
h→0

∑
j≥0

ac
n,jh

j
4

such that

(Lc
h − λc

n(h))
(
ac
ne
−Φ/h

1
4

)
= O (h∞) e−Φ/h

1
4 .

We also have that λc
n,0 = Θ0, λc

n,1 = 0, λc
n,2 = −C1κmax and λc

n,3 = (2n− 1)C1Θ
1/4
0

√
3k2

2
.

The main term in the Ansatz is in the form

ac
n,0(σ, τ) = f c

n,0(σ)uζ0(τ) .

Moreover, for all n ≥ 1, there exist h0 > 0, c > 0 such that for all h ∈ (0, h0), we have

B
(
λc
n,0 + λc

n,2h
1/2 + λc

n,3h
3
4 , ch

3
4

)
∩ sp (Lc

h) = {λc
n(h)} ,

and λc
n(h) is a simple eigenvalue.
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Remark 6.35. In particular, Theorem 6.34 proves that there are no odd powers of h
1
8

in the expansion of the eigenvalues (see [75, Theorem 1.1]).

114



CHAPTER 7

Magnetic wells in dimension two

Ce n’est pas assez d’avoir l’esprit bon, mais

le principal est de l’appliquer bien.

Discours de la méthode, Descartes

This chapter is devoted to the semiclassical analysis with magnetic fields in dimension

two in the following situations:

(i) the case when the magnetic field vanishes along a smooth curve,

(ii) the case when it does not vanish.

Each situation leads to different semiclassical behaviors and technics:

(i) a dimensional reduction in the spirit of the Born-Oppenheimer approximation,

(ii) a semiclassical Birkhoff normal form.

1. Vanishing magnetic fields

In this section we study the influence of the cancellation of the magnetic field along

a smooth curve in dimension two.

1.1. Framework. We consider a vector potential A ∈ C∞(R2,R2) and we consider

the self-adjoint operator on L2(R2) defined by:

Lh,A = (−ih∇+ A)2 .

Notation 7.1. We will denote by λn(h) the n-th eigenvalue of Lh,A.

1.1.1. How does B vanish? In order Lh,A to have compact resolvent, we will assume

that:

(7.1.1) B(x) →
|x|→+∞

+∞.

As in [159, 96], we will investigate the case when B cancels along a closed and smooth

curve C in R2. We have already discussed the motivation in Chapter 6, Section 1. Let us

notice that the assumption (7.1.1) could clearly be relaxed so that one could also consider

a smooth, bounded and simply connected domain of R2 with Dirichlet or Neumann

condition on the boundary as far as the magnetic field does not vanish near the boundary

(in this case one should meet a model presented in Chapter 6, Section 1). We let:

C = {c(s), s ∈ R} .
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We assume that B is positive inside C and negative outside. We introduce the standard

tubular coordinates (s, t) near C defined by the map

(s, t) 7→ c(s) + tn(s) ,

where n(s) denotes the inward pointing normal to C at c(s). The function B̃ will denote

B in the coordinates (s, t), so that B̃(s, 0) = 0.

1.1.2. Heuristics and leading operator. Let us adopt first a heuristic point of view

to introduce the leading operator of the analysis presented in this section. We want to

describe the operator Lh,A near the cancellation line of B, that is near C. In a rough

approximation, near (s0, 0), we can imagine that the line is straight (t = 0) and that the

magnetic field cancels linearly so that we can consider B̃(s, t) = γ(s0)t where γ(s0) is the

derivative of B̃ with respect to t. Therefore the operator to which we are reduced at the

leading order near s0 is:

h2D2
t +

(
hDs − γ(s0)

t2

2

)2

.

This operator is a special case of the larger class introduced in Chapter 6, see also Chapter

12, Section 2.2.

1.2. Montgomery operator and rescaling. We will be led to use the Montgomery

operator with parameters η ∈ R and γ > 0:

(7.1.2) L
[1]
γ,ζ = D2

t +
(
ζ − γ

2
t2
)2

.

The Montgomery operator has clearly compact resolvent and we can consider its lowest

eigenvalue denoted by ν
[1]
1 (γ, ζ). In fact one can take γ = 1 up to the rescaling t = γ−1/3τ

and L
[1]
γ,ζ is unitarily equivalent to:

γ2/3

(
D2
τ + (−ηγ−1/3 +

1

2
τ 2)2

)
= γ2/3L

[1]

1,ζγ−1/3 .

Let us emphasize that this rescaling is related with the normal form analysis that we

will use in the semiclassical spectral asymptotics. For all γ > 0, we have (see Chapter 6,

Proposition 6.1):

(7.1.3) ζ 7→ ν
[1]
1 (γ, ζ) admits a unique and non-degenerate minimum at a point ζ

[1]
0 (γ) .

If γ = 1, we have ζ
[1]
0 (1) = ζ

[1]
0 . We may write:

(7.1.4) inf
ζ∈R

ν
[1]
1 (γ, ζ) = γ2/3ν

[1]
1 (ζ

[1]
0 ) .

Let us recall some notation.

Notation 7.2. We notice that L
[1]
ζ = L

[1]
1,ζ and we denote by u

[1]
ζ the L2-normalized and

positive eigenfunction associated with ν
[1]
1 (ζ).

For fixed γ > 0, the family (L
[1]
γ,ζ)η∈R is an analytic family of type (A) so that

(ν
[1]
1 (ζ), u

[1]
ζ ) has an analytic dependence on ζ (see Chapter 2, Section 5 and also [121]).
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1.3. Semiclassical asymptotics with vanishing magnetic fields. We consider

the normal derivative of B on C, i.e. the function γ : s 7→ ∂tB̃(s, 0). We will assume the

following.

Assumption 7.3. γ admits a unique, non-degenerate and positive minimum at x0.

We let γ0 = γ(0) and assume without loss of generality that x0 = (0, 0). Let us state

the main result of this section and proved in Chapter 14.

Theorem 7.4. We assume Assumption 7.3. For all n ≥ 1, there exists a sequence (θnj )j≥0

such that we have:

λn(h) ∼
h→0

h4/3
∑
j≥0

θnj h
j/6

where:

θn0 = γ
2/3
0 ν

[1]
1 (ζ

[1]
0 ), θn1 = 0, θn2 = γ

2/3
0 C0 + γ

2/3
0 (2n− 1)

(
αν

[1]
1 (η0)(ν

[1]
1 )′′(ζ

[1]
0 )

3

)1/2

,

where we have let

(7.1.5) α =
1

2
γ−1

0 γ′′(0) > 0

and

C0 = 〈Lu[1]

ζ
[1]
0

, u
[1]

ζ
[1]
0

〉L2(Rτ̂ ),(7.1.6)

where

L = 2k(0)γ
−4/3
0

(
τ̂ 2

2
− ζ [1]

0

)
τ̂ 3 + 2τ̂ γ

−1/3
0 κ(0)

(
−ζ [1]

0 +
τ̂ 2

2

)2

,

and

k(0) =
1

6
∂2
t B̃(0, 0)− κ(0)

3
γ0 .

Remark 7.5. This theorem is mainly motivated by the paper of Helffer and Kordyukov

[96] (see also [91, Section 5.2] where the above result is presented as a conjecture and the

paper [103] where the case of discrete wells is analyzed) where the authors prove a one

term asymptotics for all the eigenvalues (see [96, Corollary 1.1]). Moreover, they also

prove an accurate upper bound in [96, Theorem 1.4] thanks to a Grushin type method

(see [88]). This result could be generalized to the case when the magnetic vanishes on

hypersurfaces at a given order.

2. Non vanishing magnetic fields

As we will see, the result of Section 1 is essentially a consequence of a normal form

investigation. Other examples, in three dimensions, will be given in Chapter 8. For each

example, we will introduce an appropriate change of variable or equivalently a “Fourier

integral operator” and we will normalize the magnetic Laplacian by transferring the mag-

netic geometry into the coefficients of the operator. We can interpret this normalization
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as a very explicit application of the Egorov theorem. Then, in the investigation, we are led

to use the Feshbach projection to simplified again the situation. This projection method

can also be heuristically interpreted as a normal form in the spirit of Egorov: taking the

average of the operator in a certain quantum state is nothing but the quantum analog of

averaging a full Hamiltonian with respect to a reduced Hamiltonian. In problems with

boundaries or with vanishing magnetic fields it appears that the dynamics of the reduced

Hamiltonian is less understood (due to the boundary conditions for instance) than the

spectral theory of its quantization. Keeping this remark in mind it now naturally appears

that we should implement a general normal form for instance in the simplest situation of

dimension two, without boundary and with a non vanishing magnetic field.

2.1. Classical dynamics. Let us recall a basic example from classical mechanics.

After a normalization, Newton’s equation of a mass on a spring is given by the Hook law

(the classical harmonic oscillator)
d2q

dt2
= −q .

Of course, it can be easily solved, but it can also be put into the Hamiltonian form:{
dq
dt

= ∂pH ,
dp
dt

= −∂qH ,

where H(q, ξ) = 1
2
(q2 + p2). Note that it is also the flow of the Hamiltonian vector field

XH defined by dH = ω0(XH , ·) where ω0 is the canonical symplectic form on R2, that is

∀(u, v) ∈ R2 × R2 , ω0(u, v) = v1u2 − u1v2 .

If we let z = q + ip, we get dz
dt

= −iz and thus z(t) = z0e
−it.

Let us now investigate the case of constant magnetic field in dimension two. Newton’s

equation is now

(7.2.1)
d2q

dt2
=
dq

dt
×B ,

where B = B(0, 0, 1) = Be3 and where the right hand side is the Lorentz force. Here we

have q = (q1, q2, 0). The equation becomes
dq1
dt

= p1 ,
dq2
dt

= p2 ,
dp1

dt
= Bp2 ,

dp2

dt
= −Bp1 .

The last two equations are in a Hamiltonian form, as for the harmonic oscillator and we

let v = p1 + ip2 so that the evolution of the velocity is given by v(t) = v(0)e−iBt. Letting

q = q1 + iq2, it follows that dq
dt

= v(0)e−iBt and thus

q(t) = q(0)− i

B
v(0) +

i

B
v(0)e−iBt .
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The particle rotates at a distance (the cyclotron radius) |v(0)|
|B| of the center q(0)− i

B
v(0).

The frequency of the rotation is B so that the large field limit is also a high frequency

regime (the semiclassical regime).

In fact, the general equation (7.2.1) may be put in a Hamiltonian form. To see this,

we introduce A ∈ C∞(Rd,Rd) (the source of the magnetic field) such that

B = dA ,

where we used the identification

A =
d∑
j=1

Aj dqj .

We recall that Equation (7.2.1) may also be put in the more general form

(7.2.2)
d2q

dt2
= −MB

(
dq

dt

)
,

where MB is the (antisymmetric) magnetic matrix (Bk`). The matrix MB is also the

antisymmetric part of the differential (not to confuse with the exterior derivative dA)

dA:

MB = dA− (dA)T .

Thus Equation (7.2.2) becomes

d2q

dt2
+ dA

(
dq

dt

)
= (dA)T

(
dq

dt

)
.

If we let ξ = dq
dt

, this becomes

d

dt
(ξ + A (q)) = (dA)T (ξ) ,

and we get the new system {
dq
dt

= p−A ,
dp
dt

= (dA)T (p−A) .

It is easy to see that the Hamiltonian of our system is

(7.2.3)
1

2
‖p−A(q)‖2 .

2.2. Classical magnetic normal forms. From now on we use the Euclidean norm

on R2, which allows the identification of R2 with (R2)∗ by

(7.2.4) ∀(v, p) ∈ R2 × (R2)∗, p(v) = 〈p, v〉 .

Thus, the canonical symplectic structure ω on T ∗R2 is given by

(7.2.5) ω0((Q1, P1), (Q2, P2)) = 〈P1, Q2〉 − 〈P2, Q1〉 .

Before considering the semiclassical magnetic Laplacian we shall briefly discuss some

results concerning the classical dynamics for large time. We will not discuss the proofs
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in this book, but these considerations will give some insights to answer the semiclassical

questions. As we have already mentioned in the introduction, the large time dynamics

problem has to face the issue that the conservation of the energy H is not enough to

confine the trajectories in a compact set .

The first result (see Chapter 15 for a proof) shows the existence of a smooth symplectic

diffeomorphism that transforms the initial Hamiltonian into a normal form, up to any

order in the distance to the zero energy surface.

Theorem 7.6. Let

H(q, p) = ‖p−A(q)‖2 , (q, p) ∈ T ∗R2 = R2 × R2,

where the magnetic potential A : R2 → R2 is smooth. Let B := ∂A2

∂q1
− ∂A1

∂q2
be the

corresponding magnetic field. Let Ω ⊂ R2 be a bounded open set where B does not vanish.

Then there exists a symplectic diffeomorphism Φ, defined in an open set Ω̃ ⊂ Cz1 × R2
z2

,

with values in T ∗R2, which sends the plane {z1 = 0} to the surface {H = 0}, and such

that

(7.2.6) H ◦ Φ = |z1|2 f(z2, |z1|2) +O(|z1|∞) ,

where f : R2 × R→ R is smooth. Moreover, the map

(7.2.7) ϕ : Ω 3 q 7→ Φ−1(q,A(q)) ∈ ({0} × R2
z2

) ∩ Ω̃

is a local diffeomorphism and

f ◦ (ϕ(q), 0) = |B(q)| .

In the following theorem we denote by K = |z1|2 f(z2, |z1|2) ◦ Φ−1 the (completely

integrable) normal form of H given be Theorem 7.6 above. Let ϕtH be the Hamiltonian

flow of H, and let ϕtK be the Hamiltonian flow of K. Let us state, without proofs, the

important dynamical consequences of Theorem 7.6 (see Figure 1).

Theorem 7.7. Assume that the magnetic field B > 0 is confining: there exists C > 0

and M > 0 such that B(q) ≥ C if ‖q‖ ≥M . Let C0 < C. Then

(i) The flow ϕtH is uniformly bounded for all starting points (q, p) such that B(q) ≤ C0

and H(q, p) = O(ε) and for times of order O(1/εN), where N is arbitrary.

(ii) Up to a time of order Tε = O(|ln ε|), we have

(7.2.8)
∥∥ϕtH(q, p)− ϕtK(q, p)

∥∥ = O(ε∞)

for all starting points (q, p) such that B(q) ≤ C0 and H(q, p) = O(ε).

It is interesting to notice that, if one restricts to regular values of B, one obtains the

same control for a much longer time, as stated below.

Theorem 7.8. Under the same confinement hypothesis as Theorem 7.7, let J ⊂ (0, C0)

be a closed interval such that dB does not vanish on B−1(J). Then up to a time of order
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T = O(1/εN), for an arbitrary N > 0, we have∥∥ϕtH(q, p)− ϕtK(q, p)
∥∥ = O(ε∞)

for all starting points (q, p) such that B(q) ∈ J and H(q, p) = O(ε).

Figure 1. Numerical simulation of the flow of H when the magnetic field
is given by B(x, y) = 2 + x2 + y2 + x3

3
+ x4

20
, and ε = 0.05, t ∈ [0, 500]. The

picture also displays in red some level sets of B. Graph courtesy of S. Vũ
Ngo.c

2.3. Semiclassical magnetic normal forms. We turn now to the quantum coun-

terpart of these results. Let Lh,A = (−ih∇ − A)2 be the magnetic Laplacian on R2,

where the potential A : R2 → R2 is smooth, and such that Lh,A ∈ S(m) for some order

function m on R4 (see Chapter 5 for a brief reminder and [53, Chapter 7]). We will work

with the Weyl quantization; for a classical symbol a = a(x, ξ) ∈ S(m) , it is defined as:

Opwh aψ(x) =
1

(2πh)2

∫ ∫
ei(x−y)·ξ/ha

(
x+ y

2
, ξ

)
ψ(y) dy dξ , ∀ψ ∈ S(R2) .

The first result (see Chapter 15, Sections 1, 2) shows that the spectral theory of Lh,A
is governed at first order by the magnetic field itself, viewed as a symbol.

Theorem 7.9. Assume that the magnetic field B is non vanishing on R2 and confining:

there exist constants C̃1 > 0, M0 > 0 such that

(7.2.9) B(q) ≥ C̃1 for |q| ≥M0 .
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Let H0
h = Opwh (H0), where H0 = B(ϕ−1(z2))|z1|2 where ϕ : R2 → R2 is a diffeomorphism.

Then there exists a bounded classical pseudo-differential operator Qh on R2, such that

(i) Qh commutes with Opwh (|z1|2);

(ii) Qh is relatively bounded with respect to H0
h with an arbitrarily small relative bound;

(iii) its Weyl symbol is Oz2(h2 + h |z1|2 + |z1|4),

so that the following holds. Let 0 < C1 < C̃1. Then the spectra of Lh,A and LNo
h := H0

h+Qh

in (−∞, C1h] are discrete. We denote by 0 < λ1(h) ≤ λ2(h) ≤ · · · the eigenvalues of

Lh,A and by 0 < µ1(h) ≤ µ2(h) ≤ · · · the eigenvalues of LNo
h . Then for all j ∈ N∗ such

that λj(h) ≤ C1h and µj(h) ≤ C1h, we have

|λj(h)− µj(h)| = O(h∞) .

As we see in the proof, Theorem 7.9 is a consequence of the following theorem (see

[118] where a close form of this theorem appears), which provides in particular an accurate

description of Qh. In the statement, we use the notation of Theorem 7.6. We recall that

Σ is the zero set of the classical Hamiltonian H.

Theorem 7.10. For h small enough there exists a unitary operator Uh such that

(7.2.10) U∗hLh,AUh = LNo
h +Rh + Sh ,

where

(i) LNo
h is a classical pseudo-differential operator in S(m) that commutes with

Ih := −h2 ∂
2

∂x2
1

+ x2
1

(ii) For any Hermite function en,h(x1) such that Ihen,h = h(2n − 1)en,h, the operator

LNo,(n)
h acting on L2(Rx2) by

en,h ⊗ LNo,(n)
h (u) = LNo

h (en,h ⊗ u)

is a classical pseudo-differential operator in SR2(m) of h-order 1 with principal sym-

bol

F (n)(x2, ξ2) = h(2n− 1)B(q) ,

where (0, x2 + iξ2) = ϕ(q) as in (7.2.7);

(iii) the pseudo-differential operators Rh and Sh have a symbols in S(m). The Taylor

series of the symbol of Rh with respect to (x1, ξ1, h) vanishes in a neighborhood of Σ

and the symbol of Sh vanishes in a neighborhood of Ω̃ ∩ Σ.

(iv) LNo
h = H0

h +Qh, where H0
h = Opwh (H0), H0 = B(ϕ−1(z2))|z1|2, and the operator Qh

is relatively bounded with respect to H0
h with an arbitrarily small relative bound.

We recover the result of [97], adding the fact that no odd power of h
1
2 can show up

in the asymptotic expansion (see the recent work [101] where a Grushin type method is

used to obtain a close result).
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Corollary 7.11 (Low lying eigenvalues). Assume that B has a unique non-degenerate

minimum at q0. Then there exists a constant c0 such that for any j, the eigenvalue λj(h)

has a full asymptotic expansion in integral powers of h whose first terms have the following

form:

λj(h) ∼ hminB + h2(c1(2j − 1) + c0) +O(h3) ,

with c1 =

√
det(Hessq0B)

2b0
, where b0 = B(q0).

Proof. The first eigenvalues of Lh,A are equal to the eigenvalues of LNo,(1)
h (in point (ii)

of Theorem 7.10). Since B has a non-degenerate minimum, the symbol of LNo,(1)
h has a

non-degenerate minimum, and the spectral asymptotics of the low-lying eigenvalues for

such a 1D pseudo-differential operator are well known. We get

λj(h) ∼ hminB + h2(c1(2j − 1) + c0) +O(h3) ,

with c1 = 1
2

√
det(Hess0(B ◦ ϕ−1). One can easily compute

c1 =

√
detHessq0B

2 |det(dϕ−1(0))|
=

√
detHessq0B

2B ◦ ϕ−1(0)
,

where we used the definition of ϕ in (7.2.7) (it is a diffeomorphism that transforms the

2-form B dq1 ∧ dq2 into dq1 ∧ dq2). �
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CHAPTER 8

Boundary magnetic wells in dimension three

Now do you imagine he would have at-

tempted to inquire or learn what he thought

he knew, when he did not know it, until he

had been reduced to the perplexity of real-

izing that he did not know, and had felt a

craving to know?

Meno, Plato

In this chapter we enlighten the normal form philosophy explained in Chapter 0,

Section 3 by presenting three results of magnetic harmonic approximation induced by

the presence of a boundary in dimension three:

(i) when the boundary is a half-space,

(ii) when it is a wedge,

(iii) when it is a cone.

We will see that the semiclassical structures are different from each other.

1. Magnetic half-space

This section is devoted to the investigation of the relation between a smooth (Neu-

mann) boundary and the magnetic field in dimension three.

1.1. A toy model. Let us introduce the geometric domain

Ω0 = {(x, y, z) ∈ R3 : |x| ≤ x0, |y| ≤ y0 and 0 < z ≤ z0} ,

where x0, y0, z0 > 0. The part of the boundary which carries the Dirichlet condition is

given by

∂DirΩ0 = {(x, y, z) ∈ Ω0 : |x| = x0 or |y| = y0 or z = z0} .

1.1.1. Definition of the operator. For h > 0, α ≥ 0 and θ ∈
(
0, π

2

)
, we consider the

self-adjoint operator:

(8.1.1) Lh,α,θ = h2D2
y + h2D2

z + (hDx + z cos θ − y sin θ + αz(x2 + y2))2 ,
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with domain

Dom (Lh,α,θ) = {ψ ∈ L2(Ω0) : Lh,α,θψ ∈ L2(Ω0),

ψ = 0 on ∂DirΩ0 and ∂zψ = 0 on z = 0}.

Since α and θ are fixed, we let Lh = Lh,α,θ. The vector potential is expressed as

A(x, y, z) = (Vθ(y, z) + αz(x2 + y2), 0, 0)

where

(8.1.2) Vθ(y, z) = z cos θ − y sin θ .

The associated magnetic field is given by

(8.1.3) ∇×A = B = (0, cos θ + α(x2 + y2), sin θ − 2αyz) .

In particular θ is the angle between B(0, 0, 0) and the Neumann boundary z = 0.

1.1.2. Constant magnetic field (α = 0). Let us examine the case of constant magnetic

field. In this case, we have

Lh,0,θ = h2D2
y + h2D2

z + (hDx + Vθ(y, z))
2 ,

viewed as an operator on L2(R3
+). We perform the rescaling:

(8.1.4) x = h
1
2 r, y = h

1
2 s, z = h

1
2 t

and the operator becomes (after division by h):

L1,0,θ = D2
s +D2

t + (Dr + Vθ(s, t))
2 .

Making a Fourier transform in the variable r denoted by Fr→η, we get

(8.1.5) Fr→ηL1,0,θF−1
r→η = D2

s +D2
t + (η + Vθ(s, t))

2 .

Then, we use a change of coordinates:

(8.1.6) Uθ(ρ, s, t) = (ρ, σ, τ) =
(
η, s− η

sin θ
, t
)

and we obtain

HNeu
θ = UθFr→ηL1,0,θF−1

r→ηU
−1
θ = D2

σ +D2
τ + Vθ(σ, τ)2 .

Notation 8.1. We denote by QNeu
θ the quadratic form associated with HNeu

θ .

The operator HNeu
θ viewed as an operator acting on L2(R2

+) is nothing but LLP
θ (see

Chapter 0, Section 1.5.4). Let us also recall that the lower bound of the essential spectrum

is related, through the Persson’s theorem (see Chapter 1), to the following estimate:

qLP
θ (χRu) ≥ (1− ε(R))‖χRu‖2, ∀u ∈ Dom (qLP

θ ) ,

where qLP
θ is the quadratic form associated with LLP

θ , where χR is a cutoff function away

from the ball B(0, R) and ε(R) is tending to zero when R tends to infinity. Moreover, if
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we consider the Dirichlet realization LLP,Dir
θ , we have

(8.1.7) qLP,Dir
θ (u) ≥ ‖u‖2, ∀u ∈ Dom (qLP,Dir

θ ) .

1.2. A generic model. Let us explain why we are led to consider this model. Let

us introduce the variable angle θ(x, y) that is the angle of B(x, y, 0) with the boundary

z = 0 and defined by the relation

‖B(x, y, 0)‖ sin θ(x, y) = B(x, y, 0) · n(x, y) .

If we make the approximation of the magnetic field by the constant magnetic field near

the boundary, the Lu-Pan operator LLP
θ appears and this leads to introduce

Bs(x, y) = s(θ(x, y))‖B(x, y, 0)‖ ,

where n(x, y) is the inward normal at (x, y, 0). It is proved in [138] that the semiclassical

asymptotics of the lowest eigenvalue is given by

λ1(h) = min

{
inf Bs, inf

Ω0

‖B‖
}
h+ o(h) .

We are interested in the case when the following generic assumption is satisfied.

Assumption 8.2. We assume that we are in the case of “boundary attraction”:

(8.1.8) inf Bs < inf
Ω0

‖B‖ .

and in the case of “boundary magnetic well”:

(8.1.9) Bs admits a unique and non degenerate minimum.

Under these assumptions, a three terms upper bound is proved for λ1(h) in [168] and

the corresponding lower bound, for a general domain, is still an open problem.

For α > 0, the toy operator (8.1.1) is the simplest example of Schrödinger operator

with variable magnetic field satisfying Assumptions (8.1.8) and (8.1.9). We have the

Taylor expansion:

(8.1.10) Bs(x, y) = s(θ) + αC(θ)(x2 + y2) +O(|x|3 + |y|3) .

with

C(θ) = cos θ s(θ)− sin θ s′(θ) .

Moreover, it is proved in Chapter 4, Proposition 2.41 that C(θ) > 0, for θ ∈
(
0, π

2

)
. Thus,

Assumption (8.1.9) is verified if x0, y0 and z0 are fixed small enough. Using s(θ) < 1

when θ ∈
(
0, π

2

)
and ‖B(0, 0, 0)‖ = 1, we get Assumption (8.1.8).

1.2.1. Remark on the function Bs. Using the explicit expression of the magnetic field,

we have

Bs(x, y) = Bs,rad(R), R = α(x2 + y2)

127



and an easy computation gives

Bs,rad(R) = ‖Brad(R)‖s
(

arctan

(
sin θ

cos θ +R

))
,

with

‖Brad(R)‖ =
√

(cos θ +R)2 + sin2 θ .

The results of Chapter 4 imply that Bs,rad is strictly increasing and

∂RBs,rad(R = 0) = C(θ) > 0 .

Consequently, Bs admits a unique and non degenerate minimum on R3
+ and tends to

infinity far from 0. This is easy to see that

inf
R3

+

‖B‖ = cos θ .

We deduce that, as long as s(θ) < cos θ, the generic assumptions are satisfied with

Ω0 = R3
+.

1.2.2. Three dimensional magnetic wells induced by the magnetic field and the (smooth)

boundary. Let us introduce the fundamental operator

Sθ(Dρ, ρ) =

(
2

∫
R2

+

τVθ(u
LP
θ )2 dσ dτ

)
Hharm +

(
2

sin θ

∫
R2

+

τVθ(u
LP
θ )2 dσ dτ

)
ρ+ d(θ) ,

where

Hharm = D2
ρ +

ρ2

sin2 θ
and

d(θ) = sin−2 θ〈τ(D2
σVθ + VθD

2
σ)uLP

θ , u
LP
θ 〉+ 2

∫
R2

+

τσ2Vθ(u
LP
θ )2 dσ dτ .

By using the perturbation theory, we can establish the following formula (see [168, For-

mula (2.31)]):

2

∫
R2

+

τVθ(u
LP
θ )2 dσ dτ = C(θ) > 0 ,

so that Sθ(Dρ, ρ) can be viewed as the harmonic oscillator up to a dilation and transla-

tions.

We can now state the main result of this section: a complete semiclassical expansion

of the n-th eigenvalue. The proof is given in Chapter 17.

Theorem 8.3. For all α > 0, θ ∈
(
0, π

2

)
, there exist a sequence (µj,n)j≥0 and ε0 > 0 such

that, for |x0|+ |y0|+ |z0| ≤ ε0,

λn(h) ∼ h
∑
j≥0

µj,nh
j

and we have µ0,n = s(θ) and µ1,n is the n-th eigenvalue of αSθ(Dρ, ρ).
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2. Magnetic wedge

We analyze here the effect of an edge in the boundary and how its combines with the

magnetic field to produce a spectral asymptotics.

2.1. Geometry and local models. We consider the magnetic Laplacian on a wedge

of aperture α, denoted by Wα. In our situation the magnetic field B = (0, 0, 1) is normal

to the plane where the edge lies.

Here we are concerned with the case when the domain is a wedge with varying aper-

ture, that is with the Neumann magnetic Laplacian Le
h,A = (−ih∇ + A)2 on the space

L2(Ws 7→α(s), ds dt dz).

2.1.1. Properties of the magnetic wedge. Let us recall the definition of the magnetic

wedge with constant aperture α. Many properties of this operator can be found in the

thesis of Popoff [163]. We let

Wα = R× Sα ,
where the bidemensional corner with fixed angle α ∈ (0, π) is defined by

Sα =
{

(t, z) ∈ R2 : |z| < t tan
(α

2

)}
.

Definition 8.4. Let Le
α be the Neumann realization on L2(Wα, ds dt dz) of

(8.2.1) D2
t +D2

z + (Ds − t)2 .

We denote by νe
1(α) the bottom of the spectrum of Le

α.

Using the Fourier transform with respect to ŝ, we have the decomposition:

(8.2.2) Le
α =

∫ ⊕
Le
α,ζ dζ ,

where Le
α,ζ is the following Neumann realization on L2(Sα, dt dz):

(8.2.3) Le
α,ζ = D2

t +D2
z + (ζ − t)2 ,

where ζ ∈ R is the Fourier parameter. As

lim
|(t,z)|→+∞

(t,z)∈Sα

(ζ − t)2 = +∞,

the Schrödinger operator Le
α,ζ has compact resolvent for all (α, ζ) ∈ (0, π)× R.

Notation 8.5. For each α ∈ (0, π), we denote by νe
1(α, η) the lowest eigenvalue of Le

α,ζ

and we denote by ue
α,ζ a normalized corresponding eigenfunction.

Using (8.2.2) we have:

(8.2.4) νe
1(α) = inf

ζ∈R
νe

1(α, ζ) .

Let us gather a few elementary properties.
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Lemma 8.6. We have:

(1) For all (α, ζ) ∈ (0, π)× R, νe
1(α, ζ) is a simple eigenvalue of Le

α,ζ.

(2) The function (0, π)× R 3 (α, ζ) 7→ νe
1(α, ζ) is analytic.

(3) For all ζ ∈ R, the function (0, π) 3 α 7→ νe
1(α, ζ) is decreasing.

(4) The function (0, π) 3 α 7→ νe
1(α) is non increasing.

(5) For all α ∈ (0, π), we have

(8.2.5) lim
η→−∞

νe
1(α, ζ) = +∞ and lim

ζ→+∞
νe

1(α, ζ) = s(π−α
2

) .

Proof. We refer to [163, Section 3] for the first two statements. The monoticity

comes from [163, Proposition 8.14] and the limits as ζ goes to ±∞ are computed in

[163, Theorem 5.2]. �

Remark 8.7. As νe
1(π) = Θ0, we have:

(8.2.6) ∀α ∈ (0, π), νe
1(α) ≥ Θ0 .

Let us note that it is proved in [163, Proposition 8.13] that νe
1(α) > Θ0 for all α ∈ (0, π).

Proposition 8.8. There exists α̃ ∈ (0, π) such that for α ∈ (0, α̃), the function ζ 7→
νe

1(α, ζ) reaches its infimum and

(8.2.7) νe
1(α) < s

(
π − α

2

)
,

where the spectral function s is defined in Chapter 0, Section 1.5.4.

Remark 8.9. Numerical computations show that in fact (8.2.7) seems to hold for all

α ∈ (0, π).

We will work under the following conjecture:

Conjecture 8.10. For all α ∈ (0, π), ζ 7→ νe
1(α, ζ) has a unique critical point denoted

by ζe
0(α) and it is a non degenerate minimum.

Remark 8.11. A numerical analysis seems to indicate that Conjecture 8.10 is true (see

[163, Subsection 6.4.1]).

Under this conjecture and using the analytic implicit functions theorem, we deduce

the following lemma.

Lemma 8.12. Under Conjecture 8.10, the function (0, π) 3 α 7→ ζe
0(α) is analytic and

so is (0, π) 3 α 7→ νe
1(α). Moreover the function (0, π) 3 α 7→ νe

1(α) is decreasing.

We will assume that there is a unique point of maximal aperture (which is non-

degenerate).

Assumption 8.13. The function s 7→ α(s) is analytic and admits a unique and non-

degenerate maximum α0 at s = 0.
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Notation 8.14. We let T (s) = tan
(
α(s)

2

)
.

2.1.2. Assumptions. For x ∈ ∂Ω \ E we introduce the angle θ(x) defined by:

(8.2.8) B · n(x) = sin θ(x) .

We have

(8.2.9) ∀x ∈ ∂Ω \ E, π − α
2

< θ(x)

where α ∈ (0, π) is the opening angle of the lens and we notice that the magnetic field

is nowhere tangent to the boundary. We will assume that the opening angle of the

lens is variable. For a given point x of the boundary, we analyze the localized (in a

neighborhood of x) magnetic Laplacian and we distinguish between x belonging to the

edge and x belonging to the smooth part of the boundary.

⊙ŝ
E

ẑ

t̂α

Figure 1. Coordinates (ŝ, t̂, ẑ).

The model situations (magnetic wedge and smooth boundary) lead to compare the

following quantities

inf
x∈E

νe
1(α(x)), inf

x∈∂Ω\E
s1(θ(x)) .

Let us state the different assumptions under which we work. The first assumption could

be called the “edge concentration” assumption.

Assumption 8.15.

(8.2.10) inf
x∈E

νe
1(α(x)) < inf

x∈∂Ω\E
s1(θ(x)) .

From the properties of the leading operator we will be led to work near the point of

the edge of maximal opening. Therefore we will assume the following generic assumption.

Assumption 8.16. We denote by α : E 7→ (0, π) the opening angle of the lens. We

assume that α admits a unique and non degenerate maximum at the point x0 and we let

α0 = max
E

α .

We denote T = tan α
2

and T0 = tan α0

2
.
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In particular, under this assumption and Conjecture 8.10, the function s 7→ νe
1(α(s))

admits a unique and non-degenerate minimum.

2.2. Normal form. This is “classical” that Assumption 8.15 leads to localization

properties of the eigenfunctions near the edge E and more precisely near the points of

the edge where E 3 x 7→ ν(α(x)) is minimal. Therefore, since ν is decreasing and thanks

to Assumption 8.16, we expect that the first eigenfunctions concentrate near the point

x0 where the opening is maximal.

Let us write below the expression of the magnetic Laplacian in the new local coor-

dinates (š, ť, ž) where š is a curvilinear abscissa of the edge. The normal form of the

magnetic Laplacian Ledge
h is given by Ľedge

h := ∇̌2
h where:

(8.2.11) ∇̌h =

 hDš

hDť

hT (š)−1T (0)Dž

+

−ť+ ζe
0h

1/2 − h T ′
2T (žDž +Dž ž)

0

0

 .

Remark 8.17. Such a normal form allows us to describe the leading structure of this

magnetic Laplace-Beltrami operator. Indeed, modulo some remainders, our operator

takes the simpler form:

(hDš − ť+ ζe
0h

1/2)2 + h2D2
ť + h2T (0)2T (š)−2D2

ž .

Performing another formal Taylor expansion near š = 0, we are led to the following

operator:

(hDš − ť+ ζe
0h

1/2)2 + h2D2
ť + h2D2

ž + ch2š2D2
ž ,

where c > 0. Using a scaling, we get a rescaled operator Lh whose first term is the leading

operator Le
α0

and which allows to construct quasimodes. Moreover this form is suitable

to establish microlocalization properties of the eigenfunctions with respect to Dš.

2.3. Magnetic wells induced by the variations of a singular geometry. The

main result of this section is a complete asymptotic expansion of all the first eigenvalues

of Ledge
h (see the proof in Chapter 18).

Theorem 8.18. We assume that Conjecture 8.10 is true. We also assume Assumptions

8.15 and 8.16. For all n ≥ 1 there exists (µj,n)j≥0 such that we have

λn(h) ∼
h→0

h
∑
j≥0

µj,nh
j/4 .

Moreover, we have

µ0,n = νe
1(α0), µ1,n = 0, µ2,n = (2n− 1)

√
κτ−1

0 ‖Dẑue
ζe
0
‖2∂2

ζν
e
1(α0, ζe

0) .

where

(8.2.12) κ = −T
′′(0)

2
> 0 .
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Remark 8.19. We observe that, for all n ≥ 1, λn(h) is simple for h small enough. This

simplicity, jointly with a quasimodes construction, also provides an approximation of the

corresponding normalized eigenfunction.

3. Magnetic cone

We are now interested in the low-lying eigenvalues of the magnetic Neumann Laplacian

with a constant magnetic field applied to a “ peak ”, i.e. a right circular cone Cα. The

right circular cone Cα of angular opening α ∈ (0, π) (see Figure 2) is defined in the

Cartesian coordinates (x, y, z) by

Cα = {(x, y, z) ∈ R3, z > 0, x2 + y2 < z2 tan2 α
2
} .

Let B be the constant magnetic field

B(x, y, z) = (0, sin β, cos β)T ,

where β ∈
[
0, π

2

]
. We choose the following magnetic potential A:

A(x, y, z) =
1

2
B× x =

1

2
(z sin β − y cos β, x cos β,−x sin β)T .

We consider Lα,β the Friedrichs extension associated with the quadratic form

QA(ψ) = ‖(−i∇+ A)ψ‖2
L2(Cα) ,

defined for ψ ∈ H1
A(Cα) with

H1
A(Cα) = {u ∈ L2(Cα), (−i∇+ A)u ∈ L2(Cα)} .

The operator Lα is (−i∇+ A)2 with domain:

H2
A(Cα) = {u ∈ H1

A(Cα), (−i∇+ A)2u ∈ L2(Cα), (−i∇+ A)u · ν = 0 on ∂Cα} .

Note that, here, we have h = 1: we are easily reduced to this case by homogeneity. Thus

there is no semiclassical effect and the only parameter with which we can play is α. We

define the n-th eigenvalue λn(α, β) of Lα,β as the n-th Rayleigh quotient (see Chapter 1).

Let ψn(α, β) be a normalized associated eigenvector (if it exists).

3.1. Why studying magnetic cones? One of the most interesting results of the

last fifteen years is provided by Helffer and Morame in [104] where they prove that the

magnetic eigenfunctions, in 2D, concentrates near the points of the boundary where the

(algebraic) curvature is maximal, see (0.1.8). This property aroused interest in domains

with corners, which somehow correspond to points of the boundary where the curvature

becomes infinite (see [119, 158] for the quarter plane and [14, 15] for more general

domains). Denoting by Sα the sector in R2 with angle α and considering the magnetic

Neumann Laplacian with constant magnetic field of intensity 1, it is proved in [14] that,

as soon as α is small enough, a bound state exists. Its energy is denoted by µ(α). An

133



B

α

Cα

β

Figure 2. Geometric setting.

asymptotic expansion at any order is even provided (see [14, Theorem 1.1]):

(8.3.1) µ(α) ∼ α
∑
j≥0

mjα
2j, with m0 =

1√
3
.

In particular, this proves that µ(α) becomes smaller than the lowest eigenvalue of the

magnetic Neumann Laplacian in the half-plane with constant magnetic field (of intensity

1), that is:

µ(α) < Θ0, α ∈ (0, α0) ,

where Θ0 is defined in (0.1.10).This motivates the study of dihedral domains (see [163,

164]). Another possibility of investigation, in dimension three, is the case of a conical

singularity of the boundary. We would especially like to answer the following questions:

Can we go below µ(α) and can we describe the structure of the spectrum when the

aperture of the cone goes to zero?

3.2. The magnetic Laplacian in spherical coordinates. Since the spherical co-

ordinates are naturally adapted to the geometry, we consider the change of variable:

Φ(τ, θ, ϕ) := (x, y, z) = α−1/2(τ cos θ sinαϕ, τ sin θ sinαϕ, τ cosαϕ) .

This change of coordinates is nothing but a first normal form. We denote by P the

semi-infinite rectangular parallelepiped

P := {(τ, θ, ϕ) ∈ R3, τ > 0, θ ∈ [0, 2π), ϕ ∈ (0, 1
2
)} .

Let ψ ∈ H1
A(Cα). We write ψ(Φ(τ, θ, ϕ)) = α1/4ψ̃(τ, θ, ϕ) for any (τ, θ, ϕ) ∈ P in these

new coordinates and we have

‖ψ‖2
L2(Cα) =

∫
P
|ψ̃(τ, θ, ϕ)|2 τ 2 sinαϕ dτ dθ dϕ ,

and:

QA(ψ) = αQα,β(ψ̃) ,
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where the quadratic form Qα,β is defined on the transformed form domain H1
Ã

(P) by

(8.3.2) Qα,β(ψ) :=

∫
P

(
|P1ψ|2 + |P2ψ|2 + |P3ψ|2

)
dµ̃ ,

with the measure

dµ̃ = τ 2 sinαϕ dt dθ dϕ ,

and:

H1
Ã

(P) = {ψ ∈ L2(P , dµ̃), (−i∇+ Ã)ψ ∈ L2(P , dµ̃)} .
We also have:

P1 = Dτ − τϕ cos θ sin β)τ 2(Dτ − τϕ cos θ sin β ,

P2 = (τ sin(αϕ))−1

(
Dθ +

τ 2

2α
sin2(αϕ) cos β +

τ 2ϕ

2

(
1− sin(2αϕ)

2αϕ

)
sin β sin θ

)
,

P3 = (τ sin(αϕ))−1Dϕ .

We consider Lα,β the Friedrichs extension associated with the quadratic form Qα,β:

Lα,β = τ−2(Dτ − τϕ cos θ sin β)τ 2(Dτ − τϕ cos θ sin β)

+
1

τ 2 sin2(αϕ)

(
Dθ +

τ 2

2α
sin2(αϕ) cos β +

τ 2ϕ

2

(
1− sin(2αϕ)

2αϕ

)
sin β sin θ

)2

+
1

α2τ 2 sin(αϕ)
Dϕ sin(αϕ)Dϕ .

We define λ̃n(α, β) the n-th Rayleigh quotient of Lα,β.

3.3. Spectrum of the magnetic cone in the small angle limit.

3.3.1. Eigenvalues in the small angle limit. We aim at estimating the discrete spec-

trum, if it exists, of Lα,β. For that purpose, we shall first determine the bottom of its

essential spectrum. From Persson’s characterization of the infimum of the essential spec-

trum, it is enough to consider the behavior at infinity and it is possible to establish the

following proposition.

Proposition 8.20. Let us denote by spess(Lα,β) the essential spectrum of Lα,β. We have:

inf spess(Lα,β) ∈ [Θ0, 1] ,

where Θ0 > 0 is defined in (0.1.10).

At this stage we still do not know that discrete spectrum exists. As it is the case in

dimension two (see [14]) or in the case on the infinite wedge (see [163]), there is hope to

prove such an existence in the limit α→ 0. Here is the main theorem of this section (see

Chapter 19 for elements of the proof and the papers [22, 23] for all the details).
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Theorem 8.21. For all n ≥ 1, there exist α0(n) > 0 and a sequence (γj,n)j≥0 such that,

for all α ∈ (0, α0(n)), the n-th eigenvalue exists and satisfies:

λn(α, β) ∼
α→0

α
∑
j≥0

γj,nα
j, with γ0,n =

√
1 + sin2 β

25/2
(4n− 1) .

Remark 8.22. In particular the main term is minimum when β = 0 and in this case

Theorem 8.21 states that λ1(α) ∼ 3
25/2α. We have 3

25/2 <
1√
3

so that the lowest eigenvalue

of the magnetic cone goes below the lowest eigenvalue of the two dimensional magnetic

sector (see (8.3.1)).

Remark 8.23. As a consequence of Theorem 8.21, we deduce that the lowest eigenvalues

are simple as soon as α is small enough. Therefore, the spectral theorem implies that the

quasimodes constructed in the proof are approximations of the eigenfunctions of Lα,β. In

particular, using the rescaled spherical coordinates, for all n ≥ 1, there exist αn > 0 and

Cn such that, for α ∈ (0, αn):

‖ψ̃n(α, β)− fn‖L2(P, dµ̃) ≤ Cnα
2 ,

where fn (which is β dependent) is related to the n-th Laguerre’s function and ψ̃n(α, β)

is the n-th normalized eigenfunction.

Let us now sketch the proof of Theorem 8.21.

3.3.2. Axissymmetric case: β = 0. We apply the strategy presented in Chapter 0,

Section 3. In this situation, the phase variable that we should understand is the dual

variable of θ given by a Fourier series decomposition and denoted by m ∈ Z. In other

words, we make a Fourier decomposition of Lα,0 with respect to θ and we introduce the

family of 2D-operators (Lα,0,m)m∈Z acting on L2(R, dµ):

Lα,0,m = − 1

τ 2
∂ττ

2∂τ +
1

τ 2 sin2(αϕ)

(
m+

sin2(αϕ)

2α
τ 2

)2

− 1

α2 τ 2 sin(αϕ)
∂ϕ sin(αϕ)∂ϕ ,

with

R = {(τ, ϕ) ∈ R2, τ > 0, ϕ ∈ (0, 1
2
)} ,

and

dµ = τ 2 sin(αϕ) dτ dϕ .

We denote by Qα,0,m the quadratic form associated with Lα,0,m. This normal form is

also the suitable form to construct quasimodes. Then an integrability argument proves

that the eigenfunctions are microlocalized in m = 0, i.e. they are axisymmetric. Thus

this allows a first reduction of dimension. It remains to notice that the last term in

Lα,0,0 is penalized by α−2 so that the Feshbach-Grushin projection on the groundstate

of −α−2(sin(αϕ))−1∂ϕ sin(αϕ)∂ϕ (the constant function) acts as an approximation of the

identity on the eigenfunctions. Therefore the spectrum of Lα,0,0 is described modulo lower

order terms by the spectrum of the average of Lα,0 with respect to ϕ which involves the

so-called Laguerre operator (radial harmonic oscillator).
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3.3.3. Case β ∈
[
0, π

2

]
. In this case we cannot use the axisymmetry, but we are

still able to construct formal series and prove localization estimates of Agmon type.

Moreover we notice that the magnetic momentum with respect to θ is strongly penalized

by (τ 2 sin2(αϕ))−1 so that, jointly with the localization estimates it is possible to prove

that the eigenfunctions are asymptotically independent from θ and we are reduced to the

situation β = 0.
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CHAPTER 9

Waveguides

Si on me presse de dire pourquoi je l’aimais,

je sens que cela ne se peut exprimer qu’en

répondant : Parce que c’était lui : parce que

c’était moi.

Les Essais, Livre I, Chapitre XXVIII,

Montaigne

This chapter presents recent progress in the spectral theory of waveguides. In Section 1

we describe magnetic waveguides in dimensions two and three and we analyze the spectral

influence of the width ε of the waveguide and the intensity b if the magnetic field. In

particular we investigate the limit ε → 0. In Section 2 we describe the same problem

in the case of layers. In Sections 3.1 and 3.2 the effect of a corner in dimension two is

tackled.

1. Magnetic waveguides

This section is concerned with spectral properties of a curved quantum waveguide

when a magnetic field is applied. We will give a precise definition of what a waveguide is

in Sections 1.3 and 1.4. Without going into the details we can already mention that we

will use the definition given in the famous (non magnetic) paper of Duclos and Exner [58]

and its generalizations [38, 126, 80]. The waveguide is nothing but a tube Ωε about an

unbounded curve γ in the Euclidean space Rd, with d ≥ 2, where ε is a positive shrinking

parameter and the cross section is defined as εω = {ετ : τ ∈ ω}.

More precisely this section is devoted to the spectral analysis of the magnetic operator

with Dirichlet boundary conditions L
[d]
ε,bA defined as

(9.1.1) (−i∇x + bA(x))2 on L2(Ωε, dx) .

where b > 0 is a positive parameter and A a smooth vector potential associated with a

given magnetic field B.

1.1. The result of Duclos and Exner. One of the deep facts which is proved by

Duclos and Exner is that the Dirichlet Laplacian on Ωε always has discrete spectrum below

its essential spectrum when the waveguide is not straight and asymptotically straight.

Let us sketch the proof of this result in the case of two dimensional waveguides.
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Let us consider a smooth and injective curve γ: R 3 s 7→ γ(s) which is parameterized

by its arc length s. The normal to the curve at γ(s) is defined as the unique unit vector

n(s) such that γ′(s) · ν(s) = 0 and det(γ′, ν) = 1. We have the relation γ′′(s) = κ(s)n(s)

where κ(s) denotes the algebraic curvature at the point γ(s). We can now define standard

tubular coordinates. We consider:

R× (−ε, ε) 3 (s, t) 7→ Φ(s, t) = γ(s) + tn(s) .

We always assume

(9.1.2) Φ is injective and ε sup
s∈R
|κ(s)| < 1 .

Then it is well known (see [126]) that Φ defines a smooth diffeomorphism from R×(−ε, ε)
onto the image Ωε = Φ(R× (−ε, ε)), which we identify with our waveguide. In these new

coordinates, the operator becomes (exercise)

L
[2]
ε,0 = −m−1∂sm

−1∂s −m−1∂tm∂t, m(s, t) = 1− tκ(s) ,

which is acting in the weighted space L2(R × (−ε, ε),m(s, t) ds dt). We introduce the

shifted quadratic form:

Q[2],sh
ε,0 (φ) =

∫
R×(−ε,ε)

(
m−2|∂s(φ)|2 + |∂tφ|2 −

π2

4ε2
|φ|2
)
m ds dt

and we let:

φn(s, t) = χ0(n−1s) cos
( π

2ε
t
)
,

where χ0 is a smooth cutoff function which is 1 near 0. We can check thatQ[2],sh
ε,0 (φn) →

n→+∞
0. Let us now consider a smooth cutoff function χ1 which is 1 near a point where κ is

not zero and define φ̃(s, t) = −χ2
1(s, t)L[2],sh

ε,0 φn(s, t) which does not depend on n as soon

as n is large enough. Then we have:

Q[2],sh
ε,0 (φn + ηφ̃) = Q[2],sh

ε,0 (φn)− 2ηB[2],sh
ε,0 (φn, χ1(s)L[2],sh

ε,0 φn) + η2Q[2],sh
ε,0 (φ̃) .

For n large enough, the quantity B[2],sh
ε,0 (φn, χ1(s)L[2],sh

ε,0 φn) does not depend on n and is

positive. For such an n, we take η small enough and we find:

Q[2],sh
ε,0 (φn + ηφ̃) < 0 .

Therefore the bottom of the spectrum is an eigenvalue due to the min-max principle.

Duclos and Exner also investigate the limit ε→ 0 to show that the Dirichlet Laplacian

on the tube Ωε converges in a suitable sense to the effective one dimensional operator

Leff = −∂2
s −

κ(s)2

4
on L2(γ, ds) .

In addition it is proved in [58] that each eigenvalue of this effective operator generates

an eigenvalue of the Dirichlet Laplacian on the tube.
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As Duclos and Exner we are interested in approximations of L
[d]
ε,bA in the small cross

section limit ε→ 0. Such an approximation might non trivially depends on the intensity

of the magnetic field b especially if it is allowed to depend on ε.

1.2. Waveguides with more geometry. In dimension three it is also possible to

twist the waveguide by allowing the cross section of the waveguide to non-trivially rotate

by an angle function θ with respect to a relatively parallel frame of γ (then the velocity

θ′ can be interpreted as a “torsion”). It is proved in [62] that, whereas the curvature is

favourable to discrete spectrum, the torsion plays against it. In particular, the spectrum

of a straight twisted waveguide is stable under small perturbations (such as local electric

field or bending). This repulsive effect of twisting is quantified in [62] (see also [125, 129])

by means of a Hardy type inequality. The limit ε → 0 permits to compare the effects

bending and twisting ([28, 51, 128]) and the effective operator is given by

Leff = −∂2
s −

κ(s)2

4
+ C(ω)θ′(s)2 on L2(γ, ds) ,

where C(ω) is a positive constant whenever ω is not a disk or annulus. Writing (9.1.1)

Figure 1. Torsion on the left and curvature on the right

in suitable curvilinear coordinates (see (9.1.9) below), one may notice similarities in the

appearance of the torsion and the magnetic field in the coefficients of the operator and

it therefore seems natural to ask the following question:

“Does the magnetic field act as the torsion ?”

In order to define our effective operators in the limit ε → 0 we shall describe more

accurately the geometry of our waveguides. This is the aim of the next two sections in

which we will always assume that the geometry (curvature and twist) and the magnetic

field are compactly supported.

1.3. Two-dimensional waveguides. Up to changing the gauge, the Laplace-Beltrami

expression of L
[2]
ε,bA in these coordinates is given by

L
[2]
ε,bA = (1− tκ(s))−1(i∂s + bA1)(1− tκ(s))−1(i∂s + bA1)− (1− tκ(s))−1∂t(1− tκ(s))∂t ,
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with the gauge:

A(s, t) = (A1(s, t), 0), A1(s, t) =

∫ t

0

(1− t′κ(s))B(Φ(s, t′)) dt′ .

We let

m(s, t) = 1− tκ(s) .

The self-adjoint operator L
[2]
ε,bA on L2(R × (−ε, ε),m ds dt) is unitarily equivalent to the

self-adjoint operator on L2(R× (−ε, ε), ds dt):

L[2]
ε,bA = m1/2L

[2]
ε,bAm

−1/2 .

Introducing the rescaling

(9.1.3) t = ετ,

we let

Aε(s, τ) = (A1,ε(s, τ), 0) = (A1(s, ετ), 0)

and denote by L[2]
ε,bAε the homogenized operator on L2(R× (−1, 1), ds dτ):

(9.1.4) L[2]
ε,bAε = m−1/2

ε (i∂s + bA1,ε)m
−1
ε (i∂s + bA1,ε)m

−1/2
ε − ε−2∂2

τ + Vε(s, τ) ,

with

mε(s, τ) = m(s, ετ), Vε(s, τ) = −κ(s)2

4
(1− εκ(s)τ)−2 .

It is easy to verify that L[2]
ε,bA, defined as Friedrich extension of the operator initially

defined on C∞0 (R×(−ε, ε)), has form domain H1
0(R×(−ε, ε)). Similarly, the form domain

of L[2]
ε,bAε is H1

0(R× (−1, 1)).

1.4. Three-dimensional waveguides. The situation is geometrically more com-

plicated in dimension 3. We consider a smooth curve γ which is parameterized by its

arc length s and does not overlap itself. We use the so-called Tang frame (or the rel-

atively parallel frame, see for instance [128]) to describe the geometry of the tubular

neighborhood of γ. Denoting the (unit) tangent vector by T (s) = γ′(s), the Tang frame

(T (s),M2(s),M3(s)) satisfies the relations:

T ′ = κ2M2 + κ3M3 ,

M ′
2 = −κ2T ,

M ′
3 = −κ3T .

The functions κ2 and κ3 are the curvatures related to the choice of the normal fields M2

and M3. We can notice that κ2 = κ2
2 + κ2

3 = |γ′′|2 is the square of the usual curvature of

γ.
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Let θ : R→ R a smooth function (twisting). We introduce the map Φ : R×(εω)→ Ωε

defined by:

(9.1.5)

x = Φ(s, t2, t3) = γ(s) + t2(cos θM2(s) + sin θM3(s)) + t3(− sin θM2(s) + cos θM3(s)) .

Let us notice that s will often be denoted by t1. As in dimension two, we always assume:

(9.1.6) Φ is injective and ε sup
(τ2,τ3)∈ω

(|τ2|+ |τ3|) sup
s∈R
|κ(s)| < 1 .

Sufficient conditions ensuring the injectivity hypothesis can be found in [62, App. A]. We

define A = (dΦ)TA(Φ) = (A1,A2,A3),

h = 1− t2(κ2 cos θ + κ3 sin θ)− t3(−κ2 sin θ + κ3 cos θ) ,

h2 = −t2θ′ ,

h3 = t3θ
′ ,

and R = h3bA2 +h2bA3. We also introduce the angular derivative ∂α = t3∂t2 − t2∂t3 . We

will see in Chapter 20, Section 2 that the magnetic operator L
[3]
ε,bA is unitarily equivalent

to the operator on L2(Ωε, h dt) given by

(9.1.7) L
[3]
ε,bA =

∑
j=2,3

h−1(−i∂tj + bAj)h(−i∂tj + bAj)

+ h−1(−i∂s + bA1 − iθ′∂α +R)h−1(−i∂s + bA1 − iθ′∂α +R) .

By considering the conjugate operator h1/2L
[3]
ε,bAh

−1/2, we find that L
[3]
ε,bA is unitarily

equivalent to the operator defined on L2(R× (εω), ds dt2 dt3) given by:

(9.1.8) L[3]
ε,bA =

∑
j=2,3

(−i∂tj + bAj)2 − κ2

4h2

+ h−1/2(−i∂s + bA1 − iθ′∂α +R)h−1(−i∂s + bA1 − iθ′∂α +R)h−1/2 .

Finally, introducing the rescaling

(t2, t3) = ε(τ2, τ3) = ετ ,

we define the homogenized operator on L2(R× ω, ds dτ):

(9.1.9) L[3]
ε,bAε =

∑
j=2,3

(−iε−1∂τj + bAj,ε)2 − κ2

4h2
ε

+ h−1/2
ε (−i∂s + bA1,ε − iθ′∂α +Rε)h

−1
ε (−i∂s + bA1,ε − iθ′∂α +Rε)h

−1/2
ε ,

where Aε(s, τ) = A(s, ετ), hε(s, τ) = h(s, ετ) and Rε = R(s, ετ).

We leave as an exercise the verification that the form domains of L[3]
ε,bA and L[3]

ε,bAε are

H1
0(R× (−ε, ε)) and H1

0(R× (−1, 1)), respectively.
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1.5. Limiting models and asymptotic expansions. We can now state our main

results concerning the effective models in the limit ε → 0. We will denote by λDir
n (ω)

the n-th eigenvalue of the Dirichlet Laplacian −∆Dir
ω on L2(ω). The first positive and

L2-normalized eigenfunction will be denoted by J1.

Definition 9.1 (Case d = 2). For δ ∈ (−∞, 1), we define:

Leff,[2]
ε,δ = −ε−2∆Dir

ω − ∂2
s −

κ(s)2

4

and for δ = 1, we let:

Leff,[2]
ε,1 = −ε−2∆Dir

ω + T [2] ,

where

T [2] = −∂2
s +

(
1

3
+

2

π2

)
B(γ(s))2 − κ(s)2

4
.

The following theorem is proved in Chapter 20, Section 1.

Theorem 9.2 (Case d = 2). There exists K such that, for all δ ∈ (−∞, 1], there exist

ε0 > 0, C > 0 such that, for all ε ∈ (0, ε0),∥∥∥∥(L[2]

ε,ε−δAε − ε
−2λDir

1 (ω) +K
)−1

−
(
Leff,[2]
ε,δ − ε−2λDir

1 (ω) +K
)−1
∥∥∥∥ ≤ C max(ε1−δ, ε) ,

for δ < 1

and ∥∥∥∥(L[2]

ε,ε−1Aε − ε
−2λDir

1 (ω) +K
)−1

−
(
Leff,[2]
ε,1 − ε−2λDir

1 (ω) +K
)−1
∥∥∥∥ ≤ Cε .

In the critical regime δ = 1, we deduce the following corollary providing the asymp-

totic expansions of the lowest eigenvalues λ
[2]
n (ε) of L[2]

ε,ε−1Aε .

Corollary 9.3 (Case d = 2 and δ = 1). Let us assume that T [2] admits N (simple)

eigenvalues µ0, · · · , µN below the threshold of the essential spectrum. Then, for all n ∈
{1, · · ·N}, there exist (γj,n)j≥0 and ε0 > 0 such that for all ε ∈ (0, ε0):

λ[2]
n (ε) ∼

ε→0

∑
j≥0

γj,nε
−2+j ,

with

γ0,n =
π2

4
, γ1,n = 0, γ2,n = µn .

Thanks to the spectral theorem, we also get the approximation of the corresponding

eigenfunctions at any order (see our quasimodes in (20.1.9)).

In order to present analogous results in dimension three, we introduce supplementary

notation. The norm and the inner product in L2(ω) will be denoted by ‖ · ‖ω and 〈·, ·〉ω,

respectively.
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Definition 9.4 (Case d = 3). For δ ∈ (−∞, 1), we define:

Leff,[3]
ε,δ = −ε−2∆Dir

ω − ∂2
s −

κ(s)2

4
+ ‖∂αJ1‖2

ωθ
′2

and for δ = 1, we let:

Leff,[3]
ε,1 = −ε−2∆Dir

ω + T [3] ,

where T [3] is defined by:

T [3] = 〈(−i∂s − iθ′∂α − B12(s, 0, 0)τ2 − B13(s, 0, 0)τ3)2Id(s)⊗ J1, Id(s)⊗ J1〉ω

+ B2
23(s, 0, 0)

(
‖τJ1‖2

ω

4
− 〈DαRω, J1〉ω

)
− κ2(s)

4
,

with Rω being given in (20.2.5) and

B23(s, 0, 0) = B(γ(s)) · T (s) ,

B13(s, 0, 0) = B(γ(s)) · (cos θM2(s)− sin θM3(s)) ,

B12(s, 0, 0) = B(γ(s)) · (− sin θM2(s) + cos θM3(s)) .

The following theorem is proved in Chapter 20, Section 2.

Theorem 9.5 (Case d = 3). There exists K such that for all δ ∈ (−∞, 1], there exist

ε0 > 0, C > 0 such that, for all ε ∈ (0, ε0),∥∥∥∥(L[3]

ε,ε−δAε − ε
−2λDir

1 (ω) +K
)−1

−
(
Leff,[3]
ε,δ − ε−2λDir

1 (ω) +K
)−1
∥∥∥∥ ≤ C max(ε1−δ, ε) ,

for δ < 1

and ∥∥∥∥(L[3]

ε,ε−1Aε − ε
−2λDir

1 (ω) +K
)−1

−
(
Leff,[3]
ε,1 − ε−2λDir

1 (ω) +K
)−1
∥∥∥∥ ≤ Cε .

In the same way, this theorem implies asymptotic expansions of eigenvalues λ
[3]
n (ε) of

L[3]

ε,ε−1Aε .

Corollary 9.6 (Case d = 3 and δ = 1). Let us assume that T [3] admits N (simple)

eigenvalues ν0, · · · , νN below the threshold of the essential spectrum. Then, for all n ∈
{1, · · ·N}, there exist (γj,n)j≥0 and ε0 > 0 such that for all ε ∈ (0, ε0):

λ[3]
n (ε) ∼

ε→0

∑
j≥0

γj,nε
−2+j ,

with

γ0,n = λDir
1 (ω), γ1,n = 0, γ2,n = νn .

As in two dimensions, we also get the corresponding expansion for the eigenfunctions.

Complete asymptotic expansions for eigenvalues in finite three-dimensional waveguides

without magnetic field are also previously established in [87, 24]. Such expansions were

also obtained in [86] in the case δ = 0 in a periodic framework.
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Remark 9.7. As expected, when δ = 0 that is when b is kept fixed, the magnetic field

does not persists in the limit ε→ 0 as well in dimension two as in dimension three. Indeed,

in this limit Ωε converges to the one dimensional curve γ and there is no magnetic field

in dimension 1.

1.6. Norm resolvent convergence. Let us state an auxiliary result, inspired by

the approach of [82], which tells us that, in order to estimate the difference between two

resolvents, it is sufficient to analyse the difference between the corresponding sesquilinear

forms as soon as their domains are the same.

Lemma 9.8. Let L1 and L2 be two positive self-adjoint operators on a Hilbert space

H. Let B1 and B2 be their associated sesquilinear forms. We assume that Dom (B1) =

Dom (B2). Assume that there exists η > 0 such that for all φ, ψ ∈ Dom (B1):

|B1(φ, ψ)−B2(φ, ψ)| ≤ η
√

Q1(ψ)
√

Q2(φ) ,

where Qj(ϕ) = Bj(ϕ, ϕ) for j = 1, 2 and ϕ ∈ Dom (B1). Then, we have:

‖L−1
1 − L−1

2 ‖ ≤ η‖L−1
1 ‖1/2‖L−1

2 ‖1/2 .

Proof. The original proof can be found in [128, Prop. 5.3]. Let us consider φ̃, ψ̃ ∈ H.

We let φ = L−1
2 φ̃ and ψ = L−1

1 ψ̃. We have φ, ψ ∈ Dom (B1) = Dom (B2). We notice

that:

B1(φ, ψ) = 〈L−1
2 φ̃, ψ̃〉, B2(φ, ψ) = 〈L−1

1 φ̃, ψ̃〉
and:

Q1(ψ) = 〈ψ̃,L−1
1 ψ̃〉, Q2(φ) = 〈φ̃,L−1

2 φ̃〉 .
We infer that: ∣∣∣〈(L−1

1 − L−1
2 )φ̃, ψ̃〉

∣∣∣ ≤ η‖L−1
1 ‖1/2‖L−1

2 ‖1/2‖φ̃‖‖ψ̃‖

and the result elementarily follows. �

1.7. A magnetic Hardy inequality. In dimension 2, the limiting model (with

δ = 1) enlightens the fact that the magnetic field plays against the curvature, whereas

in dimension 3 this repulsive effect is not obvious (it can be seen that 〈DαRω, J1〉ω ≥ 0).

Nevertheless, if ω is a disk, we have 〈DαRω, J1〉ω = 0 and thus the component of the

magnetic field parallel to γ plays against the curvature (in comparison, a pure torsion

has no effect when the cross section is a disk). In the flat case (κ = 0), we can quantify this

repulsive effect by means of a magnetic Hardy inequality (see [61] where this inequality

is discussed in dimension two). We will not discuss the proof of this inequality in this

book.

Theorem 9.9. Let d ≥ 2. Let us consider Ω = R× ω. For R > 0, we let:

Ω(R) = {t ∈ Ω : |t1| < R} .
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Let A be a smooth vector potential such that σB is not zero on Ω(R0) for some R0 > 0.

Then, there exists C > 0 such that, for all R ≥ R0, there exists cR(B) > 0 such that, we

have:

(9.1.10)

∫
Ω

|(−i∇+ A)ψ|2 − λDir
1 (ω)|ψ|2 dt ≥

∫
Ω

cR(B)

1 + s2
|ψ|2 dt, ∀ψ ∈ C∞0 (Ω) .

Moreover we can take:

cR(B) =
(
1 + CR−2

)−1
min

(
1

4
, λDir,Neu

1 (B,Ω(R))− λDir
1 (ω)

)
,

where λDir,Neu
1 (B,Ω(R)) denotes the first eigenvalue of the magnetic Laplacian on Ω(R),

with Dirichlet condition on R× ∂ω and Neumann condition on {|s| = R} × ω.

The inequality of Theorem 9.9 can be applied to prove certain stability of the spectrum

of the magnetic Laplacian on Ω under local and small deformations of Ω. Let us fix

ε > 0 and describe a generic deformation of the straight tube Ω. We consider the local

diffeomorphism:

Φε(t) = Φε(s, t2, t3) = (s, 0, · · · , 0) +
d∑
j=2

(tj + εj(s))Mj + E1(s) ,

where (Mj)
d
j=2 is the canonical basis of {0} × Rd−1. The functions εj and E1 are smooth

and compactly supported in a compact set K. As previously we assume that Φε is a

global diffeomorphism and we consider the deformed tube Ωdef,ε = Φε(R× ω).

Proposition 9.10. Let d ≥ 2. There exists ε0 > 0 such that for ε ∈ (0, ε0), the spectrum

of the Dirichlet realization of (−i∇ + A)2 on Ωdef,ε coincides with the spectrum of the

Dirichlet realization of (−i∇+ A)2 on Ω. The spectrum is given by [λDir
1 (ω),+∞).

By using a semiclassical argument, it is possible to prove a stability result which does

not use the Hardy inequality.

Proposition 9.11. Let R0 > 0 and Ω(R0) = {t ∈ R×ω : |t1| ≤ R0}. Let us assume that

σB = dξA does not vanish on Φ(Ω(R0)) and that on Ω1 \Φ(Ω(R0)) the curvature is zero.

Then, there exists b0 > 0 such that for b ≥ b0, the discrete spectrum of L
[d]
1,bA is empty.

2. Magnetic layers

As we will sketch below, the philosophy of Duclos and Exner may also apply to thin

quantum layers as we can see in the contributions [59, 35, 134, 135, 136, 180, 127]

and the related papers [120, 44, 45, 187, 147, 83, 80, 193, 190, 130, 128].

Let us consider Σ an hypersurface embedded in Rd with d ≥ 2, and define a tubular

neighbourhood about Σ,

(9.2.1) Ωε :=
{
x+ tn ∈ Rd

∣∣ (x, t) ∈ Σ× (−ε, ε)
}
,
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where n denotes a unit normal vector field of Σ. We investigate:

(9.2.2) LA,Ωε = (−i∇+ A)2 on L2(Ωε) ,

with Dirichlet boundary conditions on ∂Ωε.

2.1. Normal form. As usual the game is to find an appropriate normal form for

the magnetic Laplacian. Given I := (−1, 1) and ε > 0, we define a layer Ωε of width 2ε

along Σ as the image of the mapping

(9.2.3) Φ : Σ× I → Rd :
{

(x, u) 7→ x+ εun
}
.

Let us denote by Ã the components of the vector potential expressed in the curvilinear

coordinates induced by the embedding (9.2.3). Moreover, assume

(9.2.4) Ãd = 0 .

Thanks to the diffeomorphism Φ : Σ× I → Ωε, we may identify LA,Ωε with an operator

Ĥ on L2(Σ× I, dΩε) that acts, in the form sense, as

Ĥ = |G|−1/2(−i∂xµ + Ãµ)|G|1/2Gµν(−i∂xν + Ãν)− ε−2|G|−1/2∂u|G|1/2∂u .

Let us define

J :=
1

4
ln
|G|
|g|

=
1

2

d−1∑
µ=1

ln(1− εuκµ) =
1

2
ln

[
1 +

d−1∑
µ=1

(−εu)µ
(
d− 1

µ

)
Kµ

]
.

Using the unitary transform

U : L2(Σ× I, dΩε)→ L2(Σ× I, dΣ ∧ du) :
{
ψ 7→ eJψ

}
,

we arrive at the unitarily equivalent operator

H := UĤU−1 = |g|−1/2(−i∂xµ + Ãµ)|g|1/2Gµν(−i∂xν + Ãν)− ε−2∂2
u + V ,

where

V := |g|−1/2 ∂xi
(
|g|1/2Gij(∂xjJ)

)
+ (∂xiJ)Gij(∂xjJ) .

We get

H = UÛ(−∆Ωε
D,A)Û−1U−1 .

2.2. The effective operator. H is approximated in the norm resolvent sense (see

[127] for the details) by

(9.2.5) H0 = heff − ε−2∂2
u ' heff ⊗ 1 + 1⊗ (−ε−2∂2

u)

on L2(Σ× I, dΣ ∧ du) ' L2(Σ, dΣ)⊗ L2(I, du) with the effective Hamiltonian

(9.2.6) heff := |g|−1/2
(
− i∂xµ + Ãµ(., 0)

)
|g|1/2gµν

(
− i∂xν + Ãν(., 0)

)
+ Veff ,
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where

(9.2.7) Veff := −1

2

d−1∑
µ=1

κ2
µ +

1

4

(
d−1∑
µ=1

κµ

)2

.

3. Broken waveguides

3.1. Semiclassical triangles. As we would like to analyze the spectrum of broken

waveguides (that is waveguides with an angle), this is natural to prepare the investigation

by studying the Dirichlet eigenvalues of the Laplacian on some special shrinking trian-

gles. This subject is already dealt with in [79, Theorem 1] where four-term asymptotics is

proved for the lowest eigenvalue, whereas a three-term asymptotics for the second eigen-

value is provided in [79, Section 2]. We can mention the papers [81, 82] whose results

provide two-term asymptotics for the thin rhombi and also [25] which deals with a regular

case (thin ellipse for instance), see also [26]. We also invite the reader to take a look at

[114]. For a complete description of the low lying spectrum of general shrinking triangles,

one may consult the paper by Ourmières [155] (especially the existence of a boundary

layer living near the shrinking height is proved, see also [49, 139]) where tunnel effect

estimates are also established. In dimension three the generalization to cones with small

aperture is done in [156] and which is motivated by [73].

Let us define the isosceles triangle in which we are interested:

(9.3.1) Triθ =
{

(x1, x2) ∈ R− × R : x1 tan θ < |x2| <
(
x1 +

π

sin θ

)
tan θ

}
.

We will use the coordinates

(9.3.2) x = x1

√
2 sin θ, y = x2

√
2 cos θ ,

which transform Triθ into Triπ/4. The operator becomes:

DTri(h) = 2 sin2θ ∂2
x − 2 cos2θ ∂2

y ,

with Dirichlet condition on the boundary of Tri. We let h = tan θ ; after a division by

2 cos2 θ, we get the new operator:

(9.3.3) LTri(h) = −h2∂2
x − ∂2

y .

This operator is thus in the “Born-Oppenheimer form” and we shall introduce its Born-

Oppenheimer approximation which is the Dirichlet realization on L2((−π
√

2, 0)) of:

(9.3.4) HBO,Tri(h) = −h2∂2
x +

π2

4(x+ π
√

2)2
.

The following theorem is a consequence of the Born-Oppenheimer strategy (see Chapter

6, Section 2).
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Theorem 9.12. The eigenvalues of HBO,Tri(h), denoted by λBO,Tri,n(h), admit the expan-

sions:

λBO,Tri,n(h) ∼
h→0

∑
j≥0

β̂j,nh
2j/3 , with β̂0,n =

1

8
and β̂1,n = (4π

√
2)−2/3zAirev(n) ,

where zAirev(n) is the n-th zero of the reversed Airy function Airev(x) = Ai(−x).

We state the main result of this section for the scaled operator LTri(h). A proof may

be found in Chapter 21.

Theorem 9.13. The eigenvalues of LTri(h), denoted by λTri,n(h), admit the expansions:

λTri,n(h) ∼
h→0

∑
j≥0

βj,nh
j/3 with β0,n =

1

8
, β1,n = 0, and β2,n = (4π

√
2)−2/3zAirev(n) ,

the terms of odd rank being zero for j ≤ 8. The corresponding eigenvectors have expan-

sions in powers of h1/3 with both scales x/h2/3 and x/h.

3.2. Broken waveguides.

3.2.1. Physical motivation. As we have already recalled at the beginning of this chap-

ter, it has been proved in [58] that a curved, smooth and asymptotically straight waveg-

uide has discrete spectrum below its essential spectrum. Now we would like to explain

the influence of a corner which is somehow an infinite curvature and extend the philos-

ophy of the smooth case. This question is investigated with the L-shape waveguide in

[72] where the existence of discrete spectrum is proved. For an arbitrary angle too, this

existence is proved in [7] and an asymptotic study of the ground energy is done when θ

goes to π
2

(where θ is the semi-opening of the waveguide). Another question which arises

is the estimate of the lowest eigenvalues in the regime θ → 0. This problem is analyzed in

[34] where a waveguide with corner is the model chosen to describe some electromagnetic

experiments (see the experimental results in [34]). We also refer to our work [48, 49].

3.2.2. Geometric description. Let us denote by (x1, x2) the Cartesian coordinates of

the plane and by 0 = (0, 0) the origin. Let us define our so-called “broken waveguides”.

For any angle θ ∈
(
0, π

2

)
we introduce

(9.3.5) Ωθ =
{

(x1, x2) ∈ R2 : x1 tan θ < |x2| <
(
x1 +

π

sin θ

)
tan θ

}
.

Note that its width is independent from θ, normalized to π, see Figure 2. The limit case

where θ = π
2

corresponds to the straight strip (−π, 0)× R.

The operator −∆Dir
Ωθ

is a positive unbounded self-adjoint operator with domain

Dom (−∆Dir
Ωθ

) = {ψ ∈ H1
0(Ωθ) : −∆ψ ∈ L2(Ωθ)} .

When θ ∈
(
0, π

2

)
, the boundary of Ωθ is not smooth, it is polygonal. The presence of the

non-convex corner with vertex 0 is the reason for the space Dom (−∆Dir
Ωθ

) to be distinct

from H2 ∩ H1
0(Ωθ). We have the following description of the domain (see the classical
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x1

x2

(− π
sin θ

, 0)

Ωθ

ϕ
θ

ρ

•
0

Figure 2. The broken guide Ωθ (here θ = π
6
). Cartesian and polar coordinates.

references [124, 85]):

(9.3.6) Dom (−∆Dir
Ωθ

) =
(
H2 ∩ H1

0(Ωθ)
)
⊕ [ψθsing]

where [ψθsing] denotes the space generated by the singular function ψθsing defined in the

polar coordinates (ρ, ϕ) near the origin by

(9.3.7) ψθsing(x1, x2) = χ(ρ) ρπ/ω sin
πϕ

ω
with ω = 2(π − θ)

where where χ is a radial cutoff function near the origin.

We gather in the following statement several important preliminary properties for the

spectrum of −∆Dir
Ωθ

. All these results are proved in the literature.

Proposition 9.14. We have:

(i) If θ = π
2
, −∆Dir

Ωθ
has no discrete spectrum. Its essential spectrum is the closed interval

[1,+∞).

(ii) For any θ in the open interval (0, π
2
) the essential spectrum of −∆Dir

Ωθ
coincides with

[1,+∞).

(iii) For any θ ∈ (0, π
2
), the discrete spectrum of −∆Dir

Ωθ
is nonempty.

(iv) For any θ ∈ (0, π
2
), the number of eigenvalues of −∆Dir

Ωθ
below 1, denoted by N(−∆Dir

Ωθ
, 1),

is finite.

(v) For any θ ∈ (0, π
2
) and any eigenvalue in the discrete spectrum of −∆Dir

Ωθ
, the as-

sociated eigenvectors ψ are even with respect to the horizontal axis: ψ(x1,−x2) =

ψ(x1, x2).

(vi) For any θ ∈ (0, π
2
), let µGui,n(θ) be the n-th Rayleigh quotient of −∆Dir

Ωθ
. Then, for

any n ≥ 1, the function θ 7→ µGui,n(θ) is continuous and increasing.

It is also possible to prove that the number of eigenvalues below the essential spectrum

is exactly 1 as soon as θ is close enough to π
2

(see [153]).

As a consequence of the parity properties of the eigenvectors of −∆Dir
Ωθ

, cf. point (v)

of Proposition 9.14, we can reduce the spectral problem to the half-guide

(9.3.8) Ω+
θ = {(x1, x2) ∈ Ωθ : x2 > 0} .
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We define the Dirichlet part of the boundary by ∂DirΩ
+
θ = ∂Ωθ ∩ ∂Ω+

θ , and the corre-

sponding form domain

H1
Mix(Ω

+
θ ) =

{
ψ ∈ H1(Ω+

θ ) : ψ = 0 on ∂DirΩ
+
θ

}
.

Then the new operator of interest, denoted by −∆Mix
Ω+
θ

, is the Laplacian with mixed

Dirichlet-Neumann conditions on Ω+
θ . Its domain is:

Dom (−∆Mix
Ω+
θ

) =
{
ψ ∈ H1

Mix(Ω
+
θ ) : ∆ψ ∈ L2(Ω+

θ ) and ∂2ψ = 0 on x2 = 0
}
.

Then the operators −∆Dir
Ωθ

and −∆Mix
Ω+
θ

have the same eigenvalues below 1 and the eigen-

vectors of the latter are the restriction to Ω+
θ of the former.

In order to analyze the asymptotics θ → 0, it is useful to rescale the integration

domain and transfer the dependence on θ into the coefficients of the operator. For this

reason, let us perform the following linear change of coordinates:

(9.3.9) x = x1

√
2 sin θ , y = x2

√
2 cos θ ,

which maps Ω+
θ onto the θ-independent domain Ω+

π/4, see Fig. 3. That is why we set for

simplicity

(9.3.10) Ω := Ω+
π/4 , ∂DirΩ = ∂DirΩ

+
π/4 , and H1

Mix(Ω) =
{
ψ ∈ H1(Ω) : ψ = 0 on ∂DirΩ

}
.

θ

Ωθ

π
4

Ω

Neumann Neumann

Figure 3. The half-guide Ω+
θ for θ = π

6
and the reference domain Ω.

Then, ∆Mix
Ω+
θ

is unitarily equivalent to the operator defined on Ω by:

(9.3.11) DGui(θ) = −2 sin2θ ∂2
x − 2 cos2θ ∂2

y ,

with Neumann condition on y = 0 and Dirichlet everywhere else on the boundary of Ω.

We let h = tan θ ; after a division by 2 cos2 θ, we get the new operator:

(9.3.12) LGui(h) = −h2∂2
x − ∂2

y ,

with domain:

Dom (LGui(h)) =
{
ψ ∈ H1

Mix(Ω) : LGui(h)ψ ∈ L2(Ω) and ∂yψ = 0 on y = 0
}
.

The Born-Oppenheimer approximation of LGui(h) (see Chapter 11) is

(9.3.13) HBO,Gui(h) = −h2∂2
x + V (x) ,
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where

V (x) =


π2

4(x+ π
√

2)2
when x ∈ (−π

√
2, 0) ,

1

2
when x ≥ 0 .

3.2.3. Eigenvalues induced by a strongly broken waveguide. Let us now state the main

result concerning the asymptotic expansion of the eigenvalues of the broken waveguide

(see Chapter 21 for the proof of the two terms asymptotic expansion).

Theorem 9.15. For all N0, there exists h0 > 0, such that for h ∈ (0, h0) the N0 first

eigenvalues of LGui(h) exist. These eigenvalues, denoted by λGui,n(h), admit the expan-

sions:

λGui,n(h) ∼
h→0

∑
j≥0

γj,nh
j
3 with γ0,n =

1

8
, γ1,n = 0 , and γ2,n = (4π

√
2)−2/3zAirev(n) .
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CHAPTER 10

On some connected non linear problems

L’explication que nous devons juger satisfaisante est

celle qui adhère à son objet : point de vide entre eux,

pas d’interstice où une autre explication puisse aussi

bien se loger ; elle ne convient qu’à lui, il ne se prête

qu’à elle.

La pensée et le mouvant, Bergson

In this chapter we present two problems related to the non linear Schrödinger equation:

(i) the semiclassical limit for the p-eigenvalues of the magnetic Laplacian,

(ii) the dimensional reduction of the time dependent non linear Schrödinger equation.

1. Non linear magnetic eigenvalues

1.1. Definition of the non linear eigenvalue. Let Ω be a bounded simply con-

nected open set of R2. We introduce the following “nonlinear eigenvalue” (or optimal

magnetic Sobolev constant):

(10.1.1) λ(Ω,A, p, h) = inf
ψ∈H1

0(Ω),ψ 6=0

Qh,A(ψ)(∫
Ω
|ψ|p dx

) 2
p

= inf
ψ∈H1

0(Ω),
‖ψ‖Lp(Ω)=1

Qh,A(ψ) ,

where the magnetic quadratic form is defined by

∀ψ ∈ H1
0(Ω), Qh,A(ψ) =

∫
Ω

|(−ih∇+ A)ψ|2 dx .

Lemma 10.1. The infimum in (10.1.1) is attained.

Proof. Consider a minimizing sequence (ψj) that is normalized in Lp-norm. Then,

by a Hölder inequality and using that Ω has bounded measure, (ψj) is bounded in L2.

Since A ∈ L∞(Ω), we conclude that (ψj) is bounded in H1
0(Ω). By the Banach-Alaoglu

Theorem there exists a subsequence (still denoted by (ψj)) and ψ∞ ∈ H1
0(Ω) such that

ψj ⇀ ψ∞ weakly in H1
0(Ω) and ψj → ψ∞ in Lq(Ω) for all q ∈ [2,+∞). This is enough to

conclude. �

Lemma 10.2. The minimizers (which belong to H1
0(Ω)) of the Lp-normalized version of

(10.1.1) satisfy the following equation in the sense of distributions:

(10.1.2) (−ih∇+ A)2ψ = λ(Ω,A, p, h)|ψ|p−2ψ , ‖ψ‖Lp(Ω) = 1 .
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In particular (by Sobolev embedding), the minimizers belong to the domain of Lh,A.

1.2. A result by Esteban and Lions. By using the famous concentration-compactness

method, Esteban and Lions proved the following proposition in [66].

Proposition 10.3. Let A ∈ L(Rd,Rd) such that B 6= 0 and p ∈ (2, 2∗), with 2∗ = 2d
d−2

.

We let

(10.1.3) S = inf
ψ∈Dom (QA),ψ 6=0

QA(ψ)

‖ψ‖2
Lp(Rd)

.

Then, the infimum in (10.1.3) is attained.

Note that S > 0. Indeed, if (φj)j≥1 is a minimizing sequence, normalized in Lp, such

that QA(φj)→ 0, we deduce that, by diamagnetism, |φj| → 0 in H1(Rd). By the Sobolev

embedding H1(Rd) ⊂ Lp(Rd), we get that (φj)j≥1 goes to zero in Lp(Rd). We prove this

proposition in Chapter 16, Section 1 by using an alternative method to the concentration-

compactness principle. Moreover, it is possible to prove that the minimizers of (10.1.3)

have an exponential decay.

Proposition 10.4. There exists α > 0 such that, for any minimizer ψ of (10.1.3), we

have eα|x|ψ ∈ L2(Rd).

We focus on the two dimensional case.

Definition 10.5. For p ∈ (2,+∞), we define

(10.1.4) λ[0](p) = λ(R2,A[0], p, 1) = inf
ψ∈Dom (Q

A[0] ),ψ 6=0

QA[0](ψ)

‖ψ‖2
Lp

,

where A[0](x, y) = (0,−x). Here

QA[0](ψ) =

∫
R2

|(−i∇+ A[0])ψ|2 dx ,

with domain

Dom (QA[0]) =
{
ψ ∈ L2(R2) : (−i∇+ A[0])ψ ∈ L2(R2)

}
.

Let us now state the main theorem of this section (the proof is given in Chapter 16,

Section 2).

Theorem 10.6. Let p ≥ 2. Let us assume that A is smooth on Ω, that B = ∇×A does

not vanish on Ω and that its minimum b0 is attained in Ω. Then there exist C > 0 and

h0 > 0 such that, for all h ∈ (0, h0),

(1− Ch
1
8 )λ[0](p)b

2
p

0 h
2h−

2
p ≤ λ(Ω,A, p, h) ≤ (1 + Ch1/2)λ[0](p)b

2
p

0 h
2h−

2
p .

2. Non linear dynamics in waveguides

Let us now discuss another non linear problem.
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With the same formalism, we will consider the case of unbounded curves. Consider a

smooth, simple curve Γ in R2 defined by its normal parametrization γ : x1 7→ γ(x1). For

ε > 0 we introduce the map

(10.2.1) Φε : S = R× (−1, 1) 3 (x1, x2) 7→ γ(x1) + εx2n(x1) = x ,

where n(x1) denotes the unit normal vector at the point γ(x1) such that det(γ′(x1),n(x1)) =

1. We recall that the curvature at the point γ(x1), denoted by κ(x1), is defined by

γ′′(x1) = κ(x1)n(x1) .

The waveguide is Ωε = Φε(S) and we will work under the following assumption which

states that waveguide does not overlap itself and that Φε is a smooth diffeomorphism.

Assumption 10.7. We assume that the function κ is bounded, as well as its derivatives

κ′ and κ′′. Moreover, we assume that there exists ε0 ∈ (0, 1
‖κ‖L∞

) such that, for ε ∈ (0, ε0),

Φε is injective.

We will denote by −∆Dir
Ωε

the Dirichlet Laplacian on Ωε. We are interested in the

following equation:

(10.2.2) i∂tψ
ε = −∆Dir

Ωεψ
ε + λεα|ψε|2ψε

on Ωε with a Cauchy condition ψε(0; ·) = ψε0 and where α ≥ 1 and λ ∈ R are parameters.

By using the diffeomorphism Φε, we may rewrite (10.2.2) in the space coordinates

(x1, x2) given by (10.2.1). For that purpose, let us introduce mε(x1, x2) = 1 − εx2κ(x1)

and consider the function ψε transported by Φε,

Uεψε(t;x1, x2) = φε(t;x1, x2) = ε1/2mε(x1, x2)1/2ψε(t; Φε(x1, x2)) .

Note that Uε is unitary from L2(Ωε, dx) to L2(S, dx1 dx2) and maps H1
0(Ωε) (resp. H2(Ωε))

to H1
0(S) (resp. to H2(S)). Moreover, the operator −∆Dir

Ωε
is unitarily equivalent to the

self-adjoint operator on L2(S, dx1 dx2),

Uε(−∆Dir
Ωε )U−1

ε = Hε + Vε, with Hε = P2
ε,1 + P2

ε,2 ,

where

Pε,1 = m−1/2
ε Dx1m

−1/2
ε , Pε,2 = ε−1Dx2

and where the effective electric Vε potential is defined by

Vε(x1, x2) = − κ(x1)2

4(1− εx2κ(x1))2
.

Notice that, for all ε < ε0, we have mε ≥ 1−ε0‖κ‖L∞ > 0. The problem (10.2.2) becomes

(10.2.3) i∂tφ
ε = Hεφ

ε + Vεφ
ε + λεα−1m−1

ε |φε|2φε

with Dirichlet boundary conditions φε(t;x1,±1) = 0 and the Cauchy condition φε(·; 0) =

φε0 = Uεψε0. We notice that the domains of Hε and Hε + Vε coincide with H2(S) ∩H1
0(S).
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In order to study (10.2.8), it is natural to conjugate the equation by the unitary group

eitHε so that the problem (10.2.8) becomes

(10.2.4) i∂tϕ̃
ε = eitHε(Vε − ε−2µ1)e−itHεϕ̃ε + λWε(t; ϕ̃

ε), ϕ̃ε(0; ·) = φε0 ,

where

(10.2.5) Wε(t;ϕ) = eitHεm−1
ε |e−itHεϕ|2e−itHεϕ

and where ϕ̃ε = eitHεϕε which satisfies ϕ̃ε(t;x1,±1) = 0.

We will analyze the critical case α = 1 where the nonlinear term is of the same

order as the parallel kinetic energy associated to D2
x1

. It is well-known that (10.2.2)

(thus (10.2.3) also) has two conserved quantities: the L2 norm and the nonlinear energy.

Let us introduce the first eigenvalue µ1 = π2

4
of D2

x2
on (−1, 1) with Dirichlet boundary

conditions, associated to the eigenfunction e1(x2) = cos
(
π
2
x2

)
and define the energy

functional

(10.2.6)

Eε(φ) =
1

2

∫
S
|Pε,1φ|2 dx1 dx2 +

1

2

∫
S
|Pε,2φ|2 dx1 dx2 +

1

2

∫
S

(
Vε −

µ1

ε2

)
|φ|2 dx1 dx2

+
λ

4

∫
S
m−1
ε |φ|4 dx1 dx2 .

Notice that we have substracted the conserved quantity µ1

2ε2
‖φ‖2

L2 to the usual nonlinear

energy, in order to deal with bounded energies. Indeed, we will consider initial conditions

with bounded mass and energy, which means more precisely the following assumption.

Assumption 10.8. There exists two constants M0 > 0 and M1 > 0 such that the initial

data φε0 satisfies, for all ε ∈ (0, ε0),

‖φε0‖L2 ≤M0 and Eε(φε0) ≤M1 .

Let us define the projection Π1 on e1 by letting Π1u = 〈u, e1〉L2((−1,1))e1. A consequence

of Assumption 10.8 is that φε0 has a bounded H1 norm and is close to its projection Π1φ
ε
0.

Indeed, we will prove the following lemma (see Chapter 22, Section 2).

Lemma 10.9. Assume that φε0 satisfies Assumption 10.8. Then there exists ε1(M0) ∈
(0, ε0) and a constant C > 0 independent of ε such that, for all ε ∈ (0, ε1(M0)),

(10.2.7) ‖φε0‖H1(S) ≤ C and ‖φε0 − Π1φ
ε
0‖L2(R,H1(−1,1)) ≤ Cε .

It will be convenient to consider the following change of temporal gauge φε(t;x1, x2) =

e−iµ1ε−2tϕε(t;x1, x2). This leads to the equation

(10.2.8) i∂tϕ
ε = Hεϕ

ε + (Vε − ε−2µ1)ϕε + λm−1
ε |ϕε|2ϕε

with conditions ϕε(t;x1,±1) = 0, ϕε(0; ·) = φε0.

We can now state the main theorem of this section (see Chapter 22, Section 2.2).
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Theorem 10.10. Assume that φε0 ∈ H2 ∩ H1
0(S) and that there exist M0 > 0, M2 > 0

such that, for all ε ∈ (0, ε0),

(10.2.9) ‖φε0‖L2 ≤M0,
∥∥∥(Hε −

µ1

ε2
)φε0

∥∥∥
L2
≤M2 .

Then φε0 satisfies Assumption 10.8 and, for all ε ∈ (0, ε1(M0)), (10.2.8) admits a unique

solution ϕε ∈ C(R+;H2∩H1
0(S))∩C1(R+; L2(S)). Moreover, there exists C > 0 such that,

for all ε ∈ (0, ε1(M0)) and t ≥ 0, we have

‖ϕε(t)− Π1ϕ
ε(t)‖L2 ≤ Cε .
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Part 3

Spectral reductions





CHAPTER 11

Electric Born-Oppenheimer approximation

Le cogito d’un rêveur crée son propre cosmos,

un cosmos singulier, un cosmos bien à lui. Sa

rêverie est dérangée, son cosmos est troublé

si le rêveur a la certitude que la rêverie d’un

autre oppose un monde à son propre monde.

La flamme d’une chandelle, Bachelard

This chapter presents the main idea behind the electric Born-Oppenheimer approxi-

mation (see [40, 140]). We prove Theorem 6.22.

1. Quasimodes

Let us explain the main steps in the construction of quasimodes behind Theorem 6.22.

We recall that

V(s)us = ν(s)us .

By using Feynman-Hellmann formulas (see Chapter 4, Section 6), this is easy to prove

that

〈V ′(s0)us0 , us0〉 = 0 ,

(V(s0)− ν(s0))

(
d

ds
us

)
|s=s0

= −V ′(s0)us0

and 〈
V ′(s0)

(
d

ds
us

)
|s=s0

+
V ′′(s0)

2
us0 , us0

〉
=
ν ′′(s0)

2
.

Notation 11.1. We let

vs0(τ) =

(
d

ds
us

)
|s=s0

, ws0(τ) =

(
d2

ds2
us

)
|s=s0

.

As usual we begin with the construction of suitable quasimodes. We perform the

change of variables s = s0 + h
1
2σ, t = τ and, instead of Hh, we study

Hh = hD2
σ + V(s0 + h

1
2σ) .

In terms of formal power series, we have:

Hh = V(s0) + h
1
2σV ′(s0) + h

(
σ2V ′′(s0)

2
+D2

σ

)
+ . . .
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We look for quasi-eigenpairs in the form

λ ∼ λ0 + h
1
2λ1 + hλ2 + . . . , ψ ∼ ψ0 + h

1
2ψ1 + hψ2 + . . .

We must solve:

V(s0)ψ0 = λ0ψ0 .

Therefore, we choose λ0 = ν(s0) and ψ0(σ, τ) = us0(τ)f0(σ).

We now meet the following equation

(V(s0)− λ0)ψ1 = (λ1 − σV ′(s0))ψ0 .

The Feynman-Hellmann formula jointly with the Fredholm alternative implies that λ1 = 0

and that we can take

ψ1(σ, τ) = σf0(σ)vs0(τ) + f1(σ)us0(τ) .

The crucial equation is given by

(11.1.1) (V(s0)− ν(s0))ψ2 = λ2ψ0 − σV ′(s0)ψ1 −
(
σ2V ′′(s0)

2
+D2

σ

)
ψ0.

The Fredholm alternative jointly with the Feynman-Hellmann formula provides(
D2
σ +

ν ′′(s0)

2
σ2

)
f0 = λ2f0 .

This obliges to choose

λ2 ∈

{
(2n− 1)h

√
ν ′′(s0)

2
n ≥ 1

}
and for f0 the corresponding rescaled Hermite function. With these choices, we may find

a unique solution ψ⊥2 (σ, ·) ∈ Dom (V(s0)) of (11.1.1) that is orthogonal to us0 for each σ.

Thus the solutions of (11.1.1) can written in the form

ψ2(σ, τ) = ψ⊥2 (σ, τ) + f2(σ)us0(τ) .

Exercise 11.2. This exercise aims at proving some properties of the quasimodes and to

conclude the proof.

(1) Prove that the construction can be continued at any order, at least formally.

(2) Prove that there exists ε0 > 0 such that∫
Ω

e2ε0|τ ||us0(τ)|2 dτ,

∫
Ω

e2ε0|τ ||vs0(τ)|2 dτ ,

are finite. One will use estimates of Agmon.

(3) Show that the fj belong to S(R) and that for all j there exists ηj > 0 such that∫
R
eηj |σ||fj| dσ < +∞ .
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Establish that, for all j ≥ 0, there exists εj > 0 such that∫
R×Ω

eεj(|σ|+|τ |)|ψj| dσ dτ < +∞ .

Show that the ψj belong to the domain of Hh. One will proceed by induction.

(4) Conclude that, for all J ≥ 0, the exist h0 > 0 and C > 0 such that, for h ∈ (0, h0),∥∥∥∥∥
(
Hh −

J∑
j=0

h
j
2λj

)
J∑
j=0

h
j
2ψj

∥∥∥∥∥ ≤ Ch
J+1

2 .

2. Essential spectrum and Agmon estimates

Let us first state a localization estimate.

Proposition 11.3. Under Assumption 6.19, there exists h0 > 0, C > 0, ε0 > 0 such that,

for h ∈ (0, h0), for all eigenpair (λ, ψ) such that λ ≤ ν(s0) + C0h, we have:∫
R×Ω

e2ε0(|s|+|τ |)|ψ|2 ds dτ ≤ C‖ψ‖2 .

Proof. It is a straightforward application of Proposition 4.9. �

We are now led to prove some localization behavior of the eigenfunctions associated

with eigenvalues λ such that |λ− ν(s0)| ≤ C0h.

Proposition 11.4. There exist ε0, h0, C > 0 such that for all eigenpair (λ, ψ) such that

|λ− ν(s0)| ≤ C0h, we have:∫
R×Ω

e2ε0h−1/2|s||ψ|2 dx ≤ C‖ψ‖2 .

and: ∫
R×Ω

∣∣∣h∂s (eε0h−1/2|s|ψ
)∣∣∣2 dx ≤ Ch‖ψ‖2 .

Proof. Let us write an estimate of Agmon

Qh(eh
−1/2ε0|s|ψ)− hε2

0‖eh
−1/2ε0|s|ψ‖2 = λ‖eh−1/2ε0|s|ψ‖2 ≤ (ν(s0) + C0h)‖eh−1/2ε0|s|ψ‖2 .

But we notice that

Qh(eh
−1/2ε0|s|ψ) ≥

∫
R×Ω

h2
∣∣∣∂s (eh−1/2ε0|s|ψ

)∣∣∣2 + ν(s)
∣∣∣(eh−1/2ε0|s|ψ

)∣∣∣2 dx

and this implies∫
R×Ω

(ν(s)− ν(s0)− C0h− ε2
0h)
∣∣∣(eh−1/2ε0|s|ψ

)∣∣∣2 dx ≤ 0 .

The conclusion follows from a slight adaptation of the proof of Proposition 4.10. �
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3. Projection argument

As we have observed, it can be more convenient to study Hh instead of Hh. Let us

introduce the Feshbach-Grushin projection (see [88]) on us0 :

Π0ψ = 〈ψ, us0〉L2(Ω)us0(τ) .

We want to estimate the projection of the eigenfunctions associated with eigenvalues λ

such that |λ− ν(s0)| ≤ C0h. For that purpose, let us introduce the quadratic form:

qs0(ψ) =

∫
R×Ω

|∂τψ|2 + V (s0, τ)|ψ|2 dσ dτ .

This quadratic form is associated with the operator: Idσ ⊗ V(s0) whereas Π0 is the

projection on its first eigenspace.

Proposition 11.5. There exist C, h0 > 0 such that, for h ∈ (0, h0), for all eigenfunction

ψ of Hh associated with λ such that λ ≤ ν(s0) + C0h,

(11.3.1) 0 ≤ qs0(ψ)− ν(s0)‖ψ‖2 ≤ Ch
1
2‖ψ‖2.

Moreover, we have:

(11.3.2) ‖ψ − Π0ψ‖+ ‖∂τ (ψ − Π0ψ)‖ ≤ Ch
1
4‖ψ‖ .

Proof. The proof uses the spectral gap ν2(s0)− ν1(s0) > 0. We write

(11.3.3) h‖∂σψ‖2 + ‖∂τψ‖2 +

∫
R×Ω

V (s0 + h
1
2σ, τ)|ψ|2 ds dτ ≤ (λ+ C0h)‖ψ‖2 .

Using the fact that V is a polynomial and the fact that, for k, n ∈ N:∫
|τ |n|σ|k|ψ|2 dσ dτ ≤ C‖ψ‖2 ,

we get (11.3.1).

We notice that:

qs0(ψ)− ν(s0)‖ψ‖2 = qs0(ψ − Π0ψ)− ν(s0)‖ψ − Π0ψ‖2 ,

due to the fact that Π0ψ belongs to the kernel of Idσ ⊗V(s0)− ν(s0)Id. We observe then

that:

qs0(ψ − Π0ψ)− ν(s0)‖ψ − Π0ψ‖2 ≥
∫
R

∫
Ω

|∂τ (ψ − Π0ψ)|2 + V (s0, τ)|(ψ − Π0ψ)|2 dτ dσ .

Since for each u, we have 〈ψ−Π0ψ, us0〉L2(Ω) = 0, we have the lower bound (by using the

min-max principle):

qs0(ψ − Π0ψ)− ν(s0)‖ψ − Π0ψ‖2 ≥
∫
R
(ν2(s0)− ν(s0))

∫
Ω

|ψ − Π0ψ|2 dτ dσ .

The estimate (11.3.2) follows. �
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Proposition 11.6. There exist C, h0 > 0 such that, for h ∈ (0, h0), for eigenfunction ψ

of Hh associated with λ such that λ ≤ ν(s0) + C0h,

(11.3.4) 0 ≤ qs0(σψ)− ν(s0)‖σψ‖2 ≤ Ch
1
2‖ψ‖2

and

(11.3.5) 0 ≤ qs0(∂σψ)− ν(s0)‖∂σψ‖2 ≤ Ch
1
4‖ψ‖2 .

Moreover, we have:

‖σ(ψ − Π0)ψ‖+ ‖σ∂τ (ψ − Π0ψ)‖ ≤ Ch
1
4‖ψ‖

and

‖∂σ(ψ − Π0ψ)‖+ ‖∂σ(∂t(ψ − Π0ψ))‖ ≤ Ch
1
8‖ψ‖ .

Proof. Using the “IMS” formula, we get:

Qh(σψ) = λ‖σψ‖2 + h‖ψ‖2 ≤ (ν(s0) + C0h)‖σψ‖2 + h‖ψ‖2 .

Using the estimates of Agmon, we find (11.3.4). Let us analyze the estimate with ∂σ. We

take the derivative with respect to σ in the eigenvalue equation:

(11.3.6)
(
hD2

σ +D2
τ + V (s0 + h

1
2σ, τ)

)
∂σψ = λ∂σψ +

[
V (s0 + h

1
2σ, τ), ∂σ

]
ψ .

Taking the scalar product with ∂σψ, using ‖∂σψ‖ ≤ C‖ψ‖ (that comes from (11.3.3))

and the estimates of Agmon, we find

(11.3.7) Qh(∂σψ) ≤ (ν(s0) + C0h)‖∂σψ‖2 + Ch1/2‖ψ‖2

and we deduce

(11.3.8) ‖∂2
σψ‖ ≤ Ch−1/4‖ψ‖+ C‖∂σψ‖ .

Then we must estimate∫
R×Ω

(
V (s0 + h

1
2σ, τ)− V (s0, τ)

)
|∂σψ|2 dσ dτ

and thus only terms in the form∫
R×Ω

h
k
2σkτ `|∂σψ|2 dσ dτ = h

k
2 〈σkτ `∂σψ, ∂σψ〉, k ≥ 1 .

By integration by parts, we have

h
k
2 〈σkτ `∂σψ, ∂σψ〉 = −h

k
2 〈∂σ(σkτ `∂σψ), ψ〉

= −h
k
2 〈∂2

σψ, σ
kτ `ψ〉 − kh

k
2 〈∂σψ, σk−1τψ〉 .

Thanks to the Cauchy-Schwarz inequality and the estimates of Agmon, we get

kh
k
2 |〈∂σψ, σk−1τψ〉| ≤ Ch

1
2 .
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Moreover, using (11.3.8), we get in the sameway

h
k
2 |〈∂2

σψ, σ
kτ `ψ〉| ≤ Ch

1
4 .

This is enough to get (11.3.5). The approximation results easily follow. �

We can now use our approximation results to reduce the investigation to a model

operator in dimension one.

4. Accurate lower bound

For all N ≥ 1, let us consider an orthonormal family of eigenfunctions (ψn,h)1≤n≤N of

Hh such that ψn,h is associated with λn(h). We consider the N dimensional space defined

by

EN(h) = span
1≤n≤N

ψn,h .

It is rather easy to observe that, for ψ ∈ EN(h):

Qh(ψ) ≤ λN(h)‖ψ‖2 .

We are going to prove a lower bound of Qh on EN(h). We notice that:

Qh(ψ) ≥
∫
R×Ω

h|∂σψ|2 + ν(s0 + h
1
2σ)|ψ|2 dσ dτ .

We have:∫
h|∂σψ|2 + ν(s0 + h

1
2σ)|ψ|2 dσ dt =

∫
|σh1/2|≤ε0

h|∂σψ|2 + ν(s0 + h
1
2σ)|ψ|2 dσ dτ

+

∫
|σh

1
2 |≥ε0

h|∂σψ|2 + ν(s0 + h
1
2σ)|ψ|2 dσ dτ .

With the Taylor formula, we can write:∫
|σh1/2|≤ε0

h|∂σψ|2 + ν(s0 + h
1
2σ)|ψ|2 dσ dτ ≥∫

|σh1/2|≤ε0
h|∂σψ|2 + ν(s0) + h

ν ′′(s0)

2
σ2|ψ|2 dσ dτ − Ch

3
2

∫
|σh

1
2 |≤ε0

|σ|3|ψ|2 dσ dτ .

Thus, the estimates of Agmon imply that∫
|σh

1
2 |≤ε0

h|∂σψ|2 + ν(s0 + h
1
2σ)|ψ|2 dσ dt

≥
∫
|σh

1
2 |≤ε0

h|∂σψ|2 + ν(s0)|ψ|2 + h
ν ′′(s0)

2
σ2|ψ|2 dσ dτ − Ch

3
2‖ψ‖2 .

Using again the estimates of Agmon, we notice that∫
|σh1/2|≥ε0

h|∂σψ|2 + ν(s0)|ψ|2 + h
ν ′′(s0)

2
σ2|ψ|2 dσ dτ = O(h∞)‖ψ‖2 .
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It follows that

Qh(ψ) ≥
∫
R×Ω

h|∂σψ|2 + ν(s0)|ψ|2 + h
ν ′′(s0)

2
σ2|ψ|2 dσ dτ − Ch

3
2‖ψ‖2 .

Exercise 11.7. By using the approximation results, prove that

Qh(ψ) ≥ ν(s0)‖ψ‖2 +

∫
R×Ω

h|∂σΠ0ψ|2 + h
ν ′′(s0)

2
σ2|Π0ψ|2 dσ dτ + o(h)‖ψ‖2 .

Thanks to the orthogonality of the ψn,h with respect to the bilinear form associated

with Qh, we get

λN(h)‖ψ‖2 ≥ Qh(ψ) ≥ ν(s0)‖ψ‖2 +

∫
R×Ω

h|∂σΠ0ψ|2 +h
ν ′′(s0)

2
σ2|Π0ψ|2 dσ dτ+o(h)‖ψ‖2 .

This becomes∫
R
h|∂σ〈ψ, us0〉|2 + h

ν ′′(s0)

2
σ2|〈ψ, us0〉|2 dσ ≤ (λN(h)− ν(s0) + o(h))‖〈ψ, us0〉‖2

L2(Rσ) .

Due to Proposition 11.5, the space {〈ψ, us0〉, ψ ∈ EN(h)} is of dimension N . Thus, by

the min-max principle, we deduce

λN(h) ≥ ν(s0) + (2N − 1)h

(
ν ′′(s0)

2

)1/2

+ o(h) .

Let us end this section by giving examples which can be treated as exercises.

Lu-Pan and de Gennes operator. Our first example (which comes from [18] and [172])

is the Neumann realization of the operator acting on L2(R2
+, dζ dτ):

h2D2
ζ +D2

τ + (ζ − τ)2 ,

where R2
+ = {(ζ, τ) ∈ R2 : τ > 0}.

Montgomery operator. The second example (which is the core of [55]) is the self-

adjoint realization on L2( dζ dτ) of

h2D2
ζ +D2

τ +

(
ζ − τ 2

2

)2

.

Popoff operator. Our last example (which comes from [165]) corresponds to the Neu-

mann realization on L2(Eα, dζ dz dτ) of

h2D2
ζ +D2

τ +D2
z + (ζ − τ)2 .

5. An alternative point of view

5.1. A general strategy. This section is devoted to the proof of Theorem 6.24. It is

also the opportunity to describe a quite general and elementary procedure of dimensional

reduction. We recall that we consider Lh = h2D2
s+D

2
t+V (s, t) whose associated quadratic
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form is

Qh(ψ) =

∫
R2

h2|Dsψ|2 + |Dtψ|2 + V (s, t)|ψ|2 ds dt .

We denote by us the first normalized eigenfunction of D2
t + V (s, t) and we introduce the

projections defined for ψ ∈ L2(R2) by

Πsψ(s, t) = 〈ψ, us〉L2(Rt)us(t), Π⊥s ψ(s, t) = ψ(s, t)− Πsψ(s, t) .

We let R(s) = ‖∂sus‖2
L2(Rt).

Lemma 11.8. For all ψ ∈ Dom (Qh), the function Πsψ belongs to Dom (Qh) and we

have

Qh(Πsψ) =

∫
Rs
h2|f ′(s)|2 + (ν1(s) + h2R(s))|f(s)|2 ds, with f(s) = 〈ψ, us〉L2(Rt) .

Proof. It follows immediately that, for any ψ ∈ Dom (Qh),

∂s
(
Πsψ) = f(s)∂sus(t) + f ′(s)us(t) ∈ L2(R2),

since sups∈R |f ′(s)| ≤ sups∈R |〈ψ, ∂sus〉L2(Rt)|+ sups∈R |〈∂sψ, us〉L2(Rt)| <∞, and

∂t
(
Πsψ) = 〈ψ, us〉L2(Rt)∂tus(t) ∈ L2(R2).

Thus one has Πsψ ∈ Dom (Qh), and the calculations thereafter are valid.

By definition, one has

Qh(Πsψ)

=

∫
R2

h2|f(s)∂sus(t) + f ′(s)us(t)|2 + |f(s)|2|∂tus(t)|2 ds dt+

∫
R2

V (s, t)|f(s)|2|us(t)|2 ds,

and thus

Qh(Πsψ) =

∫
Rs
h2|f ′(s)|2 + h2|f(s)|2‖∂sus(t)‖2

L2(Rt) ds

+

∫
Rs
|f(s)|2

(∫
Rt
|∂tus(t)|2 + V (s, t)|us(t)|2 dt

)
ds

=

∫
Rs
h2|f ′(s)|2 ds+

∫
Rs
h2|f(s)|2R(s) ds+

∫
Rs
ν1(s)|f(s)|2 ds.

where we used Fubini’s theorem, and the following properties on us:

(a) ∀s ∈ R, us is normalized in L2(Rt), and in particular,

〈us, ∂sus〉L2(Rt) =
d

ds
〈us, us〉L2(Rt) = 0.

(b) ∀s ∈ R, one has qs(us) = µ1(s).

�
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Exercise 11.9. Prove that, for all ψ1, ψ2 ∈ Dom (Qh), we have

Bh(Πsψ1,Πsψ2) =

∫
Rs
h2f ′1(s)f ′2(s) + (ν1(s) + h2R(s))f ′1(s)f ′2(s) ds ,

where fj(s) = 〈ψj, us〉L2(Rt).

Proposition 11.10. For all ψ ∈ Dom (Qh) and all ε ∈ (0, 1), we have

Qh(ψ) ≥
∫
Rs

(1− ε)h2|f ′(s)|2 +
(
ν1(s)− 4ε−1h2R(s)

)
|f(s)|2 ds

+

∫
Rs

(1− ε)h2‖∂sΠ⊥s ψ‖2
L2(Rt) +

(
ν2(s)− 4ε−1h2R(s)

)
‖Π⊥s ψ‖2

L2(Rt) ds .

Proof. We write

(11.5.1) Qh(ψ) =

∫
R2

h2|Dsψ|2 ds dt+

∫
Rs

qs(ψs) ds .

On the one hand, we have

(11.5.2) qs(ψs) = qs(Πsψ) + qs(Π
⊥
s ψ) ≥ ν1(s)|f(s)|2 + ν2(s)‖Π⊥s ψ‖2

L2(Rt) .

On the other hand, we get∫
R2

|∂sψ|2 ds dt =

∫
R2

|Πs∂sψ|2 ds dt+

∫
R2

|Π⊥s ∂sψ|2 ds dt

But we have

[Πs, ∂s]ψ = −〈ψ, ∂sus〉L2(Rt)us − 〈ψ, us〉L2(Rt)∂sus = −[Π⊥s , ∂s]

and

‖[Πs, ∂s]ψ‖2 = ‖[Π⊥s , ∂s]ψ‖2 = ‖〈ψ, ∂sus〉L2(Rt)us‖2 + ‖〈ψ, us〉L2(Rt)∂sus‖2

so that

‖[Πs, ∂s]ψ‖2 = ‖[Π⊥s , ∂s]ψ‖2 ≤ 2

∫
R2

R(s)|ψ|2 ds dt .

Writing Πs∂sψ = ∂sΠsψ + [Πs, ∂s]ψ, we get∫
R2

|∂sψ|2 ds dt ≥ (1− ε)
∫
Rs
|f ′(s)|2 ds+ (1− ε)

∫
Rs
‖∂sΠ⊥s ψ‖2

L2(Rt) ds

− 4ε−1

∫
Rs
R(s)|f(s)|2 ds− 4ε−1

∫
Rs
R(s)‖Π⊥s ψ‖2

L2(Rt) ds .

Combining this last estimate with (11.5.1) and (11.5.2), the result follows.

�
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Proposition 11.11. Let us consider the following quadratic form, defined on Dom (qmod
h )×

Dom (Qh), by

Qtens
h (f, ϕ) =∫

Rs
(1−h)h2|f ′(s)|2+

(
ν1(s)−4Mh

)
|f(s)|2 ds+

∫
R2

(1−h)h2|∂sϕ|2+
(
ν2(s)−4Mh

)
|ϕ|2 ds dt,

∀(f, ϕ) ∈ Dom (qmod
h )× Dom (Qh) .

If Htens
h denotes the associated operator, then we have, for all n ≥ 1

λn(h) ≥ λtens
n (h) .

Proof. We use Proposition 11.10 with ε = h and we get, for all ψ ∈ Dom (Qh),

Qh(ψ) ≥
∫
Rs

(1− h)h2|f ′|2 +
(
ν1(x)− 4Mh

)
|f |2 ds

+

∫
R2

(1− h)h2|∂sΠ⊥s ψ|2 +
(
ν2(s)− 4Mh

)
|Π⊥s ψ|2 ds dt .

Thus we have

(11.5.3) Qh(ψ) ≥ Qtens
h (〈ψ, us〉,Π⊥s ψ), ‖ψ‖2 = ‖f‖2 + ‖Π⊥s ψ‖2 .

With (11.5.3) we infer

λn(h) ≥ inf
G⊂H1(R2)
dimG=n

sup
ψ∈G

Qtens
h (〈ψ, us〉,Π⊥s ψ)

‖Πsψ‖2 + ‖Π⊥s ψ‖2
.

Now, we define the linear injection

J :

{
Dom (Qh) → Dom (qmod

h )× Dom (Qh)

ψ 7→ (〈ψ, us〉 , Π⊥s ψ)
.

so that we have

inf
G⊂Dom (Qh)

dimG=n

sup
ψ∈G

Qtens
h (Πsψ,Π

⊥
s ψ)

‖Πsψ‖2 + ‖Π⊥s ψ‖2
= inf

G̃⊂J (Dom (Qh))

dim G̃=n

sup
(f,ϕ)∈G̃

Qtens
h (f, ϕ)

‖f‖2 + ‖ϕ‖2
, ,

and

inf
G̃⊂J (Dom (Qh))

dim G̃=n

sup
(f,ϕ)∈G̃

Qtens
h (f, ϕ)

‖f‖2 + ‖ϕ‖2
≥ inf

G̃⊂Dom (qmod
h )×Dom (Qh)

dim G̃=n

sup
(f,ϕ)∈G̃

Qtens
h (f, ϕ)

‖f‖2 + ‖ϕ‖2
.

We recognize the n-th Rayleigh quotient of Htens
h and the conclusion follows. �

We can now prove Theorem 6.24. Let us introduce the model quadratic forms

qmod
h (f) =

∫
R
h2|f ′(s)|2 + ν1(s)|f(s)|2 ds .
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Thanks to Exercise 11.9 and by using the eigenfunctions of the operator associated with

qmod
h , we get

N (Qh, E) ≥ N
(
qmod
h , E −Mh2

)
.

Conversely, we use the result of Proposition 11.11 to get

N (Qh, E) ≤ N (Qtens
h , E) ≤ N

(
qmod
h , (E + 4Mh)(1− h)−1

)
,

the last inequality coming from the fact that, when h is small enough, there are no

eigenvalues of Htens
h below the threshold (by assumption in Theorem 6.24).

Therefore we are reduced to the estimate of the counting function of qmod
h in one

dimension and we apply Theorem 3.1.

5.2. Robin Laplacian in the Born-Oppenheimer approximation. Let us us

now end our discussion about the electric Born-Oppenheimer approximation with an

exercise related to the semiclassical Robin Laplacian. We use the notations introduced

in Chapter 4, Section 3.4.3.

5.2.1. A tubular neighborhood. Given δ ∈ (0, δ0) (with δ0 > 0 small enough), we

introduce the δ-neighborhood of the boundary

(11.5.4) Vδ = {x ∈ Ω : dist(x, ∂Ω) < δ} ,

and the quadratic form, defined on the variational space

Vδ = {u ∈ H1(Vδ) : u(x) = 0 , for all x ∈ Ω such that dist(x, ∂Ω) = δ} ,

by the formula

∀u ∈ Vδ , QRob,δ
h (u) =

∫
Vδ
|h∇u|2 dx− h

3
2

∫
∂Ω

|u|2 ds(x) .

We denote by LRob,δ
h the corresponding operator. For simplicity, we take δ = h

1
4 . We

denote by λRob
n (h) and λRob,δ

n (h) the n-th eigenvalue of LRob
h and LRob,δ

h respectively.

By using the estimates of Agmon, prove the following proposition.

Proposition 11.12. Let ε0 ∈ (0, 1) and α ∈ (0,
√
ε0).There exist two constants C > 0

and h0 ∈ (0, 1) such that, for all h ∈ (0, h0) and n ≥ 1 such that λRob
n (h) ≤ −ε0h,

λRob
n (h) ≤ λRob,δ

n (h) ≤ λRob
n (h) + C exp

(
−αh−

1
4

)
.

5.2.2. The rescaled operator in normal coordinates. Let us denote by c the normal

parametrization of the boundary. Now we introduce the change of coordinates

(11.5.5) Φ : R/(|∂Ω|Z)× (0, δ0) 3 (s, t) 7→ x = c(s) + tn(s) ∈ Vδ0 .

We denote L = |∂Ω|/2. The determinant of the Jacobian of Φ is given by

(11.5.6) a(s, t) = 1− tκ(s).
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The operator LRob,δ
h is expressed in (s, t) coordinates as

Lh = −h2a−1∂s(a
−1∂s)− h2a−1∂t(a∂t) ,

acting on L2(a ds dt). In these coordinates, the Robin condition becomes

h2∂tu = −h
3
2u on t = 0 .

It will be convenient to work with a rescaled version of Lh. We introduce the rescaling

(σ, τ) = (s, h−
1
2 t) ,

the new semiclassical parameter ~ = h
1
4 and the new weight

(11.5.7) â(σ, τ) = 1− ~2τκ(σ) .

We consider rather the operator

(11.5.8) L̂~ = h−1Lh ,

acting on L2(â dσ dτ) and expressed in the coordinates (σ, τ). We let T = h−
1
2 δ = h−

1
4

and

(11.5.9)

V̂T = {(σ, τ) : σ ∈]− L,L] and 0 < τ < T} ,

V̂T = {u ∈ H1(V̂T ) : u(σ, T ) = 0} ,

D̂T = {u ∈ H2(V̂T ) ∩ V̂T : ∂τu(σ, 0) = −u(σ, 0)} ,

Q̂~(u) =

∫
V̂T

(
â−2~4|∂σu|2 + |∂τu|2

)
â dσ dτ −

∫ L

−L
|u(σ, 0)|2 dσ ,

L̂~ = −~4 â−1∂σâ
−1∂σ − â−1∂τ â∂τ .

5.2.3. Dimensional reduction. We use the notations introduced in Chapter 2, Section

3.2.

We let

Hκ(σ),~ = LR,T
B ,

with B = h
1
2κ(σ) = ~2κ(σ).

We introduce for σ ∈ [−L,L) the Feshbach projection Πσ on the normalized ground-

state of Hκ(σ),~, denoted by vκ(σ),~,

Πσψ = 〈ψ, vκ(σ),~〉L2((0,T ),âdτ)vκ(σ),~ .

We also let

Π⊥σ = Id− Πσ

and

(11.5.10) R~(σ) = ‖∂σvκ(σ),~‖2
L2((0,T ), â dτ) .

The quantity R~ is sometimes called “Born-Oppenheimer correction”.
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To be reduced to classical considerations, the main point is to control the effect of re-

placing â−2 by 1.

Lemma 11.13. We have, for all ψ ∈ Dom (Q̂~),∣∣∣∣∫
V̂T
â−2|∂σψ|2â dσ dτ −

∫
V̂T
|∂σψ|2â dσ dτ

∣∣∣∣
≤ C̃

∫
V̂T

~2|f ′ψ(σ)|2 + ~R~(σ)|fψ(σ)|2 + ~|∂σΠ⊥σψ|2 dσ dτ .

with

fψ(σ) := 〈ψ(σ, ·), vκ(σ),~〉L2((0,T ), âdτ) .

Proof. We write∣∣∣∣∫
V̂T
â−2|∂σψ|2 dσ dτ −

∫
V̂T
|∂σψ|2 dσ dτ

∣∣∣∣
≤ C

∫
V̂T

~2τ |∂σψ|2 dσ dτ

≤ 2C

∫
V̂T

~2τ
(
|∂σΠσψ|2 + |∂σΠ⊥σψ|2

)
dσ dτ

≤ C̃

∫
V̂T

~2|f ′ψ(σ)|2 + ~R~(σ)|fψ(σ)|2 + ~|∂σΠ⊥σψ|2 dσ dτ ,

where we used that

(11.5.11)

∫ T

0

τ |vκ(σ),~|2 dτ ≤ C

(that are consequences of Proposition 4.24) and that τ~2 may be estimated by T~2 =

~. �

Lemma 11.14. We have ∫ T

0

vκ(σ),~∂σvκ(σ),~ â dτ = O(~2) .

Proof. We notice from the normalization of vκ(σ),~ that

∂σ

∫ T

0

vκ(σ),~vκ(σ),~â dτ = 0 ,

so that

2

∫ T

0

vκ(σ),~∂σvκ(σ),~ â dτ =

∫ T

0

vκ(σ),~vκ(σ),~(∂σâ) dτ , with ∂σâ = −τ~2κ′(σ) .

The conclusion follows from (11.5.11). �

Lemma 11.15. There exist C > 0, ~0 > 0 such that, for all ψ ∈ D̂T and ~ ∈ (0, ~0), we

have

Q̂~(Πσψ) ≤
∫ L

−L
~4(1+C~2)|f ′ψ(σ)|2+

(
~4(1 + C~)R~(σ) + λ1(Hκ(σ),~) + C~6

)
|fψ(σ)|2 dσ .
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The next lemma is slightly more delicate and follows from adaptations of the last

section.

Lemma 11.16. There exist C > 0, ~0 > 0 such that, for all ψ ∈ D̂T , ε ∈
(
0, 1

2

)
and

~ ∈ (0, ~0), we have

Q̂~(ψ) ≥
∫ L

−L
(1−ε)(1−C~2)~4|f ′ψ(σ)|2+

{
λ1(Hκ(σ),~)− C(ε−1~4R~(σ) + ε−1~8 + ~6)

}
|fψ(σ)|2 dσ

+

∫ L

−L
(1−ε)(1−C~)~4‖∂σΠ⊥σψ‖2

L2(âdτ)+
{
λ2(Hκ(σ),~)− Cε−1~4R~(σ)− Cε−1~8

}
‖Π⊥σψ‖2

L2(âdτ) dσ .

We apply Lemmas 11.15 and 11.16 with ε = ~2. Then, we use Proposition 2.9, Lemma

2.10 and Proposition 2.11 to deduce that

λ1(Hκ(σ),~) = −1− ~2κ(σ) +O(~4) ,

and that there exist h0 > 0 and C > 0 such that, for all h ∈ (0, h0),

λ2(Hκ(σ),~) ≥ −C~ > −
ε0
2
.

Then we notice that R~(σ) (introduced in (11.5.10)) satisfies R~(σ) = O(~4) thanks to

Lemma 4.25 and the relation B = κ(σ)~2. We deduce the following theorem.

Theorem 11.17. For ε0 ∈ (0, 1) and h > 0, we let

Nε0,h = {n ∈ N∗ : λRob
n (h) < −ε0h} .

There exist positive constants h0, C+, C− such that, for all h ∈ (0, h0) and n ∈ Nε0,h,

λeff,−
n (h) ≤ λRob

n (h) ≤ λeff,+
n (h) ,

where λeff,±
n (h) is the n-th eigenvalue of Leff,±

h defined by

Leff,+
h = −h+ (1 + C+h

1
2 )h2D2

σ − κ(σ)h
3
2 + C+h

2 ,

and

Leff,−
h = −h+ (1− C−h

1
2 )h2D2

σ − κ(σ)h
3
2 − C−h2 ,

Remark 11.18. Let us end this section with the following observations.

i) As we can see in the proof of Theorem 11.17, we only need to use that the boundary

is C2 and that the curvature is Lipschitzian. In the terminology of [161], such an

assumption means that the boundary is admissible of order 3.

ii) It is possible to avoid to assume that the curvature is Lipschitzian by considering

rather the projection Π0,h (what is done at some point in [161]) and by noticing that

is the first order approximation of Πκ(σ),h.

iii) Note also that we have here a uniform approximation of the spectrum. The choice

of δ = h
1
4 was arbitrary. Such a choice is natural why studying the tunneling effect

between non degenerate wells ([95]).
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iv) Since the strategy does not depend on the dimension, for the case of higher dimension,

the same results holds as soon as we replace D2
σ by the Laplace-Beltrami operator

on ∂Ω and κ by the mean curvature.

v) The result of Theorem 11.17 can be applied to get a semiclassical estimate of the

counting function of eigenvalues less than −h+ Eh
3
2 , that is

N
(
LRob
h ,−h+ Eh

3
2

)
∼
h→0

1

πh
1
4

∫
∂Ω

√
(E + κ)+ ds(x) .
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CHAPTER 12

Magnetic Born-Oppenheimer approximation

Pour l’achèvement de la science, il faut

passer en revue une à une toutes les choses

qui se rattachent à notre but par un mou-

vement de pensée continu et sans nulle in-

terruption, et il faut les embrasser dans une

énumération suffisante et méthodique.

Règles pour la direction de l’esprit,

Descartes

We explain in this chapter the main steps to the proof of Theorem 6.29. In particu-

lar the reader is supposed to be familiar with the basics of pseudo-differential calculus.

We establish general Feynman-Hellmann formulas and we also recall the fundamental

properties of coherent states.

1. Quasimodes

This section is devoted to the proof of the following proposition.

Proposition 12.1. Let us assume Assumption 6.25. For all n ≥ 1, there exist a sequence

(γj,n)j≥0 such that for all J ≥ 0 there exist C > 0 and h0 > 0 such that for h ∈ (0, h0):

dist

(
J∑
j=0

γj,nh
j/2, sp(Lh)

)
≤ Ch(J+1)/2 ,

where:

γ0,n = µ0, γ1,n = 0, γ2,n = νn

(
1

2
Hessx0,ξ0 µ(σ,Dσ)

)
.

In order to perform the investigation we use the following rescaling:

s = h1/2σ

so that Lh becomes:

(12.1.1) Lh = (−i∇τ + A2(x0 + h1/2σ, τ))2 + (ξ0 − ih1/2∇σ + A1(x0 + h1/2σ, τ))2 .

We will also need generalizations of the Feynman-Hellmann formulas which are obtained

by taking the derivative of the eigenvalue equation

Mx,ξux,ξ = µ(x, ξ)ux,ξ
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with respect to xj and ξk.

Proposition 12.2. We have:

(12.1.2) (Mx,ξ − µ(x, ξ))(∂ηu)x,ξ = (∂ηµ(x, ξ)− ∂ηMx,ξ)ux,ξ

and:

(12.1.3) (Mx0,ξ0 − µ0)(∂η∂θu)x0,ξ0

= ∂η∂θµ(x0, ξ0)ux0,ξ0 − ∂ηMx0,ξ0(∂θu)x0,ξ0 − ∂θMx0,ξ0(∂ηu)x0,ξ0 − ∂η∂θMx0,ξ0ux0,ξ0 ,

where η and θ denote one of the xj or ξk. Moreover we have

(12.1.4) ∂ηµ(x, ξ) =

∫
Rn
∂ηMx,ξ ux,ξ(τ)ux,ξ(τ) dτ .

We can now prove Proposition 12.1. Since A1 and A2 are polynomials, we can write,

for some M ∈ N:

Lh =
M∑
j=0

hj/2Lj

with:

L0 =Mx0,ξ0 , L1 =
m∑
j=1

(∂xjM)x0,ξ0σj +
m∑
j=1

(∂ξjM)x0,ξ0Dσj ,

L2 =
1

2

m∑
k,j=1

(
(∂xj∂xkM)x0,ξ0σjσk + (∂ξj∂ξkM)x0,ξ0DσjDσk + (∂ξj∂xkM)x0,ξ0Dσjσk

+ (∂xk∂ξjM)x0,ξ0σkDσj

)
.

We look for quasimodes in the form:

ψ ∼
∑
j≥0

hj/2ψj

and quasi-eigenvalues in the form:

γ ∼
∑
j≥0

hj/2γj

so that they solve in the sense of formal series:

Lhψ ∼ γψ .

By collecting the terms of order h0, we get the equation:

Mx0,ξ0ψ0 = γ0ψ0 .

This leads to take γ0 = µ0 and :

ψ0(σ, τ) = f0(σ)u0(τ) ,
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where u0 = ux0,ξ0 and f0 is a function to be determined in the Schwartz class. By

collecting the terms of order h1/2, we find:

(Mx0,ξ0 − µ(x0, ξ0))ψ1 = (γ1 − L1)ψ0 .

By using (12.1.2) and the Fredholm alternative (applied for σ fixed) we get γ1 = 0 and

the solution:

(12.1.5) ψ1(σ, τ) =
m∑
j=1

(∂xju)x0,ξ0 σjf0 +
m∑
j=1

(∂ξju)x0,ξ0 Dσjf0 + f1(σ)u0(τ) ,

where f1 is a function to be determined in the Schwartz class. The next equation reads:

(Mx0,ξ0 − µ(x0, ξ0))ψ2 = (γ2 − L2)ψ0 − L1ψ1 .

The Fredholm condition is:

(12.1.6) 〈L2ψ0 + L1ψ1, u0〉L2(Rn, dτ) = γ2f0 .

We obtain (exercise):
1

2
Hessµ(x0, ξ0)(σ,Dσ)f0 = γ2f0 .

We take γ2 in the spectrum of 1
2
Hessµ(x0, ξ0)(σ,Dσ) and we choose f0 a corresponding

normalized eigenfunction. The construction can be continued at any order.

We deduce from Propositions 6.28 and 12.1:

Corollary 12.3. For all n ≥ 1 there exist h0 > 0 and C > 0 such that for all h ∈ (0, h0)

the n-th eigenvalue of Lh exists and satisfies:

λn(h) ≤ µ0 + Ch .

2. Rough estimates of the eigenfunctions

This section is devoted to recall the basic and rough localization and microlocalization

estimates satisfied by the eigenfunctions resulting from Assumptions 6.25 and 6.27 and

Corollary 12.3. The following two propositions are applications of Proposition 4.9.

Proposition 12.4. Let C0 > 0. There exist h0, C, ε0 > 0 such that for all eigenpairs

(λ, ψ) of Lh such that λ ≤ µ0 + C0h we have:∥∥eε0|τ |ψ∥∥2 ≤ C‖ψ‖2, Qh

(
eε0|τ |ψ

)
≤ C‖ψ‖2 .

Proposition 12.5. Let C0 > 0. There exist h0, C, ε0 > 0 such that for all eigenpairs

(λ, ψ) of Lh such that λ ≤ µ0 + C0h, we have:∥∥eε0|s|ψ∥∥2 ≤ C‖ψ‖2, Qh

(
eε0|s|ψ

)
≤ C‖ψ‖2 .

We deduce from Propositions 12.4 and 12.5 the following corollary.
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Corollary 12.6. Let C0 > 0 and k, l ∈ N. There exist h0, C, ε0 > 0 such that for all

eigenpairs (λ, ψ) of Lh such that λ ≤ µ0 + C0h, we have:

‖τ kslψ‖ ≤ C‖ψ‖, Qh(τ
kslψ) ≤ C‖ψ‖2 ,

‖ − i∇τs
lτ kψ‖ ≤ C‖ψ‖2, ‖ − ih∇ss

lτ kψ‖ ≤ C‖ψ‖2 .

Taking successive derivatives of the eigenvalue equation we deduce by induction:

Corollary 12.7. Let C0 > 0 and k, l, p ∈ N. There exist h0, C, ε0 > 0 such that for all

eigenpairs (λ, ψ) of Lh such that λ ≤ µ0 + C0h and all h ∈ (0, h0), we have:

‖(−i∇τ )
pslτ kψ‖ ≤ C‖ψ‖2, ‖(−ih∇s)

pslτ kψ‖ ≤ C‖ψ‖2 .

Using again Propositions 12.4 and 12.5 and an induction argument we get:

Proposition 12.8. Let k ∈ N. Let η > 0 and χ a smooth cutoff function being zero in a

neighborhood of 0. There exists h0 > 0 such that for all eigenpairs (λ, ψ) of Lh such that

λ ≤ µ0 + C0h and all h ∈ (0, h0), we have:

‖χ(hηs)ψ‖Bk(Rm+n) ≤ O(h∞)‖ψ‖, ‖χ(hητ)ψ‖Bk(Rm+n) ≤ O(h∞)‖ψ‖ ,

where ‖ · ‖Bk(Rn+m) is the standard norm on:

Bk(Rm+n) = {ψ ∈ L2(Rm+n) : yqj∂
p
yl
ψ ∈ L2(Rn+m),∀j, k ∈ {1, · · · ,m+ n}, p+ q ≤ k} .

By using a rough pseudo-differential calculus jointly with the space localization of

Proposition 12.8 and standard elliptic estimates, we get:

Proposition 12.9. Let k ∈ N. Let η > 0 and χ a smooth cutoff function being zero in a

neighborhood of 0. There exists h0 > 0 such that for all eigenpairs (λ, ψ) of Lh such that

λ ≤ µ0 + C0h, we have:

‖χ(hηhDs)ψ‖Bk(Rm+n) ≤ O(h∞)‖ψ‖, ‖χ(hηDτ )ψ‖Bk(Rm+n) ≤ O(h∞)‖ψ‖ .

3. Coherent states and microlocalization

3.1. A first lower bound. By using the formalism introduced in Chapter 6, Section

2.2.2, we get the following proposition.

Proposition 12.10. There exist h0, C > 0 such that for all eigenpairs (λ, ψ) of Lh such

that λ ≤ µ0 + C0h and all h ∈ (0, h0), we have

(12.3.1) Qh(ψ) ≥
∫
R2m

Qh,u,p(ψu,p) du dp− Ch‖ψ‖2 ≥ (µ(x0, ξ0)− Ch)‖ψ‖2 ,

where Qh,u,p is the quadratic form associated with the operator Mx0+h1/2u,ξ0+h1/2p.

Proof. We use (6.2.4). Then the terms ofRh (see (6.2.5)) are in the form hhp/2σlDq
στ

αDβ
τ

with l + q ≤ p and β = 0, 1. With Corollary 12.7 and the rescaling (9.1.3), we have:

‖hp/2σlDq
στ

αDβ
τψ‖ ≤ C‖ψ‖
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and the conclusion follows. �

3.2. Localization in the phase space. This section is devoted to elliptic regularity

properties (both in space and frequency) satisfied by the eigenfunctions. We will use

the generalization of the localization formula given in Chapter 4, Formula (4.2.1). The

following lemma is a straightforward consequence of Assumption 6.25.

Lemma 12.11. Under Assumption 6.25, there exist ε0 > 0 and c > 0 such that

µ(x0 + x, ξ0 + ξ)− µ(x0, ξ0) ≥ c(|x|2 + |ξ|2), ∀(x, ξ) ∈ B(ε0) ,

and

µ(x0 + x, ξ0 + ξ)− µ(x0, ξ0) ≥ c, ∀(x, ξ) ∈ {B(ε0) ,

where B(ε0) = {(x, ξ), |x|+ |ξ| ≤ ε0} and {B(ε0) is its complement.

Notation 12.12. In what follows we will denote by η̃ > 0 all the quantities which are

multiples of η > 0,i.e. in the form pη for p ∈ N \ {0}. We recall that η > 0 can be chosen

arbitrarily small.

Proposition 12.13. There exist h0, C, ε0 > 0 such that for all eigenpairs (λ, ψ) of Lh
such that λ ≤ µ0 + C0h, we have:

‖σψ‖2 + ‖∇σψ‖2 ≤ C‖ψ‖2 .

Proof. Let (λ, ψ) be an eigenpair such that λ ≤ µ0 + C0h. We recall that (12.3.1)

holds. We have

Qh(ψ) = λ‖ψ‖2 ≤ (µ0 + C0h)‖ψ‖2 .

We deduce that ∫
R2m

Qh,u,p(ψu,p)− µ0|ψu,p|2 du dp ≤ Ch‖ψ‖2

and thus by the min-max principle∫
R2m

(
µ(x0 + h1/2u, ξ0 + h1/2p)− µ0

)
|ψu,p|2 du dp ≤ Ch‖ψ‖2 .

We use the ε0 > 0 given in Lemma 12.11 and we split the integral into two parts.

Therefore, we find: ∫
B(h−1/2ε0)

(|u|2 + |p|2)|ψu,p|2 du dp ≤ C‖ψ‖2,(12.3.2) ∫
{B(h−1/2ε0)

|ψu,p|2 du dp ≤ Ch‖ψ‖2 .(12.3.3)

The first inequality is not enough to get the conclusion. We also need a control of

momenta in the region {B(h−1/2ε0). For that purpose, we write:

(12.3.4) Qh(a∗jψ) =

∫
R2m

Qh,u,p

(
uj − ipj√

2
ψu,p

)
du dp+ 〈Rha

∗
jψ, a

∗
jψ〉 .
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Up to lower order terms we must estimate terms in the form:

h〈hp/2σlDq
στ

αDβ
τ a
∗
jψ, a

∗
jψ〉 ,

with l + q = p, α ∈ N and β = 0, 1. By using the a priori estimates of Propositions 12.8

and 12.9, we have:

‖hp/2σlDq
στ

αDβ
τ a
∗
jψ‖ ≤ Ch−η̃‖a∗jψ‖ .

The remainder is controlled by:

|〈Rha
∗
jψ, a

∗
jψ〉| ≤ Ch1−η̃(‖∇σψ‖2 + ‖σψ‖2) .

Then we analyze Qh(a∗jψ) by using (4.2.1) (Chapter 4) with A = aj. We need to estimate

the different remainder terms. We notice that:

‖[a∗j , Pk,r,h]ψ‖ ≤ Ch1/2‖ψ‖,

|〈Pk,r,hψ, a∗j [Pk,r,h, aj]ψ〉| ≤ ‖Pk,r,hψ‖ ‖a∗j [Pk,r,h, aj]ψ‖ ,

|〈Pk,r,hψ, aj[Pk,r,h, a∗j ]ψ〉| ≤ ‖Pk,r,hψ‖ ‖aj[Pk,r,h, a∗j ]ψ‖ ,

|〈Pk,r,hψ, [[Pk,r,h, aj], a∗j ]ψ〉| ≤ ‖Pk,r,hψ‖ ‖[[Pk,r,h, aj], a∗j ]ψ‖ ,

where P1,r,h denotes the magnetic momentum h1/2Dσr + A1,r(x0 + h1/2σ, τ) and P2,r,h

denotes Dτr + A2,r(x0 + h1/2σ, τ). We have:

‖Pk,r,hψ‖ ≤ C‖ψ‖

and:

‖a∗j [Pk,r,h, aj]ψ‖ ≤ Ch1/2‖a∗jQ(h1/2σ, τ)ψ‖ ,
where Q is polynomial. The other terms can be bounded in the same way. We apply the

estimates of Propositions 12.8 and 12.9 to get:

‖a∗jQ(h1/2σ, τ)ψ‖ ≤ Ch−η̃‖a∗jψ‖ .

We have:

Qh(a∗jψ) = λ‖a∗jψ‖2 +O(h)‖ψ‖2 +O(h
1
2
−η̃)(‖∇σψ‖2 + ‖σψ‖2) .

so that:

Qh(a∗jψ) ≤ µ(x0, ξ0)‖a∗jψ‖2 + Ch‖ψ‖2 +O(h
1
2
−η̃)(‖∇σψ‖2 + ‖σψ‖2) .

By using (12.3.4) and splitting again the integral into two parts, it follows:∫
B(h−1/2ε0)

(|u|2 + |p|2)|(uj − ipj)ψu,p|2 du dp ≤ C‖ψ‖2 + Ch−
1
2
−η̃(‖∇σψ‖2 + ‖σψ‖2) ,∫

{B(h−1/2ε0)

|(uj − ipj)ψu,p|2 du dp ≤ Ch‖ψ‖2 + Ch
1
2
−η̃(‖∇σψ‖2 + ‖σψ‖2) .

Combining the last inequality with the first one of (12.3.2) and the Parseval formula we

get the conclusion.

�
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By using the same ideas, we can establish the following proposition.

Proposition 12.14. Let P ∈ C2[X1, . . . , X2n]. There exist h0, C, ε0 > 0 such that for all

eigenpairs (λ, ψ) of Lh such that λ ≤ µ0 + C0h, we have:

‖P (σ,Dσ)ψ‖2 ≤ Ch−
1
2
−η̃‖ψ‖2 .

3.3. Approximation lemmas. We introduce the projection

Ψ0 = Π0ψ = 〈ψ, ux0,ξ0〉L2(Rn, dτ)ux0,ξ0

and, inspired by (12.1.5) where f0 is replaced by 〈ψ, ux0,ξ0〉L2(Rn, dτ) and f1 by 0,

(12.3.5) Ψ1 =
m∑
j=1

(∂xju)x0,ξ0 σj〈ψ, ux0,ξ0〉L2(Rn, dτ) +
m∑
j=1

(∂ξju)x0,ξ0 Dσj〈ψ, ux0,ξ0〉L2(Rn, dτ).

This leads to defined the corrected Feshbach projection

(12.3.6) Πhψ = Ψ0 + h1/2Ψ1

and

Rh = ψ − Πhψ .

We may notice that this corrected Feshbach correction shares some features with the

“super-adiabatic” projections à la Panati-Spohn-Teufel-Wachsmuth (see for instance [186,

160, 190]).

Note that the functions Ψ0 and Ψ1 will be a priori h-dependent. By the L2-normalization

of ux,ξ (when ξ ∈ Rm), Ψ1 and Rh are orthogonal (with respect to the τ -variable) to u0

(and Ψ0). Furthermore, we have by construction and Proposition 12.2,

(12.3.7) (L0 − µ0)Ψ1 = −L1Ψ0

and, by the Fredholm alternative,

〈L1Ψ0,Ψ0〉L2(Rn, dτ) = 0.

We can prove a first approximation.

Proposition 12.15. There exist h0, C > 0 such that for all eigenpairs (λ, ψ) of Lh such

that λ ≤ µ0 + C0h, we have

‖ψ − Π0ψ‖ ≤ Ch1/2−η̃‖ψ‖

Proof. We can write:

(L0 − µ0)ψ = (λ− µ0)ψ − h1/2L1ψ − hL2ψ + . . .− hM/2LMψ .

By using the rough microlocalization given in Propositions 12.8 and 12.9 and Proposition

12.14, we infer that for p ≥ 2:

(12.3.8) hp/2‖ταDβ
τ σ

lDq
σψ‖ ≤ Ch

p
2
− p−2

2
− 1

4
−η̃‖ψ‖ = Ch

3
4
−η̃‖ψ‖ ,
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and thanks to Proposition 12.13:

‖L1ψ‖ ≤ Ch−η̃‖ψ‖ ,

so that:

‖(L0 − µ0)ψ‖ ≤ Ch
1
2
−η̃‖ψ‖ ,

and the conclusion follows. �

Corollary 12.16. There exist h0, C > 0 such that for all eigenpairs (λ, ψ) of Lh such

that λ ≤ µ0 + C0h, we have:

‖σ(ψ − Π0ψ)‖ ≤ Ch1/4−η̃‖ψ‖, ‖Dσ(ψ − Π0ψ)‖ ≤ Ch1/4−η̃‖ψ‖

We can now estimate ψ − Πhψ.

Proposition 12.17. There exist h0, C > 0 such that for all eigenpairs (λ, ψ) of Lh such

that λ ≤ µ0 + C0h, we have:

‖ψ − Πhψ‖ ≤ Ch3/4−η̃‖ψ‖ .

Proof. Let us write:

Lhψ = λψ .

We have:

(L0 + h1/2L1)ψ = (µ0 +O(h))ψ − hL2ψ − . . .− hM/2LMψ .
Let us notice that, as in (12.3.8), for p ≥ 2:

hp/2‖Lpψ‖ ≤ Ch
3
4
−η̃‖ψ‖ .

We get:

(L0 − µ0)Rh = −h1/2L1(ψ −Ψ0) +O(h)ψ − hL2ψ − . . .− hM/2LMψ

It remains to apply Corollary 12.16 to get:

h1/2‖L1(ψ −Ψ0)‖ ≤ C̃h
3
4
−η̃‖ψ‖ .

�

Let us introduce a subspace of dimension P ≥ 1. For j ∈ {1, · · · , P} we can consider

a L2-normalized eigenfunction of Lh denoted by ψj,h and so that the family (ψj,h)j∈{1,··· ,P}
is orthogonal. We let:

EP (h) = span
j∈{1,··· ,P}

ψj,h .

Remark 12.18. We can extend all the local and microlocal estimates as well as our

approximations to ψ ∈ EP (h).

Proposition 12.19. For all n ≥ 1, there exists h0 > 0 such that, for all h ∈ (0, h0), we

have

λn(h) ≥ µ0 + λn,1h+ o(h),
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where we recall that λn,1 is the n-th eigenvalue of 1
2
Hessµ(x0, ξ0)(σ,Dσ).

Proof. Since we want to establish a lower bound for the eigenvalues, let us prove a

lower bound for the quadratic form on EP (h), for P ≥ 1 (in the spirit of Chapter 11).

We have

Qh(ψ) = 〈L0ψ, ψ〉+h1/2〈L1ψ, ψ〉+h〈L2ψ, ψ〉+ . . .+hp/2〈Lpψ, ψ〉+ . . .+hM/2〈LMψ, ψ〉 .

Using Propositions 12.13, 12.14, 12.8 and 12.9, we have, for ` ≥ 3

|h`/2〈L`ψ, ψ〉| ≤ Ch
`
2
− `−3

2
−η̃− 1

4‖ψ‖2 = Ch
5
4
−η̃‖ψ‖2 .

We infer

Qh(ψ) ≥ 〈L0ψ, ψ〉+ h1/2〈L1ψ, ψ〉+ h〈L2ψ, ψ〉 − Ch
5
4
−η̃‖ψ‖2 .

It remains to analyze the different terms. We have

〈L0ψ, ψ〉 = 〈L0(Ψ0 + h1/2Ψ1 +Rh),Ψ0 + h1/2Ψ1 +Rh〉 .

The orthogonality (with respect to τ) cancels the terms 〈L0Ψ1,Ψ0〉 and 〈Rh,Ψ0〉. More-

over, we have, with Propositions 12.8 and 12.9,

h1/2|〈L0Rh,Ψ1〉| ≤ h1/2−η̃‖Rh‖‖Ψ1‖ ,

and we use Proposition 12.13 to get

‖Ψ1‖ ≤ C‖ψ‖ ,

so that, with Proposition 12.17,

〈L0ψ, ψ〉 = µ0‖Ψ0‖2 + h〈L0Ψ1,Ψ1〉+O(h
5
4
−η̃)‖ψ‖2 .

We have

〈L1ψ, ψ〉 = 〈L1Ψ0,Ψ0〉+ 2h1/2〈L1Ψ0,Ψ1〉+ h〈L1Ψ1,Ψ1〉+ 2〈L1ψ,Rh〉 .

Then, a Feynman-Hellmann formula provides 〈L1Ψ0,Ψ0〉 = 0. Using again Propositions

12.8, 12.9, 12.13, 12.14 and 12.17, we notice that

〈L1ψ, ψ〉 = 2h1/2〈L1Ψ0,Ψ1〉+O(h
3
4
−η̃)‖ψ‖2 .

We notice

〈L2ψ, ψ〉 = 〈L2Ψ0,Ψ0〉+ 〈L2(ψ −Ψ0), ψ〉+ 〈L2ψ, ψ −Ψ0〉 .
Writing ψ −Ψ0 = h1/2Ψ1 +Rh, we have the estimate

|〈L2(ψ −Ψ0), ψ〉+ 〈L2ψ, ψ −Ψ0〉| ≤ Ch−
1
4
−η̃h

1
2
−η̃‖ψ‖2 .

We infer

Qh(ψ) ≥ µ0‖Ψ0‖2+h〈L0Ψ1,Ψ1〉+h〈L1Ψ0,Ψ1〉+h〈L1Ψ1,Ψ0〉+h〈L2Ψ0,Ψ0〉−Ch
5
4
−η̃‖ψ‖2 .

Using (12.3.7), we get

h〈L0Ψ1,Ψ1〉+ h〈L1Ψ0,Ψ1〉 = hµ0‖Ψ1‖2 ,
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so that, by orthogonality,

Qh(ψ) ≥ µ0‖Ψ0 + h1/2Ψ1‖2 + h〈L1Ψ1,Ψ0〉+ h〈L2Ψ0,Ψ0〉 − Ch
5
4
−η̃‖ψ‖2 .

Since 〈Rh,Ψ0〉 = 0 we deduce that

‖Ψ0 + h1/2Ψ1‖2 = ‖Ψ0 + h1/2Ψ1 +Rh‖2 +O(h
5
4
−η̃)‖ψ‖2 .

It follows that

Qh(ψ)− µ0‖ψ‖2 ≥ h〈L1Ψ1,Ψ0〉+ h〈L2Ψ0,Ψ0〉+O(h
5
4
−η̃)‖ψ‖2 ,

and, since Qh(ψ) ≤ λP (h)‖ψ‖2, we have

(λP (h)− µ0)‖ψ‖2 ≥ h〈L1Ψ1,Ψ0〉+ h〈L2Ψ0,Ψ0〉+O(h
5
4
−η̃)‖ψ‖2 .

Thus we get

(λP (h)− µ0)‖Ψ0‖2 ≥ h〈L1Ψ1,Ψ0〉+ h〈L2Ψ0,Ψ0〉+O(h
5
4
−η̃)‖ψ‖2 .

We recall that (see (12.1.6) and below)

〈L1Ψ1,Ψ0〉+ 〈L2Ψ0,Ψ0〉

=
〈

1
2
Hessµ(x0, ξ0)(σ,Dσ)(〈ψ, u0〉L2(Rn, dτ)), 〈ψ, u0〉L2(Rn,dτ)

〉
L2(Rm,dσ)

.

Finally we apply the min-max principle to the P -dimensional space 〈EP (h), u0〉L2(Rn,dτ).

�

Theorem 6.29 is a consequence of Propositions 12.19 and 12.1.

188



CHAPTER 13

Examples of magnetic WKB constructions

Mais la vision la plus belle qui nous

reste d’une œuvre est souvent celle

qui s’éleva au-dessus des sons faux

tirés par des doigts malhabiles, d’un

piano désaccordé.

Du côté de chez Swann, Proust

In this chapter we give some examples of magnetic WKB constructions. Let us underline

that these examples are the first known results in the direction of WKB constructions in

presence of a pure magnetic field.

1. Vanishing magnetic fields

This section in devoted to the proof of Theorem 6.31. The fundamental ingredients

to succeed are a normal form procedure, an operator valued WKB construction (see

Proposition 4.13 for an electric example) and a complex extension of the standard model

operators.

Lemma 13.1. For r > 0, let us consider a holomorphic function ν : D(0, r) → C such

that ν(0) = ν ′(0) = 0 and ν ′′(0) ∈ R+. Let us also introduce a smooth F defined in a real

neighborhood of σ = 0 such that σ = 0 is a non degenerate maximum. Then, there exists

a neighborhood of σ = 0 such that the equation

(13.1.1) ν(iϕ(σ)) = F (σ)

admits a smooth solution ϕ solution such that ϕ(0) = 0 and ϕ′(0) > 0.

Proof. We can apply the Morse lemma to deduce that (13.1.1) is equivalent to

ν̃(iϕ(σ))2 = −f(σ)2 ,

where f is a non negative function such that f ′(0) =
√
−F ′′(0)

2
and F (σ) = −f(σ)2 and

ν̃ is a holomorphic function in a neighborhood of 0 such that ν̃2 = ν and ν̃ ′(0) =
√

ν′′(0)
2

.

This provides the equations

ν̃(iϕ(σ)) = if(σ), ν̃(iϕ(σ)) = −if(σ) .
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Since ν̃ is a local biholomorphism and f(0) = 0, we can write the equivalent equations

ϕ(σ) = −iν̃−1(if(σ)), ϕ(σ) = −iν̃−1(−if(σ)) .

The function ϕ(s) = −iν̃−1(if(s)) satisfies our requirements since ϕ′(0) =
√
−F ′′(0)

ν′′(0)
. �

1.1. Renormalization. We use the canonical transformation associated with the

change of variables:

(13.1.2) t = (γ(σ))−
1
k+2 τ, s = σ ,

we deduce that L
[k]
h is unitarily equivalent to the operator on L2( dσ dτ):

L
[k],new
h = γ(σ)

2
k+2D2

τ +

(
hDσ − γ(σ)

1
k+2

τ k+1

k + 1
+

h

2(k + 2)

γ′(σ)

γ(σ)
(τDτ +Dττ)

)2

.

We may change the gauge

e−ig(σ)/hL
[k],new
h eig(σ)/h

= γ(σ)
2
k+2D2

τ +

(
hDσ + ζ

[k]
0 γ(σ)

1
k+2 − γ(σ)

1
k+2

τ k+1

k + 1
+

h

2(k + 2)

γ′(σ)

γ(σ)
(τDτ +Dττ)

)2

.

with

g(σ) = ζ
[k]
0

∫ σ

0

γ(σ̃)
1
k+2 dσ̃ .

For some function Φ = Φ(σ) to be determined, we consider

L
[k],wgt
h = eΦ/he−ig(σ)/hL

[k],new
h eig(σ)/he−Φ/h = L[k],wgt,0 + hL[k],wgt,1 + h2L[k],wgt,2 ,

with

L[k],wgt,0 = γ(σ)
2
k+2L

[k]
w(σ) ,

L[k],wgt,1 = 1
2

(
γ(σ)

1
k+2∂ζL

[k]
ζ Dσ +Dσγ(σ)

1
k+2∂ζL

[k]
ζ

)
+ R1(σ, τ ;Dτ ) ,

L[k],wgt,2 = D2
σ + R2(σ, τ ;Dσ, Dτ ) ,

where

w(σ) = ζ
[k]
0 + iγ(σ)−

1
k+2 Φ′ .

and where the R1(σ, τ ;Dτ ) is of order zero in Dσ and cancels for σ = 0 whereas

R2(σ, τ ;Dσ, Dτ ) is of order one with respect to Dσ.

Now, let us try to solve, as usual, the eigenvalue equation

L
[k],wgt
h a = λa

in the sense of formal series in h:

a ∼
∑
j≥0

hjaj, λ ∼
∑
j≥0

hjλj .
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1.2. Solving the operator valued eikonal equation. The first equation is

L[k],wgt,0a0 = λ0a0 .

We must choose

λ0 = γ
2
k+2

0 ν1(ζ
[k]
0 )

and we are led to take

(13.1.3) a0(σ, τ) = f0(σ)u
[k]
w(σ)(τ)

so that the equation becomes

ν
[k]
1 (w(σ))− ν1(ζ

[k]
0 ) =

(
γ

2
k+2

0 γ(σ)−
2
k+2 − 1

)
ν

[k]
1 (ζ

[k]
0 ) .

Therefore we are in the framework of Lemma 13.1. We use the lemma with F (σ) =(
γ

2
k+2

0 γ(σ)−
2
k+2 − 1

)
ν

[k]
1 (ζ

[k]
0 ) and, for the function ϕ given by the lemma, we have

Φ′(σ) = γ(σ)
1
k+2ϕ(σ)

and we take

Φ(σ) =

∫ σ

0

γ(σ̃)
1
k+2ϕ(σ̃) dσ̃ ,

which is defined in a fixed neighborhood of 0 and satisfies Φ(0) = Φ′(0) = 0 and

(13.1.4) Φ′′(0) = γ
1
k+2

0

√√√√√ 2

k + 2

γ′′(0)ν
[k]
1 (ζ

[k]
0 )(

ν
[k]
1

)′′
(ζ

[k]
0 )γ(0)

> 0 .

Therefore (13.1.3) is well defined in a neighborhood of σ = 0.

1.3. Solving the transport equation. We can now deal with the operator valued

transport equation

(L[k],wgt,0 − λ0)a1 = (λ1 − L[k],wgt,1)a0 .

For each σ the Fredholm condition is〈
(λ1 − L[k],wgt,1)a0, u

[k]
w(σ)

〉
L2(Rτ )

= 0 ,

where the complex conjugation is needed since L[k],wgt,1 is not necessarily self-adjoint. Let

us examine 〈
L[k],wgt,1a0, u

[k]
w(σ)

〉
L2(Rτ )

.

We recall the Feynman-Hellmann formula

1

2

(
ν

[k]
1

)′
(ζ) =

∫
R

(
ζ − τ k+1

k + 1

)
u

[k]
ζ u

[k]
ζ dτ ,

and the formula ∫
R
u

[k]
ζ u

[k]
ζ dτ = 1
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which are valid for ζ ∈ C close to ζ
[k]
0 by holomorphic extension of the formulas valid for

ζ ∈ R. We get an equation in the form〈
L[k],wgt,1a0, u

[k]
w(σ)

〉
L2(Rτ )

= 1
2

{
γ(σ)

1
k+2

(
ν

[k]
1

)′
(w(σ))Dσ +Dσγ(σ)

1
k+2

(
ν

[k]
1

)′
(w(σ))

}
a0 +R[k](σ)a0 ,

where R[k] is smooth an vanishes at σ = 0. Thus we are reduced to solve the transport

equation

1

2

{
γ(σ)

1
k+2

(
ν

[k]
1

)′
(w(σ))Dσ +Dσγ(σ)

1
k+2

(
ν

[k]
1

)′
(w(σ))

}
a0 + R[k](σ)a0 = λ1a0 .

The only point that we should verify is that the linearized transport equation near σ = 0

is indeed a transport equation in the sense of [53, Chapter 3] so that we have just to

consider the linearization of the first part of the equation. The linearized operator is(
ν

[k]
1

)′′
(ζ

[k]
0 )Φ′′(0)

2
(σ∂σ + ∂σσ) .

The eigenvalues of this operator are

(13.1.5)


(
ν

[k]
1

)′′
(ζ

[k]
0 )Φ′′(0)

2
(2j + 1), j ∈ N

 .

Let us notice that(
ν

[k]
1

)′′
(ζ

[k]
0 )Φ′′(0)

2
=
γ

1
k+2

0

2

√√√√ 2

k + 2

γ′′(0)ν
[k]
1 (ζ

[k]
0 )
(
ν

[k]
1

)′′
(ζ

[k]
0 )

γ(0)
.

This is exactly the expected expression for the second term in the asymptotic expansion

of the eigenvalues (see Theorem 6.29). Therefore λ1 has to be chosen in the set (13.1.5),

the transport equation can be solved in a neighborhood of σ = 0 and the construction can

be continued at any order (see [53, Chapter 3]). Since the first eigenvalues are simple,

the spectral theorem implies that the constructed functions f0(σ)u
[k]

ζ
[k]
0 +iγ(σ)

− 1
k+2 Φ′

(τ)e−
Φ(σ)
h

are approximations of the true eigenfunctions of e−ig(σ)L
[k],new
h eig(σ). This is the content

of Theorem 6.31.

2. Curvature induced magnetic bound states

Let us prove Theorem 6.34. Let us introduce a phase function Φ = Φ(σ) defined in a

neighborhood of σ = 0 the unique and non-degenerate maximum of the curvature κ. We

consider the conjugate operator

Lc,wgt
h = eΦ(σ)/h

1
4 Lc

he
−Φ(σ)/h

1
4 .
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As usual, we look for

a ∼
∑
j≥0

h
j
4aj, λ ∼

∑
j≥0

λjh
j
4

such that, in the sense of formal series we have

Lc,wgt
h a ∼ λa .

We may write

Lc,wgt
h ∼ L0 + h

1
4L1 + h

1
2L2 + h

3
4L3 + . . . ,

where

L0 = D2
τ + (ζ0 − τ)2 ,

L1 = 2(ζ0 − τ)iΦ′(σ) ,

L2 = κ(σ)∂τ + 2

(
Dσ + κ(σ)

τ 2

2

)
(ζ0 − τ)− Φ′(σ)2 + 2κ(σ)(ζ0 − τ)2τ ,

L3 =

(
Dσ + κ(σ)

τ 2

2

)
(iΦ′(σ)) + (iΦ′(σ))

(
Dσ + κ(σ)

τ 2

2

)
+ 4iΦ′(σ)τκ(σ)(ζ0 − τ) .

Let us now solve the formal system. The first equation is

L0a0 = λ0a0

and leads to take

λ0 = Θ0, a0(σ, τ) = f0(σ)uζ0(τ) ,

where f0 has to be determined. The second equation is

(L0 − λ0)a1 = (λ1 − L1)a0 = (λ1 − 2(ζ0 − τ))uζ0(τ)iΦ′(σ)f0

and, due to the Fredholm alternative, we must take λ1 = 0 and we take

a1(σ, τ) = iΦ′(σ)f0(σ) (∂ζu)ζ0 (τ) + f1(σ)uζ0(τ) ,

where f1 is to be determined in a next step. Then the third equation is

(L0 − λ0)a2 = (λ2 − L2)a0 − L1a1 .

Let us explicitly write the r.h.s. It equals

λ2uζ0f0 + Φ′2(uζ0 + 2(ζ0 − τ)(∂ζu)ζ0)f0 − 2(ζ0 − τ)uζ0(iΦ′f1 − i∂σf0)

+ κ(σ)f0(∂τuζ0 − 2(ζ0 − τ)2τuζ0 − τ 2(ζ0 − τ)uζ0) .

Therefore the equation becomes

(L0−λ0)ã2 = λ2uζ0f0 +
ν ′′1 (ζ0)

2
Φ′2uζ0f0 +κ(σ)f0(−∂τuζ0−2(ζ0− τ)2τuζ0− τ 2(ζ0− τ)uζ0) ,

where

ã2 = a2 − vζ0(iΦ′f1 − i∂σf0) + 1
2
(∂2
ζu)ζ0Φ′2f0 .
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Let us now use the Fredholm alternative (with respect to τ). We will need the following

lemma the proof of which relies on Feynman-Hellmann formulas (like in Proposition 12.2)

and on [75, p. 19] (for the last one).

Lemma 13.2. We have:∫
R+

(ζ0 − τ)u2
ζ0

(τ) dτ = 0,

∫
R+

(∂ζu)ζ0(τ)uζ0(τ) dτ = 0 ,

2

∫
R+

(ζ0 − τ)(∂ζu)ζ0(τ)uζ0(τ) dτ =
ν ′′1 (ζ0)

2
− 1 ,∫

R+

(
2τ(ζ0 − τ)2 + τ 2(ζ0 − τ)

)
u2
ζ0

+ uζ0∂τuζ0 dτ = −C1 .

We get the equation

λ2 +
ν ′′1 (ζ0)

2
Φ′2(σ) + C1κ(σ) = 0, C1 =

u2
ζ0

(0)

3
.

This eikonal equation is the eikonal equation of a pure electric problem in dimension one

whose potential is given by the curvature. Thus we take

λ2 = −C1κ(0) ,

and

Φ(σ) =

(
2C1

ν ′′1 (ζ0)

)1/2 ∣∣∣∣∫ σ

0

(κ(0)− κ(s))1/2 ds

∣∣∣∣ .
In particular we have:

Φ′′(0) =

(
k2C1

ν ′′1 (ζ0)

)1/2

,

where k2 = −κ′′(0) > 0.

This leads to take

a2 = f0â2 + (∂ζu)ζ0(iΦ′f1 − i∂σf0)− 1
2
(∂2
ηu)ζ0Φ′2f0 + f2uζ0 ,

where â2 is the unique solution, orthogonal to uζ0 for all σ, of

(L0 − ν0)â2 = ν2uζ0 +
ν ′′1 (ζ0)

2
Φ′2uζ0 + κ(σ)

(
−∂τuζ0 − 2(ζ0 − τ)2τuζ0 − τ 2(ζ0 − τ)uζ0

)
,

and f2 has to be determined.

Finally we must solve the fourth equation given by

(L0 − λ0)a3 = (λ3 − L3)a0 + (λ2 − L2)a1 − L1a2 .

The Fredholm condition provides the following equation in the variable σ:

〈L3a0 + (L2 − λ2)a1 + L1a2, uζ0〉L2(R+, dτ) = λ3f0 .

Using the previous steps of the construction, it is not very difficult to see that this

equation does not involve f1 and f2 (due to the choice of Φ and λ2 and Feynman-Hellmann
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formulas). Using the same formulas, we may write it in the form

(13.2.1)
ν ′′1 (ζ0)

2
(Φ′(σ)∂σ + ∂σΦ′(σ)) f0 + F (σ)f0 = λ3f0 ,

where F is a smooth function which vanishes at σ = 0. Therefore the linearized equation

at σ = 0 is given by

Φ′′(0)
ν ′′1 (ζ0)

2
(σ∂σ + ∂σσ) f0 = λ3f0 .

We recall that
ν ′′1 (ζ0)

2
= 3C1Θ

1/2
0

so that the linearized equation becomes

C1Θ
1/4
0

√
3k2

2
(σ∂σ + ∂σσ) f0 = λ3f0 .

We have to choose λ3 in the spectrum of this transport equation, which is given by the

set {
(2n− 1)C1Θ

1/4
0

√
3k2

2
, n ≥ 1

}
.

If λ3 belongs to this set, we may solve locally the transport equation (13.2.1) and thus

find f0. This procedure can be continued at any order.
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Part 4

Magnetic wells in dimension two





CHAPTER 14

Vanishing magnetic fields in dimension two

For it is not from any sureness in myself that

I cause others to doubt: it is from being in

more doubt than anyone else that I cause

doubt in others.

Meno, Plato

This chapter presents the main elements of the proof of Theorem 7.4. We provide a

flexible and “elementary” proof which can be adapted to other situations, especially less

regular situations as in Chapter 18. A more conceptual proof, using a WKB method, is

possible by using the material introduced in Chapter 12, Section 2.2. Nevertheless, the

approach chosen for this chapter has the interest to reduce explicitly the spectral analysis

to an electric Laplacian in the Born-Oppenheimer form. In particular, we do not need

the notions of coherent states or of microlocalization.

1. Normal form

1.1. A first normal form. Let us start with an exercise.

Exercise 14.1. We recall that Φ : (s, t) 7→ c(s) + tn(s) defines a local diffeomorphism

near (s, t) = (0, 0). We let m(s, t) = 1 − tκ(s) and we use tildes to indicate that we

consider a function in the variables (s, t).

(i) Prove that, for all smooth function supported near (0, 0), the quadratic form Qh,A

becomes

Q̃h,A(ψ) =

∫ (
|hDtψ|2 + (1− tκ(s))−2|P̃ψ|2

)
m(s, t) ds dt ,

where (read Chapter 0, Section 1.2.2)

(14.1.1) P̃ = hDs − Ã(s, t), Ã(s, t) =

∫ t

0

(1− κ(s)t′)B̃(s, t′) dt′ .

(ii) Prove that, near (0, 0), the operators become

L̃h,A = h2(1− tκ(s))−1Dt(1− tκ(s))Dt + (1− tκ(s))−1P̃ (1− tκ(s))−1P̃ .
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By a change of function (see [117, Theorem 18.5.9 and below]), we are led to the

following operator on L2(R2) that is unitarily equivalent to L̃h,A:

Lnew
h,A = m1/2L̃h,Am

−1/2 = P 2
1 + P 2

2 −
h2κ(s)2

4m2
,

with P1 = m−1/2(hDs − Ã(s, t))m−1/2 and P2 = hDt.

We wish to use a system of coordinates more adapted to the magnetic situation. Let

us perform a Taylor expansion near t = 0. We have:

B̃(s, t) = γ(s)t+ ∂2
t B̃(s, 0)

t2

2
+O(t3) .

This provides:

(14.1.2) Ã(s, t) =
γ(s)

2
t2 + k(s)t3 +O(t4) ,

with

k(s) =
1

6
∂2
t B̃(s, 0)− κ(s)

3
γ(s) .

This suggests, as for the model operator, to introduce the new magnetic coordinates in a

fixed neighborhood of (0, 0):

ť = γ(s)1/3t, š = s .

This change of variable is fundamental in the analysis of the models introduced in Chapter

12, Section 2.2. The change of coordinates for the derivatives is given by:

Dt = γ(š)1/3Dť, Ds = Dš +
1

3
γ′γ−1ťDť .

The space L2( ds dt) becomes L2(γ(š)−1/3 dš dť). In the same way as previously, we shall

conjugate Lnew
h,A. We introduce the self-adjoint operator on L2(R2):

Ľh,A = γ−1/6Lnew
h,Aγ

1/6 .

We deduce:

Ľh,A = h2γ(š)2/3D2
ť + P̌ 2 ,

where

P̌ = γ−1/6m̌−1/2

(
hDš − Ǎ(š, ť) + h

1

3
γ′γ−1ťDť

)
m̌−1/2γ1/6 ,

with:

Ǎ(š, ť) = Ã(š, γ(š)−1/3ť) .

A straight forward computation provides

P̌ = m̌−1/2

(
hDš − Ǎ(š, ť) + h

1

6
γ′γ−1(ťDť +Dťť)

)
m̌−1/2 ,

where we make the generator of dilations ťDť + Dťť to appear (and which is related to

the virial theorem, see [168, 172] where this theorem is often used). Up to a change of
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gauge, we can replace P̌ by

m̌−1/2

(
hDš + ζ

[1]
0 (γ(š))1/3h2/3 − Ǎ(š, ť) + h

1

6
γ′γ−1(ťDť +Dťť)

)
m̌−1/2 .

1.2. A second normal form. Therefore, the operator takes the form “à la Hörman-

der”:

(14.1.3) Ľh,A = P1(h)2 + P2(h)2 − h2κ(š)2

4m(š, γ(š)1/3ť)2
,

where

P1(h) = m̌−1/2

(
hDš + ζ

[1]
0 (γ(š))1/3h2/3 − Ǎ(š, ť) + h

1

6
γ′γ−1(ťDť +Dťť)

)
m̌−1/2,

P2(h) = hγ(š)1/3Dť.

Computing a commutator, we can rewrite P1(h) as

P1(h) = m̌−1

(
hDš + ζ

[1]
0 (γ(š))1/3h2/3 − Ǎ(š, ť) + h

1

6
γ′γ−1(ťDť +Dťť)

)
+ Ch,(14.1.4)

where:

Ch = hm̌−1/2(Dšm̌
−1/2) +

hγ′γ−1

3
ťm̌−1/2(Dťm̌

−1/2) .

Notation 14.2. The quadratic form corresponding to Ľh will be denoted by Q̌h.

1.3. Quasimodes. We can construct quasimodes using the classical recipe (see Chap-

ter 12) involving the scaling

ť = h1/3τ, š = h1/6σ,(14.1.5)

and the Feynman-Hellmann formulas.

Notation 14.3. The operator h−4/3Ľh,A will be denoted by Lh in these rescaled coordi-

nates.

This provides the following proposition.

Proposition 14.4. We assume (7.3). For all n ≥ 1, there exist a sequence (θnj )j≥0 such

that, for all J ≥ 0, there exists h0 > 0 such that, for h ∈ (0, h0), we have:

dist

(
h4/3

J∑
j=0

θnj h
j/6, sp(Lh,A)

)
≤ Ch4/3h(J+1)/6 .

Moreover, we have:

θn0 = γ
2/3
0 ν

[1]
1 (ζ

[1]
0 ), θn1 = 0, θn2 = γ

2/3
0 C0 + γ

2/3
0 (2n− 1)

(
αν

[1]
1 (ζ

[1]
0 )(ν

[1]
1 )′′(ζ

[1]
0 )

3

)1/2

.

Thanks to the localization formula and a partition of unity, we may prove the following

proposition.
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Proposition 14.5. For all n ≥ 1, there exist h0 > 0 and C > 0 such that, for h ∈ (0, h0),

λn(h) ≥ γ
2/3
0 ν

[1]
1 (ζ

[1]
0 )h

4
3 − Ch

4
3

+ 2
15 .

Proof. We use a partition of unity (see Chapter 4, Section 1) with balls of size hρ:∑
j

χ2
j,h = 1

and such that: ∑
j

|∇χj,h|2 ≤ Ch−2ρ .

We let

Bj,h = suppχj,h .

If λ is an eigenvalue and ψ a corresponding eigenfunction, we have the localization formula∑
j

Qh,A(χj,hψ)− h2‖∇χj,hψ‖2 = λ
∑
j

‖χj,hψ‖2 .

We distinguish between the balls which intersect t = 0 and the others so that we introduce:

J1(h) = {j : Bj,h ∩ C 6= ∅}, J2(h) = {j : Bj,h ∩ C = ∅} .

If j ∈ J2(h) , we use the inequality of Lemma 3.5 combined with the non-degeneracy of

the cancellation of B and Assumption 7.1.1. We deduce the existence of h0 > 0 and c > 0

such that, for h ∈ (0, h0),

Qh,A(χj,hψ) ≥ h

∣∣∣∣∫ B(x)|χj,hψ|2 dx

∣∣∣∣ ≥ ch1+ρ‖χj,hψ‖2 .

If j ∈ J1(h), we write:

Qh,A(χj,hψ) ≥ (1− Chρ)
∫
|h∂t(χj,hψ)|2 + |(ih∂s + Ã)(χj,hψ)|2 ds dt ,

where Ã is defined in (14.1.1). Thanks to a Taylor expansion (see (14.1.2)), we infer, for

all ε ∈ (0, 1),

Qh,A(χj,hψ) ≥

(1− Chρ)
(

(1− ε)
∫
|h∂t(χj,hψ)|2 + |(ih∂s +

γ(sj)t
2

2
)(χj,hψ)|2 ds dt− Ch6ρ

ε
‖χj,hψ‖2

)
,

and we deduce (see Section 1.2):

Qh,A(χj,hψ) ≥ (1− Chρ)
(

(1− ε)h4/3ν
[1]
1 (ζ

[1]
0 )γ

2/3
j ‖χj,hψ‖2 − ε−1Ch6ρ‖χj,hψ‖2

)
.

Optimizing with respect to ε, we choose: ε = h3ρ− 2
3 . Then, we take ρ such that 2− 2ρ =

3ρ+ 2
3

and we deduce ρ = 4
15

. �
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2. Agmon estimates

Two kinds of Agmon’s estimates can be proved by using standard partition of unity

arguments.

Proposition 14.6. Let (λ, ψ) be an eigenpair of Lh,A. There exist h0 > 0, C > 0 and

ε0 > 0 such that, for h ∈ (0, h0):

(14.2.1)

∫
e2ε0|t(x)|h−1/3|ψ|2 dx ≤ C‖ψ‖2

and

(14.2.2) Qh,A(eε0|t(x)|h−1/3

ψ) ≤ Ch4/3‖ψ‖2.

Proof. Let us consider an eigenpair (λ, ψ) of Lh,A. We begin to write the localization

formula:

(14.2.3) Qh,A(eΦψ) = λ‖eΦψ‖2 + h2‖∇ΦeΦψ‖2.

We use a partition of unity with balls of size Rh1/3:∑
j

χ2
j,h = 1

and such that: ∑
j

|∇χj,h|2 ≤ CR−2h−2/3.

We may assume that the balls which intersect the line t = 0 have their centers on it.

Using again the localisation formula, we get the decomposition into local ”energies”:∑
j

Qh,A(χj,he
Φψ)− λ‖χj,heΦψ‖2 − h2‖χj,h∇ΦeΦψ‖2 − h2‖∇χj,heΦψ‖2 = 0 .

We distinguish between the balls which intersect t = 0 and the others:

J1(h) = {j : Bj,h ∩ C 6= ∅}, J2(h) = {j : Bj,h ∩ C = ∅} .

If j ∈ J2(h), we get the existence of c > 0 (independent from R) and h0 > 0 such that,

for h ∈ (0, h0),

Qh,A(χj,he
Φψ) ≥ h

∣∣∣∣∫ B(x)|χj,heΦψ|2 dx

∣∣∣∣ ≥ cRh4/3‖χj,heΦψ‖2 .

If j ∈ J1(h), we write

Qh,A(χj,he
Φψ) ≥ (1− CRh1/3)

(
(1− ε)h4/3ν

[1]
1 (ζ

[1]
0 )γ

2/3
j − ε−1Ch2‖|χj,heΦψ‖2

)
.

We take ε = h1/3. We use Proposition 14.4 to get that λn(h) ≤ γ
2/3
0 ν

[1]
1 (ζ

[1]
0 )h

4
3 + Ch

5
3 .

We are led to choose Φ(x) = ε0|t(x)|h−1/3 so that

h2|∇Φ|2 ≤ h4/3ε2
0 .
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Taking ε0 small enough and R large enough, we infer the existence of c̃ > 0, C > 0 and

h0 > 0 such that, for h ∈ (0, h0),

c̃h4/3
∑

j∈J1(h)

∫
e2Φ|χj,hψ|2 dx ≤ Ch4/3

∑
j∈J2(h)

∫
e2Φ|χj,hψ|2 dx .

Then, due to the support of χj,h when j ∈ J2(h), we infer:∑
j∈J2(h)

∫
e2Φ|χj,hψ|2 dx ≤ C̃

∑
j∈J2(h)

∫
|χj,hψ|2 dx .

We deduce (14.2.1). Finally, (14.2.2) follows from (14.2.1) and (14.2.3). �

By using the same method, we can prove the following localization with respect to the

tangential variable s (here we use the fact that γ is non degenerately minimal at s = 0).

Proposition 14.7. Let (λ, ψ) be an eigenpair of Lh,A. There exist h0 > 0, C > 0 and

ε0 > 0 such that, for h ∈ (0, h0):

(14.2.4)

∫
e2χ(t(x))|s(x)|h−1/15|ψ|2 dx ≤ C‖ψ‖2

and

(14.2.5) Qh,A(eχ(t(x))|s(x)|h−1/15

ψ) ≤ Ch4/3‖ψ‖2,

where χ is a fixed smooth cutoff function being 1 near 0.

From Propositions 14.6 and 14.7, we are led to introduce a cutoff function living near

x0. We take ε > 0 and we let:

χh,ε(x) = χ
(
h−1/3+εt(x)

)
χ
(
h−1/15+εs(x)

)
.

where χ is a fixed smooth cutoff function supported near 0.

Notation 14.8. We will denote by ψ̌ the function χh,ε(x)ψ(x) in the coordinates (š, ť).

The following exercise aims at proving some a priori estimates on the truncated eigen-

functions in the coordinates (š, ť). They will be quite convenient in the rest of the proof.

Exercise 14.9. Let ψn,h be a L2-normalized eigenfunction associated with λn(h).

(1) By using the estimates of Agmon, show that we have

Q̌h(ψ̌n,h) = λn(h)‖ψ̌n,h‖2 +O(h∞) .

(2) By applying the usual localization procedure to 〈Pj(h)2ψ̌n,h, ť
2kψ̌n,h〉, prove that,

for all k ≥ 1,

Q̌h(ť
kψ̌n,h) ≤ λn(h)‖ťkψ̌n,h‖2 + Ch2‖ťk−1ψ̌n,h‖2 + Ch2‖ťkψ̌n,h‖2 +O(h∞) .

(3) By using the estimates of Agmon, deduce that, for all k ≥ 1,

Q̌h(ť
kψ̌n,h) = O(h

4
3h

2k
3 ) .
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(4) Prove that for all ψ̌ in the domain of Q̌h and supported in a region |ť| ≤ Ch
1
3
−ε,

we have

Q̌h(ψ̌) ≥ 1

2
‖hDšψ̌‖2 + (γ

2
3
0 − Ch

2
3
−2ε)‖hDťψ̌‖2 − Ch

4
3‖ψ̌‖2 − C‖ť2ψ̌‖2 − Ch2‖ťψ̌‖2 .

(5) Deduce that, for all k ≥ 1, we have

‖hDť(ť
kψ̌n,h)‖2 = O(h

4
3h

2k
3 ), ‖hDš(ť

kψ̌n,h)‖2 = O(h
4
3h

2k
3 ) .

Let us now establish the following proposition.

Proposition 14.10. For all n ≥ 1, there exist h0 > 0 and C > 0 s. t., for h ∈ (0, h0):

λn(h) ≥ γ
2/3
0 ν

[1]
1 (ζ

[1]
0 )h4/3 − Ch5/3 .

Moreover, we have

‖šψ̌n,h‖ ≤ Ch
1
6‖ψ̌n,h‖ .

Proof. We use the notations and the results of Exercise 14.9. We write

Q̌h(ψ̌n,h) = λn(h)‖ψ̌n,h‖2 +O(h∞)‖ψ̌n,h‖2 .

Then, we have

Q̌h(ψ̌n,h) ≥∫
m̌−2

∣∣∣∣(hDš + ζ
[1]
0 γ1/3h2/3 − Ǎ+

h

6
γ′γ−1(ťDť +Dťť) + Ch

)
ψ̌n,h

∣∣∣∣2 dš dť

+ h2‖γ1/3Dťψ̌n,h‖2 − Ch2‖ψ̌n,h‖2.

Let us now use a Taylor expansion the get rid of the metrics m̌. The remainder can be

controlled with the results of Exercise 14.9 and we get

Q̌h(ψ̌n,h) ≥(14.2.6) ∫ ∣∣∣∣(hDš + ζ
[1]
0 γ1/3h2/3 − Ǎ+

h

6
γ′γ−1(ťDť +Dťť) + Ch

)
ψ̌n,h

∣∣∣∣2 dš dť

+ h2‖γ1/3Dťψ̌n,h‖2 − Ch
5
3‖ψ̌n,h‖2.

Expanding the square, we get

(14.2.7) Q̌h(ψ̌n,h) ≥ (1− η)

∫ ∣∣∣∣(hDš + ζ
[1]
0 γ1/3h2/3 − γ

1
3
ť2

2

)
ψ̌n,h

∣∣∣∣2 dš dť

− Cη−1
(
‖ť3ψ̌n,h‖2 + h2+ 2

15‖ψ̌n,h‖2
)

+ h2‖γ1/3Dťψ̌n,h‖2 − Ch
5
3‖ψ̌n,h‖2,
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where we have used that 0 is a critical point of γ as well as the size of the support in š.

We choose η = h
1
3 and we find

Q̌h(ψ̌n,h) ≥ (1− h
1
3 )

∫ ∣∣∣∣(hDšγ
− 1

3 + ζ
[1]
0 h2/3 − ť2

2

)
γ

1
3 ψ̌n,h

∣∣∣∣2 dš dť

+ h2‖γ1/3Dťψ̌n,h‖2 − Ch
5
3‖ψ̌n,h‖2.

Then, we write the symmetrization

Dšγ
−1/3 = γ−1/6Dšγ

−1/6 − iγ−1/6(γ−1/6)′ .

Then we estimate the double product involved by iγ−1/6(γ−1/6)′ to get∫ ∣∣∣∣(hDšγ
− 1

3 + ζ
[1]
0 h2/3 − ť2

2

)
γ

1
3 ψ̌n,h

∣∣∣∣2 dš dť

≥
∫ ∣∣∣∣(hγ−1/6Dšγ

−1/6 + ζ
[1]
0 h2/3 − ť2

2

)
γ

1
3 ψ̌n,h

∣∣∣∣2 dš dť− Ch2‖ψn,h‖2.

We deduce that

Q̌h(ψ̌n,h) ≥h2‖γ
1
3Dťψ̌n,h‖2 +

∫ ∣∣∣∣(hγ−1/6Dšγ
−1/6 + ζ

[1]
0 h2/3 − ť2

2

)
γ

1
3 ψ̌n,h

∣∣∣∣2 dš dť

− Ch
5
3‖ψ̌n,h‖2.(14.2.8)

We can apply the functional calculus to the self-adjoint operator γ−1/6Dšγ
−1/6 (see Ex-

ercise 1.21) and the following lower bound follows

Q̌h(ψ̌n,h) ≥h4/3ν
[1]
1 (ζ

[1]
0 )‖γ

1
3 ψ̌n,h‖2 − Ch5/3‖ψ̌n,h‖2.

This implies the lower bound for λn(h). Since λn(h) ≤ γ
1
3
0 ν

[1]
1 (ζ

[1]
0 )h

4
3 + Ch

5
3 , we get∫ (

γ(š)
1
3 − γ

2
3
0

)
|ψ̌n,h|2 dš dť ≤ Ch

1
3

and it remains to use the non degeneracy of the minimum of γ at 0. �

For all N ≥ 1, let us consider a L2-orthonormalized family (ψn,h)1≤n≤N where ψn,h is

an eigenfunction associated with λn(h). We consider the N dimensional space defined

by:

EN(h) = span
1≤n≤N

ψ̌n,h .

An easy consequence of Proposition 14.10 gives the following.

Proposition 14.11. There exist h0 > 0, C > 0 such that, for h ∈ (0, h0) and for all

ψ̌ ∈ EN(h):

‖šψ̌‖ ≤ Ch1/6‖ψ̌‖ .

With Proposition 14.11, we have a better lower bound for the quadratic form.
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Proposition 14.12. There exists h0 > 0 such that for h ∈ (0, h0) and ψ̌ ∈ EN(h):

Q̌h(ψ̌) ≥γ2/3
0

∫
(1 + 2κ0ťγ

−1/3
0 )|(γ−1/6hDšγ

−1/6 + ζ
[1]
0 h2/3 − ť2

2
− γ−4/3

0 k(0)ť3)ψ̌|2 dš dť

+

∫
γ

2/3
0 |hDťψ̌|2 dš dť+

2

3
γ

2/3
0 αν

[1]
1 (ζ

[1]
0 )h4/3‖šψ̌‖2 + o(h5/3)‖ψ̌‖2,

where α is defined in (7.1.5).

Proof. Let us only indicate the changes that have to be made in the proof of Propo-

sition 14.10. We shall keep the next term in the expansion of the metrics in (14.2.6). In

(14.2.7) we also keep one more term in the expansion of Ǎ and we may choose a slightly

smaller η. �

3. Projection argument

In this section, we establish a dimensional reduction. For that purpose, one needs a

localization result for Dš.

Proposition 14.13. There exist h0 > 0, C > 0 such that, for h ∈ (0, h0) and for all

ψ̌ ∈ EN(h):

‖Dšψ̌‖ ≤ Ch−1/6‖ψ̌‖ .

Proof. We only give some hints for the proof. We recall (14.2.8) and Exercise 1.21

and we get

(14.3.1) h
4
3

∫ (
ν

[1]
1 (ζ

[1]
0 + h

1
3 ζ)− ν [1]

1 (ζ
[1]
0 )
)
|φ̌|2 dζ dť ≤ Ch

5
3‖φ̌‖2

where

φ̌ = F
γ−

1
6
(γ

1
3 ψ̌) .

Choosing ε0 > 0 small enough and using the uniqueness and non-degeneracy of the

minimum of ν
[1]
1 , we get ∫

|h
1
3 ζ|≤ε0

|h
1
3 ζ|2

∣∣φ̌∣∣2 dζ dť ≤ Ch
1
3‖φ̌‖2

and ∫
|h

1
3 ζ|≥ε0

∣∣φ̌∣∣2 dζ dť ≤ Ch
5
3‖φ̌‖2 .

By using the localization formula of Proposition 4.8 and estimating

〈Ľhψ̌,
(
γ−

1
6Dšγ

− 1
6

)2

ψ̌〉

we may essentially replace ψ̌ by γ−
1
6Dšγ

− 1
6 ψ̌ in (14.3.1) and deduce that∫

|ζ|2
∣∣φ̌∣∣2 dζ dť ≤ Ch−

1
3‖φ̌‖2 .

�
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We can now prove an approximation result for the eigenfunctions. Let us recall the

rescaled coordinates (see (14.1.5)):

(14.3.2) š = h1/6σ, ť = h1/3τ.

Notation 14.14. Lh denotes h−4/3Ľh in the coordinates (σ, τ). The corresponding qua-

dratic form will be denoted by Qh. We will use the notation EN(h) to denote EN(h) after

rescaling.

We introduce the Feshbach-Grushin projection:

Π0φ = 〈φ, u[1]

ζ
[1]
0

〉L(Rτ )u
[1]

ζ
[1]
0

(τ) .

We will need to consider the quadratic form:

Q̂0(φ) = γ
2/3
0

∫
|Dτφ|2 +

∣∣∣∣(−ζ [1]
0 +

τ 2

2

)
φ

∣∣∣∣2 dσ dτ .

The fundamental approximation result is given in the following proposition.

Proposition 14.15. There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and

ψ̂ ∈ EN(h):

0 ≤ Q0(ψ̂)− γ2/3
0 ν

[1]
1 (ζ

[1]
0 )‖ψ̂‖2 ≤ Ch1/6‖ψ̂‖2(14.3.3)

and

‖Π0ψ̂ − ψ̂‖ ≤ Ch1/12‖ψ̂‖(14.3.4)

‖Dτ (Π0ψ̂ − ψ̂)‖ ≤ Ch1/12‖ψ̂‖,

‖τ 2(Π0ψ̂ − ψ̂)‖ ≤ Ch1/12‖ψ̂‖.

This permits to simplify the lower bound.

Proposition 14.16. There exist h0 > 0, C > 0 such that, for h ∈ (0, h0) and ψ̌ ∈ EN(h):

Q̌h(ψ̌) ≥
∫
γ

2/3
0

(
|hDťψ̌|2 + |(γ−1/6hDšγ

−1/6 + ζ
[1]
0 h2/3 − ť2

2
)ψ̌|2

)
dš dť

+
2

3
γ

2/3
0 αν

[1]
1 (ζ

[1]
0 )h4/3‖šψ̌‖2 + C0h

5/3‖ψ̌‖2 + o(h5/3)‖ψ̌‖2,

where C0 is defined in (7.1.6).

Proof. We leave the proof to the reader, the main idea being to approximate the

“curvature terms” by their averages in the quantum state u
[1]

ζ
[1]
0

. �

It remains to diagonalize γ−1/6Dšγ
−1/6.
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Corollary 14.17. There exist h0 > 0, C > 0 such that, for h ∈ (0, h0) and ψ̌ ∈ EN(h):

Q̌h(ψ̌) ≥
∫
γ

2/3
0

(
|hDťφ̌|2 + |(hζ + ζ

[1]
0 h2/3 − ť2

2
)φ̌|2

)
dµ dť

+
2

3
γ

2/3
0 αν1(ζ

[1]
0 )h4/3‖Dζ φ̌‖2 + C0h

5/3‖φ̌‖2 + o(h5/3)‖φ̌‖2,

with φ̌ = Fγψ̌.

Let us introduce the operator on L2(R2, dµ dť):

(14.3.5)
2

3
γ

2/3
0 αν

[1]
1 (ζ

[1]
0 )h4/3D2

ζ + γ
2/3
0

(
h2D2

ť +

(
hζ + ζ

[1]
0 h2/3 − ť2

2

)2
)

+ C0h
5/3.

Exercise 14.18. Determine the asymptotic expansion of the lowest eigenvalues of this

operator thanks to the Born-Oppenheimer theory and prove the following theorem.

Theorem 14.19. Under Assumption (7.3), for all n ≥ 1, there exists h0 > 0 such that

for h ∈ (0, h0), we have:

λn(h) ≥ θn0h
4/3 + θn2h

5/3 + o(h5/3) .

With Proposition 14.4, this implies Theorem 7.4.
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CHAPTER 15

Non vanishing magnetic fields

Μηδείς ἀγεωμέτρητος εἰσίτω μου τὴν στέγην.

This chapter is devoted to the elements of the proofs of Theorems 7.10 and 7.9 an-

nounced in Chapter 7, Section 2. Many ideas involved in this chapter may be found in

Chapter 5.

1. Magnetic Birkhoff normal form

In this section we prove Theorem 7.10.

1.1. Symplectic normal bundle of the characteristic manifold. We introduce

the submanifold of all particles at rest:

Σ := H−1(0) = {(q, p); p = A(q)} .

Since it is a graph, it is an embedded submanifold of R4, parameterized by q ∈ R2.

Lemma 15.1. Σ is a symplectic submanifold of R4, in the sense that the restriction of

ω0 to Σ is a non degenerate 2-form. In fact,

j∗ω�Σ = dA ' B ,

where j : R2 → Σ is the embedding j(q) = (q,A(q)).

Proof. We compute

j∗ω = j∗( dp1 ∧ dq1 + dp2 ∧ dq2) = (−∂A1

∂q2

+
∂A2

∂q1

) dq1 ∧ dq2 6= 0 .

�

Since we are interested in the low energy regime, we wish to describe a small neigh-

borhood of Σ in R4, which amounts to understanding the normal symplectic bundle of

Σ.

Notation 15.2. To avoid a confusion with the exterior derivative d, for any X and

differentiable function f , we denote by TXf the tangent map of f at X.

The vectors (Q, TqA(Q)), with Q ∈ TqΩ = R2, span the tangent space Tj(q)Σ. It is

interesting to notice that the symplectic orthogonal Tj(q)Σ
⊥ is very easy to describe as

well.
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Lemma 15.3. For any q ∈ Ω, the vectors

u1 :=
1√
|B|

(e1, (TqA)T(e1)); v1 :=

√
|B|
B

(e2, (TqA)T(e2))

form a symplectic basis of Tj(q)Σ
⊥.

Proof. Let (Q1, P1) ∈ Tj(q)Σ and (Q2, P2) with P2 = (TqA)T(Q2). Then from (7.2.5)

we get

ω0((Q1, P1), (Q2, P2)) = 〈TqA(Q1), Q2〉 − 〈(TqA)T(Q2), Q1〉

= 0 .

This shows that u1 and v1 belong to Tj(q)Σ
⊥. Finally

ω0(u1, v1) =
1

B

(
〈(TqA)T(e1), e2〉 − 〈(TqA)T(e2), e1〉

)
=

1

B
〈e1, (TqA− (TqA)T(e2)〉

=
1

B
〈e1, ~B ∧ e2〉 = −B

B
〈e1, e1〉 = −1 .

�

Thanks to this lemma, we are able to give a simple formula for the transversal Hessian

of H, which governs the linearized (fast) motion.

Lemma 15.4. The transversal Hessian of H, as a quadratic form on Tj(q)Σ
⊥, is given

by

∀q ∈ Ω,∀(Q,P ) ∈ Tj(q)Σ⊥, T 2
qH((Q,P )2) = 2‖Q ∧ ~B‖2.

Proof. Let (q, p) = j(q). From (7.2.3) we get

T(q,p)H = 2〈p−A, dp− TqA ◦ dq〉 .

Thus

T 2H(q,p)((Q,P )2) = 2‖( dp− TqA ◦ dq)(Q,P )‖2 + 〈p−A,M((Q,P )2)〉 ,

and it is not necessary to compute the quadratic form M , since p−A = 0. We obtain

T 2H(q,p)((Q,P )2) = 2‖P − TqA(Q)‖2

= 2‖((TqA)T − TqA)(Q)‖2 = 2‖Q ∧ ~B‖2 .

�

We may express this Hessian in the symplectic basis (u1, v1) given by Lemma 15.3:

(15.1.1) T 2H�Tj(q)Σ⊥ =

(
2 |B| 0

0 2 |B|

)
.

Indeed, ‖e1 ∧ ~B‖2 = B2, and the off-diagonal term is 1
B
〈e1 ∧ ~B, e2 ∧ ~B〉 = 0.
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1.2. A first normal form. We use the notation of the previous section. We endow

Cz1×R2
z2

with canonical variables z1 = x1+iξ1, z2 = (x2, ξ2), and the symplectic structure

induced by ω0 = dξ ∧ dx.

Let us notice that there exists a diffeomorphism g : Ω → g(Ω) ⊂ R2
z2

such that

g(q0) = 0 and

g∗( dξ2 ∧ dx2) = j∗ω .

(We identify g with ϕ in the statement of the theorem.) In other words, the new embed-

ding ̃ := j ◦ g−1 : R2 → Σ is symplectic. In fact we can give an explicit choice for g by

introducing the global change of variables:

x2 = q1, ξ2 =

∫ q2

0

B(q1, s) ds .

Consider the following map Φ̃ (where we identify Ω and g(Ω)):

C× Ω
Φ̃−→ NΣ(15.1.2)

(x1 + iξ1, z2) 7→ x1u1(z2) + ξ1v1(z2) ,(15.1.3)

where u1(z2) and v1(z2) are the vectors defined in Lemma 15.3 with q = g−1(z2). This is

an isomorphism between the normal symplectic bundle of {0} × Ω and NΣ, the normal

symplectic bundle of Σ. Indeed, Lemma 15.3 says that for fixed z2, the map z1 7→ Φ̃(z1, z2)

is a linear symplectic map. This implies, by a general result of Weinstein [192], that

there exists a symplectomorphism Φ from a neighborhood of {0} ×Ω to a neighborhood

of ̃(Ω) ⊂ Σ whose differential at {0} × Ω is equal to Φ̃. Let us recall how to prove this.

First, we may identify Φ̃ with a map into R4 by

Φ̃(z1, z2) = ̃(z2) + x1u1(z2) + ξ1v1(z2) .

Its Jacobian at z1 = 0 in the canonical basis of Tz1C×Tz2Ω = R4 is a matrix with column

vectors [u1, v1, Tz2 ̃(e1), Tz2 ̃(e2)], which by Lemma 15.3 is a basis of R4. Thus Φ̃ is a local

diffeomorphism at every (0, z2). Therefore if ε > 0 is small enough, Φ̃ is a diffeomorphism

of D(ε)× Ω into its image (D(ε) ⊂ C is the open ball of radius ε).

Since ̃ is symplectic, Lemma 15.3 implies that the basis [u1, v1, Tz2 ̃(e1), Tz2 ̃(e2)] is

symplectic in R4; thus the Jacobian of Φ̃ on {0}×Ω is symplectic. This can be expressed

by saying that the 2-form

ω0 − Φ̃∗ω0

vanishes on {0} × Ω.

Lemma 15.5. There exists a smooth and injective map S : D(ε)×Ω→ D(ε)×Ω, which

is tangent to the identity along {0} × Ω, such that

S∗Φ̃∗ω = ω0.

Proof. It is sufficient to apply Lemma 5.1 to ω1 = Φ̃∗ω0. �
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We let Φ := Φ̃◦S; this is the claimed symplectic map. We let (z1, z2) = Φ(ẑ1, ẑ2). Let

us now analyze how the Hamiltonian H is transformed under Φ. The zero-set Σ = H−1(0)

is now {0}×Ω, and the symplectic orthogonal T̃(0,ẑ2)Σ
⊥ is canonically equal to C×{ẑ2}.

By (15.1.1), the matrix of the transversal Hessian of H ◦Φ in the canonical basis of C is

simply

(15.1.4) T 2(H ◦ Φ)�C×{ẑ2} = T 2
Φ(0,ẑ2)H ◦ (TΦ)2 =

(
2 |B(g−1(ẑ2))| 0

0 2 |B(g−1(ẑ2))|

)
.

Therefore, by Taylor’s formula in the ẑ1 variable (locally uniformly with respect to the

ẑ2 variable seen as a parameter), we get

H ◦ Φ(ẑ1, ẑ2) = H ◦ Φ�ẑ1=0 + TH ◦ Φ�ẑ1=0(ẑ1) +
1

2
T 2(H ◦ Φ)�ẑ1=0(ẑ2

1) +O(|ẑ1|3)

= 0 + 0 +
∣∣B(g−1(ẑ2))

∣∣ |ẑ1|2 +O(|ẑ1|3).

In order to obtain the result claimed in the theorem, it remains to apply a formal Birkhoff

normal form in the ẑ1 variable, to simplify the remainder O(ẑ3
1). This classical normal

form is a particular case of the semiclassical normal form that we prove below (Proposi-

tion 15.6). Therefore we simply refer to this proposition, and this finishes the proof of the

theorem, where, for simplicity of notation, the variables (z1, z2) actually refer to (ẑ1, ẑ2).

1.3. Semiclassical Birkhoff normal form. In the coordinates x̂1, ξ̂1, x̂2, ξ̂2 (which

are defined in a neighborhood of {0} × Ω), the Hamiltonian takes the form:

(15.1.5) Ĥ(ẑ1, ẑ2) = H0 +O(|ẑ1|3), where H0 = B(g−1(ẑ2))|ẑ1|2 .

Let us now consider the space of the formal power series in x̂1, ξ̂1, h with coefficients

smoothly depending on (x̂2, ξ̂2) : E = C∞
x̂2,ξ̂2

[[x̂1, ξ̂1, h]]. We endow E with the Moyal

product (compatible with the Weyl quantization) denoted by ? and the commutator of

two series κ1 and κ2 (in all variables (x̂1, ξ̂1, x̂2, ξ̂2)) is defined as

[κ1, κ2] = κ1 ? κ2 − κ2 ? κ1.

Explicitly, we have

[κ1, κ2](x̂, ξ̂, h) = 2 sinh
( h

2i
�
)(
f(x, ξ, h)g(y, η, h)

)∣∣∣
x=y=x̂,

ξ=η=ξ̂

where

� =
2∑
j=1

∂ξj∂yj − ∂xj∂ηj .

Proposition 15.6. Given γ ∈ O3, there exist formal power series τ, κ ∈ O3 such that:

eih
−1adτ (H0 + γ) = H0 + κ ,

with [κ, |ẑ1|2] = 0.
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Proof. The proof is essentially the same as the proof of Proposition 5.7. The only

point to notice is that

ih−1adτ ′H0 = B(g−1(ẑ2))ih−1adτ ′|ẑ1|2 +ON+4.

�

1.4. Quantizing the formal procedure. Let us now prove Theorem 7.10

1.4.1. First Egorov theorem. Using (15.1.5) and applying the Egorov theorem (see

[142, Theorems 5.5.5 and 5.5.9], [179] or [194, Theorem 11.5]), we can find a unitary

operator Vh (a “Fourier Integral Operator”) such that

V ∗h Lh,AVh = C0h+H0
h + Opwh (rh) ,

so that σT,w (Opwh (rh)) = γ ∈ O3, where σT,w means that we consider the formal Taylor

series of the Weyl symbol with respect to (h, ẑ1). In fact, one can choose Vh such that the

subprincipal symbol is preserved by conjugation (see for instance [113, Appendix A]),

which implies that C0 = 0. Note that this version of the Egorov theorem is more general

than the one recalled in Chapter 5.

1.4.2. Second Egorov theorem. Let us now quantize the formal result of Proposition

15.6, as in Chapter 5, Section 2.2. Since the formal series κ given by Proposition 15.6

commutes with |ẑ1|2, we can write it as a formal series in |ẑ1|2, that is

κ =
∑
k≥0

∑
l+m=k

hlcl,m(ẑ2)|ẑ1|2m.

This formal series can be reordered by using the monomials (|ẑ1|2)?m:

κ =
∑
k≥0

∑
l+m=k

hlc?l,m(ẑ2)(|ẑ1|2)?m.

Thanks to the Borel lemma, there exists a smooth function f ?(h, |ẑ1|2, ẑ2), compactly

supported, with a support in ẑ1 arbitrarily small, such that the Taylor expansion with

respect to (h, |ẑ1|2) of f ?(h, |ẑ1|2, ẑ2) is given by κ and, locally in ẑ2,

(15.1.6) σT,w (Opwh (f ?(h, Ih, ẑ2))) = κ .

Here, the operator Opwh (f ?(h, Ih, ẑ2)) has to be understood as the Weyl quantization with

respect to ẑ2 of an operator valued symbol. We can write it in the form:

Opwh f
?(h, Ih, ẑ2) = C0h+H0 + Opwh f̃

?(h, Ih, ẑ2) ,

whereH0
h = Opwh (H0) and σT,w(Opwh (f̃ ?(h, Ih, ẑ2))) is in O4. Thus, by using the Calderon-

Vaillancourt theorem, given any η > 0, we may choose the support of f ? small enough

(with respect to ẑ1) in order to have, for all ψ ∈ C∞0 (R2),

(15.1.7) |〈Opwh f̃ ?(h, Ih, ẑ2)ψ, ψ〉| ≤ η‖I1/2
h ψ‖2 .
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Now we introduce a smooth symbol ah with compact support such that, locally in ẑ2,

σT,w(ah) = τ .

It remains to use Proposition 15.6 and again the Egorov theorem (see Chapter 5, Sec-

tion 1.2.2) to notice that eih
−1Opwh (ah)Opwh (rh)e

−ih−1Opwh (ah) is a pseudo-differential operator

such that the formal Taylor series of its symbol is κ. Therefore, recalling (15.1.6), we

have found a unitary Fourier Integral Operator Uh such that

(15.1.8) U∗hLh,AUh = H0
h + Opwh

(
f̃ ?(h, Ih, ẑ2)

)
+Rh + Sh ,

where Rh and Sh are like in Theorem 7.10.

This ends the proof of Theorem 7.10.

2. Microlocalization

This section is devoted to the proof of Theorem 7.9. The strategy is presented in

Chapter 5, Section 2. The main idea is to use the eigenfunctions of Lh,A and LNo
h as

test functions in the pseudo-differential identity (15.1.8) given in Theorem 7.10 and to

apply the variational characterization of the eigenvalues given by the min-max principle.

In order to control the remainders we shall just prove the microlocalization of the eigen-

functions of Lh,A and LNo
h thanks to the confinement assumption (7.2.9). This is the aim

of the next sections.

2.1. Counting the eigenvalues. Let us first roughly estimate the numbers of eigen-

values.

Lemma 15.7. There exists C > 0 such that for all h > 0, we have

N(Lh,A, C1h) = O(h−1) .

Proof. We notice that:

N(Lh,A, C1h) = N(L1,h−1A, C1h
−1)

and that, for all ε ∈ (0, 1):

Q1,h−1A(ψ) ≥ (1− ε)Q1,h−1A(ψ) + ε

∫
R2

B(x)

h
|ψ|2 dx

so that we infer:

N(Lh,A, C1h) ≤ N(L1,h−1A + ε(1− ε)−1h−1B, (1− ε)−1C1h
−1).

Then, the diamagnetic inequality 1 jointly with a Lieb-Thirring estimate (see the original

paper [133]) provides for all γ > 0 the existence of Lγ,2 > 0 such that, for all h > 0 and

1See [43, Theorem 1.13] and the link with the control of the resolvent kernel in [122, 182].
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λ > 0,

N(H1,h−1A+ε(1−ε)−1h−1B,λ)∑
j=1

∣∣∣λ̃j(h)− λ
∣∣∣γ ≤ Lγ,2

∫
R2

(ε(1− ε)−1h−1B(x)− λ)1+γ
− dx.

We apply this inequality with λ = (1 + η)(1 − ε)−1C1h
−1, for some η > 0. This implies

that:
Nε,h,η∑
j=1

∣∣∣λ̃j(h)− λ
∣∣∣γ ≤ Lγ,2

∫
B(x)≤(1+η)C1/ε

(λ− ε(1− ε)−1h−1B(x))1+γ dx

with Nε,h,η := N(L1,h−1A + ε(1− ε)−1h−1B, (1− ε)−1C1h
−1), so that:

(η(1− ε)−1C1h
−1)γNε,h,η ≤ Lγ,2(h(1− ε))−1−γ

∫
B(x)≤ (1+η)C1

ε

((1 + η)C1− εB(x))1+γ dx.

For η small enough and ε is close to 1, we have (1 + η)ε−1C1 < C̃1 so that the integral is

finite, which gives the required estimate. �

Lemma 15.8. There exists C > 0 and h0 > 0 such that for all h ∈ (0, h0), we have:

N(LNo
h , C1h) = O(h−1) .

Proof. Let ε ∈ (0, 1). By point (iv) of Theorem 7.10, it is enough to prove that

N(H0
h,

C1h
1−ε) = O(h−1) since

(15.2.1) ∀ψ ∈ C∞0 (R2), 〈LNo
h ψ, ψ〉 ≥ (1− ε)〈H0

hψ, ψ〉 .

The eigenvalues and eigenfunctions of H0
h can be found by separation of variables:

H0
h = Ih ⊗ Opwh (B ◦ ϕ−1), where Ih acts on L2(Rx1) and B̂h := Opwh (B ◦ ϕ−1) acts on

L2(Rx2). Thus,

N(H0
h, hC1,ε) = #{(n,m) ∈ (N∗)2; (2n− 1)hγm(h) ≤ hC1,ε} ,

where C1,ε := C1

1−ε , and γ1(h) ≤ γ2(h) ≤ · · · are the eigenvalues of B̂h. A simple estimate

gives

N(H0
h, C1,ε) ≤

(
1 +

⌊
1

2
+

C1,ε

2γ1(h)

⌋)
·#{m ∈ N∗; γm(h) ≤ C1,ε} .

If ε is small enough, C1,ε < C̃1, and then Weyl asymptotics (see for instance [53, Chapter

9]) for B̂h gives

N(B̂h, C1,ε) ∼
1

2πh
vol{B ◦ ϕ−1 ≤ C1,ε} ,

and G̊arding’s inequality implies γ1(h) ≥ min
q∈R2

B −O(h), which finishes the proof. �

In the same spirit, if we consider the eigenvalues of LNo
h lying below the threshold

C1h, only a finite number of components of LNo
h in the Hilbertian decomposition

LNo
h =

⊕
n≥1

LNo,(n)
h
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has to contribute to the spectrum.

Lemma 15.9. There exists h0 > 0 such that for all h ∈ (0, h0), and all n ≥ 1, the lowest

eigenvalue of LNo,(n)
h satisfies

λ1

(
LNo,(n)
h

)
≥ (1− 2ε)(2n− 1)hminB .

In particular, there exists h0 > 0 and K ≥ 1 such that for all h ∈ (0, h0),⋃
n≥1

sp
(
LNo
h

)
∩ {λ ≤ C1h} ⊂

K⋃
n=1

sp
(
LNo,(n)
h

)
∩ {λ ≤ C1h} .

Moreover, for all eigenvalue λ of LNo
h such that λ ≤ C1h, we may find an basis of

ker
(
LNo
h − λ

)
in the form (ek,h(x1)fj,h(x2)) 1≤k≤K

1≤j≤J(h)
where ek,h is the k-th rescaled Her-

mite function (associated with h2D2
x1

+ x2
1) and J(h) = O(h−1).

Proof. It is sufficient to apply the relative bound (15.2.1) to functions in the form

en,h(x1)f(x2) and then to use the G̊arding inequality to see that Opwh (B) ≥ minB−Ch.

The rest of the proof is standard and the bound on J(h) comes from Lemma 15.8. �

2.2. Microlocalization of the eigenfunctions. The space localization of the eigen-

functions of Lh,A, which is the quantum analog of Theorem 7.7, is a consequence of the

Agmon estimates (see Chapter 4, Section 2).

Proposition 15.10. Let us assume (7.2.9). Let us fix 0 < C1 < C̃1 and α ∈ (0, 1
2
).

There exist C, h0, ε0 > 0 such that for all 0 < h ≤ h0 and for all eigenpair (λ, ψ) of Lh,A
such that λ ≤ C1h, we have: ∫

|eχ(q)h−α|q|ψ|2 dq ≤ C‖ψ‖2 ,

where χ is zero for |q| ≤M0 and 1 for |q| ≥M0 +ε0. Moreover, we also have the weighted

H1 estimate ∫
|eχ(q)h−α|q|(−ih∇+ A)ψ|2 dq ≤ Ch‖ψ‖2.

Remark 15.11. This estimate is interesting when |x| ≥M0+ε0. In this region, we deduce

by standard elliptic estimates that ψ = O(h∞) in suitable norms (see for instance [90,

Proposition 3.3.4] or more recently [170, Proposition 2.6]). Therefore, the eigenfunctions

are localized in space in the ball of center (0, 0) and radius M0 + ε0.

We shall now prove the microlocalization of the eigenfunctions near the zero set of

the magnetic Hamiltonian Σ. For the sake of simplicity, we express this microlocalization

result in terms of functional calculus.

Proposition 15.12. Let us assume (7.2.9). Let us fix 0 < C1 < C̃1 and consider

δ ∈
(
0, 1

2

)
. Let (λ, ψ) be an eigenpair of Lh,A with λ ≤ C1h. Then, we have:

ψ = χ1

(
h−2δLh,A

)
χ0(q)ψ +O(h∞) ,
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where χ0 is smooth cutoff function supported in a compact set in the ball of center (0, 0)

and radius M0 + ε0 and where χ1 a smooth cutoff function being 1 near 0.

Proof. In view of Proposition 15.10, it is enough to prove that

(15.2.2)
(
1− χ1

(
h−2δLh,A

))
(χ0(q)ψ) = O(h∞) .

By the space localization, we have

Lh,A(χ0(q)ψ) = λχ0(q)ψ +O(h∞).

Then, we get(
1− χ1

(
h−2δLh,A

))
Lh,A(χ0(q)ψ) = λ

(
1− χ1

(
h−2δLh,A

))
(χ0(x)ψ) +O(h∞) .

This implies

h2δ‖
(
1− χ1

(
h−2δLh,A

))
(χ0(q)ψ)‖2 ≤ qhA

((
1− χ1

(
h−2δLh,A

))
Lh,A(χ0(q)ψ)

)
≤ C1h‖

(
1− χ1

(
h−2δLh,A

))
(χ0(q)ψ)‖2 +O(h∞)‖ψ‖2 .

Since δ ∈
(
0, 1

2

)
, we deduce (15.2.2). �

Remark 15.13. The operator χ1

(
h−2δLh,A

)
χ0(q) is a pseudo-differential operator whose

principal symbol is given by χ1(h−2δH(q, p))χ0(q) whereas the subprincipal terms are

supported away from the region where the principal symbol is 1. To see this, the reader

can adapt [53, Theorem 8.7]. Due to the localization of the eigenfunctions induced by

Lh,A in a compact K, we may also replace Lh,A by Lh,A + V where V is a confining

electric potential supported away from K and apply [53, Theorem 8.7].

The next two propositions state the microlocalization of the eigenfunctions of the

normal form LNo
h .

Proposition 15.14. Let us consider the pseudo-differential operator:

LNo
h = H0

h + Opwh f̃
?(h, Ih, ẑ2) .

We assume the confinement assumption (7.2.9). We can consider M̃0 > 0 such that

B ◦ ϕ−1(ẑ2) ≥ C̃1 for |ẑ2| ≥ M̃0. Let us consider C1 < C̃1 and an eigenpair (λ, ψ) of LNo
h

such that λ ≤ C1h. Then, for all ε0 > 0 and for all smooth cutoff function χ supported

in |ẑ2| ≥ M̃0 + ε0, we have:

Opwh (χ(ẑ2))ψ = O(h∞) .

Proof. Thanks to Lemma 15.9, it is sufficient to establish the lemma when ψ is in

the form ψ(x1, x2) = en,h(x1)f(x2) (with 1 ≤ n ≤ K). But, we can write

LNo,(n)
h f = λf .

and we can apply the same kind of microlocal estimates as in the proof of Proposition

5.11, the remainders being uniformly bounded with respect to n. �
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Proposition 15.15. Keeping the assumptions and the notation of Proposition 15.14, we

consider δ ∈
(
0, 1

2

)
and an eigenpair (λ, ψ) of LNo

h with λ ≤ C1h. Then, we have:

ψ = χ1

(
h−2δIh

)
Opwh (χ0(ẑ2))ψ +O(h∞) ,

for all smooth cutoff function χ1 supported in a neighborhood of zero and all smooth cutoff

function χ0 being 1 near zero and supported in the ball of center 0 and radius M̃0 + ε0.

Proof. The proof follows the same lines as for Proposition 15.12. �
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CHAPTER 16

Semiclassical non linear magnetic eigenvalues

Je préférais tâtonner dans le noir

sans le secours de faibles lampes.

Mémoires d’Hadrien, Yourcenar

In this chapter, we illustrate the methods of Chapter 4 by analyzing a non linear

eigenvalue problem.

1. About the concentration-compactness principle

This section is devoted to recall the famous concentration-compactness lemma.

1.1. Concentration-compactness lemma. Before stating the famous concentration-

compactness lemma, let us establish an elementary lemma.

Lemma 16.1 (Helly’s theorem). Let M > 0 and let us consider a sequence of non

decreasing functions (fn)n∈N ∈ [0,M ]R. Then, there exists a subsequence (fnk)k∈N such

that for all x ∈ R, (fnk(x))k∈N converges.

Proof. Thanks to the Tychonov theorem, one knows that [0,M ]Q is compact and,

since Q is countable, one also knows that the topology of [0,M ]Q is given by a dis-

tance. Therefore, by the Borel-Lebesgue theorem, the sequence (fn)n∈N ∈ [0,M ]Q (in

fact its restriction to Q) admits a converging subsequence (fnk)k∈N. For x ∈ Q, we let

f(x) = lim
k→+∞

fnk(x). Of course, f : Q→ R is non decreasing. We let

E = {x ∈ R : lim
Q3q→x−

f(q) = lim
Q3q→x+

f(q) = `(x)} .

We notice that {E is at most countable. Indeed, if x ∈ {E , the exists qx ∈ Q ∩
(limQ3q→x− f(q), limQ3q→x+ f(q)) and the application {E 3 x 7→ qx is injective (since

f is non decreasing). Thus, up to another subsequence extraction, we may assume that

(fnk(x))k≥0 converges for x ∈ Q∪ {E . Let us now analyze the convergence for x ∈ E . For

all ε > 0, there exists η > 0 such that for all t ∈ [x−η, x+η]∩Q, we have |f(y)−`(x)| ≤ ε.

The, if (α, β) ∈ ([x− η, x]× [x, x+ η])
⋂
Q2, we have

fnk(α) ≤ fnk(x) ≤ fnk(β)

so that, for k large enough,

`(x)− 2ε ≤ f(α)− ε ≤ fnk(α) ≤ fnk(x) ≤ fnk(β) ≤ f(β) + ε ≤ `(x) + 2ε .
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and thus (fnk(x))k∈N converges to `(x). �

Lemma 16.2. Let λ > 0 and a sequence of non negative and integrable functions (ρn)n∈N
such that

(16.1.1)

∫
RN
ρn(x) dx = λ .

We denote by µn the measure associated with the density ρn. Then, there exists a subse-

quence such that one of the following holds:

(i) (vanishing) ∀t > 0, lim
k→+∞

sup
y∈RN

µnk(B(y, t)) = 0.

(ii) (compactness) ∃(yk)k∈N, ∀ε > 0, ∃R > 0, µnk(B(yk, R)) ≥ λ− ε.
(iii) (dichotomy) ∃α ∈ (0, λ), ∀ε > 0, ∃k0 ≥ 1, ∃(ρ1

k)k∈N, (ρ
2
k)k∈N, ∀k ≥ k0 :

‖ρnk − ρ1
k − ρ2

k‖L1 ≤ ε, |‖ρ1
k‖L1 − α| ≤ ε ,

and with dist(supp(ρ1
k), supp(ρ2

k)) = +∞.

Proof. Let us introduce the “concentration” functions:

Qn(t) = sup
y∈RN

µn(B(y, t)) .

The functions Qn are non negative and non decreasing and, ∀t ≥ 0, Qn(t) ≤ µn(RN) = λ.

Note that limt→+∞Qn(t) = λ. Thus, Qn(t) goes from 0 to λ when t goes from 0 to +∞.

We may use Lemma 16.1 and find a subsequence such that Qnk(t) converges to Q(t)

when k → +∞. The function Q is still non negative, non decreasing and bounded by λ.

Therefore we may define

α = lim
k→+∞

Q(t) ∈ [0, λ] .

(i) If α = 0, then Q = 0.

(ii) Assume that α = λ. For all µ ∈
[
λ
2
, λ
)
, there exists tµ > 0, such that, for k ≥ 1, we

have

Qnk(tµ) > µ .

Indeed, we have the existence of t̃µ > 0 such that Q(t̃µ) > µ so that there exists

k0 ≥ 1 such that for k ≥ k0, Qnk(t̃µ) > µ. Furthermore, there exists t′ > 0 such

that, for k ∈ {1, . . . , k0}, Qnk(t
′) > µ. We take tµ = max(t̃µ, t

′).

We get the existence of (yk(µ)) such that

µnk(B(yk(µ), tµ)) > µ .

Now, for µ > λ
2
, we notice that

B(yk(µ), tµ) ∩ B
(
yk

(
λ

2

)
, tλ

2

)
6= ∅ .
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Indeed, if these balls were disjoint, the total mass of µnk would exceed λ. This

implies that, for all µ > λ
2
,

µnk

(
B
(
yk

(
λ

2

)
, tλ

2
+ 2tµ

))
> µ .

(iii) Let us finally assume that α ∈ (0, λ). Let ε > 0 and t > 0 such that α−ε < Q(t) ≤ α.

We get, for k ≥ k0,

α− ε < Qnk(t) < α + ε

and thus a sequence (yk) such that

α− ε < µnk (B(yk, t)) < α + ε .

We may find a sequence (Tk) tending to +∞ and such that

µnk (B(yk, Tk)) ≤ Qnk(Tk) ≤ α + ε .

Indeed, we may define

Tk = sup{t ≥ 0 : Qnk(t) ≤ α + ε}

and, if (Tk) has a converging subsequence, it is bounded by T and for t ≥ T , and

k ≥ 1, Qnk(t) > α + ε. This is a contradiction when k goes to +∞.

We define

ρ1
k = ρnk1B(yk,t), ρ2

k = ρnk1{B(yk,Tk)

and a straightforward computation gives

‖ρnk − ρ1
k − ρ2

k‖L1 = µnk (B(yk, Tk))− µnk (B(yk, t)) ≤ 2ε .

�

Remark 16.3. In Lemma 16.2, we can replace (16.1.1) by∫
RN
ρn(x) dx →

n→+∞
λ .

1.2. Application of the principle. Let us now prove Proposition 10.3 (we leave

the case p = 2 as an exercise).

In order to prove the proposition, we could use, as in [66], the concentration com-

pactness lemma. Nevertheless, we will use here a slightly more elementary point of view

(even if we will recognize the concentration-compactness alternative in the proof!) that

was suggested to the author by L. Le Treust.

1.2.1. Excluding vanishing. Let us start with a useful lemma. Let us introduce

M(ψ) = sup
k∈Zd
‖ψ‖L2(Ωk) with Ωk = [0, 1]2 + k ,

that is well-defined for ψ ∈ L2(Rd).

In what follows, we will assume that d ≥ 3 (and we leave to the reader the easy

adapations to deal with the case d = 2). Let C0 > 0 be the optimal Sobolev constant for
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the critical embedding

‖ψ‖L2∗ ([0,1]d) ≤ C0‖ψ‖H1([0,1]d) .

Lemma 16.4. We let q0 = 2 + 4
d
∈ (2, 2∗). We have

(16.1.2) ∀ψ ∈ H1(Rd) , ‖ψ‖q0
Lq0 (Rd)

≤ C2
0M(ψ)

4
d‖ψ‖2

H1(Rd) .

Then, we have the following estimates.

(i) For q ∈ (2, q0), we have,

(16.1.3) ‖ψ‖Lq(Rd) ≤ C
2(1−θ)
q0

0 ‖ψ‖θL2(Rd)M(ψ)
4(1−θ)
q0d ‖ψ‖

2(1−θ)
q0

H1(Rd)
, with

1

q
=
θ

2
+

1− θ
q0

.

(ii) For q ∈ (q0, 2
∗), we have

(16.1.4) ‖ψ‖Lq(Rd) ≤ C
1−θ+ 2θ

q0
0 M(ψ)

4θ
q0d‖ψ‖

1−θ+ 2θ
q0

H1(Rd)
, with

1

q
=

θ

q0

+
1− θ

2∗
.

Proof. Let q ∈ (2, 2∗). We have

‖ψ‖q
Lq(Rd)

=
∑
k∈Z2

∫
Ωk

|ψ|q dx .

We notice that, by interpolation,

‖ψ‖qLq(Ωk) ≤ ‖ψ‖
θq
L2(Ωk)‖ψ‖

(1−θ)q
L2∗ (Ωk)

,

where 1
q

= θ
2

+ 1−θ
2∗

or θ = 1− d
(

1
2
− 1

q

)
∈ (0, 1). By Sobolev embedding, we get

‖ψ‖L2∗ (Ωk) ≤ C0‖ψ‖H1(Ωk) ,

where C0 is the Sobolev constant associated with k = 0. We deduce

‖ψ‖qLq(Ωk) ≤ C
(1−θ)q
0 ‖ψ‖θqL2(Ωk)‖ψ‖

(1−θ)q
H1(Ωk) .

Then, we look for q ∈ (2, 2∗) such that (1− θ)q = 2. We get q = q0. The corresponding

θ is θ0 = 2
d+2

. We find (16.1.2). The last two estimates follow from an interpolation

argument. �

Let us consider (ψj)j≥1 a minimizing sequence of (10.1.3) such that ‖ψj‖Lp(Rd) = 1.

Thanks to the diamagnetic inequality, we find that (|ψj|)j≥1 is bounded in H1(Rd). Taking

q = p in Lemma 16.4, we find that

lim inf
j→+∞

M(ψj) = m > 0 .

Indeed, if not, the normalization of (ψj) in Lp would lead to a contradiction. Therefore

we may assume that (ψj) is such that (M(ψj)) is larger than m
2
> 0. Thus, there exists

(τj) ⊂ Zd such that, for all j ≥ 1,

‖ψj(· − τj)‖Lp([0,1]d) ≥
m

2
> 0 .
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We let

ϕj(x) = e−iA(τj)·xψj(x− τj) ,
so that (A is linear):

(−i∇+ A)ϕj = e−iA(τj)·x(−i∇+ A(x− τj))ψj(x− τj) .

Thus (ϕj)j≥1 is also a minimizing sequence and it satisfies

‖ϕj‖L2([0,1]d) ≥
m

2
> 0 .

Up to another subsequence extraction, we may assume that ϕj weakly converges to ϕ

in H1
A(Rd) (and also pointwise). Therefore, since H1

A([0, 1]d) is compactly embedded in

L2([0, 1]d), we have strong convergence in L2([0, 1]d) and

‖ϕ‖L2([0,1]d) ≥
m

2
> 0 .

In particular, the function ϕ ∈ H1
A(Rd) is not zero. By the Fatou lemma, we have also

‖ϕ‖Lp(Rd) ≤ 1.

1.2.2. Excluding dichotomy. We introduce ψj = ϕj −ϕ that weakly converges to 0 in

H1
A(Rd). We have

QA(ϕj) = QA(ψj) + QA(ϕ) + 2ReBA(ψj, ϕ) ,

where BA is the sesquilinear form associated with QA. Since ψj weakly converges to 0

in H1
A(Rd), we deduce that BA(ψj, ϕ)→ 0. In other words, we can write

(16.1.5) QA(ϕj) = QA(ψj) + QA(ϕ) + εj ,

with εj → 0.

We must prove that the Lp norm also splits into two parts:

(16.1.6) ‖ϕj − ϕ‖pLp(Rd)
+ ‖ϕ‖p

Lp(Rd)
− ‖ϕj‖pLp(Rd)

= ε̃j → 0 .

Let us temporarily assume that (16.1.6) holds. Thanks to (16.1.5), we have

QA(ϕj) ≥ S
(
‖ψj‖2

Lp(Rd) + ‖ϕ‖2
Lp(Rd)

)
+ εj ,

and with (16.1.6), we deduce that

QA(ϕj) ≥ S
(

(1− α + ε̃j)
2
p + α

2
p

)
+ εj , with α = ‖ϕ‖p

Lp(Rd)
∈ (0, 1] .

Since (ϕj)j≥1 is a minimizing sequence, we get

S ≥ S
(

(1− α)
2
p + α

2
p

)
.

But we have S > 0 so that

(1− α)
2
p + α

2
p ≤ 1 , with α ∈ (0, 1] .

225



Since p > 2 and by strict convexity, we must have α = 1. Therefore we conclude that

‖ϕ‖Lp(Rd) = 1. Finally it remains to notice that

S = lim inf
j→+∞

QA(ϕj) ≥ QA(ϕ) ≥ S‖ϕ‖2
Lp(Rd) = S ,

and thus ϕ is a minimizer. This achieves the proof of Proposition 10.3, modulo the proof

of (16.1.6). For that purpose we write

ε̃j :=

∫
Rd
|ϕj − ϕ|p − |ϕj|p + |ϕ|p dx .

To see that (ε̃j)j≥1 tends to zero, we provide an argument slightly more elementary than

the one by Struwe in [185, p. 38].

Let us prove that the family (|ϕj − ϕ|p − |ϕj|p)j≥1 is equi-integrable on Rd. There

exists C(p) > 0 such that,

||ϕj − ϕ|p − |ϕj|p| ≤ C(p)(|ϕj|p−1 + |ϕ|p−1)|ϕ| .

For R > 0, by the Hölder inequality, we get∫
|x|≥R

|ϕj|p−1|ϕ| dx ≤
(∫
|x|≥R

|ϕj|p dx

) p−1
p
(∫
|x|≥R

|ϕ|p
) 1

p

≤
(∫
|x|≥R

|ϕ|p
) 1

p

.

Thus, for all ε > 0, there exists R > 0, such that for all j ≥ 1, we have∣∣∣∣∫
|x|≥R

|ϕj − ϕ|p − |ϕj|p + |ϕ|p dx

∣∣∣∣ ≤ ε

2
.

Moreover, the embedding H1(B(0, R)) ⊂ Lp(B(0, R)) is compact so that (ϕj)j≥1 strongly

converges to ϕ in Lp(B(0, R)) and thus, for j ≥ j(R, ε),∣∣∣∣∫
|x|≤R

|ϕj − ϕ|p − |ϕj|p + |ϕ|p dx

∣∣∣∣ ≤ ε

2
, .

This implies that |ε̃j| ≤ ε.

1.3. Exponential decay. Let us now give the proof of Proposition 10.4. This is a

consequence of the following proposition.

Proposition 16.5. For all p ∈ (2, 2∗), there exists α > 0 such that for any minimizer ψ

of (10.1.3), we have eα|x|ψ ∈ L2(Rd).

Proof. If ψ is an Lp-normalized minimizer, it satisfies the Euler-Lagrange equation:

(−ih∇+ A)2ψ = S|ψ|p−2ψ ,

that can be rewritten as

(−ih∇+ A)2ψ + V ψ = 0 , with V = −S|ψ|p−2 ,

or

Lh,A,V ψ = 0 .
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It remains to apply Proposition 1.35 and 4.9. �

2. Proof of the non linear semiclassical asymptotics

This section is devoted to the proof of Theorem 10.6.

2.1. Upper bound. Let us consider v a minimizer associated with (10.1.4) for k = 0

and let

ψ(x) = h−
1
p ei

φ(x)
h χ(x)v

(
x− x0

h
1
2

)
,

where x0 denotes a point in Ω where the minimum of the magnetic field is obtained and

where φ is a real function such that Ã = A +∇φ satisfies in a fixed neighborhood of x0:∣∣∣Ã(x)− b0Ã
[0]

(x)
∣∣∣ ≤ C|x− x0|2, Ã

[0]
(x) =

1

2
e3 × (x− x0) .

The existence of such a φ comes from Lemma 0.3. Note that C only depend on the

magnetic field. We have ∫
Ω

|ψ(x)|p dx =

∫
R2

|v(y)|p dy

and

Qh,A(ψ) = h−
2
p

∫
Ω

∣∣∣∣(−ih∇+ Ã
)
v

(
x− x0

h
1
2

)∣∣∣∣2 dx

so that, for all ε > 0,

h
2
pQh,A(ψ) ≤ (1 + ε)

∫
Ω

∣∣∣∣(−ih∇+ b0Ã
[0]
)
v

(
x− x0

h
1
2

)∣∣∣∣2 dx

+ (1 + ε−1)

∫
Ω

∣∣∣∣(Ã− b0Ã
[0]
)
v

(
x− x0

h
1
2

)∣∣∣∣2 dx .

Due to the exponential decay of v, we have∫
R2

|y|4|v(y)|2 dy < +∞ ,

and thus

h
2
pQh,A(ψ) ≤ (1 + ε)h2

∫
R2

∣∣∣(−i∇+ b0Ã
[0]
)
v(y)

∣∣∣2 dy

+ C2(1 + ε−1)h3

∫
R2

|v(y)|2 dx.

We have: ∫
R2

∣∣∣(−i∇+ b0Ã
[0]
)
v(y)

∣∣∣2 dy ≥ b0

∫
R2

|v(y)|2 dy .

We deduce the upper bound:

h
2
pQh,A(ψ) ≤

(
(1 + ε)h2 + b−1

0 C2(1 + ε−1)h3
) ∫

R2

∣∣∣(−i∇+ b0Ã
[0]
)
v(y)

∣∣∣2 dy .
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We take ε = h1/2 so that,

h
2
pλ(Ω,A, p, h) ≤

(
h2 + Ch5/2

) ∫R2

∣∣∣(−i∇+ b0Ã
[0]
)
v(y)

∣∣∣2 dy(∫
R2 |v(y)|p dy

) 2
p

.

We get

λ(Ω,A, p, h) ≤ h−
2
p
(
h2 + Ch5/2

)
λ(1, b0Ã

[0]
, p) .

By homogeneity and gauge invariance, we have

λ(R2, b0Ã
[0]
, p, 1) = b

2
p

0 λ(R2,A[0], p, 1) .

We infer the upper bound

λ(Ω,A, p, h) ≤ h−
2
p

(
b

2
p

0 h
2λ(R2,A[0], p, 1) + Ch

5
2

)
.

2.2. Lower bound.

2.2.1. Semiclassical localization formula adapted to Lp-norms. Let us introduce a qua-

dratic partition of unity “with small interaction supports”.

Lemma 16.6. Let us consider E = {(α, ρ, h, `) ∈ (R+)3 × Z2 : α ≥ ρ}. There exists a

family of smooth cutoff functions (χ
[`]
α,ρ,h)(α,ρ,h,`)∈E on R2 such that 0 ≤ χ

[`]
α,ρ,h ≤ 1,

χ
[`]
α,ρ,h = 1, on |x− (2hρ + hα)`|∞ ≤ hρ ,

χα,ρ,h = 0, on |x− hρ`|∞ ≥ hρ + hα ,

and such that ∑
`∈Z2

(
χ

[`]
α,ρ,h

)2

= 1 .

Moreover there exists D > 0 such that, for all h > 0,

(16.2.1)
∑
`∈Z2

|∇χ[`]
α,ρ,h|

2 ≤ Dh−2α .

Proof. Let us consider F = {(α, ρ, h) ∈ (R+)3 : α ≥ ρ}. There exists a family of

smooth cutoff functions of one real variable (χα,ρ,h)(α,ρ,h)∈F such that 0 ≤ χα,ρ,h ≤ 1,

χα,ρ,h = 1 on |x| ≤ hρ + 1
2
hα and χα,ρ,h = 0 on |x| ≥ hρ + hα, and such that for all (α, ρ)

with α ≥ ρ > 0, there exists C > 0 such that for all h > 0, |∇χα,ρ,h| ≤ Ch−α. Then, we

define :

Sα,ρ,h(x) =
∑
`∈Z2

χ2
α,ρ,h

(
x1 − (2hρ + hα)`1

)
χ2
α,ρ,h

(
x2 − (2hρ + hα)`2

)
,

and we have

∀x ∈ R2, 1 ≤ Sα,ρ,h(x) ≤ 4 .

We let

χ
[`]
α,ρ,h(x) =

χα,ρ,h(x1 − (2hρ + hα)`1)χα,ρ,h(x2 − (2hρ + hα)`2)√
Sα,ρ,h(x)

,
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which satisfies the wished estimates by standard arguments. �

Given a ”grid” and a non negative and integrable function f , the following lemma

states that, up to a translation of the net, the mass of f carried by a slightly thickened

grid is controlled by a slight fraction of the total mass of f .

Lemma 16.7. For r > 0 and δ > 0, we define the net Λr = ((rZ)×R)∪ (R× (rZ)) and

the thickened net

Λr,δ = {x ∈ R2 : dist(x,Λr) ≤ δ} .
Let us consider a non negative function f belonging to L1(R2). Then there exists τ(r, δ, f) =

τ ∈ R2 such that : ∫
Λr,δ+τ

f(x) dx ≤ 3δ

r + 2δ

∫
R2

f(x) dx .

Proof. We let e = 1√
2
(1, 1). We notice that

b r
2δ
c+1∑

j=0

∫
Λr,δ+jδe

f(x) dx =

∫
R2

gr,δ(x)f(x) dx, with gr,δ(x) =

b r
2δ
c+1∑

j=0

1Λδ+jδe(x) .

We have, for almost all x, gr,δ(x) ≤ 3, so that we get

b r
2δ
c+1∑

j=0

∫
Λr,δ+jδe

f(x) dx ≤ 3

∫
R2

f(x) dx .

Therefore, there exists j ∈
{

0, . . . , b r
δ
c+ 1

}
, such that∫

Λr,δ+jδe

f(x) dx ≤ 3

b r
2δ
c+ 2

∫
R2

f(x)

and the conclusion easily follows. �

We can now establish the following lemma which permits to recover the total Lp-norm

from the local contributions defined by the quadratic partition of unity.

Lemma 16.8. Let us consider the partition of unity (χ
[`]
α,ρ,h) defined in Lemma 16.6, with

α > ρ > 0. There exist C > 0 and h0 > 0 such that for all ψ ∈ Lp(Ω) and h ∈ (0, h0),

there exists τα,ρ,h,ψ = τ ∈ R2 such that∑
`

∫
Ω

|χ̃[`]
α,ρ,hψ(x)|p dx ≤

∫
Ω

|ψ(x)|p dx ≤ (1 + Chα−ρ)
∑
`

∫
Ω

|χ̃[`]
α,ρ,hψ(x)|p dx ,

with χ̃
[`]
α,ρ,h(x) = χ̃

[`]
α,ρ,h(x − τ). Moreover, the translated partition (χ̃

[`]
α,ρ,h) still satisfies

(16.2.1).

Proof. The first inequality is obvious since the cutoff functions are bounded by 1

and their squares sum to unity. For the second one, we write, for any translation τ ,∫
Ω

|ψ(x)|p dx =
∑
`

∫
Ω

(
χ̃

[`]
α,ρ,`

)p
|ψ(x)|p dx +

∫
Ω

ϕα,ρ(x)|ψ(x)|p dx ,
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where

ϕα,ρ =
∑
`

((
χ̃

[`]
α,ρ,`

)2

−
(
χ̃

[`]
α,ρ,`

)p)
.

The smooth function ϕα,ρ is supported on τ + Λhρ+hα

2
,2hα and∫

Ω

ϕα,ρ(x)|ψ(x)|p dx ≤
∫
τ+Λ

hρ+hα
2 ,2hα

f(x) dx ,

where f(x) = |ψ(x)|p for x ∈ Ω and f(x) = 0 elsewhere. Thus, by Lemma 16.7, we find

τ such that ∫
Ω

ϕα,ρ(x)|ψ(x)|p dx ≤ Chα−ρ
∫
R2

f(x) dx

and the conclusion easily follows. �

2.2.2. Lower bound. Let us consider ψ ∈ Dom (Qh,A). With the localization formula

associated with the partition (χ̃
[`]
α,ρ,h) that is adapted to ψ, we infer

Qh,A(ψ) =
∑
`

Qh,A(χ̃
[`]
α,ρ,hψ)− h2

∑
`

‖∇χ̃[`]
α,ρ,hψ‖

2
L2(Ω) .

We have

(16.2.2) Qh,A(ψ) ≥
∑
`

(
Qh,A(χ̃

[`]
α,ρ,hψ)−Dh2−2α‖χ̃[`]

α,ρ,hψ‖
2
L2(Ω)

)
.

By the min-max principle, we get

(16.2.3) λ(Ω,A, 2, h)‖χ̃[`]
α,ρ,hψ‖

2
L2(Ω) ≤ Qh,A(χ̃

[`]
α,ρ,hψ)

and we recall that (see (0.1.4) and Exercise 4.6)

(16.2.4) λ(Ω,A, 2, h) = b0h+O(h
3
2 )

so that

Qh,A(ψ) ≥ (1−Dh1−2α)
∑
`

Qh,A(χ̃
[`]
α,ρ,hψ) .

Then, we bound the local energies from below. Thanks to support considerations, we

have, modulo a local change of gauge,

Qh,A(χ̃
[`]
α,ρ,hψ) ≥ (1− ε)Qh,bjA

[1](χ̃
[`]
α,ρ,hψ)− Cε−1h4ρ‖χ̃[`]

α,ρ,hψ‖
2
L2(Ω)

so that it follows, by using again (16.2.3),

Qh,A(χ̃
[`]
α,ρ,hψ) ≥ (1− ε− Cε−1h4ρ−1)Qh,bjA

[1](χ̃
[`]
α,ρ,hψ) .

We take ε = h2ρ− 1
2 and we deduce

(16.2.5) Qh,A(ψ) ≥ (1−Dh1−2α − Ch2ρ− 1
2 )
∑
`

b
2/p
` h2h−2/pλ[0](p)‖χ̃[`]

α,ρ,hψ‖
2
Lp(Ω)

so that

Qh,A(ψ) ≥ (1−Dh1−2α − Ch2ρ− 1
2 )b

2/p
0 h2h−2/pλ[0](p)

∑
`

‖χ̃[`]
α,ρ,hψ‖

2
Lp(Ω)
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Since p ≥ 2, we have

∑
`

‖χ̃[`]
α,ρ,hψ‖

2
Lp(Ω) ≥

(∑
`

∫
Ω

|χ̃[`]
α,ρ,hψ|

p dx

) 2
p

.

Using Lemma 16.8, we infer

(16.2.6)
∑
`

‖χ̃[`]
α,ρ,hψ‖

2
Lp(Ω) ≥ (1− C̃hα−ρ)‖ψ‖2

Lp(Ω) .

Finally, we get

Qh,A(ψ) ≥ (1−Dh1−2α − Ch2ρ− 1
2 )(1− C̃hα−ρ)b2/p

0 h2h−2/pλ[0](p)‖ψ‖2
Lp(Ω) .

Optimizing the remainders, we choose 1−2α = 2ρ− 1
2

= α−ρ so that ρ = 5
16

and α = 7
16

and

Qh,A(ψ) ≥ (1− Ch
1
8 )b

2/p
0 h2h−2/pλ[0](p)‖ψ‖2

Lp(Ω) .
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Part 5

Boundary magnetic wells in dimension three





CHAPTER 17

Magnetic half-space

Sedulo curavi, humanas actiones non ridere,

non lugere, neque detestari, sed intelligere.

Tractatus politicus, Spinoza

This chapter is devoted to the proof of Theorem 8.3. We keep the notation of Chapter

8, Section 1. We analyze here how a smooth boundary combines with the magnetic field

to generate a magnetic harmonic approximation.

1. Quasimodes

Theorem 17.1. For all α > 0, θ ∈
(
0, π

2

)
, there exists a sequence (µj,n)j≥0 and there

exist positive constants C, h0 such that for h ∈ (0, h0):

dist

(
sp(Lh), h

J∑
j=0

µj,nh
j

)
≤ ChJ+2

and we have µ0,n = s(θ) and µ1,n is the n-th eigenvalue of αSθ(Dρ, ρ).

Proof. We perform the scaling (8.1.4) and, after division by h, Lh,α,θ becomes

Lh = D2
s +D2

t + (Dr + t cos θ − s sin θ + hαt(r2 + s2))2 .

Using the partial Fourier transform Fr→η (see (8.1.5)) and the translation Uθ (see (8.1.6)),

we get the new expression of the operator

UθFr→ηLhF−1
r→ηU

−1
θ = D2

σ +D2
τ +

(
Vθ(σ, τ) + hατ

(
Dρ −

Dσ

sin θ

)2

+
(
σ +

ρ

sin θ

)2
)2

.

This normal form will be denoted by LNo
h and the corresponding quadratic form by QNo

h .

By expanding the square, we may write

LNo
h = LLP

θ + hL1 + h2L2 ,

where

L1 = ατ

{(
Dρ −

Dσ

sin θ

)2

Vθ + Vθ

(
Dρ −

Dσ

sin θ

)2

+ 2Vθ

(
σ +

ρ

sin θ

)2
}
,

L2 = α2τ 2

{(
Dρ −

Dσ

sin θ

)2

+
(
σ +

ρ

sin θ

)2
}2

≥ 0 .
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We look for formal eigenvalues and eigenfunctions in the form:

µ ∼
∑
j≥0

µjh
j, ψ ∼

∑
j≥0

ψjh
j .

In other words; we solve the following problem in the sense of formal series:

LNo
h ψ ∼ µψ .

The term in h0 leads to solve

HNeu
θ ψ0 = µ0ψ0 .

We take µ0 = s(θ) and

ψ0(ρ, σ, τ) = uLP
θ (σ, τ)f0(ρ) ,

f0 being to be determined. Then, we must solve

(HNeu
θ − s(θ))ψ1 = (µ1 − L1)ψ0 .

We apply the Fredholm alternative and we write

〈(µ1 − L1)ψ0, u
LP
θ 〉L2(R2

+,ŝ,t̂
) = 0 .

The compatibility equation becomes

αSθ(Dρ, ρ)f0 = µ1f0

and we take µ1 in the spectrum of αSθ(Dρ, ρ) and for f0 the corresponding L2-normalized

eigenfunction. Then, we can write the solution ψ1 in the form:

ψ1 = ψ⊥1 + f1(ρ)uθ(σ, τ)

where ψ⊥1 is the unique solution orthogonal to uLP
θ . We notice that it is the the Schwartz

class. This construction can be continued at any order and we apply the spectral theorem.

�

2. Agmon estimates

In this section we only state standard Agmon’s estimates with respect to (x, y) satisfied

by an eigenfunction uh associated with λn(h). The reader may consider them as an

exercise. They are related to the following lower bound (which can be proved by using

the techniques of Chapter 4, Section 1, see also [138] and [76, Theorem 9.1.1]).

Proposition 17.2. There exist C > 0 and h0 > 0 such that, for h ∈ (0, h0),

λn(h) ≥ s(θ)h− Ch5/4 .

2.1. Agmon estimates of first order. We recall that Bs admits a unique and non

degenerate minimum (as stated in Assumption (8.1.9)), s(θ), at (0, 0). Thus, thanks to

the computations leading to Proposition 17.2 and by using the techniques of Chapter 4,

Section 1, we deduce the following estimates of Agmon.
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Proposition 17.3. For all δ > 0, there exist C > 0 and h0 > 0 such that, for all

h ∈ (0, h0),∫
Ω0

eδ(x
2+y2)/h1/4|uh|2 dx ≤ C‖uh‖2 ,

∫
Ω0

eδ(x
2+y2)/h1/4|∇uh|2 dx ≤ Ch−1‖uh‖2 .

Combining Proposition 17.2 and Theorem 17.1, we get that

λn(h) = s(θ)h+O(h5/4) .

Thanks to Assumption 8.1.8 (the interior energy is higher than the boundary energy),

this is standard to deduce the following normal Agmon estimates.

Proposition 17.4. There exist δ > 0, C > 0 and h0 > 0 such that for all h ∈ (0, h0),

we have ∫
Ω0

eδh
−1/2z(|uh|2 + h−1|(−ih∇+ A)uh|2) dx ≤ C‖uh‖2 .

These last two propositions imply the following estimates.

Corollary 17.5. For all γ > 0 and ` ∈ N, we have∫
|x|+|y|≥h1/8−γ

|x|`(|uh|2 + |∇uh|2) dx +

∫
z≥h1/2−γ

|x|`(|uh|2 + |∇uh|2) dx = O(h∞)‖uh‖2 .

Thanks to this a priori localization of the eigenfunction near (0, 0, 0), we may cutoff

the eigenfunctions modulo a very small remainder. For that purpose, let us consider

γ > 0 small enough and introduce the cutoff function defined by

χh(x, y, z) = χ0

(
h−1/8+γx, h−1/8+γy, h−1/2+γz

)
,

where χ0 is a smooth cutoff function being 1 near (0, 0, 0). We can notice, by elliptic

regularity, that χhuh is smooth (as it is supported away from the vertices).

Let us also consider N ≥ 1. For n = 1, · · · , N , let us consider un,h a L2-normalized

associated with λn(h) so that 〈un,h, um,h〉 = 0 for n 6= m. We let

EN(h) = span
1≤n≤N

un,h .

We notice that Propositions 17.4 and 17.3 hold for the elements of EN(h). As a conse-

quence of Propositions 17.4 and 17.3, we get the following corollary.

Corollary 17.6. We have

Qh(ũh) ≤ λN(h) +O(h∞), with ũh = χhuh ,

where uh ∈ EN(h) and where Qh denotes the quadratic form associated with Lh.

2.2. Agmon estimates of higher order. In the last section we stated estimates

of Agmon for uh and its first derivatives. We will also need estimates for the higher order

derivatives. The main idea to obtain such estimates can be found for instance in [90].
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The basic idea to obtain them is to consider derivatives of the eigenvalue equation and

use standard energy estimates.

Proposition 17.7. For all ν ∈ N3, there exist δ > 0, γ ≥ 0, h0 > 0 and C > 0 such

that, for h ∈ (0, h0),∫
Ω0

eδh
−1/2z|Dν ũh|2 dx +

∫
Ω0

eδh
−1/4(x2+y2)|Dν ũh|2 dx ≤ Ch−γ‖ũh‖2 ,

where uh ∈ EN(h).

These estimates only mean that the eigenfunctions and all their derivatives only live

close to (0, 0, 0). As usual, we immediately deduce the following.

Corollary 17.8. For all γ > 0, we have, for all ν ∈ N3 and ` ∈ N,∫
|x|+|y|≥h1/8−γ

|x|`|Dν ũh|2 dx +

∫
z≥h1/2−γ

|x|`|Dν ũh|2 dx = O(h∞)‖ũh‖2 ,

where uh ∈ EN(h).

2.3. Normal form. Let us now transfer initial eigenvalue problem onto the side of

the normal form LNo
h . For uh ∈ EN(h), we introduce the rescaled and truncated function

(17.2.1)

wh(r, s, t) = χresc
h (r, s, t)uresc

h (r, s, t) = χ0(h3/8+γr, h3/8+γs, hγt)uh(h
1/2r, h1/2s, h1/2t)

and its version on the side of normal coordinates

vh(ρ, σ, τ) = UθFr→ηwh .

We consider FN(h) the image of EN(h) by these transformations. We can reformulate

Corollary 17.6.

Corollary 17.9. With the previous notation, we have, for vh ∈ FN(h),

QNo
h (vh) ≤ λresc

N (h) +O(h∞) ,

where λresc
N (h) = h−1λN(h).

We can also notice that, when uh is an eigenfunction associated with λp(h), we have

(17.2.2) LNo
h vh = λresc

p (h)vh + rh ,

where the remainder rh is O(h∞) in the sense of Corollary 17.8.

In the following, we aim at proving localization and approximation estimates for vh
rather than uh. Moreover, these approximations will allow us to estimate the energy

QNo
h (vh).

3. Relative polynomial localizations in the phase space

This section aims at estimating momenta of vh with respect to polynomials in the

phase space. Before starting the analysis, let us recall the link (cf. (8.1.6)) between the
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variables (η, s, t) and (ρ, σ, τ):

(17.3.1) Dρ = Dη +
1

sin θ
Ds, Dσ = Ds, Dτ = Dt .

We will use the following obvious remark.

Remark 17.10. If φ is supported in supp(χh), we have, for all ε ∈ (0, 1),

Qh(φ) ≥ (1− ε)Q1,0,θ(φ)− Ch1/2−6γε−1‖φ‖2 .

Optimizing in ε, we have:

Qh(φ) ≥ (1− h1/4−3γ)Q1,0,θ(φ)− Ch1/4−3γ‖φ‖2 .

Moreover, when the support of φ avoids the boundary, we have

Q1,0,θ(φ) ≥ ‖φ‖2 .

3.1. Localizations related to the Lu-Pan operator. This section is concerned

with many localizations lemmas with respect to σ and τ .

3.1.1. Estimates with respect to σ and τ . We begin to prove estimates depending only

on the variables σ and τ .

Lemma 17.11. Let N ≥ 1. For all k, n, there exist h0 > 0 and C(k, n) > 0 such that,

for all h ∈ (0, h0):

‖τ kσn+1vh‖ ≤ C(k, n)‖vh‖ ,(17.3.2)

‖τ kDσ(σnvh)‖ ≤ C(k, n)‖vh‖ ,(17.3.3)

‖τ kDτ (σ
nvh)‖ ≤ C(k, n)‖vh‖ ,(17.3.4)

for vh ∈ FN(h).

Proof. We prove the estimates when vh is the image of an eigenfunction associated

to λp(h) with p = 1, . . . , N .

Let us analyze the case n = 0. The estimate (17.3.4) follows from the normal Agmon

estimates. By multiplying (17.2.2) by τ k and taking the scalar product with τ kvh, we get

QNo
h (τ kvh) ≤ λresc

p ‖τ kvh‖2 + |〈[D2
τ , τ

k]wh, τ
kvh〉|+O(h∞)‖vh‖2 .

The normal Agmon estimates provide

|〈[D2
τ , τ

k]vh, τ
kvh〉| ≤ C‖vh‖2

and thus

QNo
h (τ kvh) ≤ C‖vh‖2 .

We deduce (17.3.3). We also have

‖τ k(−σ sin θ + τ cos θ +Rh)vh‖2 ≤ C‖vh‖2 ,
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where

(17.3.5) Rh = hατ
{(
Dρ − (sin θ)−1Dσ

)2
+
(
σ + (sin θ)−1ρ

)2
}
.

We use the basic lower bound

‖τ k(−σ sin θ + τ cos θ +Rh)vh‖2 ≥ 1

2
‖τ kσ sin θvh‖2 − 2‖(τ k+1 cos θ + τ kRh)vh‖2 .

Moreover, we have (using the support of χresc
h ):

‖τ kRhvh‖ ≤ Ch(h−3/8−γ)2‖τ k+1vh‖ ≤ Ch(h−3/8−γ)2‖vh‖ ,

the last inequality coming from the normal Agmon estimates. Thus, we get

‖τ kσvh‖2 ≤ C‖vh‖2 .

We now proceed by induction. We multiply (17.2.2) by τ kσn+1, take the scalar product

with τ kσn+1vh and it follows:

QNo
h (τ kσn+1vh) ≤λresc

p (h)‖τ kσn+1vh‖2 + C‖τ k−2σn+1vh‖‖τ kσn+1vh‖

+ C‖τ k−1Dτσ
nvh‖‖τ kσn+1vh‖+ C‖τ kDσσ

nwh‖‖τ kσn+1vh‖

+ C‖τ kσn−1vh‖‖τ kσn+1vh‖

+ |〈τ k[σn+1, (−σ sin θ + τ cos θ +Rh)
2]vh, τ

kσn+1〉| .

We have

[σn+1, (−σ sin θ + τ cos θ +Rh)
2]

= [σn+1, Rh](−σ sin θ + τ cos θ +Rh) + (−σ sin θ + τ cos θ +Rh)[σ
n+1, Rh] .

Let us analyze the commutator [σn+1, Rh]. We can write

[σn+1, Rh] = αhτ [σn+1,
(
Dρ − (sin θ)−1Dσ

)2
]

and

[
(
Dρ − (sin θ)−1Dσ

)2
, σn+1] = (sin θ)−2n(n+ 1)σn−1

+ 2i(sin θ)−1(n+ 1)(Dρ − (sin θ)−1Dσ)σn .

We infer

[σn+1, (−σ sin θ + τ cos θ +Rh)
2]

=
(
αhτ(sin θ)−2n(n+ 1)σn−1 + 2iαhτ(sin θ)−1(n+ 1)(Dρ − (sin θ)−1Dσ)σn

)
(Vθ +Rh)

+ (Vθ +Rh)
(
αhτ(sin θ)−2n(n+ 1)σn−1 + 2iαhτ(sin θ)−1(n+ 1)(Dρ − (sin θ)−1Dσ)σn

)
.

After having computed a few more commutators, the terms of [σn+1, (−σ sin θ + τ cos θ +Rh)
2]

are in the form:

τ lσm ,

hτ l(Dρ − (sin θ)−1Dσ)σm ,
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h2τ l(Dρ − (sin θ)−1Dσ)3σm ,

h2τ l(σ + (sin θ)−1ρ)2(Dρ + (sin θ)−1Dσ)σm ,

with m ≤ n+ 1 and l = 0, 1, 2.

Let us examine for instance the term h2τ l(σ + (sin θ)−1ρ)2(Dρ + (sin θ)−1Dσ)σm. We

have, after the inverse Fourier transform and translation:

h2‖τ l(σ + (sin θ)−1ρ)2(Dρ + (sin θ)−1Dσ)σmvh‖ ≤ Ch2(h−3/8−γ)3‖τ lσmvh‖

where we have used the support of χresc
h (see (17.2.1)). We get:

|〈τ k[σn+ 1, (−σ sin θ + τ cos θ +Rh)
2]vh, τ

kσn+1vh〉| ≤ C‖τ kσn+1vh‖
n+1∑
j=0

k+2∑
l=0

‖τ lσjvh‖ .

We deduce by the induction assumption:

QNo
h (τ kσn+1vh) ≤ C‖vh‖2 .

We infer that, for all k:

‖Dτ (τ
kσn+1)vh‖ ≤ C‖vh‖ and ‖Dσ(τ kσn+1)vh‖ ≤ C‖vh‖ .

Moreover, we also deduce:

‖(Vθ +Rh)τ
kσn+1vh‖ ≤ C‖vh‖ ,

from which we find

‖τ kσn+2vh‖ ≤ C‖vh‖ .
�

We also need a control of the derivatives with respect to σ. The next lemma is left

to the reader as an exercise (take successive derivatives of the eigenvalue equation and

estimate commutators by induction). Roughly speaking, it states that σ, τ , Dσ and Dτ

are bounded.

Lemma 17.12. For all m,n, k, there exist h0 > 0 and C(m,n, k) > 0 such that, for all

h ∈ (0, h0),

‖τ kDm+1
σ σnvh‖ ≤ C(k,m, n)‖vh‖ ,(17.3.6)

‖τ kDm
σ Dτσ

nvh‖ ≤ C(k,m, n)‖vh‖ ,(17.3.7)

for vh ∈ FN(h).

We now establish partial Agmon estimates with respect to σ and τ . Roughly speaking,

we can write the previous lemmas with ρvh and Dρvh instead of vh.

3.1.2. Partial estimates involving ρ. Let us begin to prove the following lemma.
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Lemma 17.13. For all k ≥ 0, there exist h0 > 0 and C(k) > 0 such that, for all

h ∈ (0, h0),

‖τ kρvh‖ ≤ C(‖ρvh‖+ ‖vh‖) ,

‖τ kDτρvh‖ ≤ C(‖ρvh‖+ ‖vh‖) ,

‖τ kDσρvh‖ ≤ C(‖ρvh‖+ ‖vh‖) ,

for vh ∈ FN(h).

Proof. For k = 0, we multiply (17.2.2) by ρ and take the scalar product with ρvh.

There is only one commutator to analyze:

[(Vθ +Rh)
2, ρ] = [(Vθ +Rh), ρ](Vθ +Rh) + (Vθ +Rh)[(Vθ +Rh), ρ]

so that

[(Vθ +Rh)
2, ρ] = [Rh, ρ](Vθ +Rh) + (Vθ +Rh)[Rh, ρ] .

We deduce, thanks to the support of wh:

|〈[(Vθ +Rh)
2, ρ]vh, ρvh〉| ≤ C‖vh‖‖ρvh‖ ≤ C(‖ρvh‖2 + ‖vh‖2)

and we infer

QNo
h (ρvh) ≤ C(‖ρvh‖2 + ‖vh‖2) .

We get

‖Dτρvh‖ ≤ C(‖ρvh‖+ ‖vh‖) and ‖Dσρvh‖ ≤ C(‖ρvh‖+ ‖vh‖) .
Then it remains to prove the case k ≥ 1 by induction (use Remark 17.10 and that

s(θ) < 1). �

As an easy consequence of the proof of Lemma 17.13, we have the following.

Lemma 17.14. For all k ≥ 0, there exist h0 > 0 and C(k) > 0 such that, for all

h ∈ (0, h0),

‖τ kσρvh‖ ≤ C(k)(‖ρvh‖+ ‖vh‖) ,
for vh ∈ FN(h).

We can now deduce the following lemma (exercise).

Lemma 17.15. For all k, n, there exist h0 > 0 and C(k, n) > 0 such that, for all

h ∈ (0, h0):

‖ρτ kσn+1vh‖ ≤ C(k, n)(‖ρvh‖+ ‖vh‖) ,(17.3.8)

‖ρτ kDσ(σnvh)‖ ≤ C(k, n)(‖ρvh‖+ ‖vh‖) ,(17.3.9)

‖ρτ kDτ (σ
nvh)‖ ≤ C(k, n)(‖ρvh‖+ ‖vh‖) ,(17.3.10)

for vh ∈ FN(h).
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From this lemma, we deduce a stronger control with respect to the derivative with

respect to σ.

Lemma 17.16. For all m,n, k, there exist h0 > 0 and C(m,n, k) > 0 such that for all

h ∈ (0, h0):

‖ρτ kDm+1
σ σnvh‖ ≤ C(k,m, n)(‖ρvh‖+ ‖vh‖) ,(17.3.11)

‖ρτ kDm
σ Dτσ

nvh‖ ≤ C(k,m, n)(‖ρvh‖+ ‖vh‖) ,(17.3.12)

for vh ∈ FN(h).

Proof. The proof can be done by induction. The case m = 0 comes from the

previous lemma. Then, the recursion is the same as for the proof of Lemma 17.12 and

uses Lemma 17.12 to control the additional commutators. �

By using the symmetry between ρ and Dρ, we have finally the following important

lemma.

Lemma 17.17. For all m,n, k, there exist h0 > 0 and C(m,n, k) > 0 such that for all

h ∈ (0, h0):

‖Dρτ
kDm+1

σ σnvh‖ ≤ C(k,m, n)(‖Dρvh‖+ ‖vh‖) ,(17.3.13)

‖Dρτ
kDm

σ Dτσ
nvh‖ ≤ C(k,m, n)(‖Dρvh‖+ ‖vh‖) ,(17.3.14)

for vh ∈ FN(h).

3.2. A first approximation of the eigenfunctions. In this section, we prove that

vh behaves like uLP
θ (σ, τ) with respect to σ and τ . Let us state the approximation result

of this section.

Proposition 17.18. There exists C > 0 and h0 > 0 such that, for h ∈ (0, h0),

‖vh − Πvh‖+ ‖Vθvh − VθΠvh‖+ ‖∇σ,t(vh − Πvh)‖ ≤ Ch1/4−2γ‖vh‖ ,

where Π is the projection on uLP
θ and vh ∈ FN(h).

Proof. As usual, we start to prove the inequality when vh is the image of an eigen-

function associated with λp(h), the extension to vh ∈ FN(h) being standard. We want to

estimate

‖(HNeu
θ − s(θ))vh‖ .

We have

‖(HNeu
θ − s(θ))vh‖ ≤ ‖(HNeu(θ)− λp(h))vh‖+ Ch1/4‖vh‖ .

With the definition of vh and with Corollary 17.8, we have:

‖(HNeu
θ − λp(h))vh‖ ≤ h‖L1vh‖+ h2‖L2vh‖+O(h∞)‖vh‖ .
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Then, we can write

‖L1vh‖ ≤ C

∥∥∥∥∥τVθ
(
Dρ −

Dσ

sin θ

)2

vh

∥∥∥∥∥+C

∥∥∥∥∥τ
(
Dρ −

Dσ

sin θ

)2

Vθvh

∥∥∥∥∥+C

∥∥∥∥τVθ (σ +
ρ

sin θ

)2

vh

∥∥∥∥ .
With Lemma 17.11 and the support of uh, we infer

h‖L1vh‖ ≤ Ch1/4−2γ‖vh‖ .

In the same way, we get

h2‖L2vh‖ ≤ Ch1/2−4γ‖vh‖ .
We deduce

‖(HNeu
θ − s(θ))vh‖ ≤ Ch1/4−2γ‖vh‖ .

We have

‖(HNeu
θ − s(θ))v⊥h ‖ ≤ Ch1/4−2γ‖vh‖ , vh = v⊥h + Πvh .

The resolvent, valued in the form domain, being bounded, the result follows. �

4. Localization induced by the effective harmonic oscillator

In this section, we prove Theorem 8.3. In order to do that, we first prove a localization

with respect to ρ and then use it to improve the approximation of Proposition 17.18.

4.1. Control of the eigenfunctions with respect to the Fourier variable. Let

us prove an optimal localization estimate of the eigenfunctions with respect to ρ. Thanks

to our relative boundedness lemmas (Lemmas 17.16 and 17.17) we can compare the initial

quadratic form with the model quadratic form.

Proposition 17.19. There exist h0 > 0 and C > 0 such that, for all C0 > 0 and

h ∈ (0, h0),

QNo
h (vh) ≥ (1− C0h)

(
‖Dτvh‖2 + ‖Dσvh‖2 + ‖(Vθ(σ, τ) + αhτHharm) vh‖2)

− C
C0

h〈Hharmvh, vh〉 − Ch‖vh‖2 ,

for vh ∈ FN(h).

Proof. Let us consider

QNo
h (vh) = ‖Dτvh‖2 + ‖Dσvh‖2 + ‖(Vθ(σ, τ) + αhτ {Hharm + L(ρ,Dρ, σ,Dσ)}) vh‖2 .

where

L(ρ,Dρ, σ,Dσ) = (sin θ)−2(−2 sin θDσDρ + 2 sin θσρ+D2
σ + σ2) .

For all ε > 0, we have:

QNo
h (vh) ≥ (1− ε)

(
‖Dτvh‖2 + ‖Dσvh‖2 + ‖(Vθ(σ, τ) + αhτHharm) vh‖2)

−ε−1α2h2‖τL(ρ,Dρ, σ,Dσ)vh‖2 .
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We take ε = C0h. We apply Lemmas 17.12, 17.16 and 17.17 to get

‖τL(ρ,Dρ, σ,Dσ)vh‖2 ≤ C(‖Dρvh‖2 + ‖ρvh‖2 + ‖vh‖2) .

�

From the last proposition, we are led to study the model operator:

Hh = D2
σ +D2

τ + (Vθ(σ, τ) + αhτHharm)2 .

We can write Hh as a direct sum:

Hh =
⊕
n≥1

Hn
h ,

with

Hn
h = D2

σ +D2
τ + (Vθ(σ, τ) + αhτµn)2 ,

where µn is the n-the eigenvalue of Hharm. Therefore we shall analyze (see Chapter 4,

Section 6.2):

LLP
θ,g = D2

σ +D2
τ + (Vθ(σ, τ) + gτ)2 .

We deduce the existence of c > 0 such that, for all g ≥ 0:

s(θ, g) ≥ s(θ) + cg .

Taking C0 large enough in Proposition 17.19, we deduce the following proposition.

Proposition 17.20. There exist C > 0 and h0 > 0 such that, for all h ∈ (0, h0),

〈Hharmvh, vh〉 ≤ C‖vh‖2, for vh ∈ FN(h)

and

λresc
N (h) ≥ s(θ)− Ch .

4.2. Refined approximation and conclusion. The control of vh with respect to

ρ provided by Proposition 17.20 permits to improve the approximation of vh.

Proposition 17.21. There exist C > 0, h0 > 0 and γ > 0 such that, if h ∈ (0, h0) :

‖VθDρvh − VθDρΠvh‖+ ‖Dρvh −DρΠvh‖+ ‖∇σ,τ (Dρvh −DρΠvh)‖ ≤ Chγ‖vh‖ ,

‖Vθρvh − VθρΠvh‖+ ‖ρvh − ρΠvh‖+ ‖∇σ,τ (ρvh − ρΠvh)‖ ≤ Chγ‖vh‖ ,

for vh ∈ FN(h).

Proof. Let us apply Dρ to (17.2.2). We have the existence of γ > 0 such that:

‖[LNo
h , Dρ]vh‖ ≤ Chγ‖vh‖ .

We can write

‖(HNeu
θ − σ(θ))Dρvh‖ ≤ ‖(HNeu

θ − λresc
p (h))Dρvh‖+ Ch1/4‖Dρvh‖ .
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Proposition 17.20 provides

‖(HNeu
θ − σ(θ))Dρvh‖ ≤ ‖(HNeu

θ − λresc
p (h))Dρvh‖+ Ch1/4‖vh‖ .

Then, we get

‖hL1Dρvh‖ ≤ Ch1/4−2γ‖vh‖
and

‖h2L2Dρvh‖ ≤ Ch1/2−4γ‖vh‖ .
We deduce

‖(HNeu
θ − s(θ))Dρvh‖ ≤ Ch1/4−γ‖vh‖ .

The conclusion is the same as for the proof of Proposition 17.18. The analysis for ρ can

be done exactly in the same way. �

We can now end the proof of Theorem 8.3. We recall that

QNo
h (vh) = ‖Dτvh‖2 + ‖Dσvh‖2 + ‖(Vθ(σ, τ) + αhτ {Hharm + L(ρ,Dρ, σ,Dσ)}) vh‖2

so that we get

QNo
h (vh) ≥ s(θ)‖vh‖2

+ αh〈2τVθ(σ, τ)Hharm + τVθL(ρ,Dρ, σ,Dσ) + τL(ρ,Dρ, σ,Dσ)Vθ(σ, τ)vh, vh〉 .

It remains to approximate vh by Πvh modulo lower order remainders (exercise!). This

implies:

QNo
h (vh) ≥ s(θ)‖vh‖2 + αh〈Sθ(Dρ, ρ)φh, φh〉L2(Rρ) + o(h)‖vh‖2 ,

where φh = 〈vh, uθ〉L2(Rσ,τ ) and vh ∈ FN(h). With the min-max principle, we deduce the

spectral gap between the lowest eigenvalues and it remains to use Proposition 17.18.
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CHAPTER 18

Magnetic wedge

On oublie vite du reste ce qu’on n’a pas pensé

avec profondeur, ce qui vous a été dicté par

l’imitation, par les passions environnantes.

À la recherche du temps perdu,

La Prisonnière, Proust

This chapter is devoted to the proof of Theorem 8.18 announced in Chapter 8, Section

2. We focus on the specific features induced by the presence of a non smooth boundary.

1. Quasimodes

Before starting the analysis, we use the following scaling:

(18.1.1) š = h1/4σ, ť = h1/2τ, ž = h1/2
Z

so that we denote by Lh and Ch the operators h−1Ľh and h−1/2Čh in the coordinates

(σ, τ, Z).

Using Taylor expansions, we can write in the sense of formal power series the magnetic

Laplacian near the edge and the associated magnetic Neumann boundary condition:

Lh ∼
h→0

∑
j≥0

Ljhj/4

and

Ch ∼
h→0

∑
j≥0

Cjhj/4 ,

where the first Lj and Tj are given by (see Conjecture 8.10):

L0 = D2
τ +D2

Z + (τ − ζe
0)2 ,(18.1.2)

L1 = −2(τ − ζe
0)Dσ ,(18.1.3)

L2 = D2
σ + 2κT −1

0 σ2D2
Z ,(18.1.4)

where

C0 = (−τ + ζe
0, Dτ , DZ),

C1 = (Dσ, 0, 0),

C2 = (0, 0, κT −1
0 σ2DZ),
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where κ is defined in (8.2.12).

We will also use an asymptotic expansion of the normal n̂(h). We recall that we have

ň = (−T ′(š)ť,−T (š),±1) so that we get:

n̂(h) ∼
h→0

∑
j≥0

njh
j/4 ,

with

(18.1.5) n0 = (0,−T0,±1), n1 = (0, 0, 0), n2 = (0, κσ2, 0) .

We look for (λ̂(h), ψ̂(h)) in the form:

λ̂(h) ∼
h→0

∑
j≥0

µjh
j/4 ,

ψ̂(h) ∼
h→0

∑
j≥0

ψjh
j/4 ,

which satisfies, in the sense of formal series, the following boundary value problem:

(18.1.6)

 Lhψ̂(h) ∼
h→0

λ̂(h)ψ̂(h),

n̂ · Chψ̂(h) ∼
h→0

0 on ∂NeuWα0 .

This provides an infinite system of PDE’s. We will use Notation 11.1 introduced in

Chapter 11.

We solve the equation:

L0ψ0 = µ0ψ0, in Wα0 , n0 · C0ψ0 = 0, on ∂NeuWα0 .

We notice that the boundary condition is exactly the Neumann condition. We are led

to choose µ0 = νe
1(α0, ζ

e
0) and ψ0(σ, τ, Z) = ue

ζe
0
(τ, Z)f0(σ) where f0 will be chosen (in the

Schwartz class) in a next step.

Collecting the terms of size h1/4, we find the equation:

(L0 − µ0)ψ1 = (µ1 − L1)ψ0, n0 · C0ψ1 = 0, on ∂NeuWα0 .

As in the previous step, the boundary condition is just the Neumann condition. We use

the Feynman-Hellmann formulas to deduce:

(L0 − µ0)(ψ1 + ve
ζe
0
(τ, Z)Dσf0(σ)) = µ1ψ0, n0 · C0ψ1 = 0, on ∂NeuWα0 .

Taking the scalar product of the r.h.s. of the first equation with ue
ζe
0

with respect to (τ, Z)

and using the Neumann boundary condition for ve
ζe
0

and ψ1 when integrating by parts, we

find µ1 = 0. This leads to choose:

ψ1(σ, τ, Z) = ve
ζe
0
(τ, Z)Dσf0(σ) + f1(σ)ue

ζe
0
(τ, Z) ,

where f1 will be determined in a next step.

248



Let us now deal with the terms of order h1/2:

(L0 − µ0)ψ2 = (µ2 − L2)ψ0 − L1ψ1, n0 · C0ψ2 = −n0 · C2ψ0 − n2 · C0ψ0, on ∂NeuWα0 .

We analyze the boundary condition:

n0 · C2ψ0 + n2 · C0ψ0 = ±κT −1
0 σ2DZψ0 + κσ2Dτψ0

= κT −1
0 σ2(±DZ + T0Dτ )ψ0

= ±2κT −1
0 σ2DZψ0 .

where we have used the Neumann boundary condition of ψ0. Then, we use the Feynman-

Hellmann formulas together with (18.1.3) and (18.1.4) to get:

(18.1.7) (L0−µ0)(ψ2− ve
ζe
0
Dσf1−

we
ζe
0

2
D2
σf0) = µ2ψ0−

∂2
ζν

e
1(α0,ζe

0)

2
D2
σψ0− 2κT −1

0 σ2D2
Zψ0 ,

with boundary condition:

n0 · C0ψ2 = ∓2κσ2T −1
0 DZψ0, on ∂NeuWα0 .

We use the Fredholm condition by taking the scalar product of the r.h.s. of (18.1.7) with

ue
α0,ζe

0
with respect to (τ, Z). Integrating by parts and using the Green-Riemann formula

(the boundary terms cancel), this provides the equation:

He
harmf0 = µ2f0 ,

with

He
harm =

∂2
ην

e
1(α0,ζe

0)

2
D2
σ + 2κT −1

0 ‖DZue
ζe
0
‖2

L2(Sα0 )σ
2 .

Up to a scaling, the 1D-operator He
harm is the harmonic oscillator on the line (we have

used that Conjecture 8.10 is true). Its spectrum is given by:{
(2n− 1)

√
κT −1

0 ‖DZuζe
0
‖2∂2

ζν
e
1(α0, ζe

0), n ≥ 1

}
.

Therefore for µ2 we take:

(18.1.8) µ2 = (2n− 1)
√
κT −1

0 ‖DZue
ζe
0
‖2

L2(Sα0 )∂
2
ζν

e
1(α0, ζe

0)

with n ∈ N∗ and for f0 the corresponding normalized eigenfunction. With this choice we

deduce the existence of ψ⊥2 such that:

(18.1.9) (L0 − µ0)ψ⊥2 = µ2ψ0 −
∂2
ζν

e
1(α0,ζe

0)

2
D2
σψ0 − 2κT −1

0 σ2D2
Zψ0, and 〈ψ⊥2 , ue

ζe
0
〉τ,Z = 0.

We can write ψ2 in the form:

ψ2 = ψ⊥2 + ve
ζe
0
Dσf1 +D2

σf0

we
ζe
0

2
+ f2(σ)ue

ζe
0
,

where f2 has to be determined in a next step.

The construction can be continued (exercise).
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By using the spectral theorem, we infer that

(18.1.10) λn(h) ≤ ν(α0)h+ Ch
3
2 .

2. Agmon estimates

Thanks to a standard partition of unity, we can establish the following estimate for

the eigenvalues (use the strategy in the proof of Proposition 14.5).

Proposition 18.1. There exist C and h0 > 0 such that, for h ∈ (0, h0) :

λn(h) ≥ ν(α0)h− Ch5/4 .

From (18.1.10) and Proposition 18.1, we infer that the main term in the asymptotic

expansion of λn(h) is ν(α0)h. Then, due to the difference of energy between the smooth

boundary and the wedge (see Assumption 8.2.10), this implies, with the estimates of

Agmon (see the proof of Proposition 14.6 where the same ideas are used; here we choose

balls of size Rh
1
2 ), a localization of the lowest eigenfunctions near E.

Proposition 18.2. There exist ε0 > 0, h0 > 0 and C > 0 such that for all h ∈ (0, h0):∫
Ω

e2ε0h−1/2d(x,E)|ψ|2 dx ≤ C‖ψ‖2,

Qh(e
ε0h−1/2d(x,E)ψ) ≤ Ch‖ψ‖2.

As a consequence, we can refine the lower bound.

Proposition 18.3. For all n ≥ 1, there exists h0 > 0 such that for h ∈ (0, h0), we have:

λn(h) = ν(α0, ζ
e
0)h+O(h3/2) .

Proof. We have:

Q̌h(ψ̌) = 〈∇̌hψ̌, ∇̌hψ̌〉L2( dšdťdž) .

With the estimates of Agmon with respect to ť and ž, we infer:

Q̌h(ψ̌) ≥ Qflat
h (ψ̌)− Ch3/2‖ψ̌‖2 .

where:

Q̌flat
h (ψ̌) = ‖hDťψ̌‖2 + ‖hT0T (š)−1Džψ̌‖2 + ‖(hDš + ζe

0h
1/2 − ť)ψ̌‖2.

Moreover, we have:

Q̌flat
h (ψ̌) ≥ ‖hDťψ̌‖2 + ‖hDžψ̌‖2 + ‖(hDš + ζe

0h
1/2 − ť)ψ̌‖2 ≥ ν(α0, ζ

e
0)h .

�

A rough localization estimate is given by the following proposition (that follows again

by the estimates of Agmon related to Proposition 18.1, see also Proposition 14.7).
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Proposition 18.4. There exist ε0 > 0, h0 > 0 and C > 0 such that for all h ∈ (0, h0):∫
Ω

eχ(x)h−1/8|s(x)||ψ|2 dx ≤ C‖ψ‖2,

Qh(e
χ(x)h−1/8|s(x)|ψ) ≤ Ch‖ψ‖2,

where χ is a smooth cutoff function supported in a fixed neighborhood of E.

We use a cutoff function χh(x) near x0 such that:

χh(x) = χ0(h1/8−γ š(x))χ0(h1/2−γ ť(x))χ0(h1/2−γ ž(x)) .

For all N ≥ 1, let us consider L2-normalized eigenpairs (λn(h), ψn,h)1≤n≤N such that

〈ψn,h, ψm,h〉 = 0 when n 6= m. We consider the N dimensional space defined by:

EN(h) = span
1≤n≤N

ψ̃n,h, where ψ̃n,h = χhψn,h .

Notation 18.5. We will denote by ψ̃(= χhψ) the elements of EN(h).

Let us state a proposition providing the localization of the eigenfunctions with respect

to Dš (the proof is left to the reader as an exercise, see Chapter 14 for a similar estimate).

Proposition 18.6. There exist h0 > 0 and C > 0 such that, for h ∈ (0, h0) and ψ̌ ∈
ĚN(h), we have:

‖Dšψ̌‖ ≤ Ch−1/4‖ψ̌‖ .

3. Projection method

The result of Proposition 18.6 implies an approximation result for the eigenfunctions.

Let us recall the scaling defined in (18.1.1):

(18.3.1) š = h1/4σ, ť = h1/2τ, ž = h1/2
Z.

Notation 18.7. We will denote by EN(h) the set of the rescaled elements of ĚN(h). The

elements of EN(h) will be denoted by ψ̂. Moreover we will denote by Lh the operator

h−1Ľh in the rescaled coordinates. The corresponding quadratic form will be denoted by

Qh.

Lemma 18.8. There exist h0 > 0 and C > 0 such that, for h ∈ (0, h0) and ψ̂ ∈ EN(h),

we have:

‖ψ̂ − Π0ψ̂‖+ ‖Dτ (ψ̂ − Π0ψ̂)‖+ ‖DZ(ψ̂ − Π0ψ̂)‖ ≤ Ch1/8‖ψ̂‖
(18.3.2)

‖σ(ψ̂ − Π0ψ̂)‖+ ‖σDτ (ψ̂ − Π0ψ̂)‖+ ‖σDZ(ψ̂ − Π0ψ̂)‖ ≤ Ch1/8−γ(‖ψ̂‖+ (‖σψ̂‖) ,
(18.3.3)

where Π0 is the projection on uζe
0
:

Π0ψ̂ = 〈ψ̂, ue
ζe
0
〉L2(Sα0 )u

e
ζe
0
.
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This approximation result allows us to catch the behavior of the eigenfunction with

respect to š. In fact, this is the core of the dimension reduction process of the next

proposition. Indeed σ2D2
Z is not an elliptic operator, but, once projected on uζe

0
, it

becomes elliptic.

Proposition 18.9. There exist h0 > 0 and C > 0 such that, for h ∈ (0, h0) and ψ̌ ∈
ĚN(h), we have:

‖šψ̌‖ ≤ Ch1/4‖ψ̌‖ .

Proof. It is equivalent to prove that:

‖σψ̂‖ ≤ C‖ψ̂‖ .

The proof of Proposition 18.3 provides the inequality:

‖Dτ ψ̂‖2 + ‖T0T (h1/4σ)−1DZψ̂‖2 + ‖(h1/4Dσ + ζe
0 − τ)ψ̂‖2 ≤ (νe

1(α0, ζ
e
0) + Ch1/2)‖ψ̂‖2 .

From the non-degeneracy of the maximum of α, we deduce the existence of c > 0 such

that:

‖T0T (h1/4σ)−1DZψ̂‖2 ≥ ‖DZψ̂‖2 + ch1/2‖σDZψ̂‖2

so that we have:

ch1/2‖σDZψ̂‖2 ≤ Ch1/2‖ψ̂‖2

and:

‖σDZψ̂‖ ≤ C̃‖ψ̂‖ .
It remains to use Lemma 18.8 and especially (18.3.3). In particular, we have:

‖σDZ(ψ̂ − Π0ψ̂)‖ ≤ Ch1/8−γ(‖ψ̂‖+ (‖σψ̂‖) .

We infer:

‖σDZΠ0ψ̂‖ ≤ C̃‖ψ̂‖+ Ch1/8−γ(‖ψ̂‖+ (‖σψ̂‖) .
Let us write

Π0ψ̂ = fh(σ)ue
ζe
0
(τ, Z) .

We have:

‖σDZΠ0ψ̂‖ = ‖DZue
ζe
0
‖L2(Sα0 )‖σfh‖L2(dσ) = ‖DZue

ζe
0
‖L2(Sα0 )‖σfhue

ζe
0
‖ = ‖DZue

ζe
0
‖L2(Sα0 )‖σΠ0ψ̂‖ .

We use again Lemma 18.8 to get:

‖σDZΠ0ψ̂‖ = ‖DZuζe
0
‖L2(Sα0 )‖σψ̂‖+O(h1/8−γ)(‖ψ̂‖+ ‖σψ̂‖) .

We deduce:

‖DZue
ζe
0
‖L2(Sα0 )‖σψ̂‖ ≤ C̃‖ψ̂‖+ 2Ch1/8−γ(‖ψ̂‖+ (‖σψ̂‖)

and the conclusion follows. �
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Proposition 18.10. There exists h0 > 0 such that for h ∈ (0, h0) and ψ̂ ∈ ÊN(h), we

have:

Q̂h(ψ̂) ≥‖Dτ ψ̂‖2 + ‖DZψ̂‖2 + ‖(h1/4Dσ − τ + ζe
0)ψ̂‖2 + h1/2T −1

0 κ‖DZue
ζe
0
‖2

L2(Sα0 )σ
2

+ o(h1/2)‖ψ̂‖2.

Let us introduce the operator:

(18.3.4) D2
τ +D2

Z + (h1/4Dσ − τ + ζe
0)2 + h1/2T −1

0 κ‖DZue
ζe
0
‖2σ2.

After Fourier transform with respect to σ, the operator (18.3.4) becomes:

(18.3.5) D2
τ +D2

Z + (h1/4ξ − τ + ζe
0)2 + h1/2T −1

0 κ‖DZue
ζe
0
‖2

L2(Sα0 )D
2
ξ .

Exercise 18.11. Use the Born-Oppenheimer approximation to estimate the lowest eigen-

values of this last operator and deduce Theorem 8.18.
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CHAPTER 19

Magnetic cone

Ignarus enim praeterquam quod a cau-

sis externis multis modis agitatur nec un-

quam vera animi acquiescentia potitur, vivit

paeterea sui et Dei et rerum quasi inscius et

simulac pati desinit, simul etiam esse desinit.

Ethica, Pars V, Spinoza

This chapter deals with the proof of Theorem 8.21.

1. Quasimodes in the axisymmetric case

This section deals with the proof of the following proposition.

Proposition 19.1. For all N ≥ 1 and J ≥ 1, there exist CN,J and α0 such that for all

1 ≤ n ≤ N , and 0 < α < α0, we have:

dist

(
spdis(Lα,0),

J∑
j=0

γj,nα
2j+1

)
≤ CN,J α

2J+3 ,

where γ0,n = lN = 2−5/2(4n− 1).

Proof. We construct quasimodes which do not depend on θ. In other words, we

look for quasimodes for:

Lα,0 = − 1

τ 2
∂ττ

2∂τ +
sin2(αϕ)

4α2
τ 2 − 1

α2 τ 2 sin(αϕ)
∂ϕ sin(αϕ)∂ϕ .

We write a formal Taylor expansion of Lα,0 in powers of α2:

Lα,0 ∼ α−2M−1 +M0 +
∑
j≥1

α2jMj ,

where

M−1 = − 1

τ 2ϕ
∂ϕϕ∂ϕ, M0 = − 1

τ 2
∂ττ

2∂τ +
ϕ2τ 2

4
+

1

3τ 2
ϕ∂ϕ .

We look for quasimodes expressed as formal series:

ψ ∼
∑
j≥0

α2jψj, λ ∼ α−2λ−1 + λ0 +
∑
j≥1

α2jλj ,

so that, formally, we have

Lα,0ψ ∼ λψ .
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We are led to solve the equation:

M−1ψ0 = − 1

τ 2ϕ
∂ϕϕ∂ϕψ0 = λ−1ψ0 .

We choose λ−1 = 0 and ψ0(τ, ϕ) = f0(τ), with f0 to be chosen in the next step. We shall

now solve the equation

M−1ψ1 = (λ0 −M0)ψ0 .

We look for ψ1 in the form: ψ1(τ, ϕ) = t2ψ̃1(τ, ϕ) + f1(τ). The equation provides

(19.1.1) − 1

ϕ
∂ϕϕ∂ϕψ̃1 = (λ0 −M0)ψ0 .

For each τ > 0, the Fredholm condition is 〈(λ0−M0)ψ0, 1〉L2((0, 1
2

),ϕ dϕ) = 0, that becomes∫ 1
2

0

(M0ψ0)(τ, ϕ)ϕ dϕ =
λ0

23
f0(τ) .

Moreover we have∫ 1
2

0

(M0ψ0)(τ, ϕ)ϕ dϕ = − 1

23τ 2
∂ττ

2∂τf0(τ) +
1

28
τ 2f0(τ) ,

so that we get (
− 1

τ 2
∂ττ

2∂τ +
1

25
τ 2

)
f0 = λ0f0 .

We are led to take

λ0 = lN and f0(τ) = fn(τ) .

For this choice of f0, we infer the existence of a unique function denoted by ψ̃⊥1 (in

the Schwartz class with respect to t) orthogonal to 1 in L2((0, 1
2
), ϕ dϕ) which satisfies

(19.1.1). Using the decomposition of ψ1, we have

ψ1(τ, ϕ) = τ 2ψ̃⊥1 (τ, ϕ) + f1(τ) ,

where f1 has to be determined in the next step.

We leave the construction of the next terms to the reader.

We define

ΨJ
n(α)(τ, θ, ϕ) =

J∑
j=0

α2jψj(τ, ϕ), ∀(τ, θ, ϕ) ∈ P ,(19.1.2)

ΛJ
n(α) =

J∑
j=0

α2jλj .(19.1.3)

Due to the exponential decay of the ψj and thanks to Taylor expansions, there exists Cn,J
such that:

‖
(
Lα − ΛJ

n(α)
)

ΨJ
n(α)‖L2(P, dµ̃) ≤ Cn,Jα

2J+2‖ΨJ
n(α)‖L2(P, dµ̃) .

Using the spectral theorem and going back to the operator Lα by change of variables, we

conclude the proof of Proposition 19.1 with γj,n = λj. �
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Considering the main term of the asymptotic expansion, we deduce the three following

corollaries.

Corollary 19.2. For all N ≥ 1, there exist C and α0 and for all 1 ≤ n ≤ N and

0 ≤ α ≤ α0, there exists an eigenvalue λ̃k(n,α) of Lα such that

|λ̃k(n,α) − lN | ≤ Cα2 .

Corollary 19.3. We observe that for 1 ≤ n ≤ N and α ∈ (0, α0):

0 ≤ λ̃n(α) ≤ λ̃k(n,α) ≤ lN + Cα2 .

Corollary 19.4. For all n ≥ 1, there exist α0(n) > 0 and Cn > 0 such that, for all

α ∈ (0, α0(n)), the n-th eigenvalue exists and satisfies:

λn(α) ≤ Cnα ,

or equivalently λ̃n(α) ≤ Cn.

2. Agmon estimates

Let us first state the following convenient lemma.

Lemma 19.5. Let us consider ρ > 0 and µ(ρ) is the lowest eigenvalue of the magnetic

Neumann Laplacian on the disk of center (0, 0) and radius ρ. There exists c > 0 such

that, for all ρ ≥ 0,

µ(ρ) ≥ cmin(ρ2, 1) .

Proof. The magnetic Laplacian is in the form LA0,ρ = (−i∇+ A0)2 with

A0(x) =
1

2
(x2,−x1) .

In Proposition 1.29, we noticed that the magnetic Neumann condition is just the classical

Neumann condition. By using the rescaling x = ρy, we get that LA0,ρ = (−i∇+ A0)2 is

unitarily equivalent to ρ−2LNeu
ρ2A0

acting on L2(B(0, 1)). Then it is easy to see that µ is a

continuous and positive function on (0,+∞). By Proposition 1.29, we get

µ(ρ) =
ρ→0

ρ2

|Ω|

∫
Ω

|A0(x)|2 dx + o(ρ2) .

Moreover LA0,ρ is also equivalent to ρ2(−iρ−2∇ + A0)2 acting on L2(B(0, 1)). The limit

ρ → +∞ is a semiclassical limit (h = ρ−2) and we deduce (see for instance (0.1.7) and

[76, Theorem 8.1.1]) that

µ(ρ) →
ρ→+∞

Θ0 .

�

Let us now prove the following fine estimate when β ∈
[
0, π

2

)
.
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Proposition 19.6. Let C0 > 0 and η ∈
(
0, 1

2

)
. For all β ∈

[
0, π

2

)
, there exist α0 > 0,

ε0 and C > 0 such that for any α ∈ (0, α0) and for all eigenpair (λ, ψ) of Lα,β satisfying

λ ≤ C0α:

(19.2.1)

∫
Cα
e2ε0α1/2|z||ψ|2 dx ≤ C‖ψ‖2.

Proof. Thanks to a change of gauge LA is unitarily equivalent to the Neumann

realization of:

LÂ = D2
z + (Dx + z sin β)2 + (Dy + x cos β)2 .

The associated quadratic form is

QÂ(ψ) =

∫
|Dzψ|2 + |(Dx + z sin β)ψ|2 + |(Dy + x cos β)ψ|2 dx dy dz .

Let us introduce a smooth cut-off function χ such that χ = 1 near 0 and let us also

consider, for R ≥ 1 and ε0 > 0,

ΦR(z) = ε0α
1/2χ

( z
R

)
|z| .

The Agmon formula gives

QÂ(eΦRψ) = λ‖eΦRψ‖2 − ‖∇ΦRe
ΦRψ‖2 .

There exists α0 > 0 and C̃0 such that for α ∈ (0, α0), R ≥ 1 and ε0 ∈ (0, 1), we have:

QÂ(eΦRψ) ≤ C̃0α‖eΦRψ‖2 .

We introduce a partition of unity with respect to z:

χ2
1(z) + χ2

2(z) = 1 ,

where χ1(z) = 1 for 0 ≤ z ≤ 1 and χ1(z) = 0 for z ≥ 2. For j = 1, 2 and γ > 0, we let

χj,γ(z) = χj(γ
−1z) ,

so that

‖χ′j,γ‖ ≤ Cγ−1 .

The localization formula provides

(19.2.2) QÂ(eΦRχ1,γψ) + Q̂A(eΦRχ2,γψ)− C2γ−2‖eΦRψ‖2 ≤ C̃0α‖eΦRψ‖2.

We want to write a lower bound for Q̂A(eΦRχ2,γψ). Integrating by slices we have:

QÂ(ψ) ≥ cos β

∫
µ(
√

cos β z tan(α/2))‖ψ‖2 dz

where µ is defined in Lemma 19.5. From this lemma, we deduce

QÂ(eΦRχ2,γψ) ≥
∫
c cos βmin(z2α2 cos β, 1)‖eΦRχ2,γψ‖2 dz .
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We choose γ = ε−1
0 α−1/2(cos β)−1/2. On the support of χ2,γ we have z ≥ γ. It follows

QÂ(eΦRχ2,γψ) ≥
∫
c cos βmin(ε−2

0 α, 1)‖eΦRχ2,γψ‖2 dz .

For α such that α ≤ ε2
0, we have:

QÂ(eΦRχ2,γψ) ≥
∫
cαε−2

0 cos β‖eΦRχ2,γψ‖2 dz .

We deduce that there exists c > 0, C > 0 and C̃0 > 0 such that for all ε0 ∈ (0, 1) there

exists α0 > 0 such that for all R ≥ 1 and α ∈ (0, α0):

(cε−2
0 cos βα− Cα)‖χ2,γe

ΦRψ‖2 ≤ C̃0α‖χ1,γe
ΦRψ‖2 .

Since cos β > 0 and η > 0, if we choose ε0 small enough, this implies

‖χ2,γe
ΦRψ‖2 ≤ C̃‖χ1,γe

ΦRψ‖2 ≤ Ĉ‖ψ‖2 .

It remains to take the limit R→ +∞. �

Remark 19.7. It turns out that Proposition 19.6 is still true for β = π
2
. In this case the

argument must be changed as follows. Instead of decomposing the integration domain

with respect to z > 0 one should integrate by slices along a fixed direction which is not

parallel to the axis of the cone. Therefore we are reduced to analyze the bottom of the

spectrum of the Neumann Laplacian on ellipses instead of circles. We leave the details

to the reader.

3. Axisymmetry of the first eigenfunctions

Notation 19.8. From Propositions 8.20 and 19.1, we infer that, for all n ≥ 1, there

exists αn > 0 such that if α ∈ (0, αn), the n-th eigenvalue λ̃n(α) of Lα exists. Due to

the fact that −i∂θ commutes with the operator, one deduces that for each n ≥ 1, we can

consider a basis (ψn,j(α))j=1,···J(n,α) of the eigenspace of Lα associated with λ̃n(α) such

that

ψn,j(α)(τ, θ, ϕ) = eimn,j(α)θΨn,j(τ, ϕ) .

As an application of the localization estimates of Section 2, we prove the following

proposition.

Proposition 19.9. For all n ≥ 1, there exists αn > 0 such that if α ∈ (0, αn), we have:

mn,j(α) = 0, ∀j = 1, . . . , J(n, α) .

In other words, the functions of the n-th eigenspace are independent from θ as soon as α

is small enough.

In order to succeed, we use a contradiction argument: We consider an L2-normalized

eigenfunction of Lα associated to λn(α) in the form eim(α)θΨα(τ, ϕ) and we assume that

there exists α > 0 as small as we want such that m(α) 6= 0 or equivalently |m(α)| ≥ 1.

259



3.1. Dirichlet condition on the axis of the cone. Let us prove the following

lemma.

Lemma 19.10. For all t > 0, we have Ψα(t, 0) = 0.

Proof. We recall the eigenvalue equation:

Lα,0,m(α)Ψα = λ̃n(α)Ψα .

We deduce:

Qα,0,m(α)(Ψα) ≤ C‖Ψα‖2
L2(R, dµ) .

This implies:∫
R

1

τ 2 sin2(αϕ)

(
m(α) +

sin2(αϕ)

2α
τ 2

)2

|Ψα(τ, ϕ)|2 dµ ≤ C‖Ψα‖2
L2(R, dµ) < +∞ .

Using the inequality (a+ b)2 ≥ 1
2
a2 − 2b2, it follows:

m(α)2

2

∫
R

1

τ 2 sin2(αϕ)
|Ψα(τ, ϕ)|2 dµ− 2

∫
R

τ 2 sin2(αϕ)

4α2
|Ψα(τ, ϕ)|2 dµ < +∞ ,

so that:

m(α)2

∫
R

1

τ 2 sin2(αϕ)
|Ψα(τ, ϕ)|2 dµ < +∞ ,

and:

(19.3.1)

∫
R

1

τ 2 sin2(αϕ)
|Ψα(τ, ϕ)|2 dµ < +∞ .

Therefore, for almost all τ > 0, we have:

(19.3.2)

∫ 1
2

0

1

sin2(αϕ)
|Ψα(τ, ϕ)|2 sin(αϕ) dϕ < +∞ .

The functionR 3 (τ, ϕ) 7→ Ψα(τ, ϕ) is smooth by elliptic regularity inside Cα (thusR). In

particular, it is continuous at ϕ = 0. By the integrability property (19.3.2), this imposes

that, for all τ > 0, we have Ψα(τ, 0) = 0. �

3.2. Proof of the axisymmetry. We have

(19.3.3) Lα,0,m(α)(τΨα) = λ̃n(α)τΨα + [Lα,0,m(α), τ ]Ψα .

We have:

[Lα,0,m(α), τ ] = [−τ−2∂ττ
2∂τ , τ ] = −2∂τ −

2

τ
.

We take the scalar product of the equation (19.3.3) with tΨα. We notice that:

〈[Lα,0,m(α), τ ]Ψα, τΨα〉L2(R, dµ) = −2‖Ψα‖2
L2(R, dµ) + 3‖Ψα‖2

L2(R, dµ) = ‖Ψα‖2
L2(R,dµ) .

The Agmon estimates provide:

|〈τ [Lα,0,m(α), χα,η]Ψα, τΨα〉L2(R, dµ)| = O(α∞)‖Ψα‖2
L2(R, dµ) .
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We infer:

Qα,0,m(α)(τΨα) ≤ C(‖τΨα‖2
L2(R, dµ) + ‖Ψα‖2

L2(R, dµ)) ,

and especially:

α−2

∫
R
|∂ϕΨα|2 dµ ≤ C

(
‖tΨα‖2

L2(R, dµ) + ‖Ψα‖2
L2(R, dµ)

)
.

Lemmas 19.10 and 1.28 imply that:

c0α
−2

∫
R
|Ψα|2 dµ ≤ C

(
‖τΨα‖2

L2(R, dµ) + ‖Ψcut‖2
L2(R,dµ)

)
.

With the estimates of Agmon, we have:

c0α
−2‖Ψα‖2

L2(R, dµ) ≤ C̃‖Ψα‖2
L2(R, dµ) .

We infer that, for α small enough, Ψα = 0 and this is a contradiction. This ends the

proof of Proposition 19.9.

4. Spectral gap in the axisymmetric case

This section is devoted to the proof of the following proposition.

Proposition 19.11. For all n ≥ 1, there exists α0(n) > 0 such that, for all α ∈
(0, α0(n)), the n-th eigenvalue exists and satisfies:

λn(α, 0) ≥ γ0,nα + o(α) ,

or equivalently λ̃n(α, 0) ≥ γ0,n + o(1).

We first establish approximation results satisfied by the eigenfunctions in order to

catch their behavior with respect to the t-variable. Then, we can apply a reduction of

dimension and we are reduced to a family of 1D model operators.

4.1. Approximation of the eigenfunctions . Let us consider N ≥ 1 and let us

introduce:

EN(α) = span{ψn,1(α), 1 ≤ n ≤ N} ,
where ψn,1(α)(t, θ, ψ) = Ψn,1(t, ϕ) are considered as functions defined in P .

Proposition 19.12. For all N ≥ 1, there exist α0(N) > 0 and CN > 0 such that, for all

ψ ∈ EN(α):

‖τ−1(ψ − ψ)‖2
L2(P, dµ̃) ≤ CNα

2‖ψ‖2
L2(P, dµ̃) ,(19.4.1)

‖ψ − ψ‖2
L2(P, dµ̃) ≤ CNα

2‖ψ‖2
L2(P, dµ̃) ,(19.4.2)

‖τ(ψ − ψ)‖2
L2(P, dµ̃) ≤ CNα

2‖ψ‖2
L2(P, dµ̃) ,(19.4.3)

where:

(19.4.4) ψ(τ) =
1∫ 1

2

0
ϕ dϕ

∫ 1
2

0

ψ(τ, ϕ)ϕ dϕ .
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Proof. It is sufficient to prove the proposition for ψ = ψn,1(α) and 1 ≤ n ≤ N . We

have:

(19.4.5) LαΨn,1(α) = λ̃n(α)Ψn,1(α) .

We have:

Qα(ψ) ≤ C‖ψ‖2
L2(P, dµ̃) ,

and thus, seeing ψ as a function on P :

1

α2

∫
P
τ−2|∂ϕψ|2 dµ̃ ≤ C‖ψ‖2

L2(P, dµ̃) .

We get: ∫
P
|∂ϕψ|2 sinαϕ dτ dθ dϕ ≤ Cα2‖ψ‖2

L2(P,dµ̃) ,

so that (using the inequality sin(αϕ) ≥ αϕ
2

):∫
P

αϕ

2
|∂ϕψ|2 dτ dθ dϕ ≤ Cα2‖ψ‖2

L2(P, dµ̃) .

We infer: ∫
P
αϕ|∂ϕ(ψ − ψ)|2 dτ dθ dϕ ≤ Cα2‖ψ‖2

L2(P, dµ̃) .

Let us consider the Neumann realization of the operator − 1
ϕ
∂ϕϕ∂ϕ on L2((0, 1

2
), ϕ dϕ).

The first eigenvalue is simple, equal to 0 and associated to constant functions. Let δ > 0

be the second eigenvalue. The function ψ − ψ is orthogonal to constant functions in

L2((0, 1
2
)ϕ dϕ) by definition (19.4.4). Then, we apply the min-max principle to ψ−ψ and

deduce: ∫
P
δαϕ|ψ − ψ|2 dτ dθ dϕ ≤ Cα2‖ψ‖2

L2(P,dµ̃) ,

and: ∫
P
τ−2|ψ − ψ|2 dµ̃ ≤ C̃α2‖ψ‖2

L2(P, dµ̃) ,

which ends the proof of (19.4.1). We multiply (19.4.5) by t and we take the scalar product

with τψ to get:

Qα(τψ) ≤ λ̃n(α)‖τψ‖2
L2(P, dµ̃) +

∣∣〈[−τ−2∂ττ
2∂τ , τ ]ψ, τψ〉L2(P, dµ̃)

∣∣ .
We recall that:

[−τ−2∂ττ
2∂τ , τ ] = −2∂τ −

2

τ
.

We get:

Qα,0(tψ) ≤ C‖ψ‖2
L2(P, dµ̃) .

We deduce (19.4.2) in the same way as (19.4.1).

Finally, we easily get:

Qα,0(τ 2ψ) ≤ λ̃n(α)‖τ 2ψ‖2
L2(P,dµ̃) +

∣∣〈[−τ−2∂ττ
2∂τ , τ

2]ψ, τ 2ψ〉L2(P, dµ̃)

∣∣ .
The commutator is:

[−τ−2∂ττ
2∂τ , τ

2] = −6− 4τ∂τ .
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This implies:

Qα,0(τ 2ψ) ≤ C‖ψ‖2
L2(P, dµ̃) .

The approximation (19.4.3) follows. �

4.2. Spectral lower bound. We have now the elements to prove Proposition 19.11.

The main idea is to apply the min-max principle to the quadratic form Qα,0 and to the

space EN(α).

Lemma 19.13. For all N ≥ 1, there exist αN > 0 and CN > 0 such that, for all

α ∈ (0, αN) and for all ψ ∈ EN(α):∫
P

(
|∂τψ|2 + 2−5|τψ|2 +

1

α2τ 2
|∂ϕψ|2

)
dµ̃ ≤ λ̃n(α)‖ψ‖2

L2(P,dµ̃) + CNα‖ψ‖2
L2(P, dµ̃) .

Proof. We recall that, for all ψ ∈ En(α), we have:

Qα,0(ψ) ≤ λ̃n(α)‖ψ‖2
L2(P, dµ̃) .

We infer that:∫
P

(
|∂τψ|2 +

sin2(αϕ)

4α2
|τψ|2 +

1

α2τ 2
|∂ϕψ|2

)
dµ̃ ≤ λ̃n(α)‖ψ‖2

L2(P, dµ̃) .

We shall analyze the term
∫
P

sin2(αϕ)
4α2 |τψ|2 dµ̃. We get:∣∣∣∣∫

P

sin2(αϕ)

4α2
τ 2|ψ|2 dµ̃−

∫
P

sin2(αϕ)

4α2
τ 2|ψ|2 dµ̃

∣∣∣∣ ≤ C‖τψ − τψ‖L2(P,dµ̃)‖ψ‖L2(P,dµ̃) ,

and thus:∫
P

sin2(αϕ)

4α2
τ 2|ψ|2 dµ̃ ≥

∫
P

sin2(αϕ)

4α2
τ 2|ψ|2 dµ̃− C‖τψ − τψ‖L2(P,dµ̃)‖ψ‖L2(P,dµ̃) .

Proposition 19.12 provides:

(19.4.6) ‖τψ − τψ‖L2(P, dµ̃) ≤ Cα‖ψ‖L2(P, dµ̃) ,

so that: ∫
P

sin2(αϕ)

4α2
τ 2|ψ|2 dµ̃ ≥

∫
P

sin2(αϕ)

4α2
τ 2|ψ|2 dµ̃− Cα1/2−η‖ψ‖2

L2(P,dµ̃) .

We deduce:

(19.4.7)

∫
P

sin2(αϕ)

4α2
τ 2|ψ|2 dµ̃ ≥ (2−5 − Cα2)

∫
P
|τψ|2 dµ̃− Cα‖ψ‖2

L2(P, dµ̃) .

Proposition 19.6 and (19.4.7) provide:∫
P

sin2(αϕ)

4α2
τ 2|ψ|2 dµ̃ ≥ 2−5

∫
P
|τψ|2 dµ̃− Cα‖ψ‖2

L2(P, dµ̃) .

�

An straightforward consequence of Lemma 19.13 is:
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Lemma 19.14. For all N ≥ 1, there exist αN > 0 and CN > 0 such that, for all

α ∈ (0, αN) and for all ψ ∈ EN(α):∫
P

(
|∂τψ|2 + 2−5|τψ|2 +

1

α2τ 2
|∂ϕψ|2

)
dµ̆ ≤

(
λ̃n(α) + CNα

)
‖ψ‖2

L2(P,dµ̆) ,

with dµ̆ = t2ϕ dτ dϕ dθ.

Proof. It is sufficient to write for any ϕ ∈ (0, 1
2
):

ϕ =
1

α
sin(αϕ)

αϕ

sin(αϕ)
=

1

α
sin(αϕ)(1 +O(α2)) as α→ 0 .

�

With Lemma 19.14, we deduce (from the min-max principle) that there exists αN
such that

∀α ∈ (0, αN), λ̃n(α) ≥ lN − Cα .
This achieves the proof of Proposition 19.11.

5. Dimensional reduction for a general orientation

By using commutator formulas in the spirit of Proposition 4.8 jointly with the esti-

mates of Agmon, one can prove that:

Lemma 19.15. Let k ≥ 0 and C0 > 0. There exist α0 > 0 and C > 0 such that for all

α ∈ (0, α0) and all eigenpair (λ, ψ) of Lα,β such that λ ≤ C0:

‖τ kψ − τ kψ
θ
‖ ≤ Cα1/2‖ψ‖ ,

with

ψ
θ
(τ, ϕ) =

1

2π

∫ 2π

0

ψ(τ, θ, ϕ) dθ .

We also get an approximation of Dtψ.

Lemma 19.16. Let C0 > 0. There exist α0 > 0 and C > 0 such that for all α ∈ (0, α0)

and all eigenpair (λ, ψ) of Lα,β such that λ ≤ C0, we have:

‖Dτψ −Dτψθ‖ ≤ Cα1/2‖ψ‖ .

The last two lemmas imply the following proposition:

Proposition 19.17. There exist C > 0 and α0 > 0 such that for any α ∈ (0, α0) and all

ψ ∈ EN(α), we have

(19.5.1) Qα,β(ψ) ≥ (1− α)Qmodel
α,β (ψ)− Cα1/2‖ψ‖2,
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where:

Qmodel
α,β (ψ) =∫

P
|Dτψ|2 dµ̃+

1

24

∫
P

cos2(αϕ)τ 2 sin2 β|ψ|2 dµ̃+

∫
P

1

τ 2 sin2(αϕ)
|(Dθ+Aθ,1)ψ|2 dµ̃+‖P3ψ‖2.

The spectral analysis is then reduced to an axisymmetric case.
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Part 6

Waveguides





CHAPTER 20

Magnetic effects in curved waveguides

Hic, ne deficeret, metuens avidusque videndi

Flexit amans oculos, et protinus illa relapsa est.

Bracchiaque intendens prendique et prendere certans

Nil nisi cedentes infelix arripit auras.

Jamque iterum moriens non est de coniuge quicquam

Questa suo (quid enim nisi se quereretur amatam?)

Supremumque vale, quod iam vix auribus ille

Acciperet, dixit revolutaque rursus eodem est.

Metamorphoses, Liber X, Ovidius

In this chapter we prove Theorem 9.2 and we give the main steps in the proof of

Theorem 9.5 which is much more technically involved. In particular we show on this non

trivial example how to establish the norm resolvent convergence (see Lemma 9.8).

1. Two dimensional waveguides

This section is devoted to the proof of Theorem 9.2.

1.1. Proof of the norm resolvent convergence. Let us consider δ ≤ 1 and

K ≥ 2 sup κ2

4
.

A first approximation. We let:

L[2]
ε,δ = L[2]

ε,ε−δAε − ε
−2λDir

1 (ω) +K

and

Lapp,[2]
ε,δ = (i∂s + ε1−δB(s, 0)τ)2 − κ2

4
− ε−2∂2

τ − ε−2λDir
1 (ω) +K .

The corresponding quadratic forms, defined on H1
0(Ω), are denoted by Q[2]

ε,δ and Qapp,[2]
ε,δ

whereas the sesquilinear forms are denoted by B[2]
ε,δ and Bapp,[2]

ε,δ . We can notice that:∣∣∣∣Vε(s, τ)−
(
−κ(s)2

4

)∣∣∣∣ ≤ Cε

so that the operators L[2]
ε,δ and Lapp,[2]

ε,δ are invertible for ε small enough. Moreover there

exists c > 0 such that for all ϕ ∈ H1
0(Ω):

Q[2]
ε,δ(ϕ) ≥ c‖ϕ‖2, Qapp,[2]

ε,δ (ϕ) ≥ c‖ϕ‖2 .
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Let φ, ψ ∈ H1
0(Ω). We have to analyse the difference of the sesquilinear forms:

B[2]
ε,δ(φ, ψ)− Bapp,[2]

ε,δ (φ, ψ) .

We easily get:∣∣∣∣〈Vεφ, ψ〉 − 〈−κ2

4
φ, ψ〉

∣∣∣∣ ≤ Cε‖φ‖‖ψ‖ ≤ C̃ε

√
Q[2]
ε,δ(ψ)

√
Qapp,[2]
ε,δ (φ) .

We must investigate:

〈m−1
ε (i∂s + bA1(s, ετ))m−1/2

ε φ, (i∂s + bA1(s, ετ))m−1/2
ε ψ〉 .

We notice that:

|∂sm−1/2
ε | ≤ Cε, |m−1/2

ε − 1| ≤ Cε .

We have:

|〈m−1
ε (i∂s + bA1(s, ετ))m−1/2

ε φ, (i∂s + bA1(s, ετ))(m−1/2
ε − 1)ψ〉|

≤ Cε‖m−1/2
ε (i∂s + bA1(s, ετ))m−1/2

ε φ‖(‖ψ‖+ ‖m−1/2
ε (i∂s + bA1(s, ετ))ψ‖)

≤ Cε(‖(i∂s + bA1(s, ετ))φ‖+ ‖φ‖)(‖ψ‖+ ‖m−1/2
ε (i∂s + bA1(s, ετ))ψ‖) .

By the Taylor formula, we get (since δ ≤ 1):

(20.1.1) |A1(s, ετ)− εbB(s, 0)τ | ≤ Cbε2 ≤ Cε .

so that:

‖(i∂s + bA1(s, ετ))φ‖ ≤ ‖(i∂s + εbB(s, 0)τ)φ‖+ Cbε2‖φ‖ .
We infer that:

|〈m−1
ε (i∂s + bA1(s, ετ))m−1/2

ε φ, (i∂s + bA1(s, ετ))(m−1/2
ε − 1)ψ〉|

≤ Cε

(
‖φ‖‖ψ‖+ ‖φ‖

√
Q[2]
ε,δ(ψ) + ‖ψ‖

√
Qapp,[2]
ε,δ (φ) +

√
Q[2]
ε,δ(ψ)

√
Qapp,[2]
ε,δ (φ)

)
≤ C̃ε

√
Q[2]
ε,δ(ψ)

√
Qapp,[2]
ε,δ (φ) .

It remains to analyse:

〈m−1
ε (i∂s + bA1(s, ετ))m−1/2

ε φ, (i∂s + bA1(s, ετ))ψ〉 .

With the same kind of arguments, we deduce:

|〈m−1
ε (i∂s+bA1(s, ετ))m−1/2

ε φ, (i∂s+bA1(s, ετ))ψ〉−〈(i∂s+bA1(s, ετ))φ, (i∂s+bA1(s, ετ))ψ〉|

≤ C̃ε

√
Q[2]
ε,δ(ψ)

√
Qapp,[2]
ε,δ (φ) .

We again use (20.1.1) to infer:

〈(i∂s + bA1(s, ετ))φ, (i∂s + bA1(s, ετ))ψ〉 − 〈(i∂s + bA1(s, ετ))φ, (i∂s + bεB(s, 0)τ)ψ〉|

≤ Cε‖(i∂s + bA1(s, ετ))φ‖‖ψ‖. ≤ C̃ε

√
Q[2]
ε,δ(ψ)

√
Qapp,[2]
ε,δ (φ) .
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In the same way, we deduce:

〈(i∂s + bA1(s, ετ))φ, (i∂s + bA1(s, ετ))ψ〉 − 〈(i∂s + bεB(s, 0)τ)φ, (i∂s + bεB(s, 0)τ)ψ〉|

≤ C̃ε

√
Q[2]
ε,δ(ψ)

√
Qapp,[2]
ε,δ (φ) .

We get: ∣∣∣B[2]
ε,δ(φ, ψ)− Bapp,[2]

ε,δ (φ, ψ)
∣∣∣ ≤ Cε

√
Q[2]
ε,δ(ψ)

√
Qapp,[2]
ε,δ (φ) .

By Lemma 9.8, we infer that:

(20.1.2)

∥∥∥∥(L[2]
ε,δ

)−1

−
(
Lapp,[2]
ε,δ

)−1
∥∥∥∥ ≤ C̃ε.

Case δ < 1. The same kind of arguments provides:∣∣∣Bapp,[2]
ε,δ (φ, ψ)− Beff,[2]

ε,δ (φ, ψ)
∣∣∣ ≤ Cε1−δ

√
Qapp,[2]
ε,δ (ψ)

√
Qeff,[2]
ε,δ (φ)

By Lemma 9.8, we get that:∥∥∥∥(Lapp,[2]
ε,δ

)−1

−
(
Leff,[2]
ε,δ

)−1
∥∥∥∥ ≤ C̃ε1−δ .

Case δ = 1. This case is slightly more complicated to analyse. We must estimate the

difference the sesquilinear forms:

Dε(φ, ψ) = Bapp,[2]
ε,1 (φ, ψ)− Beff,[2]

ε,1 (φ, ψ) .

We have:

Dε(φ, ψ) = 〈i∂sφ,B(s, 0)τψ〉+〈B(s, 0)τφ, i∂sψ〉+〈B(s, 0)2τ 2φ, ψ〉−‖τJ1‖2
ω〈B(s, 0)2φ, ψ〉 .

We introduce the projection defined for ϕ ∈ H1
0(Ω):

Π0ϕ = 〈ϕ, J1〉ω J1

and we let, for all ϕ ∈ H1
0(Ω):

ϕ‖ = Π0ϕ, ϕ⊥ = (Id− Π0)ϕ .

We can write:

Dε(φ, ψ) = Dε(φ‖, ψ‖) +Dε(φ‖, ψ⊥) +Dε(φ⊥, ψ‖) +Dε(φ⊥, ψ⊥) .

By using that 〈τJ1, J1〉ω = 0, we get:

Dε(φ‖, ψ‖) = 0 .

Then we have:

(20.1.3) ‖τJ1‖2
ω〈B(s, 0)2φ‖, ψ⊥〉 = 0 , |〈B(s, 0)2τ 2φ‖, ψ⊥〉| ≤ C‖φ‖‖‖ψ⊥‖ .
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Thanks to the min-max principle, we deduce:

(20.1.4)

Qapp,[2]
ε,1 (ψ⊥) ≥ λDir

2 (ω)− λDir
1 (ω)

ε2
‖ψ⊥‖2, Qeff,[2]

ε,1 (φ⊥) ≥ λDir
2 (ω)− λDir

1 (ω)

ε2
‖φ⊥‖2.

Therefore we get:

|〈B(s, 0)2τ 2φ‖, ψ⊥〉| ≤ Cε‖φ‖
√
Qapp,[2]
ε,1 (ψ⊥) .

We have:

Qapp,[2]
ε,1 (ψ) = Qapp,[2]

ε,1 (ψ‖) +Qapp,[2]
ε,1 (ψ⊥) + Bapp,[2]

ε,1 (ψ‖, ψ⊥) + Bapp,[2]
ε,1 (ψ⊥, ψ‖) .

We can write:

Bapp,[2]
ε,1 (ψ‖, ψ⊥) = 〈(i∂s + B(s, 0)τ)ψ‖, (i∂s + B(s, 0)τ)ψ⊥〉 .

We notice that:

(20.1.5) 〈(i∂s)ψ‖, (i∂s)ψ⊥〉 = 0, |〈B(s, 0)τψ‖,B(s, 0)τψ⊥〉| ≤ C‖ψ‖‖‖ψ⊥‖ ≤ C‖ψ‖2.

Moreover we have:

|〈(i∂s)ψ‖,B(s, 0)τψ⊥〉| ≤ C‖(i∂sψ)‖‖‖ψ⊥‖ ≤ C‖i∂sψ‖‖ψ‖ ≤ C̃‖ψ‖2+C̃‖ψ‖
√
Qapp,[2]
ε,1 (ψ) .

The term Bapp,[2]
ε,1 (ψ⊥, ψ‖) can be analysed in the same way so that:

Qapp,[2]
ε,1 (ψ⊥) ≤ Qapp,[2]

ε,1 (ψ) + C‖ψ‖2 + C‖ψ‖
√
Qapp,[2]
ε,1 (ψ) ≤ C̃(‖ψ‖2 +Qapp,[2]

ε,1 (ψ)) .

We infer:

(20.1.6) |〈B(s, 0)2τ 2φ‖, ψ⊥〉| ≤ Cε‖φ‖
(
‖ψ‖+

√
Qapp,[2]
ε,1 (ψ)

)
.

We must now deal with the term

〈i∂sφ‖,B(s, 0)τψ⊥〉 .

We have:

|〈i∂sφ‖,B(s, 0)τψ⊥〉| ≤ C‖i∂sφ‖‖ψ⊥‖
and we easily deduce that:

(20.1.7) |〈i∂sφ‖,B(s, 0)τψ⊥〉| ≤ Cε

√
Qeff,[2]
ε,1 (φ)

(
‖ψ‖+

√
Qapp,[2]
ε,1 (ψ)

)
,

We also get the same kind of estimate by exchanging ψ and φ. Gathering (20.1.3),

(20.1.5), (20.1.6) and (20.1.7), we get the estimate:

|Dε(φ‖, ψ⊥)| ≤ Cε

√
Qapp,[2]
ε,1 (ψ)

√
Qeff,[2]
ε,1 (φ) .

By exchanging the roles of ψ and φ, we can also prove:

|Dε(φ⊥, ψ‖)| ≤ Cε

√
Qapp,[2]
ε,1 (ψ)

√
Qeff,[2]
ε,1 (φ) .
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We must estimate Dε(φ⊥, ψ⊥). With (20.1.4), we immediately deduce that:

|〈B(s, 0)2τ 2φ⊥, ψ⊥〉 − ‖τJ1‖2
ω〈B(s, 0)2φ⊥, ψ⊥〉| ≤ Cε2‖φ‖‖ψ‖ .

We find that:

|〈i∂sφ⊥,B(s, 0)τψ⊥〉| ≤ C‖ψ⊥‖‖i∂sφ‖
and this term can treated as the others. Finally we deduce the estimate:

|Dε(φ, ψ)| ≤ Cε

√
Qapp,[2]
ε,1 (ψ)

√
Qeff,[2]
ε,1 (φ) .

We apply Lemma 9.8 and the estimate (20.1.2) to obtain Theorem 9.2.

1.2. Eigenvalues expansions. Let us now prove Corollary 9.3.

Let us expand the operator L[2]
ε,bAε in formal power series:

L[2]
ε,bAε ∼

∑
j=0

εj−2Lj ,

where

L0 = −∂2
τ , L1 = 0, L2 = (i∂s + τB(s, 0))2 − κ(s)2

4
.

We look for a quasimode in the form of a formal power series:

ψ ∼
∑
j≥0

εjψj

and a quasi-eigenvalue:

γ ∼
∑
j≥0

γjε
j−2 .

We must solve:

(L0 − γ0)u0 = 0 .

We choose γ0 = π2

4
and we take:

ψ0(s, t) = f0(s)J1(τ) ,

with J1(τ) = cos
(
πτ
2

)
. Then, we must solve:

(L0 − γ0)ψ1 = γ1ψ0 .

We have γ1 = 0 and ψ1 = f1(s)J1(τ). Then, we solve:

(20.1.8) (L0 − γ0)ψ2 = γ2u0 − L2u0 .

The Fredholm condition implies the equation:

−∂2
sf +

((
1

3
+

2

π2

)
B(s, 0)2 − κ(s)2

4

)
f0 = T [2]f0 = γ2f0

and we take for γ2 = γ2,n = µn a negative eigenvalue of T [2] and for f0 a corresponding

normalized eigenfunction (which has an exponential decay).
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This leads to the choice:

ψ2 = ψ⊥2 (s, τ) + f2(s)J1(τ) ,

where ψ⊥2 is the unique solution of (20.1.8) which satisfies 〈ψ⊥2 , J1〉τ = 0. We can continue

the construction at any order where this formal series method is used in a semiclassical

context). We write (γj,n, ψj,n) instead of (γj, ψj) to emphasize the dependence on n

(determined in the choice of γ2). We let:

(20.1.9) ΨJ,n(ε) =
J∑
j=0

εjψj,n, and ΓJ,n(ε) =
J∑
j=0

ε−2+jγj,n .

A computation provides:

‖(L[2]
ε,bAε − ΓJ,n(ε))ΨJ,n(ε)‖ ≤ CεJ+1 .

The spectral theorem implies that:

dist(ΓJ,n(ε), spdis(L
[2]
ε,bAε)) ≤ CεJ+1 .

It remains to use the spectral gap given by the approximation of the resolvent in Theo-

rem 9.2 and Corollary 9.3 follows.

2. Three dimensional waveguides

This section is devoted to the proof of Theorem 9.5.

2.1. Expression of the operator in curvilinear coordinates. We will adopt the

following notation.

Notation 20.1. Given an open set U ⊂ Rd and a vector field F = F(y1, · · · , yd) : U → Rd

in dimension d = 2, 3, we will use in our computations the following notation:

curl F =

∂y1F2 − ∂y2F1 if d = 2,

(∂y2F3 − ∂y3F2, ∂y3F1 − ∂y1F3, ∂y1F2 − ∂y2F1) if d = 3.

We recall the relations between A, B and A, B. This can be done in terms of

differential forms. Let us consider the 1-form:

ξA = A1 dx1 + A2 dx2 + A3 dx3 .

We consider Φ the diffeomorphism defined in (9.1.5). The pull-back of ξA by Φ is given

by:

Φ∗ξA = A1 dt1 +A2 dt2 +A3 dt3 .

where A = (dΦ)TA(Φ) since we have x = Φ(t). Then, thanks to Chapter 0, Section 1.2.2,

we get

B = d̃ΦB = det(dΦ)(dΦ)−1B ,
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where d̃Φ denotes the adjugate matrix of dΦ. Let us give an interpretation of the com-

ponents of B.

A straightforward computation provides the following expression for dΦ:

[hT (s)+h2(sin θM2−cos θM3)+h3(− cos θM2−sin θM3), cos θM2+sin θM3,− sin θM2+cos θM3]

so that det dΦ = h and

B23 = h(h2 + h2
2 + h2

3)−1/2B · T (s),

B13 = −hB · (− cos θM2 − sin θM3),

B12 = hB · (− sin θM2 + cos θM3) .

Let us check that L
[3]
ε,bA (whose quadratic form is denoted by Q

[3]
ε,bA) is unitarily equivalent

to L
[3]
ε,bA given in (9.1.7). For that purpose we let

G = (dΦ)TdΦ

and a computation provides:

G =

h2 + h2
2 + h2

3 −h3 −h2

−h3 1 0

−h2 0 1


and:

G−1 =

0 0 0

0 1 0

0 0 1

+ h−2

 1

h3

h2

(1 h3 h2

)
.

We notice that |G| = h2. In terms of quadratic form we write:

Q
[3]
ε,bA(ψ) =

∫
R×(εω)

|(dΦ−1)T(−i∇t + (dΦ)TA(Φ))|2 h dt

and

Q
[3]
ε,bA(ψ) =

∫
R×(εω)

(
|(−i∂t2 + bA2)ψ|2 + |(−i∂t3 + bA3)ψ|2

)
h dt

+

∫
R×(εω)

h−2| (−i∂s + bA1 + h3(−i∂t2 + bA2) + h2(−i∂t3 + bA3))ψ|2 h dt

so that

Q
[3]
ε,bA(ψ)

=

∫
R×(εω)

(
|(−i∂t2 + bA2)ψ|2 + |(−i∂t3 + bA3)ψ|2 + h−2|(−i∂s + bA1 − iθ′∂α +R)ψ|2

)
h dt .
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Since ω is simply connected (and so is Ωε) we may change the gauge and assume that

the vector potential is given by:

A1(s, t2, t3) = −t2t3∂sB23(s, 0, 0)

2
−
∫ t2

0

B12(s, t̃2, t3) dt̃2 −
∫ t3

0

B13(s, 0, t̃3) dt̃3 ,

A2(s, t2, t3) = −t3B23(s, 0, 0)

2
,(20.2.1)

A3(s, t2, t3) = −t2B23(s, 0, 0)

2
+

∫ t2

0

B23(s, t̃2, t3) dt̃2 .

In other words, thanks to the Poincaré lemma, there exists a (smooth) phase function ρ

such that (dΦ)TA(Φ) +∇tρ = A. In particular, we have: Aj(s, 0) = 0, ∂jAj(s, 0) = 0 for

j ∈ {1, 2, 3}.

2.2. Proof of the norm resolvent convergence. Let us consider δ ≤ 1 and

K ≥ 2 sup κ2

4
.

A first approximation. We let:

L[3]
ε,δ = L[3]

ε,ε−δAε − ε
−2λDir

1 (ω) +K

and

Lapp,[3]
ε,δ =

∑
j=2,3

(−iε−1∂τj + bAlin
j,ε)

2 + (−i∂s+ bAlin
1,ε− iθ′∂α)2− κ

2

4
− ε−2∂2

τ − ε−2λDir
1 (ω) +K ,

where:

Alin
j,ε(s, τ) = Aj(s, 0) + ετ2∂2Aj(s, 0) + ετ3∂3Aj(s, 0) .

We recall that A is given by (20.2.1) and that L[3]

ε,ε−δAε is defined in (9.1.9). We have to

analyse the difference of the corresponding sesquilinear forms:

B[3]
ε,δ(φ, ψ)− Bapp,[3]

ε,δ (φ, ψ) .

We leave as an exercise the following estimate:

(20.2.2)
∥∥∥(L[3]

ε,δ)
−1 − (Lapp,[3]

ε,δ )−1
∥∥∥ ≤ C̃ε .

2.2.1. Case δ < 1. This case is similar to the case in dimension 2 since |bAlin
j,ε| ≤ Cε1−δ.

If we let:

Lapp2,[3]
ε,δ =

∑
j=2,3

(−iε−1∂τj)
2 + (−i∂s − iθ′∂α)2 − κ2

4
− ε−2∂2

τ − ε−2λDir
1 (ω) +K ,

we easily get: ∥∥∥(Lapp2,[3]
ε,δ )−1 − (Lapp,[3]

ε,δ )−1
∥∥∥ ≤ C̃ε1−δ .

It remains to decompose the sesquilinear form associated with Lapp2,[3]
ε,δ by using the or-

thogonal projection Π0 and the analysis follows the same lines as in dimension 2.
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2.2.2. Case δ = 1. This case cannot be analysed in the same way as in dimension 2.

Using the explicit expression of the vector potential (20.2.1), we can write our approxi-

mated operator in the form:

Lapp2,[3]
ε,1 =

(
−ε−1i∂τ2 −

B23(s,0,0)
2

τ3

)2

+
(
−ε−1i∂τ3 + B23(s,0,0)

2
τ2

)2

+(−i∂s − iθ′∂α − τ2B12(s, 0, 0)− τ3B13(s, 0, 0))2 − ε−2λDir
1 (ω) +K .

2.2.3. Perturbation theory. Let us introduce the operator on L2(ω) (with Dirichlet

boundary condition) and depending on s:

P2
ε =

(
−ε−1i∂τ2 −

B23(s, 0, 0)

2
τ3

)2

+

(
−ε−1i∂τ3 +

B23(s, 0, 0)

2
τ2

)2

.

Thanks to perturbation theory the lowest eigenvalue ν1,ε(s) of P2
ε is simple and we may

consider an associated L2 normalized eigenfunction uε(s). Let us provide a estimate for

the eigenpair (ν1,ε(s), uε(s)). We have to be careful with the dependence on s in the

estimates. Firstly, we notice that there exist ε0 > 0 and C > 0 such that for all s,

ε ∈ (0, ε0) and all ψ ∈ H1
0(ω):

(20.2.3)

∫
ω

∣∣∣∣(−ε−1i∂τ2 −
B23(s, 0, 0)

2
τ3

)
ψ

∣∣∣∣2 +

∣∣∣∣(−ε−1i∂τ3 +
B23(s, 0, 0)

2
τ2

)
ψ

∣∣∣∣2 dτ

≥ ε−2

∫
ω

|∂τ2ψ|2 + |∂τ3ψ|2 dτ − Cε−1‖ψ‖2.

From the min-max principle we infer that:

(20.2.4) νn,ε(s) ≥ ε−2λDir
n (ω)− Cε−1 .

Let us analyse the corresponding upper bound. Thanks to the Fredholm alternative, we

may introduce Rω the unique function such that:

(20.2.5) (−∆Dir
ω − λDir

1 (ω))Rω = DαJ1, 〈Rω, J1〉ω = 0 .

We use vε = J1 +εB23(s, 0, 0)Rω as test function for P2
ε and an easy computation provides

that there exist ε0 > 0 and C > 0 such that for all s, ε ∈ (0, ε0):∥∥∥∥(P2
ε −

(
ε−2λDir

1 (ω) + B2
23(s, 0, 0)

(
‖τJ1‖2

ω

4
− 〈DαRω, J1〉ω

)))
vε

∥∥∥∥
ω

≤ Cε .

The spectral theorem implies that there exists n(ε, s) ≥ 1 such that:∣∣∣∣νn(ε,s),ε(s)− ε−2λDir
1 (ω)− B2

23(s, 0, 0)

(
‖τJ1‖2

ω

4
− 〈DαRω, J1〉ω

)∣∣∣∣ ≤ Cε .

Due to the spectral gap uniform in s given by (20.2.4) we deduce that there exist ε0 > 0

and C > 0 such that for all s, ε ∈ (0, ε0):∣∣∣∣ν1,ε(s)− ε−2λDir
1 (ω)− B2

23(s, 0, 0)

(
‖τJ1‖2

4
− 〈DαRω, J1〉ω

)∣∣∣∣ ≤ Cε .
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This new information provides:∥∥(P2
ε − ν1,ε(s)

)
vε
∥∥
ω
≤ C̃ε

and thus: ∥∥(P2
ε − ν1,ε(s)

)
(vε − 〈vε, uε〉ωuε)

∥∥
ω
≤ C̃ε .

so that, with the spectral theorem and the uniform gap between the eigenvalues:

‖vε − 〈vε, uε〉ωuε‖ω ≤ Cε3 .

Up to changing uε in −uε, we infer that :

||〈vε, uε〉ω| − ‖vε‖ω| ≤ Cε3, ‖vε − ‖vε‖ωuε‖ω ≤ C̃ε3 .

Therefore we get:

‖uε − ṽε‖ω ≤ Cε3, ṽε =
vε
‖vε‖ω

and this is easy to deduce:

(20.2.6) ‖∇τ2,τ3 (uε − ṽε)‖ω ≤ Cε3 .

2.2.4. Projection arguments. We shall analyse the difference of the sesquilinear forms:

Dε(φ, ψ) = Lapp2,[3]
ε,1 (φ, ψ)− Leff,[3]

ε,1 (φ, ψ) .

We write:

Dε(φ, ψ) = Dε,1(φ, ψ) +Dε,2(φ, ψ) ,

where

Dε,1(φ, ψ) = 〈Pεφ,Pεψ〉 −
〈(
−ε−2∆Dir

ω + B2
23(s, 0, 0)

(
‖τJ1‖2

ω

4
− 〈DαRω, J1〉ω

))
φ, ψ

〉
and

Dε,2(φ, ψ) = 〈Mφ, ψ〉 − 〈Meffφ, ψ〉 ,
with:

M = (−i∂s − iθ′∂α − τ2B12(s, 0, 0)− τ3B13(s, 0, 0))
2
,

Meff = 〈(−i∂s − iθ′∂α − B12(s, 0, 0)τ2 − B13(s, 0, 0)τ3)2Id(s)⊗ J1, Id(s)⊗ J1〉ω .
We introduce the projection on uε(s):

Πε,sϕ = 〈ϕ, uε〉ω uε(s)

and, for ϕ ∈ H1
0(Ω), we let:

ϕ‖ε = Πε,sϕ, ϕ⊥ε = ϕ− Πε,sϕ .

We can write the formula:

Dε,1(φ, ψ) = Dε,1(φ‖ε , ψ‖) +Dε,1(φ‖ε , ψ⊥) +Dε,1(φ⊥ε , ψ‖) +Dε,1(φ⊥ε , ψ⊥) ,
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where ψ‖ = Π0ψ = 〈ψ, J1〉ω J1 and ψ⊥ = ψ − ψ‖. Using our mixed decomposition, we

can get the following bound on Dε,1(φ, ψ):

(20.2.7) |Dε,1(φ, ψ)| ≤ Cε

√
Qapp2,[3]
ε,1 (ψ)

√
Qeff,[3]
ε,1 (φ) .

Moreover we easily get:

(20.2.8) |Dε,2(φ, ψ)| ≤ Cε

√
Qapp2,[3]
ε,1 (ψ)

√
Qeff,[3]
ε,1 (φ) .

Combining (20.2.7) and (20.2.8), we infer that:

|Dε(φ, ψ)| ≤ Cε

√
Qapp2,[3]
ε,1 (ψ)

√
Qeff,[3]
ε,1 (φ) .

With Lemma 9.8 we infer:

(20.2.9)

∥∥∥∥(Lapp2,[3]
ε,1

)−1

−
(
Leff,[3]
ε,1

)−1
∥∥∥∥ ≤ Cε .

Finally we deduce Theorem 9.5 from (20.2.2) and (20.2.9).

2.3. Eigenvalues expansions. For the asymptotic expansions of the eigenvalues

claimed in Corollary 9.6, we leave the proof to the reader since it is a slight adaptation

of the proof of Corollary 9.3.
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CHAPTER 21

Spectrum of thin triangles and broken waveguides

O egregiam artem! Scis rotunda metiri,

in quadratum redigis quamcumque acceperis

formam, interualla siderum dicis, nihil est

quod in mensuram tuam non cadat: si ar-

tifex es, metire hominis animum, dic quam

magnus sit, dic quam pusillus sit.

Epistulae morales ad Lucilium, LXXXVIII,

Seneca

This chapter is devoted to the proof of Theorems 9.13 and 9.15.

1. Quasimodes and boundary layer

1.1. From the triangle to the rectangle. We first perform a change of variables

to transform the triangle into a rectangle:

(21.1.1) u = x ∈ (−π
√

2, 0), t =
y

x+ π
√

2
∈ (−1, 1) .

so that Tri is transformed into

(21.1.2) Rec = (−π
√

2, 0)× (−1, 1) .

The operator LTri(h) becomes:

(21.1.3) LRec(h)(u, t; ∂u, ∂t) = −h2
(
∂u −

t

u+ π
√

2
∂t

)2

− 1

(u+ π
√

2)2
∂2
t ,

with Dirichlet boundary conditions on ∂Rec. The equation LTri(h)ψh = βhψh is trans-

formed into the equation

LRec(h)ψ̂h = βhψ̂h with ψ̂h(u, t) = ψh(x, y).

1.2. Quasimodes. We want to construct quasimodes (βh, ψh) for the operator LTri(h)(∂x, ∂y).

It will be more convenient to work on the rectangle Rec with the operator LRec(h)(u, t; ∂u, ∂t).

We introduce the new scales

(21.1.4) s = h−2/3u and σ = h−1u ,
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and we look quasimodes (βh, ψ̂h) in the form of series

(21.1.5) βh ∼
∑
j≥0

βjh
j/3 and ψ̂h(u, t) ∼

∑
j≥0

(
Ψj(s, t) + Φj(σ, t)

)
hj/3

in order to solve LRec(h)ψ̂h = βhψ̂h in the sense of formal series. As will be seen hereafter,

an Ansatz containing the scale h−2/3u alone (like for the Born-Oppenheimer operator

HBO,Tri(h)) is not sufficient to construct quasimodes for LRec(h). Expanding the operator

in powers of h2/3, we obtain the formal series:

(21.1.6) LRec(h)(h2/3s, t;h−2/3∂s, ∂t) ∼
∑
j≥0

L2jh
2j/3 with leading term L0 = − 1

2π2
∂2
t

and in powers of h:

(21.1.7) LRec(h)(hσ, t;h−1∂σ, ∂t) ∼
∑
j≥0

N3jh
j with leading term N0 = −∂2

σ −
1

2π2
∂2
t .

In what follows, in order to finally ensure the Dirichlet conditions on the triangle Tri, we

will require for our Ansatz the boundary conditions, for any j ∈ N:

Ψj(0, t) + Φj(0, t) = 0, −1 ≤ t ≤ 1(21.1.8)

Ψj(s,±1) = 0, s < 0 and Φj(σ,±1) = 0, σ ≤ 0 .(21.1.9)

More specifically, we are interested in the ground energy λ = 1
8

of the Dirichlet

problem for L0 on the interval (−1, 1). Thus we have to solve Dirichlet problems for the

operators N0 − 1
8

and L0 − 1
8

on the half-strip

(21.1.10) Hst = R− × (−1, 1) ,

and look for exponentially decreasing solutions. The situation is similar to that encoun-

tered in thin structure asymptotics with Neumann boundary conditions. The following

lemma shares common features with the Saint-Venant principle, see for example [46, §2].

Lemma 21.1. We denote the first normalized eigenvector of L0 on H1
0((−1, 1)) by c0:

c0(t) = cos

(
πt

2

)
.

Let F = F (σ, t) be a function in L2(Hst) with exponential decay with respect to σ and let

G ∈ H3/2((−1, 1)) be a function of t with G(±1) = 0. Then there exists a unique γ ∈ R
such that the problem(

N0 −
1

8

)
Φ = F in Hst, Φ(σ,±1) = 0, Φ(0, t) = G(t) + γc0(t) ,

admits a (unique) solution in H2(Hst) with exponential decay. There holds

γ = −
∫ 0

−∞

∫ 1

−1

F (σ, t)σc0(t) dσdt−
∫ 1

−1

G(t) c0(t) dt .

The following two lemmas are consequences of the Fredholm alternative.
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Lemma 21.2. Let F = F (s, t) be a function in L2(Hst) with exponential decay with

respect to s. Then, there exist solution(s) Ψ such that:(
L0 −

1

8

)
Ψ = F in Hst, Ψ(s,±1) = 0

if and only if
〈
F (s, ·), c0

〉
t

= 0 for all s < 0. In this case, Ψ(s, t) = Ψ⊥(s, t) + g(s)c0(t)

where Ψ⊥ satisfies
〈
Ψ(s, ·), c0

〉
t
≡ 0 and has also an exponential decay.

Lemma 21.3. Let n ≥ 1. We recall that zAirev(n) is the n-th zero of the reverse Airy

function, and we denote by

g(n) = Airev
(
(4π
√

2)−1/3s+ zAirev(n)
)

the eigenvector of the operator −∂2
s − (4π

√
2)−1s with Dirichlet condition on R− associ-

ated with the eigenvalue (4π
√

2)−2/3zAirev(n). Let f = f(s) be a function in L2(R−) with

exponential decay and let c ∈ R. Then there exists a unique β ∈ R such that the problem:(
−∂2

s −
s

4π
√

2
− (4π

√
2)−2/3zAirev(n)

)
g = f + βg(n) in R−, with g(0) = c ,

has a solution in H2(R−) with exponential decay.

Now we can start the construction of the terms of our Ansatz (21.1.5).

The equations provided by the constant terms are:

L0Ψ0 = β0Ψ0(s, t), N0Φ0 = β0Φ0(s, t)

with boundary conditions (21.1.8)-(21.1.9) for j = 0, so that we choose β0 = 1
8

and

Ψ0(s, t) = g0(s)c0(t). The boundary condition (21.1.8) provides: Φ0(0, t) = −g0(0)c0(t)

so that, with Lemma 21.1, we get g0(0) = 0 and Φ0 = 0. The function g0(s) will be

determined later. Collecting the terms of order h1/3, we are led to:

(L0 − β0)Ψ1 = β1Ψ0 − L1Ψ1 = β1Ψ0, (N0 − β0)Φ1 = β1Φ0 −N1Φ1 = 0

with boundary conditions (21.1.8)-(21.1.9) for j = 1. Using Lemma 21.2, we find β1 = 0,

Ψ1(s, t) = g1(s)c0(t), g1(0) = 0 and Φ1 = 0. Then, we get:

(L0 − β0)Ψ2 = β2Ψ0 − L2Ψ0, (N0 − β0)Φ2 = 0 ,

where L2 = −∂2
s + s

π3
√

2
∂2
t and with boundary conditions (21.1.8)-(21.1.9) for j = 2.

Lemma 21.2 provides the equation in s variable〈
(β2Ψ0 − L2Ψ0(s, ·)), c0

〉
L2( dt)

= 0, s < 0 .

Taking the formula Ψ0 = g0(s)c0(t) into account this becomes

β2g0(s) =

(
−∂2

s −
s

4π
√

2

)
g0(s) .

283



This equation leads to take β2 = (4π
√

2)−2/3zA(n) and for g0 the corresponding eigen-

function g(n). We deduce (L0 − β0)Ψ2 = 0, then get Ψ2(s, t) = g2(s)c0(t) with g2(0) = 0

and Φ2 = 0.

We find:

(L0 − β0)Ψ3 = β3Ψ0 + β2Ψ1 − L2Ψ1, (N0 − β0)Φ3 = 0 ,

with boundary conditions (21.1.8)-(21.1.9) for j = 3. The scalar product with c0 (Lemma

21.2) and then the scalar product with g0 (Lemma 21.3) provide β3 = 0 and g1 = 0. We

deduce: Ψ3(s, t) = g3(s)c0(t), and g3(0) = 0, Φ3 = 0. Finally we get the equation:

(L0 − β0)Ψ4 = β4Ψ0 + β2Ψ2 − L4Ψ0 − L2Ψ2, (N0 − β0)Φ4 = 0 ,

where

L4 =

√
2

π
t∂t∂s −

3

4π4
s2∂2

t ,

and with boundary conditions (21.1.8)-(21.1.9) for j = 4. The scalar product with c0

provides an equation for g2 and the scalar product with g0 determines β4. By Lemma

21.2 this step determines Ψ4 = Ψ⊥4 + c0(t)g4(s) with a non-zero Ψ⊥4 and g4(0) = 0. Since

by construction
〈
Ψ⊥4 (0, ·), c0

〉
L2( dt)

= 0, Lemma 21.1 yields a solution Φ4 with exponential

decay. Note that it also satisfies
〈
Φ4(σ, ·), c0

〉
L2( dt)

= 0 for all σ < 0.

We leave the obtention of the other terms as an exercise.

2. Agmon estimates and projection method

Let us provide the estimates of Agmon which can be proved.

Proposition 21.4. Let Γ0 > 0. There exist h0 > 0, C0 > 0 and η0 > 0 such that for

h ∈ (0, h0) and all eigenpair (λ, ψ) of LTri(h) satisfying |λ− 1
8
| ≤ Γ0h

2/3, we have:∫
Tri

eη0h−1|x|3/2
(
|ψ|2 + |h2/3∂xψ|2

)
dx dy ≤ C0‖ψ‖2 .

Proposition 21.5. Let Γ0 > 0. There exist h0 > 0, C0 > 0 and ρ0 > 0 such that for

h ∈ (0, h0) and all eigenpair (λ, ψ) of LTri(h) satisfying |λ− 1
8
| ≤ Γ0h

2/3, we have:∫
Tri

(x+ π
√

2)−ρ0/h
(
|ψ|2 + |h ∂xψ|2

)
dx dy ≤ C0‖ψ‖2 .

Let us consider the first N0 eigenvalues of LRec(h) (shortly denoted by λn). In each

corresponding eigenspace, we choose a normalized eigenfunction ψ̂n so that 〈ψ̂n, ψ̂m〉 = 0

if n 6= m. We introduce:

EN0(h) = span(ψ̂1, . . . , ψ̂N0) .

Let us define Q0
Rec the following quadratic form:

Q0
Rec(ψ̂) =

∫
Rec

(
1

2π2
|∂tψ̂|2 −

1

8
|ψ̂|2

)
(u+ π

√
2) dudt ,
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associated with the operator L0
Rec = Idu ⊗

(
− 1

2π2∂
2
t − 1

8

)
on L2(Rec, (u + π

√
2)dudt). We

consider the projection on the eigenspace associated with the eigenvalue 0 of − 1
2π2∂

2
t − 1

8
:

(21.2.1) Π0ψ̂(u, t) =
〈
ψ̂(u, ·), c0

〉
t
c0(t) ,

where we recall that c0(t) = cos
(
π
2
t
)
. We can now state a first approximation result:

Proposition 21.6. There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and all

ψ̂ ∈ EN0(h):

0 ≤ Q0
Rec(ψ̂) ≤ Ch2/3‖ψ̂‖2

and

‖(Id− Π0)ψ̂‖+ ‖∂t(Id− Π0)ψ̂‖ ≤ Ch1/3‖ψ̂‖ .
Moreover, Π0 : EN0(h)→ Π0(EN0(h)) is an isomorphism.

We have already noticed that the quadratic form of the Dirichlet Laplacian on Tri is

bounded from below by the Born-Oppenheimer approximation:

QTri,h(ψ) ≥
∫

Tri

h2|∂xψ|2 +
π2

4(u+ π
√

2)2
|ψ|2 dx ,

so that, by convexity

QTri,h(ψ) ≥
∫

Tri

h2|∂xψ|2 +
1

8

(
1− 2x

π
√

2

)
|ψ|2 dx .

It remains to change the variables and replace ψ by Π0ψ when ψ is in the span generated

by the first eigenfunctions and this is then enough to deduce Theorem 9.13.

3. Reduction of the broken waveguide to the triangle

In this section, we prove Theorem 9.15 (in fact, we restrain our attention to the

first two terms). For that purpose, we first state Agmon estimates to show that the

first eigenfunctions are essentially living in the triangle Tri so that we can compare the

problem in the whole guide with the triangle.

Proposition 21.7. Let (λ, ψ) be an eigenpair of LGui(h) such that |λ− 1
8
| ≤ Ch2/3. There

exist α > 0, h0 > 0 and C > 0 such that for all h ∈ (0, h0), we have:∫
x≥0

eαh
−1x
(
|ψ|2 + |h∂xψ|2

)
dx dy ≤ C‖ψ‖2 .

Proof. The proof is left to the reader, the main ingredients being the IMS formula

and the fact that HBO,Gui is a lower bound of LGui(h) in the sense of quadratic forms. See

also [48, Proposition 6.1] for a more direct method. �

We can now achieve the proof of Theorem 9.15. Let ψhn be an eigenfunction associated

with λGui,n(h) and assume that the ψhn are orthogonal in L2(Ω), and thus for the bilinear

form BGui,h associated with the operator LGui(h).
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We choose ε ∈ (0, 1
3
) and introduce a smooth cutoff χhat the scale h1−ε for positive x

χh(x) = χ(xhε−1) with χ ≡ 1 if x ≤ 1
2
, χ ≡ 0 if x ≥ 1

and we consider the functions χhψhn. We denote:

EN0(h) = span(χhψh1 , . . . , χ
hψhN0

) .

We have:

QGui,h(ψ
h
n) = λGui,n(h)‖ψhn‖2

and deduce by the Agmon estimates of Proposition 21.7:

QGui,h(χ
hψhn) =

(
λGui,n(h) +O(h∞)

)
‖χhψhn‖2 .

In the same way, we get the ”almost”-orthogonality, for n 6= m:

BGui,h(χ
hψhn, χ

hψhm) = O(h∞) .

We deduce, for all v ∈ EN0(h):

QGui,h(v) ≤
(
λGui,N0(h) +O(h∞)

)
‖v‖2 .

We can extend the elements of EN0(h) by zero so thatQGui,h(v) = QTriε,h(v) for v ∈ EN0(h)

where Triε,h is the triangle with vertices (−π
√

2, 0), (h1−ε, 0) and (h1−ε, h1−ε + π
√

2). A

dilation reduces us to: (
1 +

h1−ε

π
√

2

)−2

(−h2∂2
x̃ − ∂2

ỹ)

on the triangle Tri. The lowest eigenvalues of this new operator admits the lower bounds
1
8

+ zA(n)h2/3 − Ch1−ε ; in particular, we deduce:

λGui,N0(h) ≥ 1

8
+ zA(N0)h2/3 − Ch1−ε .

For the converse inequality, it is sufficient to notice that, by monotonicity of the Dirichlet

boundary condition and the min-max principle, we have, for all n ≥ 1,

λGui,n(h) ≤ λTri,n(h) ,

and we apply Theorem 9.13.
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CHAPTER 22

Non linear dynamics in bidimensional waveguides

Pour que le caractère d’un être humain dévoile des qualités

vraiment exceptionnelles, il faut avoir la bonne fortune de

pouvoir observer son action pendant de longues années.

L’homme qui plantait des arbres, Giono

This chapter is devoted to the proof of Theorem 10.10.

1. A priori estimates of the non linearity

1.1. Norm equivalences. Let us first remark that

Pε,1 = (1− εx2κ(x1))−1Dx1 −
iεx2κ

′(x1)

2(1− εx2κ(x1))2
.

Hence, by Assumption 10.7, there exists three positive constants C1, C2, C3 such that,

for all ε ∈ (0, ε0) and for all u ∈ H1
0(S),

(22.1.1) (1− C1ε) ‖∂x1u‖L2 ≤ ‖Pε,1u‖L2 + C2ε‖u‖L2 ≤ (1 + C3ε)‖∂x1u‖L2 + C3ε‖u‖L2 .

Furthermore, the graph norm of Hε is equivalent to the H2 norm for all ε ∈ (0, ε0), with

constants depending on ε. More precisely, we have the following result.

Lemma 22.1. There exist positive constants C4 and C5 such that, for all ε ∈ (0, ε0) and

for all u ∈ H2 ∩ H1
0(S),

C4

(∥∥D2
x1
u
∥∥

L2 +
1

ε2

∥∥(D2
x2
− µ1

)
u
∥∥

L2 + ‖u‖L2

)
≤

(22.1.2)

≤
∥∥∥(Hε −

µ1

ε2

)
u
∥∥∥

L2
+ ‖u‖L2 ≤ C5

(∥∥D2
x1
u
∥∥

L2 +
1

ε2

∥∥(D2
x2
− µ1

)
u
∥∥

L2 + ‖u‖L2

)
.

Proof. To prove the left inequality in (22.1.2), we use standard elliptic estimates.

For u ∈ H2 ∩ H1
0(S), we let

(22.1.3) f =
(
Hε −

µ1

ε2

)
u = P2

ε,1u+ ε−2(D2
x2
− µ1)u

and taking the L2 scalar product of f with D2
x1
u, we get

〈Dx1P2
ε,1u,Dx1u〉L2 + ε−2‖Dx1

(
D2
x2
− µ1

)1/2
u‖2

L2 ≤ ‖f‖L2‖D2
x1
u‖L2 .
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Then we write

〈Dx1P2
ε,1u,Dx1u〉L2 = ‖Pε,1Dx1u‖

2
L2 + 〈[Dx1 ,Pε,1]u,Pε,1Dx1u〉L2

− 〈Pε,1u, [Dx1 ,Pε,1]Dx1u〉L2

and use

(22.1.4) ‖[Dx1 ,Pε,1]u‖L2 ≤ Cε (‖Dx1u‖L2 + ‖u‖L2) ,

together with (22.1.1) and the interpolation estimate ‖Dx1u‖L2 ≤ C‖D2
x1
u‖1/2

L2 ‖u‖1/2

L2 , to

get

〈Dx1P2
ε,1u,Dx1u〉L2 ≥ (1− Cε)‖D2

x1
u‖2

L2 − Cε‖u‖2
L2 .

It follows that

‖D2
x1
u‖L2 ≤ C‖f‖L2 + C‖u‖L2

and then, using (22.1.3) and again (22.1.1),

ε−2
∥∥(D2

x2
− µ1)u

∥∥
L2 ≤ ‖f‖L2 + ‖P2

ε,1u‖L2 ≤ ‖f‖L2 + C‖D2
x1
u‖L2 + C‖u‖L2

≤ C‖f‖L2 + C‖u‖L2 .

This proves the left inequality in (22.1.2). The right inequality can be easily obtained by

using Minkowski inequality, (22.1.1) and (22.1.4). �

1.2. A priori estimates. In this section, we give some results concerning the non-

linear function Wε defined in (10.2.5).

Let us first recall a Sobolev inequality due to Brézis and Gallouët (see the original

paper [31, Lemma 2] and the recent paper [157]).

Lemma 22.2. For all v ∈ H2(R2), we have,

(22.1.5) ‖v‖L∞(R2) ≤
√

2π
(
‖v‖H1(R2)

(
ln(1 + ‖v‖H2(R2))

) 1
2 + 1

)
.

Proof. We write the classical inequality:

‖v‖L∞(R2) ≤ ‖v̂‖L1(R2) ,

and we notice that, for all R ≥ 0,

‖v̂‖L1(R2) =

∫
|ξ|<R

|v̂(ξ)| dξ +

∫
|ξ|≥R

|v̂(ξ)| dξ .

We let < ξ >= (1 + |ξ|2)
1
2 and we have∫

|ξ|<R
|v̂(ξ)| dξ ≤

∫
|ξ|<R

< ξ >−1< ξ > |v̂(ξ)| dξ ≤
(∫
|ξ|<R

1

1 + |ξ|2
dξ

) 1
2

‖v‖H1(R2) ,

and ∫
|ξ|<R

1

1 + |ξ|2
dξ = π ln(1 +R2) .
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Moreover, we can write∫
|ξ|≥R

|v̂(ξ)| dξ ≤
∫
|ξ|≥R

< ξ >−2< ξ >2 |v̂(ξ)| dξ ≤
√

2‖v‖H2(R2)

(∫
|ξ|≥R

1

(1 + |ξ|2)2

) 1
2

,

and ∫
|ξ|≥R

1

(1 + |ξ|2)2
dξ = π(1 +R2)−1 .

We deduce that

‖v‖L∞(R2) ≤ ‖v‖H1(R2)

√
π
(
ln(1 +R2)

) 1
2 + ‖v‖H2(R2)

√
2π(1 +R2)−

1
2 ,

and then we take R = ‖v‖H2(R2) and use ln(1 +R2) ≤ 2 ln(1 +R). �

Then, we can provide some estimates on Wε.

Lemma 22.3. For all ε ∈ (0, ε0), the function Wε is locally Lipschitz continuous on

H2 ∩ H1
0(S): there exists Cε > 0 such that

(22.1.6)

∀u1, u2 ∈ H2 ∩H1
0(S), sup

t∈R
‖Wε(t;u1)−Wε(t;u2)‖H2 ≤ Cε(‖u1‖2

H2 + ‖u2‖2
H2)‖u1− u2‖H2 .

Then, for all M > 0 and for all ε ∈ (0, ε0), there exists a constant Cε(M) > 0 such that,

for all u ∈ H2 ∩ H1
0(S) with ‖u‖H1 ≤M , one has

(22.1.7) sup
t∈R
‖Wε(t;u)‖H2 ≤ Cε(M)

(
1 + log (1 + ‖u‖H2)

)
‖u‖H2 .

Proof. The group e−iτHε , defined thanks to the Stone theorem (see Theorem 1.20),

is unitary on L2(S), H1
0(S) and H2(S) ∩ H1

0(S), if these two last spaces are respectively

equipped with the norms ‖(Hεu)1/2‖L2 and ‖Hεu‖L2 , which are equivalent to the H1 and

H2 norms with ε-dependent constants, by (22.1.2).

We let vj = e−itHεuj and we estimate

‖Wε(t;u1)−Wε(t;u2)‖H2 ≤ Cε‖m−1
ε (|v1|2v1 − |v2|2v2)‖H2 ≤ C ′ε‖|v1|2v1 − |v2|2v2‖H2

where we have used the unitarity of e−itHε for the graph norm ofHε. Then, the conclusion

follows by using the embeddings H2(S) ↪→ L∞(S) and H2(S) ↪→ W1,4(S).

Let us now deal with (22.1.7). We first recall the Gagliardo-Nirenberg inequality1 in

dimension two (see [154, p. 129]):

(22.1.8) ‖v‖2
W1,4 . ‖v‖L∞‖v‖H2 .

1It may be proved by an integration by parts.
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By using continuous extensions from H2(S) to H2(R2), one obtains the same inequality

as in (22.1.5) for u ∈ H2 ∩ H1
0(S). Hence, for all v ∈ H2(S) with ‖v‖H1 ≤M ,

‖|v|2v‖H2 . ‖v3‖L2 + ‖∆(v3)‖L2 . ‖v‖3
L6 + ‖v2∆v‖L2 + ‖v|∇v|2‖L2

. ‖v‖3
H1 + ‖v‖2

L∞‖∆v‖L2 + ‖v‖L∞‖v‖2
W1,4

. C(M) (1 + log(1 + ‖v‖H2)) ‖v‖H2 ,

where we used the Sobolev embedding H1(S) ↪→ L6(S), (22.1.8) and (22.1.5). Finally, for

all u ∈ H2 ∩ H1
0(S) with ‖u‖H1 ≤M , setting v = e−itHεu we get ‖v‖H1 ≤ CεM and

‖Wε(t;u)‖H2 ≤ Cε‖|v|2v‖H2 ≤ Cε(M) (1 + log(1 + ‖v‖H2)) ‖v‖H2

≤ C ′ε(M) (1 + log(1 + ‖u‖H2)) ‖u‖H2 .

This proves (22.1.7) and the proof of the lemma is complete. �

2. Lower bound of the energy and consequences

2.1. Lower bound. We will need the following easy lemma.

Lemma 22.4. For all u ∈ H1(R), we have

(22.2.1) ‖u‖4
L4 ≤ 2‖u‖3

L2‖u′‖L2 .

For all u ∈ H1
0(S), we have

(22.2.2) ‖u‖4
L4 ≤ 4‖u‖2

L2(S)‖∂x1u‖L2(S)‖∂x2u‖L2(S) .

Proof. The proof of (22.2.1) is a consequence of the standard inequality, for any

f ∈ H1(R), ‖f‖2
L∞ ≤ 2‖f‖L2‖f ′‖L2 . To prove (22.2.2), let us recall the following inequality∫
S
|f |2 dx1 dx2 ≤ ‖∂x1f‖L1(S)‖∂x2f‖L1(S), ∀f ∈ W1,1(S) .

Indeed, by density and extension, we may assume that f ∈ C∞0 (R2) and we can write

f(x1, x2) =

∫ x1

−∞
∂x1f(u, x2) du, f(x1, x2) =

∫ x2

−∞
∂x2f(x1, v) dv .

We get

|f(x1, x2)|2 ≤
(∫

R
|∂x1f(u, x2)| du

)(∫ 1

−1

|∂x2f(x1, v)| dv
)

and it remains to integrate with respect to x1 and x2. We apply this inequality to f = u2,

use the Cauchy-Schwarz inequality and (22.2.2) follows. �

Now, we prove a technical lemma on the energy functional.

Lemma 22.5. There exists ε2 ∈ (0, ε0) such that, for all ε ∈ (0, ε2), the energy functional

defined by (10.2.6) satisfies the following estimate. For all M > 0, there exists C0 > 0
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such that, for all ϕ ∈ H1
0(S) with ‖ϕ‖L2 ≤M , one has

(22.2.3) Eε(ϕ) ≥ 1

4
‖∂x1ϕ‖2

L2(S) +

(
3

8ε2
− C0M

4

)
‖∂x2(Id− Π)ϕ‖2

L2(S) − C0M
2 − C0M

6 .

Proof. Remark that

Eε(ϕ) =
1

2

∫
S
|Pε,1ϕ|2 dx1 dx2 +

1

2ε2

〈(
D2
x2
− µ1

)
ϕ, ϕ

〉
L2 +

1

2

∫
S
Vε|ϕ|2 dx1 dx2

+
λ

4

∫
S
m−1
ε |ϕ|4 dx1 dx2 .

Next, recalling that Π1 denotes the projection on the first eigenfunction e1 of D2
x2

, we

easily get

‖ϕ‖4
L4(S) ≤ 8‖Π1ϕ‖4

L4(S) + 8‖(Id− Π1)ϕ‖4
L4(S) .

We may write Π1ϕ(x1, x2) = θ(x1)e1(x2) so that, with (22.2.1),

‖Π1ϕ‖4
L4(S) = γ

∫
R
θ(x1)4 dx1 ≤ 2γ‖θ‖3

L2(R)‖θ′‖L2(R) = 2γ‖Π1ϕ‖3
L2(S)‖∂x1(Π1ϕ)‖L2(S)

≤ 2γ‖ϕ‖3
L2(S)‖∂x1(Π1ϕ)‖L2(S)(22.2.4)

where γ =
∫ 1

−1
e1(x2)4 dx2, and thus, for all η ∈ (0, 1),

‖Π1ϕ‖4
L4(S) ≤ η‖Π1∂x1ϕ‖2

L2(S) + η−1γ2‖ϕ‖6
L2(S) .

Moreover, thanks to (22.2.2), we have, for all η ∈ (0, 1),

‖(Id− Π1)ϕ‖4
L4(S) ≤ 4‖ϕ‖2

L2(S)‖∂x1(Id− Π1)ϕ‖L2(S)‖∂x2(Id− Π1)ϕ‖L2(S)

≤ η‖∂x1(Id− Π1)ϕ‖2
L2(S) + 4η−1‖ϕ‖4

L2(S)‖∂x2(Id− Π1)ϕ‖2
L2(S) .(22.2.5)

Now we remark that, if µ2 = π2 denotes the second eigenvalue of D2
x2

on (−1, 1) with

Dirichlet boundary conditions, we have

(22.2.6)〈(
D2
x2
− µ1

)
ϕ, ϕ

〉
L2(S)

≥
(

1− µ1

µ2

)
‖∂x2(Id− Π1)ϕ‖2

L2(S) =
3

4
‖∂x2(Id− Π1)ϕ‖2

L2(S) .

Therefore, using (22.1.1), (22.2.5), (22.2.6), using that

‖Vε‖L∞ ≤ C , 0 ≤ m−1
ε ≤ 1 + Cε ,

we obtain

Eε(ϕ) ≥ 1

2
(1− Cε)‖∂x1ϕ‖2

L2(S) − C‖ϕ‖2
L2(S) +

3

8ε2
‖∂x2(Id− Π1)ϕ‖2

L2(S)

− 2|λ|(1 + Cε)
(
η‖∂x1ϕ‖2

L2(S) + 4η−1‖ϕ‖4
L2(S) ‖∂x2(Id− Π1)ϕ‖2

L2(S)

)
− C‖ϕ‖6

L2(S)

≥ 1

4
‖∂x1ϕ‖2

L2(S) +

(
3

8ε2
− C‖ϕ‖4

L2(S)

)
‖∂x2(Id− Π1)ϕ‖2

L2(S) − C‖ϕ‖
2
L2(S) − C‖ϕ‖6

L2(S)

where we has chosen η = 1−2Cε
8|λ|(1+Cε)

, which is positive for ε small enough. �
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Proof. It is easy now to deduce Lemma 10.9 from Lemma 22.5. Indeed, consider a

sequence φε0 satisfying Assumption 10.8 and introduce the constants

(22.2.7) ε1(M0) = min

(
ε2,

(
3

16C0M4
0

)1/2
)
.

We deduce from (22.2.3) that, if ε ∈ (0, ε1(M0)), we have

3

16

(
‖∂x1φ

ε
0‖2

L2 +
1

ε2
‖∂x2(Id− Π1)φε0‖2

L2

)
≤ 1

4
‖∂x1φ

ε
0‖2

L2 +

(
3

8ε2
− C0M

4

)
‖∂x2(Id− Π1)φε0‖2

L2

≤ Eε(φε0) + C0M
2
0 + C0M

6
0

≤M1 + C0M
2
0 + C0M

6
0 .(22.2.8)

The conclusion (7.2.9) stems from (22.2.8) by remarking also that

‖∂x2Π1φ
ε
0‖L2 = ‖〈φε0, e1〉L2((−1,1))∂x2e1‖L2 ≤ π

2
‖φε0‖L2 ≤ π

2
M0

and by using the Poincaré inequality

‖(Id− Π1)φε0‖L2(R,H1(−1,1)) ≤
√

1 + π2

π
‖∂x2(Id− Π1)φε0‖L2 .

�

2.2. Global existence.

Proposition 22.6. Let φε0 ∈ H2∩H1
0(S) and let ε ∈ (0, ε0). Then, the following properties

hold:

(i) The problem (10.2.8) admits a unique maximal solution ϕε ∈ C([0, T εmax);H2 ∩
H1

0(S)) ∩ C1([0, T εmax); L2(S)), with T εmax ∈ (0,+∞] that satisfies the following con-

servation laws

‖ϕε(t; ·)‖L2 = ‖φε0‖L2 (mass),(22.2.9)

Eε(ϕε(t; ·)) = Eε(φε0) (nonlinear energy) ,(22.2.10)

where Eε is defined in (10.2.6).

(ii) There exists a constant C1 > 0 such that, if ε < ε2 (given in Lemma 22.5) and if

ε‖φε0‖2
L2 ≤ C1, then T εmax = +∞.

Proof. (i) Let us fix ε ∈ (0, ε0) and analyze in a first step the well-posedness in

H2 ∩ H1
0(S). For φε0 ∈ H2 ∩ H1

0(S), we consider the conjugate problem of (10.2.8)

(given in (10.2.4)) in its Duhamel form

ϕ̃ε(t) = φε0 − i
∫ t

0

(
eisHε(Vε − ε−2µ1)e−isHεϕ̃ε(s) + λWε(s; ϕ̃

ε(s))
)

ds =Wε(ϕ̃
ε)(t) .

For M,T > 0, we consider the complete space

G̃T,M = {C([0, T ];H2 ∩ H1
0(S)) : ∀t ∈ [0, T ], θ(t) ∈ BH2(θ0,M)} .
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The applicationWε is a contraction from G̃T,M to G̃T,M for T small enough. Indeed,

thanks to (22.1.6), there exists Cε > 0 such that for all T > 0, M > 0, t ∈ [0, T ]

and ϕ1, ϕ2 ∈ G̃T,M ,

‖Wε(ϕ1)(t)− ϕ0‖H2 ≤ CεT + CεTM
3 ,

‖Wε(ϕ1)(t)−Wε(ϕ2)(t)‖H2 ≤ (CεT + CεTM
2) sup

t∈[0,T ]

‖ϕ1(t)− ϕ2(t)‖H2 ,

where we have again used the unitarity of eitHε with respect to the graph norm of Hε

and the equivalence between the graph norm of Hε and the H2-norm, for each fixed

ε. Therefore the Banach fixed point theorem insures the existence and uniqueness

of a local in time solution and thus of (10.2.8) for each given ε ∈ (0, ε0). In fact, it is

not difficult to deduce the existence of a maximal existence time T εmax,H2 ∈ (0,+∞]

such that ϕε ∈ C([0, T εmax,H2);H2 ∩H1
0(S))∩C1([0, T εmax,H2); L2(S)) and such that we

have the alternative

(22.2.11) T εmax,H2 = +∞ or lim
t→T ε

max,H2

‖ϕε(t)‖H2 = +∞ .

The conservation of the L2-norm is obtained by considering the scalar product of

the equation with ϕε and then taking the imaginary part. For the conservation of

the energy, we consider the scalar product of the equation with ∂tϕ
ε and take the

real part.

(ii) Thanks to the energy conservation and Assumption (10.2.9) and by using a Sobolev

embedding, we can bound uniformly w.r.t. ε the initial energy. Then, we deduce

from Lemma 22.2.3 that ϕε(t; ·) is uniformly bounded in H1.

From (10.2.8) and (22.1.7) we get

‖∂tϕε‖H2 ≤ Cε
(
1 + log (1 + ‖ϕε(t; ·)‖H2)

)
‖ϕε(t; ·)‖H2 .

It remains to use an argument à la Gronwall. Given a Banach space G, let us

consider a function ϕ ∈ C1([0, T ∗), G) such that for, t ∈ [0, T ∗),

‖ϕ′(t)‖ ≤ C(1 + log(1 + ‖ϕ(t)‖))‖ϕ(t)‖ .

We easily get

‖ϕ(t)‖ ≤ F (t), with F (t) = ‖ϕ0‖+ C

∫ t

0

(1 + log(1 + ‖ϕ(τ)‖))‖ϕ(τ)‖ dτ

and

d

dt
F (t) = C(1 + log(1 + ‖ϕ(t)‖))‖ϕ(t)‖ ≤ C(1 + log(1 + F (t)))F (t) ,

so that
d

dt
log (1 + log(1 + F (t))) ≤ C .

Consequently, we find an estimate of the form

‖ϕ(t)‖ ≤ F (t) ≤ eae
bt

.
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Applying this inequality to ϕε with G = H2(S), one gets a bound for the H2 norm

of ϕε on the interval [0, T εmax,H2), which is a contradiction.

�

The conservation of the energy and Lemma 22.5 imply Theorem 10.10.
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[15] V. Bonnaillie-Noël, M. Dauge. Asymptotics for the low-lying eigenstates of the Schrödinger

operator with magnetic field near corners. Ann. Henri Poincaré 7(5) (2006) 899–931.
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[37] L. Charles, S. Vũ Ngo.c. Spectral asymptotics via the semiclassical Birkhoff normal form. Duke

Math. J. 143(3) (2008) 463–511.

[38] B. Chenaud, P. Duclos, P. Freitas, D. Krejčiř́ık. Geometrically induced discrete spectrum
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[59] P. Duclos, P. Exner, D. Krejčiř́ık. Bound states in curved quantum layers. Comm. Math.

Phys. 223(1) (2001) 13–28.

[60] J. V. Egorov. Canonical transformations and pseudodifferential operators. Trudy Moskov. Mat.
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volume 17 of Sémin. Congr., pages 49–117. Soc. Math. France, Paris 2009.

[92] B. Helffer. The Montgomery model revisited. Colloq. Math. 118(2) (2010) 391–400.

[93] B. Helffer. Spectral theory and its applications. Cambridge University Press 2013.

[94] B. Helffer, A. Kachmar. Eigenvalues for the Robin Laplacian in domains with variable curva-

ture. Preprint. ArXiv:1411.2700 (2015).

[95] B. Helffer, A. Kachmar, N. Raymond. Tunneling for the Robin Laplacian in smooth domains.

In progress (2015).

[96] B. Helffer, Y. A. Kordyukov. Spectral gaps for periodic Schrödinger operators with hyper-

surface magnetic wells: analysis near the bottom. J. Funct. Anal. 257(10) (2009) 3043–3081.

[97] B. Helffer, Y. A. Kordyukov. Semiclassical spectral asymptotics for a two-dimensional mag-

netic Schrödinger operator: the case of discrete wells. In Spectral theory and geometric analysis,

volume 535 of Contemp. Math., pages 55–78. Amer. Math. Soc., Providence, RI 2011.

[98] B. Helffer, Y. A. Kordyukov. Semiclassical spectral asymptotics for a two-dimensional mag-

netic Schrödinger operator II: The case of degenerate wells. Comm. Partial Differential Equations

37(6) (2012) 1057–1095.

[99] B. Helffer, Y. A. Kordyukov. Eigenvalue estimates for a three-dimensional magnetic

Schrödinger operator. Asymptot. Anal. 82(1-2) (2013) 65–89.

[100] B. Helffer, Y. A. Kordyukov. Semiclassical spectral asymptotics for a magnetic schrödinger

operator with non-vanishing magnetic field. In Geometric Methods in Physics: XXXII Workshop,

Bialowieza, Trends in Mathematics, pages 259–278. Birkhäuser, Poland 2015.
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Symétries. Perturbation. Ann. Inst. H. Poincaré Phys. Théor. 42(2) (1985) 127–212.
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[189] S. Vũ Ngo.c. Quantum Birkhoff normal forms and semiclassical analysis. In Noncommutativity

and singularities, volume 55 of Adv. Stud. Pure Math., pages 99–116. Math. Soc. Japan, Tokyo

2009.

[190] J. Wachsmuth, S. Teufel. Effective Hamiltonians for constrained quantum systems. Mem.

Amer. Math. Soc. 230(1083) (2014) vi+83.

[191] J. Weidmann. The virial theorem and its application to the spectral theory of Schrödinger oper-

ators. Bull. Amer. Math. Soc. 73 (1967) 452–456.

[192] A. Weinstein. Symplectic manifolds and their lagrangian submanifolds. ADVAM2 6 (1971) 329–

346.

[193] O. Wittich. L2-homogenization of heat equations on tubular neighborhoods. arXiv:0810.5047

[math.AP] (2008).

[194] M. Zworski. Semiclassical analysis, volume 138 of Graduate Studies in Mathematics. American

Mathematical Society, Providence, RI 2012.

303


	Prolégomènes francophones
	Preface
	Chapter 0. A magnetic story
	1. A magnetic realm 
	1.1. Once upon a time...
	1.2. What is the magnetic Laplacian?
	1.3. Magnetic wells
	1.4. The magnetic curvature
	1.5. Some model operators

	2. A connection with waveguides
	2.1. Existence of a bound state for the Lu-Pan operator
	2.2. A result by Duclos and Exner
	2.3. Waveguides and magnetic fields

	3. General presentation of the book
	3.1. Elements of spectral theory and examples
	3.2. Main theorems
	3.3. Spectral reductions
	3.4. Normal forms philosophy and the magnetic semi-excited states
	3.5. The spectrum of waveguides


	Part 1.  Methods and examples
	Chapter 1. Elements of spectral theory
	1. Spectrum
	1.1. Spectrum of an unbounded operator
	1.2. The example of the magnetic Laplacian

	2. Min-max principle and spectral theorem
	2.1. Statement of the theorems
	2.2. Examples of applications
	2.3. Persson's theorem

	3. Simplicity and Harnack's inequality

	Chapter 2. Examples
	1. Harmonic oscillator
	2. A -interaction
	3. Robin Laplacians
	3.1. Robin Laplacian on an interval
	3.2. Robin Laplacian on a weighted space

	4. De Gennes operator and applications
	4.1. About the de Gennes operator
	4.2. Magnetic wall

	5. Towards analytic families
	5.1. Kato-Rellich's theorem
	5.2. An application to the Lu-Pan operator
	5.3. The return of the Robin Laplacian

	6. Examples of Feynman-Hellmann formulas
	6.1. De Gennes operator
	6.2. Lu-Pan operator (bis)


	Chapter 3. First semiclassical examples
	1. Semiclassical estimate of the number of eigenvalues
	1.1. Two examples
	1.2. Weyl's law in one dimension

	2. Harmonic approximation in dimension one
	3. Helffer-Kordyukov's toy operator

	Chapter 4. From local models to global estimates
	1. A localization formula
	1.1. Partition of unity and localization formula
	1.2. Harmonic approximation in dimension one (bis)
	1.3. Magnetic example

	2. Agmon-Persson estimates
	2.1. Agmon formula
	2.2. Agmon-Persson estimates

	3. Applications
	3.1. Harmonic approximation in dimension one (ter)
	3.2. A model with parameter
	3.3. Pan-Kwek's operator
	3.4. Other applications


	Chapter 5. Birkhoff normal form in dimension one
	1. Symplectic geometry and pseudo-differential calculus
	1.1. A Darboux-Moser-Weinstein result
	1.2. Pseudo-differential calculus

	2. Birkhoff normal form
	2.1. Formal series and homological equations
	2.2. Quantizing
	2.3. Microlocalizing
	2.4. Spectral estimates



	Part 2.  Main theorems
	Chapter 6. Spectral reductions
	1. Vanishing magnetic fields and boundary
	1.1. Why considering vanishing magnetic fields?
	1.2. Montgomery operator
	1.3. Generalized Montgomery operators
	1.4. A broken Montgomery operator
	1.5. Singular limit 0

	2. Magnetic Born-Oppenheimer approximation
	2.1. Electric Born-Oppenheimer approximation
	2.2. Magnetic case

	3. Magnetic WKB expansions: examples
	3.1. WKB analysis and estimates of Agmon
	3.2. WKB expansions for a canonical model
	3.3. Curvature induced magnetic bound states


	Chapter 7. Magnetic wells in dimension two
	1. Vanishing magnetic fields
	1.1. Framework
	1.2. Montgomery operator and rescaling
	1.3. Semiclassical asymptotics with vanishing magnetic fields

	2. Non vanishing magnetic fields
	2.1. Classical dynamics
	2.2. Classical magnetic normal forms
	2.3. Semiclassical magnetic normal forms


	Chapter 8. Boundary magnetic wells in dimension three
	1. Magnetic half-space
	1.1. A toy model
	1.2. A generic model

	2. Magnetic wedge
	2.1.  Geometry and local models
	2.2. Normal form
	2.3. Magnetic wells induced by the variations of a singular geometry

	3. Magnetic cone
	3.1. Why studying magnetic cones?
	3.2. The magnetic Laplacian in spherical coordinates
	3.3. Spectrum of the magnetic cone in the small angle limit


	Chapter 9. Waveguides
	1. Magnetic waveguides
	1.1. The result of Duclos and Exner
	1.2. Waveguides with more geometry
	1.3. Two-dimensional waveguides
	1.4. Three-dimensional waveguides
	1.5. Limiting models and asymptotic expansions
	1.6. Norm resolvent convergence
	1.7. A magnetic Hardy inequality

	2. Magnetic layers
	2.1. Normal form
	2.2. The effective operator

	3. Broken waveguides
	3.1. Semiclassical triangles
	3.2. Broken waveguides


	Chapter 10. On some connected non linear problems
	1. Non linear magnetic eigenvalues
	1.1. Definition of the non linear eigenvalue
	1.2. A result by Esteban and Lions

	2. Non linear dynamics in waveguides


	Part 3.  Spectral reductions
	Chapter 11. Electric Born-Oppenheimer approximation
	1. Quasimodes
	2. Essential spectrum and Agmon estimates
	3. Projection argument
	4. Accurate lower bound
	5. An alternative point of view
	5.1. A general strategy
	5.2. Robin Laplacian in the Born-Oppenheimer approximation


	Chapter 12. Magnetic Born-Oppenheimer approximation
	1. Quasimodes
	2. Rough estimates of the eigenfunctions
	3. Coherent states and microlocalization
	3.1. A first lower bound
	3.2. Localization in the phase space
	3.3. Approximation lemmas


	Chapter 13. Examples of magnetic WKB constructions
	1. Vanishing magnetic fields
	1.1. Renormalization
	1.2. Solving the operator valued eikonal equation
	1.3. Solving the transport equation

	2. Curvature induced magnetic bound states


	Part 4.  Magnetic wells in dimension two
	Chapter 14. Vanishing magnetic fields in dimension two
	1. Normal form
	1.1. A first normal form
	1.2. A second normal form
	1.3. Quasimodes

	2. Agmon estimates
	3. Projection argument

	Chapter 15. Non vanishing magnetic fields
	1. Magnetic Birkhoff normal form
	1.1. Symplectic normal bundle of the characteristic manifold
	1.2. A first normal form
	1.3. Semiclassical Birkhoff normal form
	1.4. Quantizing the formal procedure

	2. Microlocalization
	2.1. Counting the eigenvalues
	2.2. Microlocalization of the eigenfunctions


	Chapter 16. Semiclassical non linear magnetic eigenvalues
	1. About the concentration-compactness principle
	1.1. Concentration-compactness lemma
	1.2. Application of the principle
	1.3. Exponential decay

	2. Proof of the non linear semiclassical asymptotics
	2.1. Upper bound
	2.2. Lower bound



	Part 5.  Boundary magnetic wells in dimension three
	Chapter 17. Magnetic half-space
	1. Quasimodes
	2. Agmon estimates
	2.1. Agmon estimates of first order
	2.2. Agmon estimates of higher order
	2.3. Normal form

	3. Relative polynomial localizations in the phase space
	3.1. Localizations related to the Lu-Pan operator
	3.2. A first approximation of the eigenfunctions

	4. Localization induced by the effective harmonic oscillator
	4.1. Control of the eigenfunctions with respect to the Fourier variable
	4.2. Refined approximation and conclusion


	Chapter 18. Magnetic wedge
	1. Quasimodes
	2. Agmon estimates
	3. Projection method

	Chapter 19. Magnetic cone
	1. Quasimodes in the axisymmetric case
	2. Agmon estimates
	3. Axisymmetry of the first eigenfunctions
	3.1. Dirichlet condition on the axis of the cone
	3.2. Proof of the axisymmetry

	4. Spectral gap in the axisymmetric case 
	4.1. Approximation of the eigenfunctions 
	4.2. Spectral lower bound

	5. Dimensional reduction for a general orientation


	Part 6.  Waveguides
	Chapter 20. Magnetic effects in curved waveguides
	1. Two dimensional waveguides
	1.1. Proof of the norm resolvent convergence
	1.2. Eigenvalues expansions

	2. Three dimensional waveguides
	2.1. Expression of the operator in curvilinear coordinates
	2.2. Proof of the norm resolvent convergence
	2.3. Eigenvalues expansions


	Chapter 21. Spectrum of thin triangles and broken waveguides
	1. Quasimodes and boundary layer
	1.1. From the triangle to the rectangle
	1.2. Quasimodes

	2. Agmon estimates and projection method
	3. Reduction of the broken waveguide to the triangle

	Chapter 22. Non linear dynamics in bidimensional waveguides
	1. A priori estimates of the non linearity
	1.1. Norm equivalences
	1.2. A priori estimates

	2. Lower bound of the energy and consequences
	2.1. Lower bound
	2.2. Global existence


	Bibliography


