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Foreword

The purpose of these notes is to present as exhaustively and pedagogically as possible
some recent mathematical results bearing on the Bose-Einstein condensation phenomenon
observed in ultra-cold atomic gases. One of the numerous theoretical problems posed by
these experiments is the understanding of the link between effective models, describing
the physics with a remarkable precision, and the first principles of quantum mechanics.
The process leading from the fundamental to the effective theories is often called a mean-
field limit, and it has motivated a very large number of investigations in theoretical and
mathematical physics. In this course, we shall focus on one of the methods allowing to
deal with mean-field limits, which is based on de Finetti theorems. The emergence of the
mean-field models will be interpreted as a fundamental consequence of the structure of
physical states under consideration.

This text will touch on subjects from mathematical analysis, probability theory, con-
densed matter physics, ultra-cold atoms physics, quantum statistical mechanics and quan-
tum information. The emphasis will be on the author’s speciality, namely the analytic
aspects of the derivation of equlibrium states of mean-field models. The presentation will
thus have a pronounced mathematical style, but readers should keep in mind the connec-
tion between the questions adressed here and cold atoms physics, in particular as regards
the experiments leading to the observation of Bose-Einstein condensates in the mid 90’s.

Some words about the experiments. Bose-Einstein condensation (BEC) is at the
heart of a rapidly expanding research field since the mid 90’s. The extreme versatility of
cold atoms experiments allows for a direct investigation of numerous questions of funda-
mental physics. For more thorough developments in this direction, I refer the reader to
the literature, in particular to [1, 17, 45, 47, 118, 144, 150, 70, 43] and references therein.
French readers will find very accessible discussions in [46, 35, 40].

The first experimental realizations of BEC took place at the MIT and at Boulder, in
the groups of W. Ketterle on the one hand and E. Cornell-C. Wieman on the other hand.
The 2001 Nobel prize in physics was awarded to Cornell-Wieman-Ketterle for this re-
markable achievement. The possibilities opened up by these experiments for investigating
macroscopic quantum phenomena constitute a cornerstone of contemporary physics.

A Bose-Einstein condensate is made of a large number of particles (alkali atoms usually)
occupying the same quantum state. BEC thus requires that said particles be bosons, i.e.
that they do not satisfy Pauli’s principle which prevents mutliple occupancy of a single
quantum state.

This macroscopic occupancy of a unique low-energy quantum state appears only at very
low temperatures. There exists a critical temperature Tc for the existence of a condensate,
and macroscopic occupancy occurs only for temperatures T < Tc. The existence of such
a critical temperature was theoretically infered in works of Bose and Einstein [18, 61] in
the 1920’s. Important objections were however formulated:

(1) The critical temperature Tc is extremely low, unrealistically so as it seemed in
the 1920’s.

(2) At such a temperature, all known materials should form a solid state, and not be
gaseous as assumed in Bose and Einstein’s papers.
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(3) The argument of Bose and Einstein applies to an ideal gas, neglecting interactions
between particles, which is a serious drawback.

The first objection could be bypassed only in the 1990’s with the advent of powerful
techniques such as laser cooling 1 and evaporative cooling. These allowed to reach tem-
peratures in the micro-Kelvin range in quantum gases trapped by magneto-optics means.
As for the second objection, the answer has to do with the diluteness of the samples:
three-particles collisions necessary to initiate the formation of molecules, and ultimately
of a solid phase are extremely rare in the experiments. One thus has the possibility of
observing a metastable gaseous phase during a sufficiently long time for a condensate to
form.

The third objection is of a more theoretical nature. Most of the material discussed in
these notes is part of a research program (of many authors, see references) whose goal is
to remove that objection. We will thus have the opportunity to discuss it a length in the
sequel.

Many agreeing observations have confirmed the experimental realization of BEC: imag-
ing of the atoms’ distribution in momentum/energy space, interference of condensates,
superfluidity in trapped gases ... The importance thus acquired by the mathematical
models used in the description of this phenomenon has motivated a vast literature de-
voted to their derivation and analysis.

Some mathematical questions raised by experiments. In the presence of BEC,
the gas under consideration can be described by a single wave-functions ψ : Rd 7→ C,
corresponding to the quantum state in which all particles reside. A system of N quantum
particles should normally be described by a N -particle wave-function ΨN : RdN 7→ C.
One thus has to understand how and why can this huge simplification be justified, that is
how the collective behavior of the N particles emerges. The investigation of the precision
of this approximation, whose practical and theoretical consequences are fundamental, is a
task of extreme importance for theoretical and mathematical physicists.

One may ask the following questions:

(1) Can one describ the ground state (that is the equlibrium state at zero temperature)
of an interacting Bose system with a single wave-function ψ ?

(2) Start from a single wave-function and let the system evolve along the natural
dynamics (N -body Schrödinger flow). Is the single wave-function description pre-
served by the dynamics ?

(3) Can one rigorously prove the existence of a critical temperature Tc under which the
finite temperature equilibrium states may be described by a single wave-function ?

These questions are three aspects of the third objection mentioned in the preceding
paragraph. We thus recall that the point is to understand the BEC phenomenon in the
presence of interactions. The case of an ideal gas is essentially trivial, at least for questions
1 and 2.

One should keep in mind that, in the spirit of statistical mechanics, we aim at jus-
tifying the single wave-function description asymptotically in the limit of large particle
numbers, under appropriate assumptions on the model under consideration. Ideally, the
assumptions should reduce to those ensuring that both the N -body model one starts from

11997 Nobel prize in physics: S. Chu-W. Phillips-C. Cohen-Tannoudji.
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and the 1-body model one arrives at are mathematically well-defined. Let us note that,
for interacting quantum particles, the former is always linear, while the latter is always
non-linear.

Many recent results presented in the sequel are generalizations to the quantum case
of better known results of classical statistical mechanics. Related questions indeed occur
also in this simpler context. For pedagogical reasons, some notions on mean-field limits
in classical mechanics will thus be recalled in these notes.

This course deals with question number 1, and we will be naturally lead to develop tools
of intrinsic mathematical interest. One may use essentially two approaches:

• The first one exploits particular properties of certain important physical models.
It thus applies differently to different models, and under often rather restrictive
assumptions, in particular as regards the shape of the inter-particle interactions.
A non-exhaustive list of references using such ideas is [164, 163, 159, 160, 169] for
the classical case, and [14, 126, 166, 83, 168, 118, 116] for the quantum case
• The second one is the object of these lectures. It exploits properties of the set

of admissible states, that is of N -body wave-functions ΨN . That we consider
bosonic particles implies a fundamental symmetry property for these functions.
This approach has the merit of being much more general than the first one, and
in many cases to get pretty close to the “ideally minimal assumptions” for the
validity of the mean-field approximation mentioned before.

A possible interpretation is to see the mean-field limit limit has a parameter
regime where correlations between particles become negligible. We will use very
strongly the key notion of bosonic symmetry. There will be many opportunities to
discuss the literature in details, but let us mention immediately [138, 30, 94, 95,
97, 162] and [68, 69, 146, 151, 106, 108] for applications of these ideas in classical
and quantum mechanics respectively.

The distinction between the two philosophies is of course somewhat artificial since one will
often benefit from borrowing ideas to both, see e.g. [141] for a recent example.

To keep these notes reasonably short, question 2 will not be treated at all, although
a vast literature exists, see e.g. [89, 77, 179, 9, 62, 63, 4, 67, 74, 157, 12, 100, 149] and
references therein, as well as the lecture notes [79, 13]. We note that the quantum de
Finetti theorems that we will discuss in the sequel have recently proved useful in dealing
with question 2, see [4, 5, 6, 34, 33]. The use of classical de Finetti theorems in a dynamic
framework is older [179, 180, 181]

As for question 3, it is a famous open problem in mathematical physics. Very little is
known at a satisfying level of mathematical rigor, but see however [167, 16]. We will touch
on questions raised by taking temperature into account only very briefly in Appendix B,
in a greatly simplified framework. This subject is further studied in the paper [107]

Plan of the course.

These notes are organized as follows:

• A long introduction, Chapter 1, recalls the basic formalism we shall need to give a
precise formulation to the problems we are interested in. We will start with classical
mechanics and then move on to quantum aspects. The question of justifying
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the mean-field approximation for equilibrium states of a given Hamiltonian will
be formulated in both contexts. The proof stategy that will occupy the bulk
of the notes will be described in a purely formal manner, so as to introduce as
quickly as possible the de Finetti theorems that will be our main tools. Similarities
between the classical and quantum frameworks are very strong. Differences show
up essentially when discussing the proofs of the fundamental de Finetti theorems.
• Chapter 2 is essentially independent from the rest of the notes. It contains the

analysis of classical systems: proof of the classical de Finetti theorem (also called
Hewitt-Savage theorem), application to equilibrium states of a classical Hamilton-
ian. The proof of the Hewitt-Savage theorem we will present, due to Diaconis and
Freedman, is purely classical and does not generalize to the quantum case.
• We start adressing quantum aspects in Chapter 3. Two versions (strong and

weak) of the quantum de Finetti theorem are given without proofs, along with
their direct applications to “relatively simple” bosonic systems in the mean-field
regime. Section 3.4 contains a discussion of the various versions of the quantum
de Finetti theorem and describes the proof strategy that we shall follow.
• Chapters 4 and 5 contain the two main steps of the proof of the quantum de Finetti

theorem we choosed to present: respectively “explicit construction and estimates
in finite dimension” and “generalization to infinite dimensions via localization in
Fock space”. The proof should not be seen as a black box: not only the final result
but also the intermediary constructions will be of use in the sequel.
• Equiped with the results of the two previous chapters, we will be able to give in

Chapter 6 the justification of the mean-field approximation for the ground state of
an essentially generic bosonic system. Contrarily to the case treated in Chapter 3,
the quantum de Finetti theorem will not be sufficient in this case, and we will have
to make use some of the ingredients introduced in Chapter 5.
• The mean-field limit is not the only physically relevant one. In Chapter 7 we will

study a dilute regime in which the range of the interactions goes to 0 when N →∞.
In this case one obtains in the limit Gross-Pitaevskii (or non-linear Schrödinger)
functionals with local non-linearities. We will present a strategy for the derivation
of such objects based on the tools of Chapter 4.

The main body of the text is supplemented with two appendices containing each an
unpublished note of Mathieu Lewin and the author.

• Appendix A shows how, in some particular cases, one may use the classical de
Finetti theorem to deal with quantum problems. This strategy is less natural (and
less efficient) than that presented in Chapters 3 and 6, but it has a conceptual
interest.
• Appendix B deviates from the main line of the course since the Hilbert spaces under

consideration will be finite dimensional. In this context, combining a large tem-
perature limit with a mean-field limit, one may obtain a theorem of semi-classical
nature which gives examples of de Finetti measures not encountered previously.
This will be the occasion to mention Berezin-Lieb inequalities and their link with
the considerations of Chapter 4.

Acknowledgements. The motivation to write the french version of these notes came
from the opportunity of presenting the material during a “cours Peccot” at the Collège
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1. Introduction: Problems and Formalism

Here we describe the mathematical objects that will be studied throughout the course.
Our main object of interest will be many-body quantum mechanics, but the analogy with
some questions of classical mechanics is instructive enough for us to also describe that
formalism. Questions of units and dimensionality or systematically ignored to simplify
notation.

1.1. Statistical mechanics and mean-field approximation. For pedagogical reasons
we shall recall some notions on mean-field limits in classical mechanics before going to the
quantum aspects, relevant to the BEC phenomenon. This paragraph aims at fixing nota-
tion and reviewing some basic concepts of statistical mechanics. We will limit ourselves
to the description of the equilibrium states of a classical systems. Dynamic aspects are
voluntarily ignored, and the reader is refered to [79] for a review on these subjects.

Phase space. The state of a classical particle is entirely determined by its position x and
its speed v (or equivalently its momentum p). For a particle living in a domain Ω ⊂ Rd
we thus work in the phase space Ω× Rd, the set of possible positions and momenta. For
a N -particle system we work in ΩN × RdN .

Pure states. We call pure state one where the positions and momenta of all particles are
known exactly. Equilibrium states at zero temperature for example are pure: in classical
mechanics, uncertainty on the state of a system is only due to “thermal noise”.

For a N -particle system, a pure state corresponds to a point

(X;P ) = (x1, . . . , xN ; p1, . . . , pN ) ∈ ΩN × RdN

in phase-space, where the pair (xi; pi) gives the position and momentum of particle number
i. Having in mind the introduction of mixed states in the sequel, we will identify a pure
state with a superposition of Dirac masses

µX;P =
∑
σ∈ΣN

δXσ ;Pσ . (1.1)

This equation takes into account the fact that real particles are indistinguishable. One
can actually not attribute the pair (xi; pi) of position/momentum to any one of the N
particles in particular, whence the sum over the permutation group ΣN in (1.1). Here and
in the sequel our notation is

Xσ = (xσ(1), . . . , xσ(N))

Pσ = (pσ(1), . . . , pσ(N)). (1.2)

Saying that the system is in the state µX;P means that one of the particles has posi-
tion and momentum (xi; pi), i = 1 . . . N , but one cannot specify which one because of
indistinguishability.

Mixed states. At non-zero temperature, that is when some thermal noise is present, one
cannot determine with certainty the state of the system. One in fact looks for a statistical
superposition of pure states, which corresponds to specifyinh the probability that the
system is in a certain pure state. One then speaks of mixed states, which are the convex
cominations of pure states seen as Dirac masses as in Equation (1.1). The set of convex
combinations of pure states of course corresponds to the set of symmetric probability
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measures on phase-space. A general N -particles mixed state is thus a probability measure
µN ∈ Ps(ΩN × RdN ) satisfying

dµN (X;P ) = dµN (Xσ;Pσ) (1.3)

for all permutations σ ∈ ΣN . One interprets µN (X;P ) as the probability density that
particle i has position xi and momentum pi, i = 1 . . . N . Pure states of the form (1.1) are
a particular type of mixed states where the statistical uncertainty is reduced to zero, up
to indistinguishability.

Free energy. The energy of a classical system is specified by the choice of a Hamiltonian,
a function over phase-space. In non-relativistic mechanics, the kinetic energy of a particle
of momentum p is always m|p|2/2. Taking m = 1 to simplify notation, we will consider
an energy of the form

HN (X;P ) :=

N∑
j=1

|pj |2

2
+

N∑
j=1

V (xj) + λ
∑

1≤i<j≤N
w(xi − xj) (1.4)

where V is an external potential (e.g. electrostatic) felt by all particles and w a pair-
interaction potential that we will assume symmetric,

w(−x) = w(x).

The real parameter λ sets the strength of interparticle interactions. We could of course
had three-particles, four-particles etc ... interactions, but this is seldom required by the
physics, and when it is there is no additional conceptual difficulty.

The energy of a mixed state µN ∈ Ps(ΩN × RdN ) is then given by

E [µN ] :=

∫
ΩN×RdN

HN (X;P )dµN (X;P ) (1.5)

and by symmetry of the Hamiltonian this reduces to HN (X;P ) for a pure state of the
form (1.1). At zero temperature, equilibrium states are found by minimizing the energy
functional (1.5):

E(N) = inf
{
E [µN ],µN ∈ Ps(ΩN × RdN )

}
(1.6)

and the infimum (ground state energy) is of course equal to the minimum of the Hamil-
tonian HN . It is attained by a pure state (1.1) where (X;P ) is a minimum point for HN

(in particular P = (0, . . . , 0)).
In presence of thermal noise, one must take the entropy

S[µN ] := −
∫

ΩN×RdN
dµN (X;P ) log(µN (X;P )) (1.7)

into account. This is a measure of the degree of uncertainty on the state of the system.
Note for example that pure states have the lowest possible entropy: S[µN ] = −∞ if µN
if of the form (1.1). At temperature T , one finds the equilibrium state by minimizing the
free-energy functional

F [µN ] = E [µN ]− TS[µN ]

=

∫
ΩN×RdN

HN (X;P )dµN (X;P ) + T

∫
ΩN×RdN

dµN (X;P ) log(µN (X;P )) (1.8)
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which amounts to saying that the more probable states must find a balance between having
a low energy and having a large entropy. We shall denote

F (N) = inf
{
F [µN ],µN ∈ Ps(ΩN × RdN )

}
(1.9)

without specifying the temperature dependence. A minimizer must be a sufficiently regular
probability so that (minus) the entropy is finite

Momentum minimization. In the absence of a prescribed relation between the position and
the momentum distribution of a classical state, the minimization in momentum variables
of the above functionals is in fact trivial. A state minimizing (1.5) is always of the form

µN = δP=0 ⊗
∑
σ∈ΣN

δX=X0
σ

where X0 is a minimum point for HN (X; 0, . . . , 0), i.e. particles are all at rest. We are
thus reduced to looking for the minimum points of HN (X; 0, . . . , 0) as a function of X.

The minimization of (1.8) leads to a Gaussian in momentum variables mutliplied by a
Gibbs state in position variables2

µN =
1

ZP
exp

− 1

2T

N∑
j=1

|pj |2
⊗ 1

ZN
exp

(
− 1

T
HN (X; 0, . . . , 0)

)
.

Momentum variables thus no longer intervene in the minimization of the functionals de-
termining equilibrium states and they will be completely ignored in the sequel. We will
keep the preceding notation for the minimization in position variables:

HN (X) =
N∑
j=1

V (xj) + λ
∑

1≤i<j≤N
w(xi − xj)

E [µN ] =

∫
ΩN

HN (X)dµN (X)

F [µN ] =

∫
ΩN

HN (X)dµN (X) + T

∫
ΩN

dµN (X) log(µN (X)) (1.10)

where µN ∈ Ps(ΩN ) is a symmetric probability measure in position variables only.

Marginals, reduced densities. Given a N -particles mixed state, it is very useful to consider
its marginals, or reduced densities, obtained by integrating out some variables:

µ
(n)
N (x1, . . . , xn) =

∫
ΩN−n

µ(x1, . . . , xn, x
′
n+1, . . . , x

′
N )dx′n+1 . . . dx

′
N ∈ Ps(Ωn). (1.11)

The n−th reduced density µ
(n)
N is interpreted as the probability density for having one

particle at x1, one particle at x2, etc... one particle at xn. In view of the symmetry of
µN , the choice of which N − n variables over which one to integrate in Definition (1.11)
is irrelevant.

2The partition functions ZP and ZN normalize the state in L1.
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A first use of these marginals is a rewriting of the energy using only the first two
marginals3:

E [µN ] = N

∫
Ω
V (x)dµ

(1)
N (x) + λ

N(N − 1)

2

∫∫
Ω×Ω

w(x− y)dµ
(2)
N (x, y)

=

∫∫
Ω×Ω

(
N

2
V (x) +

N

2
V (y) + λ

N(N − 1)

2
w(x− y)

)
dµ

(2)
N (x, y), (1.12)

where we used the symmetry of the Hamiltonian.

Mean-field approximation. Solving the above minimization minimization problems is a
very difficult task when the particle number N gets large. In order to obtain more tractable
theories from which useful information can be extracted, one often has to rely on approx-
imations. The simplest and most well-known of these is the mean-field approximation.
One can introduce it in several ways, the goal being to obtain a self-consistent one-body
problem starting from the N -body problem.

Here we follow the “molecular chaos” point of view on mean-field theory: the approxi-
mation consists in assuming that all particles are independent and identically distributed
(iid). We thus take an ansatz of the form

µN (x1, . . . , xN ) = ρ⊗N (x1, . . . , xN ) =

N∏
j=1

ρ(xj) (1.13)

where ρ ∈ P(Ω) is a one-body probability density describing the typical behavior of one
of the iid particles under consideration.

The mean-field energy and free-energy functionals are obtained by inserting this ansatz
in (1.5) or (1.8). The mean-field energy functional is thus

EMF[ρ] = N−1E [ρ⊗N ] =

∫
Ω
V (x)dρ(x) + λ

N − 1

2

∫∫
Ω×Ω

w(x− y)dρ(x)dρ(y). (1.14)

We shall denote EMF its infimum amongst probability measures. In a similar manner, the
mean-field free energy functional is given by

FMF[ρ] = N−1F [ρ⊗N ]

=

∫
Ω
V (x)dρ(x) + λ

N − 1

2

∫∫
Ω×Ω

w(x− y)dρ(x)dρ(y) + T

∫
Ω
ρ log ρ (1.15)

and its infimum shall be denoted FMF. The term “mean-field” is motivated by the fact
that (1.14) corresponds to having an interaction between the particles’ density ρ and the
self-consistant potential

ρ ∗ w =

∫
Ω
w(.− y)dρ(y)

whose gradient is the so-called mean-field.

3More generally, an energy depending only on a n-body potential may be rewritten by using the n-th
marginal only.
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1.2. Quantum mechanics and Bose-Einstein condensation. After this classical in-
temezzo we can now introduce the quantum objects that are the main theme of this
course. We shall be content with a rapid review of the basic principles of quantum me-
chanics. Other “mathematician-friendly” presentations may be found in [117, 178]. Our
discussion of the relevant concepts is in places voluntarily simplified.

Wave-functions and quantum kinetic energy. One of the basic postulates of quantum me-
chanics is the identification of pure states of a system with normalized vectors of a complex
Hilbert space H. For particles living in the configuration space Rd, the relevant Hilbert
space is L2(Rd), the space of complex square-integrable functions over Rd.

Given a particle in the state ψ ∈ L2(Rd), one identifies |ψ|2 with a probability density:
|ψ(x)|2 gives the probability for the particle to be located at x. We thus impose the
normalization ∫

Rd
|ψ|2 = 1.

We thus see that, even in the case of a pure state, one cannot specify with certainty the
position of the particle. More precisely, one cannot simultaneously specify its position and
its momentum. This uncertainty principle is the direct consequence of another fundamen-
tal postulate: |ψ̂|2 gives the momentum-space probability density of the particle, where ψ̂
is the Fourier transform of ψ.

In quantum mechanis, the (non-relativistic) kinetic energy of a particle is thus given by∫
Rd

|p|2

2
|ψ̂(p)|2dp =

∫
Rd

1

2
|∇ψ(x)|2dx. (1.16)

The fact that the position and momentum of a particle cannot be simultaneously specified
comes from the fact that it is impossible for both |ψ|2 and |ψ̂|2 to converge to a Dirac
mass. A popular way of quantifying this fact is Heisenberg’s uncertainty principle: for all
x0 ∈ Rd (∫

Rd
|∇ψ(x)|2dx

)(∫
Rd
|x− x0|2|ψ(x)|2dx

)
≥ C.

Indeed, the more precisely the particle’s position is known, the smaller the second term of
the left-hand side (for a certain x0). The first term of the left-hand side must then be very
large, which, in view of (1.16) rules out the possibility for the momentum distribution to
be concentrated around a single p0 ∈ Rd.

For many applications however (see [114] for a discussion of this point), this inequality is
not sufficient. A better way of quantifying the uncertainty principle is given by Sobolev’s
inequality (here in its 3D version):∫

R3

|∇ψ|2 + |ψ|2 ≥ C
(∫

R3

|ψ|6
)1/3

.

If the position of the particle is known with precision, |ψ|2 must approach a Dirac mass,
and the right-hand side of the above inequality blows up. So do the integrals (1.16), with
the same interpretation as previously.
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Bosons and Fermions. For a system of N quantum particles lving in Rd, the appropriate
Hilbert space is L2(RdN ) '

⊗N L2(Rd). A pure state is thus a certain Ψ ∈ L2(RdN )
where |Ψ(x1, . . . , xN )|2 is interpreted as the probability density for having particle 1 at x1,
..., particle N at xN . As in classical mechanics, the indistinguishability of the particles
imposes

|Ψ(X)|2 = |Ψ(Xσ)|2 (1.17)

for any permutation σ ∈ ΣN . This condition is necessary for indistinguishable patricles,
but it is in fact not sufficient for quantum particles. To introduce the correct notion, we
denote Uσ the unitary operator interchanging particles according to σ ∈ ΣN :

Uσ u1 ⊗ . . .⊗ uN = uσ(1) ⊗ . . .⊗ uσ(N)

for all u1, . . . , uN ∈ L2(Rd), extended by linearity to L2(RdN ) '
⊗N L2(Rd) (one may

construct a basis with vectors of the form u1 ⊗ . . . ⊗ uN ). For Ψ ∈ L2(RdN ) to describe
indistinguishable particles we have to require that

〈Ψ, AΨ〉L2(RdN ) = 〈UσΨ, AUσΨ〉L2(RdN ) (1.18)

for any bounded operator A acting on L2(RdN ). Details would lead us to far, but suffice
it say that condition (1.18) corresponds to asking that any measure (corresponding to an
observable A) on the system must be independent of the particles’ labeling. In classical
mechanics, all possible measurements correspond to bounded functions on phase-space
and thus (1.3) alone guarantees the invariance of observations under particle exchanges.
In quantum mechanics, observables corresponds to bounded operators on the ambiant
Hilbert space, and one must thus impose the stronger condition (1.18).

An important consequence4 of the symmetry condition (1.18) is that a system of in-
distinguishable quantum particles must satisfy one of the following conditions, stronger
than (1.17): either

Ψ(X) = Ψ(Xσ) (1.19)

for all X ∈ RdN and σ ∈ ΣN , or

Ψ(X) = ε(σ)Ψ(Xσ) (1.20)

for all X ∈ RdN and σ ∈ ΣN , where ε(σ) is the sign of the permutation σ. One refers
to particles described by a wave-function satisfying (1.19) (respectively (1.20)) as bosons
(respectively fermions). These two types of fundamental particles have a very different
behavior, one speaks of bosonic and fermionic statistics. For example, fermions obey the
Pauli exclusion principle which stipulates that two fermions cannot simultaneously occupy
the same quantum state. One can already see that (1.20) imposes

Ψ(x1, . . . , xi, . . . , xj , . . . , xN ) = −Ψ(x1, . . . , xj , . . . , xi, . . . , xN )

and thus (formally)

Ψ(x1, . . . , xi, . . . , xi, . . . , xN ) = 0

which implies that it is impossible for two fermions to occupy the same position xi. One
may consult [117] for a discussion of Lieb-Thirring inequalities, which are one of the most
important consequences of Pauli’s principle.

4This is an easy but non-trivial exercise.
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Concretely, when studying a quantum system, one has to restrict admissible pure states
to those being either of bosonic of fermionic type. One thus works

• for bosons, in L2
s(RdN ) '

⊗N
s L

2(Rd), the space of symmetric square-integrable

wave-functions, identified with the symmetric tensor product ofN copies of L2(Rd).
• for fermions, in L2

as(RdN ) '
⊗N

as L
2(Rd), the space of anti-symmetric square-

integrable wave-functions, identified with the anti-symmetric tensor product of N
copies of L2(Rd).

As the name indicates, Bose-Einstein condensation can occur only in a bosonic system,
and this course shall thus focus on the first case.

Density matrices, mixed states. We will always identify a pure state Ψ ∈ L2(RdN ) with
the corresponding density matrix, i.e. the orthogonal projector onto Ψ, denoted |Ψ〉 〈Ψ|.
Just as in classical mechanics, mixed states of a system are by definition the statistical
superpositions of pure states, that is the convex combinations of orthongonal projectors.
Using the spectral theorem, it is clear that the set of mixed concïıdes with that of positive
self-adjoint operators having trace 1:

S(L2(RdN )) =
{

Γ ∈ S1(L2(RdN )),Γ = Γ∗,Γ ≥ 0,Tr Γ = 1
}

(1.21)

where S1(H) is the Schatten class [153, 173] of trace-class operators on a Hilbert space H.
To obtain the bosonic (fermionic) mixed states one considers respectively

S(L2
s/as(R

dN )) =
{

Γ ∈ S1(L2
s/as(R

dN )),Γ = Γ∗,Γ ≥ 0,Tr Γ = 1
}
.

Note that in the vocabulary of density matrices, bosonic symmetry consists in imposing

UσΓ = Γ (1.22)

whereas fermionic symmetry corresponds to

UσΓ = ε(σ)Γ.

One sometimes considers the weaker symmetry notion

UσΓU∗σ = Γ (1.23)

which is for example satisfied by the (unphysical) superposition of a bosonic and a
fermionic state.

Energy functionals. The quantum energy functional corresponding to the classical non-
relativistic Hamiltonian (1.4) is obtained by the substitution

p↔ −i∇, (1.24)

consistent with the identification (1.16) for the kinetic energy of a quantum particle. The
quantized Hamiltonian is a (unbounded) operator on L2(RdN ):

HN =

N∑
j=1

(
−1

2
∆j + V (xj)

)
+ λ

∑
1≤i<j≤N

w(xi − xj) (1.25)

where −∆j = (−i∇j)2 corresponds to the Laplacian in the variable xj ∈ Rd. The corre-

sponding energy for a pure state Ψ ∈ L2(RdN ) is

E [Ψ] = 〈Ψ, HNΨ〉L2(RdN ). (1.26)
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By linearity this generalizes to

E [Γ] = TrL2(RdN )[HNΓ]. (1.27)

in the case of a mixed state Γ ∈ S(L2(RdN )). At zero temperature, the equilibrium state
of the system is found by minimizing the above energy functional. In view of the linearity
of (1.27) as a function of Γ and by the spectral theorem, it is clear that one may restrict
the minimization to pure states:

Es/as(N) = inf
{
E [Γ],Γ ∈ S(L2

s/as(R
dN ))

}
= inf

{
E [Ψ],Ψ ∈ L2

s/as(R
dN ), ‖Ψ‖L2(RdN ) = 1

}
.

(1.28)

Here we use again the index s (respectively as) to denoted the bosonic (respectively
fermionic) energy. In the absence of an index, we mean that the minimization is performed
without symmetry constraint. However, because of the symmetry of the Hamiltonian, one
can in this case restrict the minimization to mixed states satisfying (1.23), or to wave-
functions satisfying (1.17).

In the presence of thermal noise, one must add to the energy a term including the
Von-Neumann entropy

S[Γ] = −TrL2(RdN )[Γ log Γ] = −
∑
j

aj log aj (1.29)

where the aj ’s are the eigenvalues (real and positive) of Γ, whose existence is guaranteed
by the spectral theorem. Similarly to the classical entropy (1.7), Von-Neumann’s entropy
is minimised (S[Γ] = 0) by pure states, i.e. orthongonal projectors, which of course only
have one non-zero eigenvalue, equal to 1.

The free-energy functional at temperature T is then

F [Γ] = E [Γ]− TS[Γ] (1.30)

and minimizers are in general mixed states.

Alternative forms for the kinetic energy: magnetic fields and relativistic effects. In the
classical case, we have only introduced the simplest possible form of kinetic energy. The
reason is that for the minimization problems that shall concern us, the kinetic energy plays
no role. Other choices for the relation between p and the kinetic energy5 are nevertheless
possible. In quantum mechanics the choice of this relation is crucial even at equilibrium be-
cause of the non-trivial minimization in momentum variables. Recalling (1.16) and (1.24),
we also see that in the quantum context, different choices will lead to different functional
spaces in which to set the problem.

Apart from the non-relativistic quantum energy already introduced, at least two gener-
alizations are physically interesting:

• When a magnetic field B : Rd 7→ R interacts with the particles, one replaces

p↔ −i∇+A (1.31)

5Other dispersion relations.
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where A : Rd 7→ Rd is the vector potential. Of course B determines A only up to
a gradient. The choice of a particular A satisfying

B = curlA

is called a gauge choice. The kinetic energy operator, taking the Lorentz force into
account, becomes in this case

(p+A)2 = (−i∇+A)2 = − (∇− iA)2 ,

called a magnetic Laplacian.
This formalism is also appropriate for particles in a rotating frame: calling x3 the

rotation axis one must then take A = Ω(−x2, x1, 0) with Ω the rotation frequency.
This corresponds to taking the Coriolis force into account. In this case one must
also replace the potential V (x) by V (x) − Ω2|x|2 to account for the centrifugal
force.

• When one wishes to take relativistic effects into account, the dispersion relation
becomes

Kinetic energy = c
√
p2 +m2c2 −mc2

with m the mass and c the speed of light in vacuum. Choosing units so that c = 1
and recalling (1.24), one is lead to consider the kinetic energy operator√

p2 +m2 −m =
√
−∆ +m2 −m (1.32)

which is easily defined in Fourier variables for example. In the non-relativitic limit
where |p| � m = mc we formally recover the operator −∆ to leading order. A
caricature of (1.32) is sometimes used, corresponding to the “extreme relativistic”
case |p| � mc where one takes√

p2 =
√
−∆ (1.33)

as kinetic energy operator.
• One can of course combine the two generalizations to consider relativistic particles

in a magnetic field, using the operators√
(−i∇+A)2 +m2 −m and |−i∇+A|

based on the relativistic dispersion relation and the correspondance (1.31).

Reduced density matrices. It will be useful to define in the quantum context a concept
similar to the reduced densities of a classical state. Given Γ ∈ S(L2(RdN )), one defines
its n-th reduced density matrix by taking a partial trace on the last N − n particles:

Γ(n) = Trn+1→N Γ, (1.34)

which precisely means that for any bounded operator An acting on L2(Rdn),

TrL2(Rdn)[AnΓ(n)] := TrL2(RdN )[An ⊗ 1⊗N−nΓ]

where 1 is the identity on L2(Rd). The above definition is easily generalized to any
Hilbert space, but in the case of L2, the reader is maybe more familiar with the following
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equivalent definition: We identify Γ with its kernel, i.e. the function Γ(X;Y ) such that
for all Ψ ∈ L2(RdN )

Γ Ψ =

∫
RdN

Γ(X;Y )Ψ(Y )dY.

One can then also identify Γ(n) with its kernel

Γ(n)(x1, . . . , xn; y1, . . . , yn)

=

∫
Rd(N−n)

Γ(x1, . . . , xn, zn+1, . . . , zN ; y1, . . . , yn, zn+1, . . . , zN )dzn+1 . . . dzN .

In the case where Γ has a symmetry, bosonic or fermionic, the choice of the variables over
which we take the partial trace is arbitrary. Let us note that even if one starts from a
pure state, the reduced density matrices are in general mixed states.

Just as in (1.12) one may rewrite the energy (1.27) in the form

E [Γ] = N TrL2(Rd)

[(
−1

2∆ + V
)

Γ(1)
]

+ λ
N(N − 1)

2
TrL2(R2d)[w(x− y)Γ(2)]

= TrL2(R2d)

[(
N

2

(
−1

2∆x + V (x)− 1
2∆y + V (y)

)
+ λ

N(N − 1)

2
w(x− y)

)
Γ(2)

]
.

(1.35)

Mean-field approximation. Even more than in classical mechanics, actually solving the
minimization problem (1.28) for large N is way too costly, and it is often necessary to rely
on approximations. This course aims at studying the simplest of those, which consists in
imitating (1.13) by taking an ansatz for iid particles,

Ψ(x1, . . . , xN ) = u⊗N (x1, . . . , xN ) = u(x1) . . . u(xN ) (1.36)

for a certain u ∈ L2(Rd). Inserting this in the energy functional (1.35) we obtain the
Hartree functional

EH[u] = N−1E [u⊗N ]

=

∫
Rd

(
1

2
|∇u|2 + V |u|2

)
+ λ

N − 1

2

∫∫
Rd×Rd

|u(x)|2w(x− y)|u(y)|2 (1.37)

with the corresponding minimization problem

eH = inf
{
EH[u], ‖u‖L2(Rd) = 1

}
. (1.38)

Note that we have transformed a linear problem for the N -body wave-function (since the
energy functional is quadratic, the variational equation is linear) into a cubic problem for
the one-body wave-function u (the energy functional is quartic and hence the variational
equation will be cubic).

Ansatz (1.36) is a symmetric wave-function, appropriate for bosons. It corresponds to
looking for the ground state in the form of a Bose-Einstein condensate where all particles
are in the state u. Because of Pauli’s principle, fermions can in fact never be completely
uncorrelated in the sense of (1.36). The mean-field ansatz for fermions rather consists in
taking

Ψ(x1, . . . , xN ) = det (uj(xk))1≤j,k≤N
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with orthonormal functions u1, . . . , uN (orbitals of the system). This ansatz (Slater deter-
minant) leads to the Hartree-Fock functional that we shall not discuss in these notes (a
presentation in the same spirit can be found in [158])

Note that for classical particles, the mean-field ansatz (1.13) allows taking a mixed state
ρ. To describe a bosonic system, one always takes a pure state u in the ansatz (1.36),
which calls for the following remarks:

• If one takes a general γ ∈ S(L2(Rd)), the N -body state defined as

Γ = γ⊗N (1.39)

has the bosonic symmetry (1.22) if and only if γ is a pure state (see e.g. [91]),
γ = |u〉〈u|, in which case Γ = |u⊗N 〉〈u⊗N | and we are back to ansatz (1.36).
• In the case of the energy functional (1.35), the minimization problem with and

without bosonic symmetry imposed cöıncide (see e.g. [117, Chapter 3]). One can
then minimize with no constraint and find the bosonic energy. This remains true
when the kinetic energy is (1.32) or (1.33) but is notoriously wrong in the presence
of a magnetic field.
• For some energy functionals, for example in presence of a magnetic or rotation

field, the minimum without bosonic symmetry is strictly lower than the minimum
with symmetry, cf [165]. The ansatz (1.39) is then appropriate to approximate
the problem without bosonic symmetry (in view of the Hamiltonian’s symmetry,
one may always assume the weaker symmetry (1.23)) and one then obtains a
generalized Hartree functional for mixed one-body states γ ∈ S(L2(Rd)):

EH[γ] = TrL2(Rd)

[(
−1

2∆ + V
)
γ
]

+ λ
N − 1

2
TrL2(R2d)

[
w(x− y)γ⊗2

]
. (1.40)

The next two sections introduce, respectively in the classical and quantum setting, the
question that will occupy us in the rest of the course:

Can one justify, in a certain limit, the validity of the mean-field ansätze (1.13) and (1.36)
for the description of equilibrium states of a system of indistinguishable particles ?

1.3. Mean-field approximation and the classical de Finetti theorem.

Is it legitimate to use the simplification (1.13) to determine the equilibrium states of a
classical system ? Experiments show this is the case when the number of particles is large,
which is we mathematically implement by considering the limit N → ∞ of the problem
at hand.

A simple framework in which one can justify the validity of the mean-field approximation
is the so-called mean-fied limit, where one assumes that all terms in the energy (1.5) have
comparable importances. In view of (1.12), this is fulfilled is λ scales as N−1, for example

λ =
1

N − 1
, (1.41)

in which case one may expect the ground state energy per particle N−1E(N) to have a
well-defined limit. The particular choice (1.41) helps in simplifying certain expressions,
but the following considerations apply as soon as λ is of order N−1. We should insist on
the simplification we introduced in looking at the N → ∞ under the assumption (1.41).
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This regime is far from covering all the physically relevant cases. It however already leads
to a very non-trivial and instructive problem.

The goal of this section is to dicuss the mean-field approximation for the zero-
temperature equilibrium states of a classical system. We are thus looking at

E(N) = inf

{∫
ΩN

HNdµN , µN ∈ Ps(ΩN )

}
(1.42)

with

HN (X) =
N∑
j=1

V (xj) +
1

N − 1

∑
1≤i<j≤N

w(xi − xj). (1.43)

We will sketch a formal proof of the validity of the mean-field approximation at the level
of the ground state energy, i.e. we shall argue that

lim
N→∞

E(N)

N
= EMF = inf

{
EMF[ρ], ρ ∈ P(Ω)

}
(1.44)

where the mean-field functional is obtained as in (1.14), taking (1.41) into account:

EMF[ρ] =

∫
Ω
V dρ+

1

2

∫∫
Ω×Ω

w(x− y)dρ(x)dρ(y). (1.45)

Estimate (1.44) for the ground state energy is a first step, and the proof scheme in fact
yields information on the equilibrium states themselves. To simplify the presentation, we
shall postpone the discussion of this aspect, as well as the study of the positive temperature
case, to Chapter 2.

Formally passing to the limit. Here we wish to make the “algebraic” structure of the
problem apparent. The justification of the manipulations we will perform requires analysis
assumptions that we shall discuss in the sequel of the course, but that we ignore for the
moment.

We start by using (1.12) and (1.41) to write

E(N)

N
=

1

2
inf

{∫∫
Ω×Ω

H2(x, y)dµ
(2)
N (x, y), µN ∈ Ps(ΩN )

}
where H2 is the two-body Hamiltonian defined as in (1.43) and µ

(2)
N is the second marginal

of the symmetric probability µN . Since the energy depends only on the second marginal,
one may see the problem we are interested in as a constrained optimization problem for
two-body symmetric probability measures:

E(N)

N
=

1

2
inf

{∫∫
Ω×Ω

H2(x, y)dµ(2)(x, y),µ(2) ∈ P(2)
N

}
with

P(2)
N =

{
µ(2) ∈ Ps(Ω2) | ∃µN ∈ Ps(ΩN ),µ(2) = µ

(2)
N

}
the set of two-body probability measures one can obtain as the marginals of a N -body
state. Assuming the limit exists (first formal argument) we thus obtain

lim
N→∞

E(N)

N
=

1

2
lim
N→∞

inf

{∫∫
Ω×Ω

H2(x, y)dµ(2)(x, y),µ(2) ∈ P(2)
N

}
(1.46)
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and it is very tempting to exchange limit and infimum in this expression (second formal
argument) in order to obtain

lim
N→∞

E(N)

N
=

1

2
inf

{∫∫
Ω×Ω

H2(x, y)dµ(2)(x, y),µ(2) ∈ lim
N→∞

P(2)
N

}
.

We have here observed that the energy functional appearing in (1.46) is actually indepen-
dent of N . All the N -dependence lies in the constrained variational space we consider.
This suggests that a natural limit problem consists in minimizing the same functional but
on the limit of the variational space, as written above.

To give a meaning to the limit of P(2)
N , we observe that the sets P(2)

N form a decreasing
sequence

P(2)
N+1 ⊂ P

(2)
N

as is easily shown by noting that if µ(2) ∈ P(2)
N+1, then for a certain µN+1 ∈ Ps(ΩN+1)

µ(2) = µ
(2)
N+1 =

(
µ

(N)
N+1

)(2)
(1.47)

and of course µ
(N)
N+1 ∈ Ps(ΩN ). One can thus legitimately identify

P(2)
∞ := lim

N→∞
P(2)
N =

⋂
N≥2

P(2)
N

and the natural limit problem is then (modulo the justification of the above formal ma-
nipulations)

lim
N→∞

E(N)

N
= E∞ =

1

2
inf

{∫∫
Ω×Ω

H2(x, y)dµ(2)(x, y),µ(2) ∈ P(2)
∞

}
. (1.48)

This is a variational problem over the set of two-body states that one can obtain as reduced
densities of N -body states, for all N .

A structure theorem. We now explain that actually

E∞ = EMF,

as a consequence of a fundamental result of the structure of the space P(2)
∞ .

Let us take a closer look at this space. Of course it contains the product states of the

form ρ⊗ρ, ρ ∈ P(Ω) since ρ⊗2 is the second marginal of ρ⊗N for all N . By convexity P(2)
∞

also contains all the convex combinations of product states:{∫
ρ∈P(Ω)

ρ⊗2dP (ρ), P ∈ P(P(Ω))

}
⊂ P(2)

∞ (1.49)

with P(P(Ω)) the set of probability measures over P(Ω). In view of (1.12) and (1.45) we
will have justified the mean-field approximation (1.44) if one can show that the infimum

in (1.48) is attained for µ(2) = ρ⊗2 for a certain ρ ∈ P(Ω).
The structure result that allows us to reach this conclusion is the observation that there

is in fact equality in (1.49):{∫
ρ∈P(Ω)

ρ⊗2dP (ρ), P ∈ P(P(Ω))

}
= P(2)

∞ . (1.50)
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Indeed, in view of the the linearity of the energy functional as a function of µ(2), one may
write

E∞ =
1

2
inf

{∫
ρ∈P(Ω)

∫∫
Ω×Ω

H2(x, y)dρ⊗2(x, y)dP (ρ), P ∈ P(P(Ω))

}

= inf

{∫
ρ∈P(Ω)

EMF[ρ]dP (ρ), P ∈ P(P(Ω))

}
= EMF

since it is clear that the infimum over P ∈ P(P(Ω)) is attained for P = δ%MF , a Dirac

mass at %MF, a minimizer of EMF.
We thus see that, if we accept some formal manipulations (that we will be justified

in Chapter 2) to arrive at (1.48), the validity of the mean-field approximation follows by
using very little of the properties of the Hamiltonian, but a lot the structure of symmetric
N -body states, in form of the equality (1.50).

The latter is a consequence of the Hewitt-Savage, or classical de Finetti, theorem [48,
49, 90], recalled in Section 2.1 and proved in Section 2.2. Let us give a fex details for the
familiarized reader. We have to show the reverse inclusion in (1.49). We thus pick some

µ(2) satisfying

µ(2) = µ
(2)
N

for a certain sequence µN ∈ Ps(ΩN ). Recalling (1.47) we may assume that

µ
(N)
N+1 = µN

and we thus have to deal with a sequence (hierarchy) of consistant N -body states. There
then exists (Kolmogorov’s extension theorem) a symmetric probability measure over the
sequences of Ω, µ ∈ Ps(ΩN) such that

µN = µ(N)

where the N -th marginal is defined as in (1.11). The Hewitt-Savage theorem [90] then
ensures the existence of a unique probability measure P ∈ P(P(Ω)) such that

µN =

∫
ρ∈P(Ω)

ρ⊗NdP (ρ).

We obtain the desired result by taking the second marginal.

Chapter 2 contains the details of the above proof scheme. We will specify the adequate
assumptions to put all these considerations on a rigorours basis. It is however worth to
note immediately that this proof (inspired from [138, 94, 95, 30, 97]) used no structure
property of the Hamiltonian (e.g. the attractions can be attractive or repulsive or a
mixture of both) but only properties of compactness and regularity.

1.4. Bose-Einstein condensation and the quantum de Finetti theorem.

We now sketch a strategy for justifying the mean-field approximation at the level of
the ground state energy of a large bosonic system. The method is similar to that for the
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classical case presented above. We consider a mean-field regime by setting λ = (N − 1)−1

and thus work with the Hamiltonian

HN =

N∑
j=1

− (∇j + iA(xj))
2 + V (xj) +

1

N − 1

∑
1≤i<j≤N

w(xi − xj) (1.51)

acting on sur L2
s(RdN ). Compared to the previous situation, we have added a vector

potential A to start emphasizing the generality of the approach. It can for example
correspond to an external magnetic field B = curl A.

The starting point is the bosonic ground state energy defined as previously

E(N) = inf
{

TrL2(RdN ) [HNΓN ] , ΓN ∈ S(L2
s(RdN ))

}
= inf

{
〈ΨN , HNΨN 〉 , ΨN ∈ L2

s(RdN ), ‖ΨN‖L2(RdN ) = 1
}

(1.52)

where we recall that we can minimize over pure or mixed states indifferently.
Our goal is to show that for large N the bosonic energy per particle can be calculated

using Hartree’s functional

lim
N→∞

E(N)

N
= eH (1.53)

where

eH = inf
{
EH[u], u ∈ L2(Rd), ‖u‖L2(Rd) = 1

}
EH[u] =

∫
Rd

(
|(∇+ iA)u|2 + V |u|2

)
+

1

2

∫∫
Rd×Rd

|u(x)|2w(x− y)|u(y)|2dxdy. (1.54)

Since Hartree’s energy is obtained by inserting an anzatz ΨN = u⊗N in the N -body
energy functional, the asymptotic result (1.53) is already a strong indication in favor of
the existence of BEC in the ground state of bosonic system, in the mean-field regime. We
will come back later to the consequences of (1.53) for minimizers. As in the classical case,
the mean-field regime is a very simplified, but already very instructive, model. We will
present in Chapter 7 an anlysis of other physically relevant regimes.

Formally passing to the limit. The first step to obtain (1.53) is as in the classical case to
reduce formally to a simplified limit problem. We start by rewriting the energy using (1.35)
and the assumption λ = (N − 1)−1

E(N)

N
=

1

2
inf
{

TrL2(R2d)

[
H2 Γ(2)

]
, Γ(2) ∈ P(2)

N

}
(1.55)

where

P(2)
N =

{
Γ(2) ∈ S(L2

s(R2d)) | ∃ΓN ∈ S(L2
s(RdN )),Γ(2) = Tr3→N [ΓN ]

}
is the set of ”N -representable” two-body density matrices that are the partial trace of a
N -body state.

Characterizing the set P(2)
N is a famous problem in quantum mechanics, see e.g. [41, 117],

and the formulation (1.55) is thus not particularly useful at fixed N . However, as in the
classical case, the representability problem can be given a satisfactory answer in the limit
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N → ∞, and we shall rely on this fact. We start by noticing that, taking partial traces,
we easily obtain

P(2)
N+1 ⊂ P

(2)
N (1.56)

so that (1.55) can be seen as a variational problem set in a variational set that gets more
and more constrained when N increases.

Assuming again that one can exchange infimum and limit (which is of course purely
formal) we obtain

lim
N→∞

E(N)

N
= E∞ :=

1

2
inf
{

TrL2(R2d)

[
H2 Γ(2),Γ(2) ∈ P(2)

∞

]}
(1.57)

with
P(2)
∞ = lim

N→∞
P(2)
N =

⋂
N≥2

P(2)
N (1.58)

the set of two-body density matrices that are N -representable for all N . As previously we
have used the fact that the energy functional does not depend on N to pass to the limit
formally.

A structure theorem. It so happens that the structure of the set P(2)
∞ is entirely known

and implies the equality
E∞ = eH, (1.59)

which concludes the proof of (1.53), up to the justification of the formal manipulations
we have just performed.

The structure property leading to (1.59) is a quantum version of the de Finetti-Hewitt-

Savage theorem mentioned in the prevous section. Pick a Γ(2) ∈ P(2)
∞ . We then have a

sequence ΓN ∈ S(L2
s(RdN )) such that for all N

Γ(2) = Γ
(2)
N .

Without loss of generality one can assume that this sequence is consistant in the sense
that

Γ
(N)
N+1 = TrN+1[ΓN+1] = ΓN .

The quantum de Finetti theorem of Størmer-Hudson-Moody [182, 91] then guarantees the
existence of a probability measure P ∈ P(SL2(Rd)) on the unit sphere of L2(Rd) such
that

ΓN =

∫
u∈SL2(Rd)

|u⊗N 〉〈u⊗N |dP (u)

and thus

Γ(2) =

∫
u∈SL2(Rd)

|u⊗2〉〈u⊗2|dP (u).

We can then conclude that

E∞ = inf

{
1

2

∫
u∈SL2(Rd)

TrL2(R2d)[H2|u⊗2〉〈u⊗2|]dP (u), P ∈ P(SL2(Rd))

}

= inf

{∫
u∈SL2(Rd)

EH[u]dP (u), P ∈ P(SL2(Rd))

}
= eH
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where the last equality holds because it is clearly optimal tp pick P = δuH with uH a
minimizer of Hartree’s functional.

We thus see that the validity of (1.53) is (at least formally) a consequence of the
structure of the set of bosonic states and only marginally depends on properties of the
Hamiltonian (1.51). The justification (under some assumptions) of the formal manipula-
tions we just performed to arrive at (1.57) (or a variant), as well as the proof the quantum
de Finetti theorem (along with generalizations and corrolaries) are the main purpose of
these notes.

Bose-Einstein condensation. Let us anticipate a bit on the implications of (1.53). We
shall see in the sequel that results of the sort

Γ
(n)
N →

∫
u∈SL2(Rd)

|u⊗n〉〈u⊗n|dP (u) (1.60)

for all fixed n ∈ N when N → ∞, follow very naturally in good cases. Here ΓN is
(the density matrix of) a minimizer of the N -body energy and P a probability measure
concentrated on minimizers of EH. The convergence will take place (still in good cases) in
trace-class norm.

When there is a unique (up to a constant phase) minimizer uH for EH we thus get

Γ
(n)
N → |u⊗nH 〉〈u

⊗n
H | when N →∞, (1.61)

which proves BEC at the level of the ground state. Indeed, BEC means by definition
(see [118] and references therein, in particular [143]) in the existence of an eigenvalue of

order6 1 in the limit N → ∞ in the spectrum of Γ
(1)
N . This is clearly implied by (1.61),

which is in fact stronger.
One can certainly wonder whether stronger results than (1.61) may be obtained. One

could for example think of an approximation in norm like∥∥∥ΨN − u⊗NH

∥∥∥
L2(RdN )

→ 0.

Let us mention immediately that results of this kind are wrong in general. The good
condensation notion is formulated using density matrices, as the following two remarks
show:

• Let us think of a ΨN of the form (⊗s stands for the symmetric tensor product)

ΨN = u
⊗(N−1)
H ⊗s ϕ

where ϕ is orthogonal to uH. Such a state is “almost condensed” since all particles
but one are in the state uH. However, in the the usual L2(RdN ) sense, ΨN is of

course orthogonal to u⊗NH . The two states thus cannot be close in norm, although
there n-body density matrices for n� N will be close.
• Following the same line of ideas, it is natural to look for corrections to the N -body

minimizer under the form

ΨN = ϕ0 u
⊗N
H + u

⊗(N−1)
H ⊗s ϕ1 + u

⊗(N−2)
H ⊗s ϕ2 + . . .+ ϕN

with ϕ0 ∈ C and ϕk ∈ L2
s(Rdk) for k = 1 . . . N . It so happens that above ansatz

is correct if the sequence (ϕk)k=0,...,N is chosen to minimize a certain effective

6Let us recall that all our density matrices are normalized to have trace 1 in this course.
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Hamiltonian on Fock space. The occurence of non-condensed terms implying the
ϕk for k ≥ 1 contribtes to leading order to the norm of ΨN , but not to the reduced
density matrices, which rigorously confirms that the correct notion of condensation
is necessarily based on reduced density matrices. This remark only scratches the
surface of a beautiful subject that we will not discuss here: Bogoliubov’s theory.
We refer the interested reader to [44, 123, 124, 177, 166, 83, 110, 142, 54] for recent
mathematical results in this direction.

A remark concerning symmetry. We have been focusing on the bosonic problem because of
our main physical motivations. The fermionic problem is (at least at present) not covered
by such considerations, but one might be interested in the problem without symmetry
constraint mentioned previously.

In the case where A ≡ 0 in (1.51), the problems with and without bosonic symmetry
cöıncide, but it is not the case in general. One may nevertheless use the same method
as above to study the problem without symmetry constraint. Indeed, because of the
symmetry of the form of the Hamiltonian, one may without loss of generality impose the
weaker symmetry notion (1.23) in the minimization problem. The set of two-body density
matrices appearing in the limit is also covered by the Størmer-Hudson-Moody theorem,
and one then has to minimize an energy amongst two-body density matrices of the form

Γ(2) =

∫
γ∈S(L2(Rd))

γ⊗2dP (γ) (1.62)

where P is now a probability measures on mixed one-particle states, that is on positive self-
adjoint operators over L2(Rd) having trace 1. One deduces in this case the convergence of
the ground state energy per particle to the minimum of the generalized Hartree functional
(cf (1.40))

EH[γ] = TrL2(Rd)

[(
−(∇+ iA)2 + V

)
γ
]

+ λ
N − 1

2
TrL2(R2d)

[
w(x− y)γ⊗2

]
and the minimum is in general different from the minimum of Hartree’s functional (1.54)
(see e.g. [165]).

We already recalled that γ⊗2 can have bosonic symmetry only if γ is a pure state
γ = |u〉〈u|. it is thus clear why the problem without symmetry can in general lead to a
strictly lower energy. In fact the minimizer of (1.40) where there is no magnetic field is
always attained at a pure state, in coherence with the different observations we already
made on symmetry issues. We finally note that taking bosonic symmetry into account
in the mean-field limit is done completely naturally using the different versions of the
quantum de Finetti theorem.
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2. Equilibrium statistical mechanics

In this chapter we shall prove the classical de Finetti theorem informally discussed above
and present applications to problems in classical mechanics.

To simplify the exposition and with a view to applicaions, we will consider particles
living in a domain Ω ⊂ Rd which could be Rd itself. We denote ΩN and ΩN the cartesian
product ofN copies of Ω and the set of sequences of Ω respectively. The space of probability
measures over a set Λ will always be denoted P(Λ). In places we may make the simplifying
assumption that Ω is compact, in which case P(Ω) is compact for the weak convergence
of measures.

2.1. The Hewitt-Savage Theorem.

We mention only in passing the first works on what is now known as de Finetti’s
theorem [48, 49, 93, 56]. In this course we shall starrt from [90] where the classical de
Finetti theorem is proved in its most general form.

Informally, the Hewitt-Savage theorme [90] says that every symmetric probability mea-
sure over ΩN approaches a convex combination of product probability measures when N
gets large. A symmetric probability measures µN has to satisfy

µN (A1 × . . .×AN ) = µN (Aσ(1), . . . , Aσ(N)) (2.1)

for every borelian domains A1, . . . , AN ⊂ Ω and every permutation of N indices σ ∈ ΣN .
We denote Ps(ΩN ) the set of such probability measures. A product measure built on
ρ ∈ P(Ω) is of the form

ρ⊗N (A1, . . . , AN ) = ρ(A1) . . . ρ(AN ) (2.2)

and is of course symmetric. We are thus looking for a result looking like

µN ≈
∫
ρ∈P(Ω)

ρ⊗NdPµN (ρ) when N →∞ (2.3)

where PµN ∈ P(P(Ω)) is a probability measure over probability measures.

A first possibility for giving a meaning to (2.3) consists in taking immediately N =∞,
that is, consider a probability with infinitely many variables µ ∈ P(ΩN) instead of µN ,
which lives on ΩN . This is the natural meaning one should give to a “classical state
of system with infinitely many particles”. We assume a notion of symmetry inherited
from (2.1):

µ(A1, A2, . . .) = µ(Aσ(1), Aσ(2), . . .) (2.4)

for every sequence of borelian domains (Ak)k∈N ⊂ ΩN and every permutation of infin-
itely many indices σ ∈ Σ∞. We denote Ps(ΩN) et set of probability measures over ΩN

satisfying (2.4). Hewitt and Savage [90] proved the following:

Theorem 2.1 (Hewitt-Savage 1955).

Let µ ∈ Ps(ΩN) satisfy (2.4). Let µ(n) be its n-th marginal,

µ(n)(A1, . . . , An) = µ(A1, . . . , An,Ω, . . . ,Ω, . . .). (2.5)

There exists a unique probability measure Pµ ∈ P(P(Ω)) such that

µ(n) =

∫
ρ∈P(Ω)

ρ⊗ndPµ(ρ). (2.6)
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In statistical mechanics, this theorem is applied as a weak version of the formal ap-
proximation (2.3) in the following manner. We start from a classical N -particle state
µN ∈ P(ΩN ) whose marginals

µ
(n)
N (A1, . . . , An) = µ(A1, . . . , An,Ω

N−n) (2.7)

converge7 as measures in P(Ωn), up to a (non-relabeled) subsequence:

µ
(n)
N ⇀∗ µ

(n) ∈ P(Ω(n)). (2.8)

This means that

µ
(n)
N (An)→ µ(n)(An)

for all borelian subset An of Ωn, and thus∫
Ω
fndµ

(n)
N →

∫
Ω
fndµ

(n)

for all bounded continuous function fn from Ωn to R. Modulo a diagonal extraction
argument one may always assume that the convergence (2.8) is along the same subsequence
for any n ∈ N. Testing (2.8) with a Borelian An = Am×Ωm−n for m ≤ n one obtains the
consistency relation (

µ(n)
)(m)

= µ(m), for all m ≤ n (2.9)

which implies that (µ(n))n∈N does describe a system with infinitely many particles. One
may then see (Kolmogorov’s extension theorem) that there exists µ ∈ P(ΩN) such that

µ(n) is its n-th marginal (whence the notation). This measure satisfies (2.4) and we can
thus apply Theorem 2.1 to obtain

µ
(n)
N ⇀∗

∫
ρ∈P(Ω)

ρ⊗ndPµ(ρ) when N →∞ (2.10)

where Pµ ∈ P(P(Ω)). This is a weak but rigorous version of (2.3). In words the n-
th marginal of a classical N-particle state may be approximated by a convex
combination of product states when N gets large and n is fixed . Note that the
measure Pµ appearing in (2.10) does not depend on n.

Of course, one first be able to use a compactness argument in order to obtain (2.8).
This is possible if Ω is compact (then P(Ωn) is compact for the convergence in the sense of
measures (2.8)). More generally, if the physical problem we are interested in has a confining
mechanism, one may show that the marginals of equilibrium states of the system are tight
and deduce (2.8).

As for the proof of Theorem 2.1, there are several possible approaches. We mention
first that the uniqueness part is a rather simple consequence of a density argument in
Cb(P(Ω)), the bounded continuous functions over P(Ω) due to Pierre-Louis Lions [133].

Proof of Theorem 2.1, Uniqueness. We easily verify that monomials of the form

Cb(P(Ω)) 3Mk,φ(ρ) :=

∫
φ(x1, . . . , xk)dρ

⊗k(x1, . . . , xk), k ∈ N, φ ∈ Cb(Ωk) (2.11)

7We denote this convergence ⇀∗ to distinguish it from a norm convergence.
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generate a dense sub-agelbra of Cb(P(Ω)), the space of bounded continuous functions over,
see Section 1.7.3 in [79]. The main point is that for all µ ∈ P(Ω)

Mk,φ(µ)M`,ψ(µ) = Mk+`,φ⊗ ψ(µ).

That this sub-algbra is dense is a consequence of the Stone-Weierstrass theorem.
We thus need only check that if there exists two measures Pµ et P ′µ satisfying (2.5),

then ∫
ρ∈P(Ω)

Mk,φ(ρ)dPµ(ρ) =

∫
ρ∈P(Ω)

Mk,φ(ρ)dP ′µ(ρ)

for all k ∈ N and φ ∈ Cb(P(Ωk)). But this last equation simply means that∫
ρ∈P(Ω)

(∫
Ωk
φ(x1, . . . , xk)dρ

⊗k(x1, . . . , xk)

)
dPµ(ρ)

=

∫
ρ∈P(Ω)

(∫
Ωk
φ(x1, . . . , xk)dρ

⊗k(x1, . . . , xk)

)
dP ′µ(ρ)

which is obvious since both expressions are equal to∫
Ωk
φ(x1, . . . , xk)dµ

(k)(x1, . . . , xk)

by assumption. �

For the existence of the measure, which is the most remarkable point, we mention three
approaches

• The original proof of Hewitt-Savage is geometrical: the set of symmetric probability
measures over ΩN is of course convex. The Choquet-Krein-Milman theorem says
that any point of a convex set is a convex combination of the extremal points. It
thus suffices to show that the extremal points of Ps(ΩN) con̈ıncie with product
measures, corresponding to sequence of marginals of the form (ρ⊗n)n∈N. This
approach is not constructive, and the proof that the sequences (ρ⊗n)n∈N are the
extremal points of Ps(ΩN) is by contradiction.
• An entirely constructive approach is due to Diaconis-Freedman [55]. In this prob-

abilistic argument, Theorem 2.1 is a corollary of an approximation result at finite
N , giving a quantitative version of (2.10).
• Lions developed a new approach for the needs of mean-field game theory [133].

This is a dual point of view where one starts from “weakly dependent continuous
functions” with many variables. A summary of this is in the lecture notes [79,
Section 1.7.3], and a thorough presentation in [139, Chapitre I]. Developments and
generalizations may be found in [88].

It happens that the proof of the Hewitt-Savage theorem following Lions’ point of view
is for a large part a rediscovery of the method of Diaconis and Freedman. In the sequel
we will follow a blend of the two appraoches. See [139] for a more complete discussion.

2.2. The Diaconis-Freedman theorem.

As we just announced, it is in fact possible to give a quantitative version of (2.10)
which implies Theorem 2.1. Apart from it intrinsic interest this result naturally leads to a
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constructive proof of the measure existence therein. The approximation will be quantifid
in the natural norm for probability measures over a set S, the total variation norm:

‖µ‖TV =

∫
S
d|µ| = sup

φ∈Cb(S)

∣∣∣∣∫
Ω
φ dµ

∣∣∣∣ (2.12)

which cöıncides with the L1 for absolutely continuous measures. We shall prove the
following result, taken from [55]:

Theorem 2.2 (Diaconis-Freedman).
Let µN ∈ Ps(ΩN ) be a symmetric probability measure. There exists PµN ∈ P(P(Ω)) such
that, setting

µ̃N :=

∫
ρ∈P(Ω)

ρ⊗NdPµN (ρ) (2.13)

we have ∥∥∥µ(n)
N − µ̃

(n)
N

∥∥∥
TV
≤ 2

n(n− 1)

N
. (2.14)

Proof. We slightly abuse notation by writing µN (Z)dZ instead of dµN (Z) for integrals in
(z1, . . . , zN ) = Z ∈ ΩN . It is anyway already instructive enough to consider the case of an
absolutely continuous measure.

By symmetry of µN we have, for all X = (x1, . . . , xN ) ∈ ΩN ,

µN (X) =

∫
ΩN

µN (Z)
∑
σ∈ΣN

(N !)−1δX=ZσdZ (2.15)

where Zσ is the N -tuple (zσ(1), . . . , zσ(n)). We define

µ̃N (X) =

∫
ΩN

µN (Z)
∑
γ∈ΓN

N−NδX=ZγdZ, (2.16)

where ΓN is the set of all applications8 from {1, . . . , N} to itself and Xγ is defined is the
same manner as Xσ. The precise meaning of (2.16) is∫

ΩN
φ(X)dµ̃N (X) =

∑
γ∈ΓN

N−N
∫

ΩN
φ(Zγ)dµN (Z)

for every regular function φ.
Noting that

∑
γ∈ΓN

N−NδX=Zγ =

N−1
N∑
j=1

δzj

⊗N (x1, . . . , xN ) , (2.17)

one can put (2.16) under the form (2.13) by taking

PµN (ρ) =

∫
ΩN

δρ=ρ̄ZµN (Z)dZ, ρ̄Z(x) :=
N∑
i=1

N−1δzj=x. (2.18)

8Compated to ΣN , ΓN thus allows repeated indices.
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Note in passing that PµN charges only empirical measures (of the form ρ̄Z above). We
now compute the difference between the marginals of µN and µ̃N . Diaconis and Freedman
proceed as follows: of course

µ
(n)
N − µ̃

(n)
N =

∫
ΩN


 ∑
σ∈ΣN

(N !)−1δX=Zσ

(n)

−

∑
γ∈ΓN

N−NδX=Zγ

(n)
µN (Z)dZ,

but  ∑
σ∈ΣN

(N !)−1δX=Zσ

(n)

is the probability law for drowing n balls at random from an urn containing N balls9,
without replacement, whereas ∑

γ∈ΓN

N−NδX=Zγ

(n)

is the probability law for drawing n balls at random from an urn containing N , with
replacement. Intuitively it is clear that when n is small compared to N , the fact that we
replace the balls or not after each drawing does not significantly influence the result. It is
not difficult to obtain quantitative bounds leading to (2.14), see for example [73].

Another way of obtaining (2.14), which seems to originate in [84], is as follows: in view
of (2.16) and (2.17), we have

µ̃
(n)
N (X) =

∫
ΩN

µN (Z)

N−1
N∑
j=1

δzj

⊗n (x1, . . . , xN ) dZ.

We then expand the tensor product and compute the contribution of terms where all

indices are different. By symmetry of µ
(n)
N we obtain

µ̃
(n)
N =

N(N − 1) . . . (N − n+ 1)

Nn
µ

(n)
N + νn (2.19)

where νn is a positive measure on Ωn (all terms obtained by expanding (2.17) are positive).
We thus have

µ
(n)
N − µ̃

(n)
N =

(
1− N(N − 1) . . . (N − n+ 1)

Nn

)
µ

(n)
N − νn (2.20)

and since both terms in the left-hand side are probabilities, we deduce∫
Ωn
dνn =

(
1− N(N − 1) . . . (N − n+ 1)

Nn

)
.

9Labeled z1, . . . , zN .
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Moreover, since the first term of the right-hand side of (2.20) is positive end the second
one negative we obtain by the triangle inequality∫

Ωn
d
∣∣∣µ(n)

N − µ̃
(n)
N

∣∣∣ ≤ (1− N(N − 1) . . . (N − n+ 1)

Nn

)
+

∫
Ωn
dνn

= 2

(
1− N(N − 1) . . . (N − n+ 1)

Nn

)
.

It is then easy to see that

N(N − 1) . . . (N − n+ 1)

Nn
=

n∏
j=1

N − j + 1

N
=

n∏
j=1

(
1− j − 1

N

)

≥
(

1− n− 1

N

)n
≥ 1− n(n− 1)

N
,

which proves (2.14) with C = 2. A better constant C = 1 can be obtained, see [55, 73]. �

The following remark can be useful in applications:

Remark 2.3 (First marginals of the Diaconis-Freedman measure).
We have

µ̃
(1)
N (x) = µ

(1)
N (x) (2.21)

and

µ̃
(2)
N (x1, x2) =

N − 1

N
µ

(2)
N (x1, x2) +

1

N
µ

(1)
N (x1)δx1=x2 . (2.22)

as direct consequences of Definition (2.17). Indeed, using symmetry,

µ̃
(1)
N (x) = N−1

N∑
j=1

∫
ΩN

µN (Z)δzj=xdZ = µ
(1)
N (x)

µ̃
(2)
N (x1, x2) = N−2

∫
ΩN

µN (Z)

 N∑
j=1

δzj=x1

 N∑
j=1

δzj=x2

 dZ

= N−2
∑

1≤i 6=j≤N

∫
ΩN

µN (Z)δzi=x1δzj=x2dZ +N−2
N∑
i=1

∫
ΩN

µN (Z)δzi=x1δzi=x2dZ

=
N − 1

N
µ

(2)
N (x1, x2) +

1

N
µ

(1)
N (x1)δx1=x2 . (2.23)

Higher-order marginals can be obtained by similar but heavier computations. �

As a corollary of the preceding theorem we obtain a simple proof of the existence part
in the Hewitt-Savage theorem:

Proof of Theorem 2.1, Existence. We start with the case where Ω is compact. We apply
Theorem 2.2 to µ(N), obtaining∥∥∥∥∥µ(n) −

∫
ρ∈P(Ω)

ρ⊗ndPN (ρ)

∥∥∥∥∥
TV

≤ Cn
2

N
(2.24)
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for a certain measure PN ∈ P(P(Ω)). When Ω is compact, P(Ω) et P(P(Ω)) also are. We
thus may (up to a subsequence) assume that

PN → P ∈ P(P(Ω))

in the sense of measures and there only remains to pass the N → ∞ limit at fixed n
in (2.24).

When Ω is not compact, we follow an idea of Lions [133] (see also [79]). We want to

ensure that the measure PN obtained by applying the Diaconis-Freedman theorem to µ(N)

converges. For this it suffices to test against a monomial of the form (2.11):∫
P(P(Ω))

Mk,φ(µ)dPN (µ) =

∫
Z∈ΩN

Mk,φ

 1

N

N∑
j=1

δzj

 dµ(N)(Z)

=

∫
Z∈ΩN

∫
X∈Ωk

φ(x1, . . . , xk)

k∏
j=1

 1

N

N∑
j=1

δzj=xk

 dµ(N)(Z)

=

∫
Z∈Ωk

φ(z1, . . . , zk)dµ
(k)(Z) +O(N−1) (2.25)

by a computation similar to that yielding (2.19). The limit (2.25) thus exists for any
monomial Mk,φ, and by density of monomials for a any bounded continuous function over
P(Ω). We then deduce

PN ⇀∗ P

and we can conclude as previously. �

Some remarks before going the applications of Theorems 2.1 and 2.2:

Remark 2.4 (On the Diaconis-Freedman-Lions construction).

(1) We first note that the measure defined by (2.18) is that Lions uses in his approach
of the Hewitt-Savage theorem. Using empirical measures is the canonical way to
construct a measure over P(P(Ω)) given one in Ps(ΩN ). Passing to the limit as
in (2.25) can replace the explicit estimate (2.14) if one is only interested in the
proof of Theorem 2.1. This construction and the combinatorial trick (2.19) are
also used e.g. in [80, 140, 88].

(2) Having an explicit estimate of the form (2.14) at hand is very satisfying and can
prove useful in applications. One might wonder whether the obtained convergence
rate is optimal. Perhaps suprisingly it is. One might have expected a useful
estimate for n� N , but it happens that

√
n� N is optimal, see examples in [55].

(3) The useful formulae (2.23) are useful in practice (see [162] for an application). It

is quite satisfying that µ
(1)
N = µ̃

(1)
N and that µ

(2)
N can be reconstructed using only

µ̃
(2)
N and µ̃

(1)
N .

(4) As a drawback of its generality, the previous construction actually behaves very
badly in many cases. Note that (2.18) charges only empirical measures, which
all have infinite entropy. This causes problem when employing Theorem 2.2 to
the study of a functional with temperature. Moreover, in a situation with strong
repulsive interactions, one typically applies the construction to a measure with

zero probability of having two particles at the same place, µ
(2)
N (x, x) ≡ 0. In this
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case µ̃
(2)
N (x, x) = N−1µ

(1)
N (x) is non-zero and the energy of µ̃N will be infinite if

the interaction potential has a singularity at the origin.
(5) It would be very interesting to have a construction leading to an estimate of the

form (2.14), bypassing the aforementioned inconveniences. For example, is it pos-
sible to guarantee that µ̃N ∈ L1(ΩN ) if µN ∈ L1(ΩN ) ? One might also demand
that the construction leave product measures ρ⊗N invariant, which is not at all
the case for (2.13).

(6) If Ω is replaced by a finite set, say Ω = {1, . . . , d}, one may obtain an error
proportional to dn/N instead of n2/N by using the original proof of Diaconis-
Freedman. One may thus replace (2.14) by∥∥∥µ(n)

N − µ̃
(n)
N

∥∥∥
TV
≤ C

N
min

(
dn, n2

)
. (2.26)

We will not use this point anywhere in the sequel. �

Finally, let us make a separate remark on a possible generalization of the approach
above:

Remark 2.5 (Weakly dependent symmetric N -variables functions.).
In applications (see next section), one is lead to apply de Finetti-like theorems in the

following manner: given a sequence (uN )N∈N of symmetric functions of N variables, we
study the quantity ∫

ΩN
uN (X)dµN (X)

for a symmetric probability measure µN . The results previously discusses imply that if

this happens to depend only on a marginal µ
(n)
N for fixed n, a natual limit object appears

in the N →∞ limit. In particular, if

uN (X) =

(
N

n

)−1 ∑
1≤i1<...<in≤N

φ(xi1 , . . . , xin), (2.27)

we have∫
ΩN

uN (X)dµN (X) =

∫
Ωn
φ(x1, . . . , xn)dµ

(n)
N →

∫
ρ∈P(Ω)

(∫
Ωn
φ dρ⊗n

)
dPµ(ρ) (2.28)

for a certain probability measure Pµ ∈ P(P(Ω)). One might ask whether this kind of
results is true for a class of functions depending on N in more subtle a manner. The
natural assumptions seems to be that uN depend weakly of its N variables, in the sense
introduced by Lions [133] and recalled in [79, Section 1.7.3]. Without entering the details,
one may easily see that to such a sequence there corresponds (modulo extraction of a
subsequence) a continuous function over probabilities U ∈ C(P(Ω)): one may show that,
along a subsequence, ∫

ΩN
uN (X)dµN (X)→

∫
ρ∈P(Ω)

U(ρ)dPµ(ρ). (2.29)

Think of the case where uN depends only on the empirical measure:

uN (x1, . . . , xN ) = F

 1

N

N∑
j=1

δxj

 (2.30)
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with a sufficiently regular function F . Such a function depends weakly on its N variables
in the sense of Lions, but cannot be expressed under the form (2.27). More generally, this
kind of considerations can be applied under assumptions of the kind

|∇xjuN (x1, . . . , xN )| ≤ C

N
∀j = 1 . . . N, ∀(x1, . . . , xN ) ∈ ΩN .

One may then wonder whether the convergence rate in (2.29) can be quantified. Results
in this direction may be found in [88]. �

2.3. Mean-field limit for a classical free-energy functional.

In this section we apply Theorem 2.1 to the study of a free-energy functional at positive
temperature, following [138, 30, 95, 97]. We consider a domain Ω ⊂ Rd and the functional

FN [µ] =

∫
X∈ΩN

HN (X)µ(X)dX + T

∫
ΩN

µ(X) logµ(X)dX (2.31)

defined for probability measures µ ∈ P(ΩN ). Hete the temperature T will be fixed in the
limit N →∞ and the Hamiltonian HN est choisi is in mean-field scaling:

HN (X) =

N∑
j=1

V (xj) +
1

N − 1

∑
1≤i<j≤N

w(xi − xj). (2.32)

We denote by V a lower semi-continuous potential. To be in a compact setting we shall
assume that either Ω is bounded or

V (x)→∞ when |x| → ∞. (2.33)

The interaction potential w will be bounded below and lower semi-continuous. To be
concrete, one may think of w ∈ L∞, or a repulsive Coulomb potential:

w(x) =
1

|x|d−2
si d = 3 (2.34)

w(x) = − log |x| si d = 2 (2.35)

w(x) = −|x| si d = 1, (2.36)

ubiquitous in applications. We will always take w even,

w(x) = w(−x),

and if the domain is not bounded we will assume

w(x− y) + V (x) + V (y)→∞ when |x| → ∞ or |y| → ∞
w(x− y) + V (x) + V (y) is lower semi-continuous. (2.37)

We are intersted in the limit of the Gibbs measure minimizing (2.31) in Ps(ΩN ):

µN (X) =
1

ZN
exp

(
− 1

T
HN (X)

)
dX (2.38)

and to the corresponding free-energy

FN = inf
µ∈P(ΩNs )

FN [µ] = FN [µN ] = −T logZN . (2.39)
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The free-energy functional is rewritten

FN [µ] = N

∫
Ω
V (x)dµ(1)(x) +

N

2

∫∫
Ω×Ω

w(x− y)dµ(2)(x, y) + T

∫
ΩN

µ logµ

=
N

2

∫∫
Ω×Ω

(w(x− y) + V (x) + V (y)) dµ(2)(x, y) + T

∫
ΩN

µ logµ. (2.40)

using the marginals

µ(n)(x1, . . . , xn) =

∫
xn+1,...,xN∈Ω

dµ(x1, . . . , xN ). (2.41)

Inserting an ansatz of the form

µ = ρ⊗N , ρ ∈ P(Ω) (2.42)

in (2.31) we obtain the mean-field functional

FMF[ρ] := N−1FN [ρ⊗N ]

=

∫
Ω
V (x)dρ(x) +

1

2

∫∫
Ω×Ω

w(x− y)dρ(x)dρ(y) + T

∫
Ω
ρ log ρ (2.43)

with minimum FMF and minimizer (not necessarily unique) %MF amongst probability
measures. Our goal is to justify the mean-field approximation by proving the following
theorem:

Theorem 2.6 (Mean-field limit at fixed temperature).
We have

FN
N
→ FMF when N →∞. (2.44)

Moreover, up to a subsequence, we have for every n ∈ N

µ
(n)
N ⇀∗

∫
ρ∈MMF

ρ⊗ndP (ρ). (2.45)

as measures where P is a probability measurer over MMF, the set of minimizers of FMF.

In particular, if FMF has a unique minimizer we obtain

µ
(n)
N ⇀∗

(
%MF

)⊗n
.

Proof. We follow [138, 30, 94, 95]. An upper bound to the free energy is eeasily obtained
using test functions of the form ρ⊗N and we deduce

FN
N
≤ FMF. (2.46)

The corresponding lower bound requires more work. We start by extracting a subsequence
along which

µ
(n)
N ⇀∗ µ

(n) (2.47)

for all n ∈ N, with µ ∈ Ps(ΩN). This is done as explained in Section 2.1, using either the
fact that Ω is compact or Assumption (2.37), which implies that the sequence is tight.
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By lower semi-continuity we immediately have

lim inf
N→∞

1

2

∫∫
Ω×Ω

(w(x− y) + V (x) + V (y)) dµ
(2)
N (x, y)

≥ 1

2

∫∫
Ω×Ω

(w(x− y) + V (x) + V (y)) dµ(2)(x, y). (2.48)

For the entropy term we use the sub-additivity property (this is a consequence of Jensen’s
inequality, see [155] or the previously cited references)∫

ΩN
µN logµN ≥

⌊
N

n

⌋∫
Ωn

µ
(n)
N logµ

(n)
N +

∫
Ω
N−nbNn c

µ
(N−nbNn c)
N logµ

(N−nbNn c)
N

where b . c denotes the integer part. Jensen’s inequality implies that for probability mea-
sures µ and ν, the relative entropy of µ with respect to ν is positive:∫

µ log
µ

ν
=

∫
ν
µ

ν
log

µ

ν
≥
(∫

ν
µ

ν

)
log

(∫
ν
µ

ν

)
= 0.

We deduce that for all ν0 ∈ P(Ω)∫
Ω
N−nbNn c

µ
(N−nbNn c)
N logµ

(N−nbNn c)
N =

∫
Ω
N−nbNn c

µ
(N−nbNn c)
N log

 µ
(N−nbNn c)
N

ν
⊗(N−nbNn c)
0


+

∫
Ω
N−nbNn c

µ
(N−nbNn c)
N log ν

⊗(N−nbNn c)
0

≥
(
N − n

⌊
N

n

⌋)∫
Ω
µ

(1)
N log ν0.

Choosing ν0 ∈ P(Ω) of the form ν0 = c0 exp(−c1V ) it is not difficult to see that the last
integral is bounded below independently of N and we thus obtain that for all n ∈ N

lim inf
N→∞

1

N

∫
ΩN

µN logµN ≥
1

n

∫
Ωn

µ(n) logµ(n) (2.49)

by lower semi-continuity of (minus) the entropy.
Gathering (2.48) and (2.49) we obtain a lower bound a lower bound in terms of a

functional of µ:

lim inf
N→∞

1

N
FN [µN ] ≥ F [µ] :=

1

2

∫∫
Ω×Ω

(w(x− y) + V (x) + V (y)) dµ(2)(x, y)

+ T lim sup
n→∞

1

n

∫
Ωn

µ(n) logµ(n). (2.50)

The second term is called (minus) the mean entropy of µ ∈ P(ΩN). We will next apply
the Hewitt-Savage theorem to µ. The first term in F is obviously affine as a function
of, which is perfect to aply (2.6). One might however worry at the sight of the second
term which rather looks convexe. In fact a simple argument of [155] shows that this mean
entropy is affine. Let µ1,µ2 ∈ P(ΩN) be given. We use the convexity of x 7→ x log x and
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the monotony of x 7→ log x to obtain

1

2

∫
Ωn

µ
(n)
1 logµ

(n)
1 +

1

2

∫
Ωn

µ
(n)
2 logµ

(n)
2 ≥

∫
Ωn

(
1

2
µ

(n)
1 +

1

2
µ

(n)
2

)
log

(
1

2
µ

(n)
1 +

1

2
µ

(n)
2

)
≥ 1

2

∫
Ωn

µ
(n)
1 logµ

(n)
1 +

1

2

∫
Ωn

µ
(n)
2 logµ

(n)
2

− log(2)

2

(∫
Ωn

µ
(n)
1 +

∫
Ωn

µ
(n)
2

)
=

1

2

∫
Ωn

µ
(n)
1 logµ

(n)
1 +

1

2

∫
Ωn

µ
(n)
2 logµ

(n)
2 − log(2).

Dividing by n and passing to the limsup we deduce that

Ps(Ωn) 3 µ 7→ lim sup
n→∞

1

n

∫
Ωn

µ(n) logµ(n)

is indeed affine, and thus F [µ] also is. There remains to use (2.6), which gives a probability
Pµ ∈ P(P(Ω)) such that

lim inf
N→∞

1

N
FN [µN ] ≥

∫
ρ∈P(Ω)

F [ρ⊗∞]dPµ(ρ)

=

∫
ρ∈P(Ω)

FMF[ρ]dPµ(ρ) ≥ FMF.

Here we denote ρ⊗∞ the probability over P(ΩN) which has ρ⊗n for n-th marginal for all
n and we have used the fact that Pµ has integral 1. This concludes the proof of (2.44)
and (2.45) follows easily. It is indeed clear in view of the previous inequalities that Pµ

must be concentrated on the set of minimizers of the mean-field free-energy functional. �

2.4. Quantitative estimates in the mean-field/small temperature limit.

Here we give an example where the Diaconis-Freedman construction is useful to supple-
ment the use of the Hewitt-Savage theorem. As mentioned in Remark 2.4, this construction
behaves rather badly with respect to the entropy, but there is a certain number of interest-
ing problems where it makes sense to consider a small temperature in the limit N → ∞,
in which case entropy plays a small role.

A central example is that of log-gases. It is well-known that the distribution of eigen-
values of certain random matrices ensembles is given by the Gibbs measure of a classical
gas with logarithmic interactions. Moreover, it so happens that the relevant limit for
large matrices is a mean-field regime with temperature of the order of N−1. Consider the
following Hamiltonian (assumptions on V are as previously, taking w = − log | . |):

HN (X) =

N∑
j=1

V (xj)−
1

N − 1

∑
1≤i<j≤N

log |xi − xj | (2.51)

where X = (x1, . . . , xN ) ∈ RdN . The associated Gibbs measure

µN (X) =
1

ZN
exp (−βNHN (X)) dX (2.52)

corresponds (modulo a β-dependent change of scale) to the distribution of of the eigenval-
ues of a random matrix in the following cases:
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• d = 1, β = 1, 2, 4 and V (x) = |x|2
2 . We respectively obtain the gaussian real

symmetric, complex hermitian and quarternionic self-dual matrices.

• d = 2, β = 2 and V (x) = |x|2
2 . We then obtain the gaussian matrices without

symmetry conditon, the so-called Ginibre ensemble [76].

In these notes we give no further precisions on the random matrix aspect, and will simply
take the previous facts as a sufficient motivation to study the N → ∞ limit of the mea-
sures (2.52) with β fixed. This corresponds (compare with (2.38)) to taking T = β−1N−1,
i.e. a very small temperature. For an introduction to random matrices and log-gases we
refer to [7, 71, 137]. For precise studies of the measures (2.52) following different methods
than what we shall do here, one may consult e.g. [10, 11, 25, 19, 20, 19, 32, 159, 164, 163].

In the case d = 2, measures of the form (2.52) also have a natural application to the
study of certain quantum wave-functions appearing in the study of the fractional quantum
Hall effect (see [160, 161, 162] and references therein). Here too it is sensible to consider
β as being fixed.

The singularity at the origin of the logarithm poses difficulties in the proof, as indi-
cated in Remark 2.4, but one may bypass them easily, contrarily to those linked to the
entropy. The following method is not limited to log-gases and can be re-employed in
various contexts.

Again, (2.52) minimizes a free-energy functional

FN [µ] =

∫
X∈ΩN

HN (X)µ(X)dX +
1

βN

∫
ΩN

µ(X) logµ(X)dX (2.53)

whose minimum we denote FN . The natural limit object is this time an energy functional
with no entropy term:

EMF[ρ] :=

∫
Rd
V dρ− 1

2

∫∫
Rd×Rd

log |x− y|dρ(x)dρ(y), (2.54)

obtained by inserting the ansatz ρ⊗N in (2.53) and neglecting the entropy term, which is
manifestly of lower order for fixed β. We denote EMF and %MF respectively the minimum
energy and the minimizer (unique in this case by strict convexity of the functional). It is
well-known (see the previous references as well as [97]) that

N−1FN = − 1

β
logZN → EMF when N →∞ (2.55)

and
µ

(n)
N ⇀∗

(
%MF

)⊗n
. (2.56)

We shall prove (2.56) and give a quantitative version of (2.55), taking inspiration
from [162]:

Theorem 2.7 (Free-energy estimate for a log-gas).
For all β ∈ R, we have

EMF − CN−1
(
β−1 + logN + 1

)
≤ − 1

β
logZN ≤ EMF + Cβ−1N−1. (2.57)

Fine estimates for the partition function ZN of the log-gase seem to have become avail-
able only recently [103, 145, 159, 164, 163]. Amongst other things, the previous references
indicate that the correction to EMF is exactly of order N−1 logN .
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Proof. We shall not elaborate on the upper bound, which is easily obtained by taking
the usual product ansatz and estimating the entropy. For the lower bound we shall use
Theorem 2.2. We first need a crude bound on the entropy term: by positivity of the
relative entropy (via Jensen’s inequality)∫

RdN
µ log

µ

ν
≥ 0 pour tout µ,ν ∈ P(ΩN )

one may write, using the probability measure

νN = (c0 exp (−V (|x|)))⊗N ,

the lower bound∫
RdN

µN logµN ≥
∫
RdN

µN log νN = −N
∫
Rd
V dµ

(1)
N −N log c0. (2.58)

To obtain a lower bound to the energy we first need to regularize the interaction potential:
Let α > 0 be a small parameter to be optimized later and

− logα |z| =

{
− logα+ 1

2

(
1− |z|

2

α2

)
if |z| ≤ α

− log |z| if |z| ≥ α.
(2.59)

Clearly − logα |z| ≤ − log |z| is regular at the origin. Moreover, we have

− d

dα
logα |z| =

−
1

α
+
|z|2

α3
si |z| ≤ α

0 si |z| ≥ α.
(2.60)

Using the lower bound − logα |z| ≤ − log |z| to obtain∫
X∈ΩN

HN (X)µ(X)dX ≥ N
∫
Rd
V dµ

(1)
N −

N

2

∫∫
Rd×Rd

logα |x− y|dµ
(2)
N (x, y)

we are now in a position where we can apply Theorem 2.2. More precisely we use the
explicit formulae (2.23):∫

X∈ΩN
HN (X)µN (X)dX ≥

N

∫
Rd
V dµ̃

(1)
N −

N2

2(N − 1)

∫∫
Rd×Rd

logα |x− y|dµ
(2)
N (x, y) + C logα(0). (2.61)

Combining (2.58), (2.13) and recalling that the temperature T is equal to (βN)−1 we
obtain

N−1FN [µN ] ≥
∫
ρ∈P(Rd)

EMF
α [ρ]dPµN (ρ)

+ CN−1
(
logα(0)− β−1

)
≥ EMF

α − CN−1 log(α)− C(βN)−1 (2.62)

where EMF
α is the minimum (amongst probability measures) of the modified functional

EMF
α [ρ] :=

∫
Rd
V (1− β−1N−1)dρ− N

2(N − 1)

∫∫
Rd×Rd

logα |x− y|dρ(x)dρ(y).
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Exploiting the associated variational equation, (2.60) and the Feynman-Hellmann princi-
ple, it is not difficult to see that for small enough α∣∣EMF

α − EMF
∣∣ ≤ Cαd + CN−1

and we thus conclude

N−1FN [µN ] ≥ EMF − CN−1 log(α)− CβN−1 − CN−1 − Cαd − C,
which gives the desired lower bound after optimizing over α (take α = N−1/d). �

Remark 2.8 (Possible extensions).

(1) One can also prove quantitative version of (2.56) following essentially the above
method of proof. We shall not elaborate on this point for which we refer to [162].

(2) Another case we could deal with along the same lines is that of unitary, orthogonal
and symplectic gaussian random matrices ensembles introduced by Dyson [58, 59,
60]. In this case Rd is replaced by the unit circle, β = 1, 2, 4, V ≡ 0 in (2.51). In
this case, dividing the interaction by N − 1 is irrelevant. �
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3. The quantum de Finetti theorem and Hartree’s theory

Now we enter the heart of the matter, i.e. mean-field limits for large bosonic sys-
tems. We present first the derivation of the ground state of Hartree’s theory for con-
fined particles, e.g. living in a bounded domain. In such a case, the result is a rather
straightforward consequence of the quantum de Finetti theorem proved by Størmer and
Hudson-Moody [182, 91]. The latter describes all the strong limits (in the sense if the S1

norm) of the reduced density matrices of a large bosonic system.
We will then move to the more complex case of non-confined systems. In this chapter we

will assume that the interaction potential has no bound state (it could be purely repulsive
for example), the general case being dealt with later (Chapter 6). In the absence of bound
states it is sufficient to have at our disposal a de Finetti theorem describing all the weak
limits (in the sense of the weak-∗ topology on S1) of the reduced density matrices.

The weak de Finetti theorem (introduced in [106]) implies the strong de Finetti theorem
and in fact the two results can be deduced from an even more general theorem appearing
in [182, 91]. In these notes I chose not to follow this approach, but rather that of [4,
106] which is more constructive. This will be discussed in details in Section 3.4, which
announces the plan of the next chapters.

3.1. Setting the stage.

To simplify the discusstion, we will focus on the case of non relativistic quantum par-
ticles, in the absence of a magnetic field. The Hamiltonian will thus have the general
form

HN =

N∑
j=1

Tj +
1

N − 1

∑
1≤i<j≤N

w(xi − xj), (3.1)

acting on the Hilbert space HNs =
⊗N

s H, i.e. the symmetric tensor product of N copies of

H where H denotes the space L2(Ω) for Ω ⊂ Rd. The operator T is a Schrödinger operator

T = −∆ + V (3.2)

with V : Ω 7→ R and Tj acts on the j-th variable:

Tjψ1 ⊗ . . .⊗ ψN = ψ1 ⊗ . . .⊗ Tjψj ⊗ . . .⊗ ψN .
We assume that T is self-adjoint and bounded below, and that the interaction potential
w : R 7→ R is bounded relatively to T (as operators): for 0 ≤ β−, β+ < 1

− β−(T1 + T2)− C ≤ w(x1 − x2) ≤ β+(T1 + T2) + C. (3.3)

We also take w symmetric
w(−x) = w(x),

and decaying at infinity

w ∈ Lp(Ω) + L∞(Ω),max(1, d/2) < p <∞→ 0, w(x)→ 0 when |x| → ∞. (3.4)

We will always make an abuse of notation by writing w for the multiplication operator
by w(x1 − x2) on L2(Ω).

Remark 3.1 (Checking assumptions on w).
One may check that assumptions (3.4) imply operator bounds of the form (3.3), using
standard functional inequalities. We quickly sketch the method here for completness. Say
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w ∈ Lp(Rd), such that the conjugate Hölder exponent q is larger than half the critical
exponent for the Sobolev injection H1(Rd) ↪→ Lq(Rd):

q =
p

p− 1
>
p∗

2
, p∗ =

2d

d− 2
. (3.5)

We decompose |w| as

|w| = |w|1|w|≤R + |w|1|w|≥R.

Then, pick f ∈ C∞c (R2d) and write

|〈f, wf〉| =
∣∣∣∣∫∫

Rd×Rd
w(x1 − x2)|f(x1, x2)|2dx1dx2

∣∣∣∣
≤
∫∫

Rd×Rd

∣∣w(x1 − x2)1|w|≥R
∣∣ |f(x1, x2)|2dx1dx2 +R

∫∫
Rd×Rd

|f(x1, x2)|2dx1dx2.

Next, using Hölder’s and Sobolev’s inequalities:∫∫
Rd×Rd

∣∣w(x1 − x2)1|w|≥R
∣∣ |f(x1, x2)|2dx1dx2

≤
∫
Rd

(∫
Rd
|w(x1 − x2)|p1|w|≥Rdx2

)1/p(∫
Rd
|f(x1, x2)|2qdx2

)1/q

dx1

≤
∥∥w1|w|≥R∥∥Lp ∫Rd ‖f(., x2)‖2H1 dx2

with p−1 + q−1 = 1. All in all we thus have

|〈f, wf〉| ≤
∥∥w1|w|≥R∥∥Lp ∫∫Rd (|∇x1f(x1, x2)|2 + |f(x1, x2)|2

)
dx1dx2

+R

∫∫
Rd×Rd

|f(x1, x2)|2dx1dx2.

Since w ∈ Lp,
∥∥w1|w|≥R∥∥Lp → 0 when R→∞ and we thus have

|〈f, wf〉| ≤ h(R) |〈f,−∆x1f〉|+ (R+ h(R)) 〈f, f〉 ,

where h(R) can be made arbitrarily small by taking R large. In particular we can take
h(R) < 1, and this leads to an operator inequality of the desired form (3.3). �

The above assumptions ensure by well-known methods that HN is self-adjoint on the
domain of the Laplacian, and bounded below, see [152]. Our goal is to describe the ground
state of (3.1), i.e. a state achieving10

E(N) = inf σHNHN = inf
Ψ∈HN ,‖Ψ‖=1

〈Ψ, HNΨ〉HN . (3.6)

In the mean-field regime that concerns us here, we expect that any ground state satifies

ΨN ≈ u⊗N when N →∞ (3.7)

10The ground state might not exist, in which case we think of a sequence of states asymptotically
achieving the infimum.
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in a sense to be made precise later, which naturally leads us to the Hartree functional

EH[u] = N−1
〈
u⊗N , HNu

⊗N〉
HN

= 〈u, Tu〉H +
1

2
〈u⊗ u,w u⊗ u〉H2

s

=

∫
Ω
|∇u|2 + V |u|2 +

1

2

∫∫
Ω×Ω
|u(x)|2w(x− y)|u(y)|2dxdy. (3.8)

We shall denote eH and uH the minimum and a minimizer for EH respectively. By the
variational principle we of course have the upper bound

E(N)

N
≤ eH (3.9)

and we aim at obtaining a matching lower bound to obtain

E(N)

N
→ eH when N →∞. (3.10)

Remark 3.2 (Generalization).
All the main ideas can be introduced in the preceding framework, we refer to [106] for
a discussion of generalizations. One can even think of the case where both V and w are
smooth compactly supported functions if one wishes to understand the method in the
simplest possible case.

A very interesting generalization consists in substituting the Laplacian in (3.2) by a
relativistic kinetic energy operator and/or including a magnetic field as described in Sec-
tion 1.2. One must then adapt the assumptions (3.3) and (3.4) but the message stays the
same: the approach applies as long as the many-body Hamiltonian and the limit functional
are both well-defined.

Another possible generalization is the inclusion of interactions involving more than two
particles at a time, to obtain functionals with higher-order non-linearities in the limit. It
is of course necessary to consider a Hamiltonian in mean-field scaling by adding terms of
the form e.g.

λN
∑

1≤i<j,k≤N
w(xi − xj , xi − xk)

with λN ∝ N−2 when N → ∞. It is also possible to take into account a more general
form than just the multiplication by a potential, under assumptions of the same type
as (3.3). �

3.2. Confined systems and the strong de Finetti theorem.

By “confined system” we mean that we are dealign with a compact setting. We will
make one the two following assumptions: either

Ω ⊂ Rd is a bounded set (3.11)

or
Ω = Rd and V (x)→∞ when |x| → ∞ (3.12)

with V the potential appearing in (3.2). We will also assumte that

V ∈ Lploc(Ω),max(1, d/2) < p ≤ ∞.
In both cases it is well-known that

T = −∆ + V has compact resolvent, (3.13)
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which allows to easily obtain strong convergence of the reduced density matrices of a
ground state of (3.1). One may then really think of the limit object as a quantum state
with infinitely many particles. Taking inspiration from the classical setting discussed
previously, the natural definition is the following:

Definition 3.3 (Bosonic state with infinitely many particles).
Let H be a complex separable Hilbert space and for all n ∈ N, let Hns be the corresponding
bosonic n-particles space. We call a bosonic state with infinitely many particles a sequence
(γ(n))n∈N of trace-class operators satisfying

• γ(n) is a bosonic n-particles state: γ(n) ∈ S1(Hns ) is self-adjoint, positive and

TrHns [γ(n)] = 1. (3.14)

• the sequence (γ(n))n∈N is consistent:

Trn+1[γ(n+1)] = γ(n) (3.15)

where Trn+1 is the partial trace with respect to the last variable in Hn+1.

�

The key property is the consistency (3.15), which ensures that the sequence under

consideration does describe a physical state. Note that γ(0) is just a real number and that
consistency implies that TrHn [γ(n)] = 1 for all n as soon as γ(0) = 1.

A particular case of symmetric state is a product state:

Definition 3.4 (Product state with infinitely many particles).

A product state with infinitely many particles is a sequence of trace-class operators γ(n) ∈
S1(Hns ) with

γ(n) = γ⊗n, (3.16)

for all n ≥ 0 where γ is a one-particle state. A bosonic product state is necessarily of the
form

γ(n) = |u⊗n〉〈u⊗n| = (|u〉〈u|)⊗n , (3.17)

with u ∈ SH. �

That bosonic product states are all of the form (3.17) comes from the observation
that if γ ∈ S1(H) is not pure (i.e. is not a projector), then γ⊗2 cannot have bosonic
symmetry [91].

The strong de Finetti theorem is the appropriate tool to describe these objects and
specify the link between the two previous definitions. In the following form, it is due to
Hudson and Moody [91]:

Theorem 3.5 (Strong quantum de Finetti).

Let H be a separable Hilbert space and (γ(n))n∈N a bosonic state with infinitely many
particles on H. There exists a Borel probability measure on the sphere µ ∈ P(SH) on the
sphere SH = {u ∈ H, ‖u‖ = 1} of H, invariant under the action11 of S1, such that

γ(n) =

∫
SH
|u⊗n〉〈u⊗n| dµ(u) (3.18)

for all n ≥ 0.

11Multiplication by a constant phase eiθ, θ ∈ R.
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In other words, every bosonic state with infinitely many particles is a convex
combination of product bosonic states. To deduce the validity of the mean-field
approximation at the level of the ground state of (3.1), it then suffices to show that the
limit problem is set in the space of states with infinitely many particles, which is relatively
easy in a compact setting. We are going to prove the following result

Theorem 3.6 (Derivation of Hartree’s theory for confined bosons).
Under the preceding assumptions, in particular (3.11) or (3.12)

lim
N→∞

E(N)

N
= eH.

Let ΨN be a ground state for HN , achieving the infimum (3.6) and

γ
(n)
N := Trn+1→N [|ΨN 〉〈ΨN |]

be its n-th reduced density matrix. There exists a unique probability measure µ on MH,
the set of minimizers of EH (modulo a phase), such that, along a subsequence and for all
n ∈ N

lim
N→∞

γ
(n)
N =

∫
MH

dµ(u) |u⊗n〉〈u⊗n| (3.19)

strongly in the S1(Hn) norm. In particular, if EH has a unique minimizer (modulo a
constant phase), then for the whole sequence

lim
N→∞

γ
(n)
N = |u⊗nH 〉〈u

⊗n
H |. (3.20)

The ideas of the proof are essentially contained in [68, 146, 151], applied to a somewhat
different context however. We follow some clarifications given in [106, Section 3].

Proof. We have to prove the lower bound corresponding to (3.9). We start by writing

E(N)

N
=

1

N
〈ΨN , HNΨN 〉HN = TrH[Tγ

(1)
N ] +

1

2
TrH2

s
[wγ

(2)
N ]

=
1

2
TrH2

s

[
(T1 + T2 + w) γ

(2)
N

]
(3.21)

and we now have to describe the limit of the reduced density matrices γ
(1)
N and γ

(2)
N .

Since the sequences (γ
(n)
N )N∈N are by definintion bounded in S1, by a diagonal extraction

argument we may assume that for all n ∈ N

γ
(n)
N ⇀∗ γ

(n) ∈ S1(Hns )

weakly-∗ in S1(Hn). That is, for every compact operator Kn over Hn we have

TrHn [γ
(n)
N Kn]→ TrHn [γ(n)Kn].

We are going to show that the limit is actually strong. For this it is sufficient (see [51, 156]
or [173, Addendum H]) to show that

TrHns [γ(n)] = TrHns [γ
(n)
N ] = 1, (3.22)

i.e. no mass is lost in the limit. We start by noting that TrH[Tγ
(1)
N ] is uniformly bounded

and thus, up to a possible further extraction, we have

(T + C0)1/2 γ
(1)
N (T + C0)1/2 ⇀∗ (T + C0)1/2 γ(1) (T + C0)1/2
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for a certain constant C0. Consequently

1 = TrH[γ
(1)
N ] = TrH

[
(T + C0)−1 (T + C0)1/2 γ

(1)
N (T + C0)1/2

]
→ TrH

[
(T + C0)−1 (T + C0)1/2 γ(1) (T + C0)1/2

]
= TrH[γ(1)]

since (T + C0)−1 is by Assumption (3.13) a compact operator. One obtains (3.22) similarly
by noting that

TrH[Tγ
(1)
N ] =

1

n
TrHn

 n∑
j=1

Tjγ
(n)
N


is uniformly bounded in N and that

∑n
j=1 Tj also has compact resolvant which allows for

a similar argument.
We thus have, for all n ∈ N

γ
(n)
N → γ(n)

strongly in trace-class norm, and in particular, for all bounded operator Bn on Hn

TrHn [γ
(n)
N Bn]→ TrHn [γ(n)Bn].

Testing this convergence with Bn+1 = Bn ⊗ 1 we deduce

Trn+1[γ(n+1)] = γ(n)

and thus the sequence (γ(n))n∈N describes a bosonic state with infinitely many particles
in the sense of Definition 3.3. We apply Theorem 3.5, which yields a measure µ ∈ P(SH).
In view of Assumption (3.3), the operator T1 + T2 + w is bounded below on H2, say by

2CT . Since TrH2 γ(2) = 1 we may write

lim inf
N→∞

1

2
TrH2

[
(T1 + T2 + w) γ

(2)
N

]
= lim inf

N→∞

1

2
TrH2

[
(T1 + T2 + w − 2CT ) γ

(2)
N

]
+ CT

≥ 1

2
TrH2

[
(T1 + T2 + w − 2CT ) γ(2)

]
+ CT

=
1

2
TrH2

[
(T1 + T2 + w) γ(2)

]
using Fatou’s lemma for positive operators. Using the linearity of the energy as a function
of γ(2) and (3.18)

lim inf
N→∞

E(N)

N
≥
∫
u∈SH

1

2
TrH2

[
(T1 + T2 + w) |u⊗2〉〈u⊗2|

]
dµ(u) =

∫
u∈SH

EH[u]dµ(u) ≥ eH,

which is the desired lower bound. The other statements of the theorem follow by noting
that there equality must hold in all the previous inequalities and thus that µ may charge
only minimizers of Hartree’s functional. �

It is clear from the preceding proof that the structure of bosonic states with infinitely
many particles plays the key role. The Hamiltonian itself could be chosen in a very abstract
way provided it includes a confining mechanism allowing to obtain strong limits. Several
examples are mentioned in [106, Section 3].
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3.3. Systems with no bound states and the weak de Finetti theorem.

In the previous section wa have used in a strong way the assumption that the system was
confined in the sense of (3.11)-(3.12). These assumptions are sufficient to understand many
physical cases, but is highly desirable to be able to relax them. One is then lead to study
cases where the convergence of reduced density matrices is no better than weak-∗, and to
describe as exhaustively as possible the possible scenarii, in the spirit of the concentration-
compactness principle. A first step, before asking the question of how compactness may
be lost, consists in describing the weak limits themselves. It turns out that we still have
a very satisfying description. In fact, one could not have hoped better than the following
theorem, proven in [106]:

Theorem 3.7 (Weak quantum de Finetti).
Let H be a compex separable Hilbert space and (ΓN )N∈N a sequence of bosonic states with
ΓN ∈ S1(HNs ). We assume that for all n ∈ N

Γ
(n)
N ⇀∗ γ

(n) (3.23)

in S1(Hns ). Then there exists a unique probability measure µ ∈ P(BH) on the unit ball
BH = {u ∈ H, ‖u‖ ≤ 1} of H, invariant under the action of S1, such that

γ(n) =

∫
BH
|u⊗n〉〈u⊗n| dµ(u) (3.24)

for all n ≥ 0.

Remark 3.8 (On the weak quantum de Finetti theorem).

(1) Assumption (3.23) can always be satisfied in practice. Modulo a diagonal extrac-
tion, one may always assume that convergence holds along a subsequence. This
theorem thus exactly describe all the possible weak limits for a sequence of bosonic
N -body states when N →∞.

(2) The fact that the measure lives over the unit ball in (3.24) is not surprising since
there may be a loss of mass in cases covered by the theorem. In particular it is
possible that γ(n) = 0 for all n and then µ = δ0, the Dirac mass at the origin.

(3) The term weak refers to “weak convergence” and does not indicate that this result
is less general than the strong de Finetti theorem. It is in fact more general. To
see this, think of the case where no mass is lost, TrHn [γ(n)] = 1. The measure µ
must then be supported on the sphere and convergence must hold in trace-class
norm. It is by the way sufficient to assume that TrHn [γ(n)] = 1 for a certain n ∈ N,
and the convergence is strong for all n since the measure µ does not depend on n.

(4) Ammari and Nier have slightly more general results [3, 4, 5, 6]. In particular, it is
not necessary to start from a state with a fixed particle number. One can consider
a state on Fock space provided suitable bounds on its particle number (seen as a
random variable in this framework) are available.

(5) Uniqueness of the measure follows from a simple argument. Here we will mostly
be interested in the existence, which is sufficient for static problems. For time-
dependent problems on the contrary, uniqueness is crucial [4, 5, 6, 34].

�
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Coming back to the derivation of Hartree’s theory, let us recall that the energy upper
bound (3.9) is always true. We are thus only looking for lower bounds. A case where
knowning the weak-∗ limit of reduced density matrices is then that of a weakly-∗ lower
semi-continuous functional. This remark may seem of marginal interest, but this case does
cover a number of physically relevant systems, those with no bound states.

We are going to prove the validity of Hartree’s approximation in this case, using Theo-
rem 3.7. We shall work in Rd and assume that the potential V in (3.2) is non-trapping in
every direction:

V ∈ Lp(Rd) + L∞(Rd),max 1, d/2 ≤ p <∞, V (x)→ 0 when |x| → ∞. (3.25)

The assumption about the absence of bound states concerns the interaction potential w.
It is materialized par the inequality12

−∆ +
w

2
≥ 0 (3.26)

as operators. This means that w is not attractive enough for particles to form bound
states such as molecules etc ... Indeed, because of Assumption (3.4), −∆ + w

2 can have
only negative eigenvalues, its essential spectrum starting at 0. In view of (3.26), it can in
fact not have any eigenvalue at all, and thus no eigenfunctions which are by definition the
bound states of the potential. A particular example is that of a purely repulsive potential
w ≥ 0.

Under Assumption (3.26), particles that might escape to infinity no longer see the one-
body potential V and then necessarily carry a positive energy that can be neglected for a
lower bound to the total energy. Particles staying confined by the potential V are described
by the weak-∗ limits of density matrices. We can apply the weak de Finetti theorem to
the latter, and this leads to the next theorem, for whose statement we need the notation

eH(λ) := inf
‖u‖2=λ

EH[u], 0 ≤ λ ≤ 1 (3.27)

for the Hartree energy in the case of a loss of mass. Under assumption (3.26) it is not
difficult to show that for all 0 ≤ λ ≤ 1

eH(λ) ≥ eH(1) = eH (3.28)

by constructing trial states made of two well-separated pieces of mass.

Theorem 3.9 (Derivation of Hartree’s theory in the absence of bound states).
Under the previous assumptions, in particular (3.25) and (3.26) we have

lim
N→∞

E(N)

N
= eH.

Let ΨN be a ground state for HN , achieving the infimum (3.6) and

γ
(n)
N := Trn+1→N [|ΨN 〉〈ΨN |]

be its n-th reduced density matrix. There exists a probability measure µ supported on

MH =
{
u ∈ BH, EH[u] = eH

(
‖u‖2

)
= eH(1)

}
12Or an appropriate variant when one considers a different kinetic energy, cf Remark 3.2.
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such that, along a subsequence and for all n ∈ N

γ
(n)
N ⇀∗

∫
MH

dµ(u) |u⊗n〉〈u⊗n| (3.29)

in S1(Hn). In particular, if eH has a unique minimizer uH, with ‖uH‖ = 1, then for the
whole sequence,

lim
N→∞

γ
(n)
N = |u⊗nH 〉〈u

⊗n
H | (3.30)

strongly in trace-class norm.

Remark 3.10 (Case where mass is lost).
Note that it is possible for the convergence in the above statement to be only weak-∗,
which covers a certain physical reality. If the one-body potential is not attractive enough
to retain all particles, we will typically have a scenario where{

eH(λ) = eH(1) for λc ≤ λ ≤ 1

eH(λ) < eH(1) for 0 ≤ λ < λc

where λc is a critical mass that can be bound by the potential V . In this case, eH(λ) will
not be achieved if λc < λ ≤ 1 and one will have a minimizer for Hartree’s energy only
for a mass 0 ≤ λ ≤ λc. If for example the minimizer uH at mass λc is unique modulo a
constant phase, Theorem 3.9 shows that

γ
(n)
N ⇀∗ |u⊗nH 〉〈u

⊗n
H |

and one should note that the limit has a mass λnc < 1. This scenario actually happens in
the case of a “bosonic atom”, see Section 4.2 in [106]. �

Theorem 3.9 was proved in [106]. In order to be able to apply Theorem 3.7 we start
with the following observation:

Lemma 3.11 (Lower semi-continuity of an energy with no bound state).

Under the previous assumptions, let γ
(1)
N , γ

(2)
N ≥ 0 be two sequences satisfying

TrH2 γ
(2)
N = 1, γ

(1)
N = Tr2 γ

(2)
N

as well as γ
(k)
N ⇀∗ γ

(k) weakly-∗ in S1(Hk) for k = 1, 2. Then

lim inf
N→∞

(
TrH[Tγ

(1)
N ] +

1

2
TrH2 [wγ

(2)
N ]

)
≥ TrH[Tγ(1)] +

1

2
TrH2 [wγ(2)]. (3.31)

Proof. We shall need two trunctation functions 0 ≤ χR, ηR ≤ 1 satisfying

χ2
R + η2

R ≡ 1, supp(χR) ⊂ B(0, 2R), supp(ηR) ⊂ B(0, R)c, |∇χR|+ |∇ηR| ≤ CR−1.

It is easy to show the IMS formula:

−∆ = χR(−∆)χR + ηR(−∆)ηR − |∇χR|2 − |∇ηR|2

≥ χR(−∆)χR + ηR(−∆)ηR − CR−2 (3.32)

as an operator. For the one-body part of the energy we then easily have

TrH[Tγ
(1)
N ] ≥ TrH[TχRγ

(1)
N χR] + TrH[−∆ηRγ

(1)
N ηR] + r1(N,R)
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with
r1(N,R) ≥ −CR−2 + TrH[η2

RV γ
(1)
N ]

and thus
lim inf
R→∞

lim inf
N→∞

r1(N,R) = 0

because in view of (3.25) we have

TrH[η2
RV γ

(1)
N ] =

∫
Rd
η2
R(x)V (x)ρ

(1)
N (x)dx→ 0 when R→∞

uniformly in N . Here we have denoted ρ
(1)
N the one-body density of γ

(1)
N , formally defined

by

ρ
(1)
N (x) = γ

(1)
N (x, x),

where we identify γ
(1)
N and its kernel. To deal with the interaction term we introduce

ρ
(2)
N (x, y) := γ

(2)
N (x, y;x, y)

the two-body density of γ
(2)
N (identified with its kernel γ

(2)
N (x′, y′;x, y)) and write

TrH2 [wγ
(2)
N ] =

∫∫
Rd×Rd

w(x− y)ρ
(2)
N (x, y)dxdy

=

∫∫
Rd×Rd

w(x− y)χ2
R(x)ρ

(2)
N (x, y)χ2

R(y)dxdy

+

∫∫
Rd×Rd

w(x− y)η2
R(x)ρ

(2)
N (x, y)η2

R(y)dxdy

+ 2

∫∫
Rd×Rd

w(x− y)χ2
R(x)ρ

(2)
N (x, y)η2

R(y)dxdy

=

∫∫
Rd×Rd

w(x− y)χ2
R(x)ρ

(2)
N (x, y)χ2

R(y)dxdy

+

∫∫
Rd×Rd

w(x− y)η2
R(x)ρ

(2)
N (x, y)η2

R(y)dxdy

+ r2(N,R)

= TrH2 [w χR ⊗ χRγ(2)
N χR ⊗ χR] + TrH2 [w ηR ⊗ ηRγ(2)

N ηR ⊗ ηR]

+ r2(N,R)

where
lim inf
R→∞

lim inf
N→∞

r2(N,R) = 0

by a standard concentration-compactness argument (see details in [106, Section 4]).
At this stage we thus have

lim inf
N→∞

TrH[Tγ
(1)
N ] +

1

2
TrH2 [wγ

(2)
N ] ≥

lim inf
R→∞

lim inf
N→∞

TrH[TχRγ
(1)
N χR] +

1

2
TrH2 [w χR ⊗ χRγ(2)

N χR ⊗ χR]

+ lim inf
R→∞

lim inf
N→∞

TrH[−∆ηRγ
(1)
N ηR] +

1

2
TrH2 [w ηR ⊗ ηRγ(2)

N ηR ⊗ ηR] (3.33)
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The terms on the second line give the right-hand side of (3.31). Indeed, recalling that
T = −∆ + V , using Fatou’s lemma pour −∆ ≥ 0 and the fact that

χRγ
(1)
N χR → χRγ

(1)χR

in norm since χR has comapct support, we have

lim inf
N→∞

TrH[TχRγ
(1)
N χR] ≥ TrH[TχRγ

(1)χR].

It then suffices to recall that χR → 1 pointwise to conclude. The interaction term is dealt
with in a similar way, using the strong convergence

χR ⊗ χRγ(2)
N χR ⊗ χR → χR ⊗ χRγ(2)χR ⊗ χR

and then the pointwise convergence χR → 1.
The terms on the third line of (3.33) form a positive contribution that we may drop

from the lower bound. To see this, note that since 0 ≤ ηR ≤ 1 we have ηR ⊗ 1 ≥ ηR ⊗ ηR
and (with Tr2 the partial trace with respect to the second variable)

ηRγ
(1)
N ηR ≥ Tr2[ηR ⊗ ηRγ(2)

N ηR ⊗ ηR],

which gives, by symmetry of γ
(2)
N ,

TrH[−∆ηRγ
(1)
N ηR] +

1

2
TrH2 [w ηR ⊗ ηRγ(2)

N ηR ⊗ ηR]

≥ 1

2
TrH2

[
((−∆)⊗ 1 + 1⊗ (−∆) + w) ηR ⊗ ηRγ(2)

N ηR ⊗ ηR
]

and it is not difficult13 to see that Assumption (3.26) implies

(−∆)⊗ 1 + 1⊗ (−∆) + w ≥ 0

which ensures the positivity of the third line of (3.33) and concludes the proof. �

We now conclude the

Proof of Theorem 3.9. Starting from a sequence ΓN = |ΨN 〉〈ΨN | of N -body states we
extract subsequences as in the proof of Theorem 3.6 to obtain

Γ
(n)
N ⇀∗ γ

(n).

Using Lemma 3.11, we obtain

lim inf
N→∞

N−1 TrHN [HNΓN ] = lim inf
N→∞

(
TrH[TΓ

(1)
N ] +

1

2
TrH2 [wΓ

(2)
N ]

)
≥ TrH[Tγ(1)] +

1

2
TrH2 [wγ(2)]

and there remains to apply Theorem 3.7 to the sequence (γ(n))n∈N to obtain

lim inf
N→∞

N−1 TrHN [HNΓN ] ≥
∫
BH
EH[u]dµ(u) ≥ eH

using (3.28) and the fact that
∫
BH dµ(u) = 1. Once again, the other conclusions of the

theorem easily follow by inspecting the cases of equality in the previous estimates. �

13Just decouple the center of mass from the relative motion of the two particles, i.e. make the change
of variables (x1, x2) 7→ (x1 + x2, x1 − x2).
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For later use, we note that during the proof of Lemma 3.11 we have obtained the
intermediary result nous avons démontré le résultat intermédiaire (3.33) without using
the assumption that w has no bound state. We write this as a lemma that we shall use
again in Chapter 6.

Lemma 3.12 (Energy localization).
Under assumptions (3.4) and (3.25), let ΨN be a sequence of almost minimizers for E(N):

〈ΨN , HNΨN 〉 = E(N) + o(N)

and γ
(k)
N the associated reduced density matrices. We have

lim inf
N→∞

E(N)

N
= lim inf

N→∞
TrH[Tγ

(1)
N ] +

1

2
TrH2 [wγ

(2)
N ] ≥

lim inf
R→∞

lim inf
N→∞

TrH[TχRγ
(1)
N χR] +

1

2
TrH2 [w χ⊗2

R γ
(2)
N χ⊗2

R ]

+ lim inf
R→∞

lim inf
N→∞

TrH[−∆ηRγ
(1)
N ηR] +

1

2
TrH2 [w η⊗2

R γ
(2)
N η⊗2

R ] (3.34)

where 0 ≤ χR ≤ 1 is C1, with support in B(0, R), and ηR =
√

1− χ2
R.

3.4. Links between various structure theorems for bosonic states.

We have just introduced two structure theorems for many-particles bosonic systems.
These indicate that morally, if ΓN is a N -body bosonic state on a separable Hilbert space
H, there exists a probability measure µ ∈ P(H) on the one-body Hilbert space such that

Γ
(n)
N ≈

∫
u∈H
|u⊗n〉〈u⊗n|dµ(u) (3.35)

when N is large and n is fixed. Chapters 4 and 5 of these notes are for a large devoted to
the proofs of these theorems “à la de Finetti”. As mentioned in Remark 3.8, Theorem 3.7
is actually more general than Theorem 3.5, and we will thus prove the former.

In order to better appreciate the importance of the weak theorem in infinite dimensional
spaces, we amphasize that the key property allowing to prove the strong theorem is the

consistency (3.15). When starting from the reduced density matrices Γ
(n)
N of a N -body

state ΓN and extracting weakly-∗ convergent subsequences to define a hierarchy
(
γ(n)

)
n∈N,

Γ
(n)
N ⇀∗ γ

(n),

one only has

Trn+1

[
γ(n+1)

]
≤ lim

N→∞
Trn+1

[
γ

(n+1)
N

]
= lim

N→∞
γ

(n)
N = γ(n).

because the trace is not continuous 14 for the weak-∗ topology, only lower semi-continuous.
Obviously, the relation

Trn+1

[
γ(n+1)

]
≤ γ(n) (3.36)

is not sufficient to prove a de Finetti theorem. A simple counter-example is given by the
sequence of reduced density matrices of a one-body state v ∈ SH:

γ(0) = 1, γ(1) = |v〉〈v|, γ(n) = 0 for n ≥ 2.

14This is a fancy way of characterizing infinite dimensional spaces.
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In these notes we have chosen to prove the weak de Finetti theorem as constructively
as possible. Before we announce the plan of the proof, we shall say a few words of the
much more abstract approach of the historical references [182, 91]. These papers actually
contain a version of the theorem that is even stronger than Theorem 3.7. This result
applies to “abstract” states that are not necessarily normal or bosonic. These may be
defined as follows:

Definition 3.13 (Abstract state with infinitely many particles).
Let H be a complex separable Hilbert space and for all n ∈ N, Hn =

⊗nH be the
corresponding n-body space. We call an abstract state with infinitely many particles a
sequence (ω(n))n∈N where

• ω(n) is an abstract n-body state: ω(n) ∈ (B(Hn))∗, the dual of the space of bounded

operators on Hn, ω(n) ≥ 0 and

ω(n)(1Hn) = 1. (3.37)

• ω(n) is symmetric in the sense that

ω(n) (B1 ⊗ . . . Bn) = ω(n)
(
Bσ(1) ⊗ . . . Bσ(n)

)
(3.38)

for all B1, . . . , Bn ∈ B(H) and all permutation σ ∈ Σn.

• the sequence (ω(n))n∈N is consistent:

ω(n+1) (B1 ⊗ . . . Bn ⊗ 1H) = ω(n) (B1 ⊗ . . . Bn) (3.39)

for all B1, . . . , Bn ∈ B(H).

�

An abstract state is in general not normal, that is it does not fit in the following
definition:

Definition 3.14 (Normal state, locally normal state).

Let H be a complex separable Hilbert space and (ω(n))n∈N be an abstract state with

infinitely many particles. We say that (ω(n))n∈N is locally normal if ω(n) is normal for all

n ∈ N, i.e. there exists γ(n) ∈ S1(Hn) a trace-class operator such that

ω(n)(Bn) = TrHn [γ(n)Bn] (3.40)

for all Bn ∈ B(Hn). �

Identifying trace-class operators with the associated normal states we readily see that
Definition 3.3 is a particular case of abstract state with infinitely many particles. Note
that (by the spectral theorem), the set of convex combinations of pure states (orthogonal
projectors) cöıncides with the trace class. A non-normal abstract state is thus not a mixed,
i.e. not a statistical superposition of pure states. The physical interpretation of a non-
normal state is thus not obvious, in particular in the type of settings that these notes are
concerned with.

The consistency notion (3.39) is the natural generalization of (3.15) but it is important
to note that the symmetry (3.38) is weaker than bosonic symmetry. It in fact corresponds
to classicaly indistinguishable particles (the modulus of the wave-function is symmetric
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but not the wave-function itself). One may for example note that if ω(n) is normal in the

sense of (3.40), then γ(n) ∈ S1(Hn) satisfies

Uσγ
(n)U∗σ = γ(n)

where Uσ is the unitary operator permuting the n particles according to σ ∈ Σn. Bosonic
symmetry corresponds to the stronger constraint

Uσγ
(n) = γ(n)U∗σ = γ(n),

cf Section 1.2.
We also have a notion of product state that generalizes Definition 3.4.

Definition 3.15 (Abstract product state with infinitely many particles).
We call abstract product state an abstract state with infinitely many particles such that

ω(n) = ω⊗n (3.41)

for all n ∈ N, where ω ∈ (B(H))∗ is an abstract one-body stateest un état abstait à une
particule (in particular ω ≥ 0 and ω(1H) = 1). �

The most general form of the quantum de Finetti theorem says that every abstarct
state with infinitely many particles is a convex combination of product states:

Theorem 3.16 (Abstract quantum de Finetti).

Let H be a complex separable Hilbert space and (ω(n))n∈N an abstract bosonic state
with infinitely many particles built on H. There exists a unique probability measure
µ ∈ P ((B(H))∗) on the dual of the space of bounded perators on H such that

µ ({ω ∈ (B(H))∗, ω ≥ 0, ω(1H) = 1}) = 1 (3.42)

and

ω(n) =

∫
ω⊗n dµ(ω) (3.43)

for all n ≥ 0.

Remark 3.17 (On the abstract quantum de Finetti theorem).

(1) This result was first proven by Størmer [182]. Hudson and Moody [91] then gave a
simpler proof by adapting the Hewitt-Savage proof of the classical de Finetti theo-
rem 2.1: they prove that product states are the extremal points of the convex set of
abstract states with infinitely many particles. The existence of the measure is then
a consequence of the Choquet-Krein-Milman theorem. This approach does require
the notion of abstract states and does not give a direct proof of Theorem 3.5.

(2) Hudson and Moody [91] deduce the strong de Finetti theorem from the abstract
theorem. An adaptation of their method (see [106, Appendix A]) shows that the
weak de Finetti theorem is also a consequence of the abstract theorem.

(3) This theorem has been used to derive Hartree-type theories for abstract states
without bosonic symmetry in [68, 151, 146]. To recover the usual Hartree theory
one must be able to show that the limit state is (locally) normal. In finite dimen-
sional spaces, B(H) of course cöıncides with the space of compact operators, which
implies that any abstract state is normal. This difficulty thus does not occur in
this setting.
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�

At this stage we thus have the scheme (“deF” stands for de Finetti)

abstract deF ⇒ weak deF ⇒ strong deF , (3.44)

but the proof of the weak de Finettu theorem we are going to present follows a different
route, used in [106, 109]. It starts from the finite dimensional theorem15:

finite-dimensional deF ⇒ weak deF ⇒ strong deF . (3.45)

This approach leads to a somewhat longer proof than the scheme (3.44) starting from the
Hudson-Moody proof of Theorem 3.16. This detour is motivaed by five main practical
and aesthetical reasons:

(1) The proof following (3.45) is simpler from a conceptual point of view: it requires
neither the notion of abstract states nor the use of Choquet’s theorem.

(2) Thanks to recent progress, due mainly to the quantum information community [37,
36, 87, 101, 69, 109], we have a completely constructive proof the finite dimensional
quantum de Finetti theorem at our disposal. One first proves explicit estimates
thanks for a construction for finite N , in the spirit of the Diaconis-Freedman
approach to the classical case. Then one passes to the limit as in the proof of the
Hewitt-Savage theorem we have presented in Section 2.2.

(3) The first implication in Scheme (3.45) is also essentially constructive, thanks to
Fock-space localization techniques used e.g. in [2, 53, 105]. These tools are inher-
ited from the so-called “geometric” methods [64, 65, 170, 172] that adapt to the
N -body problem localization ideas natural in the one-body setting. These allow
(amongst other things) a fine description of the lack of compactness due to loss of
mass at infinity, in the spirit of the concentration-compactness principle [129, 130].

(4) In particular, the proof of the first implication in (3.45) yields a few corollaries
which will allow us to prove the validity of Hartree’s theory in the general case.
When theassumptions made in Section 3.3 do not hold, the weak de Finetti theorem
and its proof according to (3.44) are not sufficient to conclude: Particles escaping
to infinity may form negative-energy bound states. The localization methods we
are going to discuss will allow us to analyze this phenomenon.

(5) In Chapter 7 we will deal with a case where the interaction potential depends on
N to derive non-linear Schrödinger theory in the limit. This amounts to taking a
limit where w converges to a Dirac mass simultaneously to the N → ∞ limit. In
this case, compactness arguments will not be sufficient and the explicit estimates
we shall obtain along the proof of the finite dimensional de Finetti theorem will
come in handy.

An alternative point of view on the proof strategy (3.45) is given by the Ammari-Nier
approach [3, 4, 5, 6], based on semi-classical analysis methods. The relation between the
two approaches will be discussed below.

As noted above, the second implication in (3.45) is relatively easy. The following chap-
ters deal with the first two steps of the strategy. They contain the proof of the weak de
Finetti theorem and several corollaries and intermediary results. The finite dimensional

15In finite dimension there is no need to distinguish between the weak and the strong version.
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setting (where the distinction between the strong and the weak theorems is irrelevant) is
discussed in Chapter 4. The localizatio methods allowing to prove the first implication
in (3.45) are the subject of Chapter 5.
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4. The quantum de Finetti theorem in finite dimensonal spaces

This chapter deals with the starting point of the proof strategy (3.45), that is a proof of
the strong de Finetti theorem in the case of a finite dimensional complex Hilbert space H,

dimH = d.

In this case, strong and weak-∗ convergences in S1(Hn) are the same and thus there is
no need to distinguish between the strong and the weak de Finetti theorem. The main
advantage of working in finite dimensions is the possibility to obtain explicit estimates in
the spirit of the Diaconis-Freedman theorem (with a completely different method, though).
We are in fact going to prove the following result, which gives bounds in trace-class norm,
the natural norm for quantum states:

Theorem 4.1 (Quantitative quantum de Finetti).

Let ΓN ∈ S1(HNs ) be a bosonic state over HNs and γ
(n)
N its reduced density matrices. There

exists a probability measure µN ∈ P(SH) such that, denoting

Γ̃N =

∫
u∈SH

|u⊗N 〉〈u⊗N |dµN (u) (4.1)

the associated state and γ̃
(n)
N its reduced density matrices, we have

TrHn
∣∣∣γ(n)
N − γ̃(n)

N

∣∣∣ ≤ 2n(d+ 2n)

N
(4.2)

for all n = 1 . . . N .

Remark 4.2 (On the finite dimensional quantum de Finetti theorem).

(1) This result is essentially due to Christandl, König, Mitchison and Renner [37],
important earlier work being found in [101] and [69]. One may find developments
along theses lines in [36, 87, 109]. The quantum information community also
considered several variants, see for example [37, 38, 39, 154, 26].

(2) One can add a step in the strategy (3.45):

quantitative deF ⇒ finite dimensional deF ⇒ weak deF ⇒ strong deF . (4.3)

Indeed, in finite dimension one may identify the sphere SH with a usual, compact,
Euclidean sphere (with dimension 2d−1, i.e. the unit sphere in R2d). The space of
probability measures on SH is then compact for the usual weak topology and one
may extract from µN a converging subsequence to prove Theorem 3.5 in the case
where dimH <∞, exactly as we did to deduce Theorem 2.1 from Theorem 2.2 in
Section 2.2.

(3) The bound (4.2) is not optimal. One may in fact obtain the estimate

TrHn
∣∣∣γ(n)
N − γ̃(n)

N

∣∣∣ ≤ 2nd

N
, (4.4)

with the same construction, see [36, 37, 109]. The proof we shall present only
gives (4.2) but seems more instructive to me. For the applications we have in
mind, n will always be fixed anyway (equal to 2 most of the time), and in this
case (4.2) and (4.4) give the same order of magnitude in terms of N and d.
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(4) The bound (4.4) in the quantum case is the equivalent of the estimate in dn/N
mentioned in Remark 2.4 for the classical case. One may ask if this order of
magnitude is optimal. It clearly is with the construction we are going to use, but
it would be very interesting to know if one can do better with another construction.
In particular, can one find a bound independent from d, reminiscent of (2.14) in
the Diaconis-Freedman theorem ?

�

The construction of Γ̃N is taken from [37]. It is particularly simple but it does use
in a strong manner the fact that the underlying Hilbert space has finite dimension. The
approach we shall follow for the proof of Theorem 4.1 is originally due to Chiribella [36].

We are going to prove an explicit formula giving the density of Γ̃N as a function of those of
ΓN , in the spirit of Remark 2.3. This formula implies (4.2) in the same manner as (2.19)
implies (2.14).

In Section 4.1 we present the construction, state Chiribella’s explicit formula and obtain
Theorem 4.1 as a corollary. Before giving a proof of Chiribella’s result, it is useful to
discuss some informal motivation and some heuristics on the Christandl-König-Mitchison-
Renner (CKMR) construction, which happens to be connected to well-known ideas of
semi-classical analysis. This is the purpose of Section 4.2. Finally, we prove Chiribella’s
formula in Section 4.3, following the approach of [109]. It has been independently found
by Lieb and Solovej [122] (with a different motivation), and was inspired by the works of
Ammari and Nier [4, 5, 6]. Other proofs are available in the literature, cf [36] and [87].

4.1. The CKMR construction and Chiribella’s formula.

We first note that the Diaconis-Freedman construction introduced before is purely classi-
cal since it is based on the notion of empirical measure, which has no quantum counterpart.
A different approach is thus clearly necessary for the proof of Theorem 4.1.

In a finite dimensional space, one may identify the unit sphere SH = {u ∈ H, ‖u‖ = 1}
with a Euclidean sphere. one may thus equip it with a uniform measure (Haar measure of
the rotation group, simply the Lebesgue measure on the Euclidean sphere), that we shall
denote du. We then have a nice resolution of the identity as a simple consequence of the
invariance of du under rotations (see below for a proof). We state this as a lemma:

Lemma 4.3 (Schur’s formula).
Let H be a complex finite dimensional Hilbert space and HN the corresponding bosonic
N -body space. Then

dimHNs

∫
SH
|u⊗N 〉〈u⊗N | du = 1HN . (4.5)

The idea of Christandl-König-Mitchison-Renner is to simply define

dµN (u) := dimHNs TrHNs
[
ΓN |u⊗N 〉〈u⊗N |

]
du

= dimHNs TrHNs
〈
u⊗N ,ΓNu

⊗N〉 du, (4.6)

i.e. to take

Γ̃N = dimHNs

∫
SH
|u⊗N 〉〈u⊗N |

〈
u⊗N ,ΓNu

⊗N〉 du. (4.7)
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Chriibella’s observation16 is the following:

Theorem 4.4 (Chiribella’s formula).
With the previous definitions, it holds

γ̃
(n)
N =

(
N + n+ d− 1

n

)−1 n∑
`=0

(
N

`

)
γ

(`)
N ⊗s 1Hn−` (4.8)

with the convention

γ
(`)
N ⊗s 1Hn−` =

1

`! (n− `)!
∑
σ∈Sn

(γ`N )σ(1),...,σ(`) ⊗ (1Hn−`)σ(`+1),...,σ(n)

where (γ`N )σ(1),...,σ(`) acts on the σ(1) . . . , σ(`) variables.

From this result we deduce a simple proof of the quantitative de Finetti theorem:

Proof of Theorem 4.1. We proceed as in (2.20). Only the first term in the sum (4.8) is
really relevant:

γ̃
(n)
N − γ(n)

N = (C(d, n,N)− 1)γ
(n)
N +B = −A+B (4.9)

where

C(d, n,N) =
(N + d− 1)!

(N + n+ d− 1)!

N !

(N − n)!
< 1,

and A,B are positive operators. We have

TrHn [−A+B] = Tr
[
γ̃

(n)
N − γ(n)

N

]
= 0,

and thus, by the triangle inequality,

Tr
∣∣∣γ̃(n)
N − γ(n)

N

∣∣∣ ≤ TrA+ TrB = 2 TrA = 2(1− C(d, n,N)).

Next, the elementary inequality

C(d, n,N) =
n−1∏
j=0

N − j
N + j + d

≥
(

1− 2n+ d− 2

N + d+ n− 1

)k
≥ 1− n 2n+ d− 2

N + d+ n− 1

gives

Tr
∣∣∣γ(n)
N − γ̃(n)

N

∣∣∣ ≤ 2n(d+ 2n)

N
, (4.10)

which is the desired result. �

Everything now relies on the proof of Theorem 4.4, which is the subject of Section 4.3.
Before we give it, some heuristics regarding the relevance of the construction (4.7) shall
be discussed.

16In the quantum information vocabulary this is formulated as a relation between “optimal cloning”
and “optimal measure and prepare channels”.
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4.2. Heuristics and motivation.

Schur’s formula (4.5) epresses the fact that the family
(
u⊗N

)
u∈SH forms an over-

complete basis of HNs . Such a basis labeled by a continuous paramter is reminiscent
of coherent state decomposition [99, 187]. This basis in fact turns our to be “less and less
over-complete” when N gets large. Indeed, we clearly have

〈u⊗N , v⊗N 〉HN = 〈u, v〉NH → 0 when N →∞ (4.11)

as soon as u and v are not exactly colinear. The basis
(
u⊗N

)
u∈SH thus becomes “almost

orthonormal” when N tends to infinity, and it is then very natural to expect every operator
to have an approximate representation of the form (4.1).

In the vocabulary of semi-classical analysis [113, 174, 15], trying to write

ΓN =

∫
u∈SH

dµN (u)|u⊗N 〉〈u⊗N |

amounts to looking for an upper symbol µN representing ΓN . In fact, it happens [174] that
one may always find such a symbol, only µN is in general not a positive measure. The
problem we face is to find a way to approximate the upper symbol (for which no explicit
expression as a function of the state itself exists, by the way) with a positive measure.

On the other hand, the measure introduced in (4.6) is exactly what one calls the lower
symbol of the state ΓN . One of the reasons why lower and and upper symbols were
introduced is that these two a priori different objects have a tendency to cöıncide in semi-
classical limits. But the N → ∞ limit we are concerned with may indeed be seen as a
semi-classical limit and it is thus very natural to take the lower symbol as an approximation
of the upper symbol in this limit.

One can motivate this choice in a slightly more precise way. Assume we have a sequence
of N -body states defined starting from an upper symbol independent of N ,

ΓN = dim(HNs )

∫
u∈SH

µsup(u)|u⊗N 〉〈u⊗N |du,

and let us compute the corresponding lower symbols:

µinf
N (v) = 〈v⊗N ,ΓNv⊗N 〉 = dim(HNs )

∫
u∈SH

µsup(u)
∣∣〈u⊗N , v⊗N 〉∣∣2 du

= dim(HNs )

∫
u∈SH

µsup(u) |〈u, v〉|2N du.

In view of the observation (4.11) and the necessary invariance of µsup the action of S1 it
is clear that we have

µinf
N (v)→ µsup(v) when N →∞.

In other words, the lower symbol is, for large N , an approximation of the upper sym-
bol, that has the advantage of being positive. Without consituting a rigorous proof of
Theorem 4.1, this point of view shows that the CKMR constuction is extremely natural.

4.3. Chiribella’s formula and anti-Wick quantization.

The proof of Theorem 4.4 we are going to present uses the second quantization formal-
ism. We start with a very useful lemma. In the vocabulary alluded to in the previous
section it expresses the fact that a state is entirely characterized by its lower symbol, a
well-known fact [174, 99].
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Lemma 4.5 (The lower symbol determines the state).

If an operator γ(k) on Hks satisfies

〈u⊗k, γ(k)u⊗k〉 = 0 for all u ∈ H, (4.12)

then γ(k) ≡ 0.

Proof. We use the symmetric tensor product

Ψk ⊗s Ψ`(x1, ..., xk) =
1√

`!(k − `)!k!

∑
σ∈Sk

Ψ`(xσ(1), ..., xσ(`))Ψk−`(xσ(`+1), ..., xσ(k))

for two vectors Ψ` ∈ H` et Ψk−` ∈ Hk−`.
Replacing u by u+ tv in (4.12) and taking the derivative with respect to t, we obtain

〈v ⊗s u⊗(k−1), γ(k)v ⊗s u⊗(k−1)〉 = 0

for all u, v ∈ H. Taking v of the form v = v1 ± ṽ1 puis v = v1 ± iṽ1 and iterating the
argument, we conclude

〈v1 ⊗s v2 ⊗s . . .⊗s vk, γ(k)ṽ1 ⊗s ṽ2 ⊗s . . .⊗s ṽk〉 = 0

for all vj , ṽj ∈ H. Vectors of the form v1 ⊗s v2 ⊗s . . . ⊗s vk form a basis of Hks , thus the
proof is complete. �

For self-containedness we use the previous lemma to give a short proof of Schur’s for-
mula (4.5):

Proof of Lemma 4.3. In view of Lemma 4.5, it suffices to show that

dimHNs

∫
SH
|〈u, v〉|2N du = 1

for all v ∈ SH. Pick v and ṽ in SH and U a unitary mapping such that Uv = ṽ. Then, by
invariance of du under rotations,

dimHNs

∫
SH
|〈u, v〉|2N du = dimHNs

∫
SH
|〈Uu,Uv〉|2N du = dimHNs

∫
SH
|〈u, ṽ〉|2N du

and thus

dimHNs

∫
SH
|〈u, v〉|2N du

does not depend on v. By Lemma 4.5 this implies that

dimHNs

∫
SH
|u⊗N 〉〈u⊗N | du = c1HN

for some constant c. Taking the trace of both sides of this equation shows that c = 1 and
the proof is complete. �

In the sequel we use standard bosonic creation and annihilation operators. For all
fk ∈ H, we define the creation operator a∗(fk) : Hk−1

s → Hks by

a∗(fk)

 ∑
σ∈Sk−1

fσ(1) ⊗ ...⊗ fσ(k−1)

 = (k)−1/2
∑
σ∈Sk

fσ(1) ⊗ ...⊗ fσ(k).
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The annihilation operator a(f) : Hk+1 → Hk is the formal adjoing of a∗(f) (whence the
notation), defined by

a(f)

 ∑
σ∈Sk+1

fσ(1) ⊗ ...⊗ fσ(k+1)

 = (k + 1)1/2
∑

σ∈Sk+1

〈
f, fσ(1)

〉
fσ(2) ⊗ ...⊗ fσ(k)

for all f, f1, ..., fk in H. These operators satisfy the canonical commutation relations (CCR)

[a(f), a(g)] = 0, [a∗(f), a∗(g)] = 0, [a(f), a∗(g)] = 〈f, g〉H. (4.13)

One of the uses of these objects is that the reduced density matrices γ
(n)
N of a bosonic

state ΓN are characterized by the relations17

〈v⊗n, γ(n)
N v⊗n〉 =

(N − n)!

N !
TrHNs [a∗(v)na(v)nΓN ] . (4.14)

Lemma 4.5 guarantees that this determines γ
(n)
N completely. The definition above is called

a Wick quantization: Creation and annihilation operators appear in the normal order, all
creators on the left and all annihilators on the right.

The key observation in the proof of Theorem 4.4 is that the density matrices of the
state (4.7) can be alternatively defined from ΓN via an anti-Wick quantization where
creation and annihilation operators appear in anti-normal order: All annihilators on the
left and all creators on the right.

Lemma 4.6 (The CKMR construction and anti-Wick quantization).

Let Γ̃N be defined by (4.7) and γ̃
(n)
N be its reduced density matrices. It holds

〈v⊗n, γ̃(n)
N v⊗n〉 =

(N + d− 1)!

(N + k + d− 1)!
TrHNs [a(v)na∗(v)nΓN ] (4.15)

for all v ∈ H.

Proof. It suffices to consider the case of a pure state ΓN = |ΨN 〉〈ΨN | and write

〈v⊗k, γ̃(k)
N v⊗k〉 = dimHNs

∫
SH
du|〈u⊗N ,ΨN 〉|2|〈u⊗k, v⊗k〉|2

= dimHNs

∫
SH
du|〈u⊗(N+k), v⊗k ⊗ΨN 〉|2

=
N !

(N + k)!
dimHNs

∫
SH
du|〈u⊗(N+k), a∗(v)kΨN 〉|2

=
N !

(N + k)!

dimHNs
dimHN+k

s

〈a(v)kΨN , a(v)kΨN 〉

=
(N + d− 1)!

(N + k + d− 1)!
〈ΨN , a(v)ka∗(v)kΨN 〉

using Schur’s lemma (4.5) in HN+k
s in the third line, the fact that a∗(v) is the adjoint of

a(v) in the fourth line and recalling that

dimHNs =

(
N + d− 1

d− 1

)
, (4.16)

17We recall our convention that Tr[γ
(n)
N ] = 1.
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the number of ways of choosing N elements from d, allowing repetitions, without taking
the order into account. This is the number of orthogonal vectors of the form

ui1 ⊗s . . .⊗s uiN , (i1, . . . , iN ) ∈ {1, . . . , d}
one may form starting from an orthogonal basis (u1, . . . , ud) of H, and these form an
orthogonal basis of HN . �

The way forward is now clear: we have to compare polynomials in a∗(v) and a(v) written
in normal and anti-normal order. This standard operation leads to the final lemma of the
proof:

Lemma 4.7 (Normal and anti-normal order).
Let v ∈ SH. We have

a(v)na∗(v)n =
n∑
k=0

(
n

k

)
n!

k!
a∗(v)ka(v)k for all n ∈ N. (4.17)

Proof. The computation is made easier by recalling the expression for the n-th Laguerre
polynomial

Ln(x) =
n∑
k=0

(
n

k

)
(−1)k

k!
xk.

These polynomials satisfy the recurrence relation

(n+ 1)Ln+1(x) = (2n+ 1)Ln(x)− xLn(x)− nLn−1(x)

and one may see that (4.17) may be rewritten

a(v)na∗(v)n =
n∑
k=0

cn,k a
∗(v)ka(v)k (4.18)

where the cn,k are the coefficients of the polynomial

L̃n(x) := n!Ln(−x).

It thus suffices to show that, for any n ≥ 1,

a(v)n+1a∗(v)n+1 = a∗(v)a(v)na∗(v)na(v) + (2n+ 1)a(v)na∗(v)n − n2a(v)n−1a∗(v)n−1.

Note the order of creation and annihilation operators in the first term of the right-hand
side: knowing a normal-ordered representation of a(v)na∗(v)n and a(v)n−1a∗(v)n−1 we
deduce a normal-ordered representation of the left-hand side.

A repeated application of the CCR (4.13) gives the relations

a(v)a∗(v)n = a∗(v)na(v) + na∗(v)n−1

a(v)na∗(v) = a∗(v)a(v)n + na(v)n−1 (4.19)

Then

a∗(v)a(v)na∗(v)na(v) = a(v)na∗(v)n+1a(v)− na(v)n−1a∗(v)na(v)

= a(v)n+1a∗(v)n+1 − (n+ 1)a(v)na∗(v)n

− na(v)na∗(v)n + n2a(v)n−1a∗(v)n−1,

and the proof is complete. �
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The final formula (4.8) is deduced by combining Lemmas 4.5, 4.6 and 4.7 with (4.14).
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5. Fock-space localization and applications

We now turn to the first implication in the proof strategy (3.45). We shall need to
convert weak-∗ convergence of reduced density matrices into strong convergence, in order
to apply Theorem 3.5. The idea is to localize the state ΓN one starts from using either
compactly supported functions or finite rank orthogonal projectors. One may then work
in a compact setting with S1-strong convergence, apply Theorem 3.5 and then pass to
the limit in the localization as a last step. More precisely, we will use localization in finite
dimensional spaces, in order to show that the general theorem can be deduced from the
finite-dimensional constructive proof discussed in the previous chapter.

The difficulty here is that the appropriate localization notion for a N -body state (e.g. a
wave-function ΨN ∈ L2(RdN )) is more complicated than that one is used to for one-body
wave-functions ψ ∈ L2(Rd). One in fact has to work directly on the reduced density matri-
ces and localize them in such a way that the localized matrices correspond to a quantum
state. The localization procedure may lead to particle losses and thus the localizaed state
will in general not be a N -body state but a superposition of k-body states, 0 ≤ k ≤ N ,
i.e. a state on Fock space.

The localization procedure we shall use is described in Section 5.2. We shall first give
some heurtistic considerations in Section 5.1, in order to make precise what has been
said above, namely that the correct localization procedure in L2(RdN ) must differ from
the usual localization in L2(Rd). Section 5.3 contains the proof of the weak quantum
de Finetti theorem and a useful auxiliary result which is consequence of the proof using
localization.

5.1. Weak convergence and localization for a two-body state.

The following considerations are inspired from [105]. Let us take a particularly simple
sequence of bosonic two-body states

Ψn := ψn ⊗s φn =
1√
2

(ψn ⊗ φn + φn ⊗ ψn) ∈ L2
s(R2d) (5.1)

with ψn and φn being normalized in L2(Rd). This corresponds to having one patricle in
the state ψn and one particle in the state φn. We will assume

〈φn, ψn〉L2(Rd) = 0,

which ensures that ‖Ψn‖ = 1. Extracting a subsequence if need be we have

Ψn ⇀ Ψ in L2(R2d)

and the convergence is strong if and only if ‖Ψ‖ = ‖Ψn‖ = 1. In the case where some
mass is lost in the limit, i.e. ‖Ψ‖ < 1, the convergence in only weak.

We will always work in a locally compact setting and thus the only possible source for
the loss of mass is that it disappears at infinity [129, 130, 131, 132]. A possibility is that
both particles φn and ψn are lost at infinity

ψn ⇀ 0, φn ⇀ 0 in L2(R2d) in n→∞,

in which case Ψn ⇀ 0 in L2(R2d). In L2(R2d) this is the scenario that is closest to the
usual loss of mass in L2(Rd), but there are other possibilities.
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A typical case is that where only one of the two particles is lost at infinity, which we
can materialize by

ψn ⇀ 0 weakly in L2(Rd), φn → φ strongly in L2(R2d).

For the loss of mass of ψn one may typically think of the example

ψn = ψ (.+ xn) (5.2)

with |xn| → ∞ when n → ∞ and ψ say smooth with compact support. We have in this
case

Ψn ⇀ 0 in L2(R2d)

but for obvious physical reasons we would prefer to have a weak convergence notion en-
suring

Ψn ⇀g
1
2φ. (5.3)

In particular, since only the parrticle in the state ψn is lost at infinity it is natural that the
limit state be one with only the particle described by φ left. We denote this convergence
⇀g because this is precisely the so-called “geometric” convergence discussed by Mathieu
Lewin in [105]. The difficulty is of course that the two sides of (5.3) live in different spaces.

To introduce the correct convergence notion, one has to look at the density matrices of
Ψn:

γ
(2)
Ψn

= |φn ⊗s ψn〉 〈φn ⊗s ψn|⇀∗ 0 in S1
(
L2(R2d)

)
γ

(1)
Ψn

= 1
2 |φn〉 〈φn|+

1
2 |ψn〉 〈ψn|⇀∗

1
2 |φ〉 〈φ| in S1

(
L2(Rd)

)
. (5.4)

One then sees that the pair
(
γ

(2)
Ψn
, γ

(1)
Ψn

)
converges to the pair

(
0, 1

2 |φ〉 〈φ|
)

that corresponds

to the density matrices of the one-body state 1
2φ ∈ L

2(Rd). More precisely, the geometric
convergence notion is formulated in the Fock space (here bosonic with two particles)

F≤2
s (L2(Rd)) := C⊕ L2(Rd)⊕ L2

s(R2d) (5.5)

and we have in the sense of geometric convergence on S1
(
F≤2
s

)
0⊕ 0⊕ |Ψn〉 〈Ψn|⇀g

1
2 ⊕

1
2 |φ〉 〈φ| ⊕ 0,

which means that all the reduced density matrices of the left-hand side converge to those
of the right-hand side. We note that the limit does have trace 1 in S1

(
F≤2
s

)
, there is

thus no loss of mass in F≤2
s . More precisely, in F≤Ns the loss of mass for a pure

N-particles state is materialized by the convergence to a mixed state with less
particles.

Just as the appropriate notion of weak convergence for N -body problems is different
from the usual weak convergence in L2(RdN ) (a fortiori when taking the limit N →
∞), the appropriate procedure to localize a state and turn weak convergence into strong
convergence must be thought anew. Given a self-adjoint positive localization operator A,
say A = P a finite rank projector or A = χ the multiplication by a compactly supported
function χ, one usually localizes a wave-function ψ ∈ L2(Rd) by defining

ψA = Aψ

which amounts to associate
|ψ〉 〈ψ| ↔ |Aψ〉 〈Aψ| .
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Emulating this procedure for the two-body state (5.1) one might imagine to consider a
localized state defined by its two-body density matrix

γ
(2)
n,A = |A⊗AΨn〉 〈A⊗AΨn| .

It is then clear that

γ
(2)
n,A ⇀∗ 0 in S1(H2

s),

which was to be expected, but it is more disturbing that we also have for the corresponding
one-body density matrix

γ
(1)
n,A ⇀∗ 0 in S1(H)

whereas, in view of (5.4) one would rather like to have

γ
(1)
n,A →

1

2
|Aφ〉 〈Aφ| strongly in S1(H).

The solution to this dilemma is to define a localized state by asking that its reduced

density matrices be A⊗Aγ(2)
Ψn
A⊗A and Aγ

(1)
Ψn
A. The corresponding state is then uniquely

determined, and it so happens that it is state on Fock space, as we explain in the next
section.

5.2. Fock-space localization.

After the preceding heuristic considerations, we now introduce the notion of localization
in the bosonic Fock space18

Fs(H) = C⊕ H⊕ . . .⊕ Hns ⊕ . . .

Fs(L2(Rd)) = C⊕ L2(Rd)⊕ . . .⊕ L2
s(Rdn)⊕ . . . . (5.6)

In this course we will always start from N -body states, in which case it is sufficient to
work in the truncated Fock space

F≤Ns (H) = C⊕ H⊕ . . .⊕ Hns ⊕ . . .⊕ HNs

F≤Ns (L2(Rd)) = C⊕ L2(Rd)⊕ . . .⊕ L2
s(Rdn)⊕ . . .⊕ L2

s(RdN ). (5.7)

Definition 5.1 (Bosonic states on the Fock space).
A bosonic state on the Fock space is a positive self-adjoint operator with trace 1 on Fs.
We denote S(Fs(H)) the set of states (here bosonic)

S(Fs(H)) =
{

Γ ∈ S1(Fs(H)),Γ = Γ∗,Γ ≥ 0,TrFs(H)[Γ] = 1
}
. (5.8)

We say that a state is diagonal (stricto sensu, block-diagonal) if it can be written

Γ = G0 ⊕G1 ⊕ . . .⊕Gn ⊕ . . . (5.9)

with Gn ∈ S1(Hns ). A state ΓN on the truncated Fock space F≤Ns (H), respectively a
diagonal state on the truncated Fock space, are defined in the same manner. For a diagonal
state on F≤Ns (H), of the form

Γ = G0,N ⊕G1,N ⊕ . . .⊕GN,N ,

18The procedure is the same for fermionic particles.
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its n-th reduced density matrix Γ
(n)
N is the operator on Hns defined by

Γ
(n)
N =

(
N

n

)−1 N∑
k=n

(
k

n

)
Trn+1→kGN,k. (5.10)

�

The acquainted reader will notice two things:

• We introduce only those concepts that will be crucial to the sequel of the course.
One may of course define the density matrices of general states, but we will not
need this hereafter. For a diagonal state, the reduced density matrices (5.10)
characterize the state completely. For a non-diagonal state, one must also specify
its “off-diagonal” density matrices Γ(p,q) : Hps 7→ Hqs for p 6= q.
• The normalization we chose in (5.10) is not standard. It is chosen such that, in

the spirit of the rest of the course, the n-th reduced matrix of a N - particles state
(i.e. one with G0,N = . . . = GN−1,N = 0 in (5.10)) be of trace 1. The standard

convention would rather be to fix the trace at
(
N
n

)
, which is less convenient to

apply Theorem 3.5.

We may now introduce the concept of localization of a state. We shall limit ourselves
to N -body states and self-adjoint localization operators, which is sufficient for our needs
in the sequel. The following lemma/definition is taken from [105]. Other versions may be
found e.g. in [2, 53, 86].

Lemma 5.2 (Localization of a N-body state).
Let ΓN ∈ S(HNs ) be a bosonic N -body state un état bosonique à N corps and A a self-adjoint
operator on H with 0 ≤ A2 ≤ 1. There exists a unique diagonal state ΓAN ∈ S(F≤Ns (H))
such that (

ΓAN
)(n)

= A⊗nΓ
(n)
N A⊗n (5.11)

for all 0 ≤ n ≤ N . Moreover, writing ΓAN in the form

ΓAN = GA0,N ⊕GA1,N ⊕ . . .⊕GAN,N ,
we have the fundamental relation

TrHns
[
GAN,n

]
= TrHN−ns

[
G
√

1−A2

N,N−n

]
. (5.12)

Remark 5.3 (Fock-space localization).

(1) The uniqueness part of the lemma shows that one has to work on Fock space. The
localized state is in fact unique in S(Fs(H)), but to see this we would need slightly
more general definitions, cf [105].

(2) The relation (5.12) is one of the cornerstones of the method. Loosely speaking it
expresses the fact that, in the state ΓN , the probability of having n particles
A-localized is equal to the probability of having N − n particles

√
1−A2

localized. Think of the case of a very siple localization function, A = 1B(0,R),
the indicative function of the ball of radius R. We are then simply saying that
the probability of having exactly n particles in the ball equals the probability of
having exactly N − n particles outside of the ball. Indeed, in probabilistic terms,
these correspond to the same event. �
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Proof of Lemma 5.2. Uniqueness, at least amongst diagonal states on the truncated Fock
space, is a simple consequence of the fact that the reduced density matrices uniquely
characterize the state. Details can be found in [105].

For the existence, on can use the usual identification

Fs(AH⊕
√

1−A2H) ' Fs(AH)⊗Fs(
√

1−A2H)

and define the localized state by taking a partial trace with respect to the second Hilbert
space in the tensor product of the right-hand side. We shall follow a more explicit but
equivalent route. To simplify notation we shall restrict to the case where A = P is an
orthogonal projector and thus

√
1−A2 = P⊥.

By definition and cyclicity of the trace, we obtain

P⊗nΓ
(n)
N P⊗n = Trn+1→N

[
P⊗n ⊗ 1⊗(N−n)ΓNP

⊗n ⊗ 1⊗(N−n)
]

=
N−n∑
k=0

(
N − n
k

)2

Trn+1→N

[
P⊗n+k ⊗ P⊗(N−n−k)

⊥ ΓNP
⊗n+k ⊗ P⊗(N−n−k)

⊥

]

=

N∑
k=n

(
N − n
k − n

)2

Trn+1→N

[
P⊗k ⊗ P⊗(N−k)

⊥ ΓNP
⊗k ⊗ P⊗(N−k)

⊥

]
upon writing 1 = P + P⊥ and expanding the terms 1⊗(N−n) using the binomial formula.
It then suffices to note that (

N − n
k − n

)2

=

(
N

k

)2(N
n

)(
k

n

)−1

to obtain

P⊗nΓ
(n)
N P⊗n =

N∑
k=n

(
N

n

)−1(k
n

)
Trn+1→N

[
GPN,k

]
=
(
GPN
)(n)

with (cf Definition (5.10))

GPN,k =

(
N

k

)2

Trk+1→N

[
P⊗k ⊗ P⊗(N−k)

⊥ ΓNP
⊗k ⊗ P⊗(N−k)

⊥

]
(5.13)

and

GPN = GPN,0 ⊕ . . .⊕GPN,N .
There remains to show that GPN is indeed a state, i.e. that its trace is 1. To see this, we
write

1 = TrHN [ΓN ] = TrHN
[
(P + P⊥)⊗N ΓN (P + P⊥)⊗N

]
=

N∑
k=0

(
N

k

)2

TrHN
[
P⊗k ⊗ P⊗(N−k)

⊥ ΓNP
⊗k ⊗ P⊗(N−k)

⊥

]

=

N∑
k=0

TrHk
[
GPN,k

]
= TrF(H)[G

P
N ].

The relation (5.12) is an immediate consequence of (5.13) and the symmetry of ΓN . �
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5.3. Proof of the weak quantum de Finetti theorem and corollaries.

We are now going to use the localization procedure just described to prove the first im-
plication of the strategy (3.45). The idea is to use a finite-rank projector P combine (5.10)
with (5.11) to write (with n ∈ N fixed)

P⊗nγ
(n)
N P⊗n =

N∑
k=n

(
N

n

)−1(k
n

)
Trn+1→kG

P
N,k

≈
N∑
k=n

(
k

N

)n
Trn+1→kG

P
N,k. (5.14)

Here we inserted the simple estimate (see the computation in [106], Equation (2.13))(
N

n

)−1(k
n

)
=

(
k

N

)n
+O(N−1). (5.15)

We then reason as follows: The terms where k is small contribute very little to the
sum (5.14) because of the factor

(
k
N

)n
. For the terms where k is large, we note that,

up to normalization, GPN,k is a k-particles bosonic state over PH. One may thus apply
the de Finetti theorem discussed in Chapter 4 to it, without worrying about compactness
issues since PH has finite dimension. Since k is large in these terms, and n is fixed, we
obtain (formally)

Trn+1→kG
P
N,k ≈ TrHk [GPN,k]

∫
u∈SPH

dνk(u)|u⊗n〉〈u⊗n|

for a certain measure νk, and thus

P⊗nγ
(n)
N P⊗n ≈

N∑
k'N

TrHk [GPN,k]

(
k

N

)n ∫
u∈SPH

dνk(u)|u⊗n〉〈u⊗n|.

In the limit N → ∞, the discrete sum becomes an integral in λ = k/N . Using the fact
that GPN is a state to deal with normalization, it is natural to hope that we can obtain

P⊗nγ
(n)
N P⊗n ≈

∫ 1

0
dλ λn

∫
u∈SPH

dνλ(u)|u⊗n〉〈u⊗n|,

which may be rewritten in the form (3.24) by defining (in “radial” coordinates on the unit
ball BPH)

dµ(u) = dµ

(
‖u‖ , u

‖u‖

)
:= d ‖u‖2 × dν‖u‖2

(
u

‖u‖

)
.

There remains, as a last step, to apply this procedure for a sequence of projectors P` → 1

and to check some compatibility relations to conclude. The final measure might not be a
probability measure, which one can compensate by adding a delta function at the origin
without changing any of the previous formulae.

Note that this proof, which combines the methods of Chapter 4 and Section 5.2, gives a
recipe to construct the de Finetti measure “by hand” (up to fact that we have to pass to
the limit at some point). This is very useful in practice, see Chapters 6 and 7. The spirit
of the proof using localization is reminiscent of some aspects of the method of Ammari
and Nier [3, 4].
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Let us now present the details of the proof, following [106, Section 2].

Proof of Theorem 3.7. We carry on with the above notation. The following formula de-

fines M
(n)
P,N as a measure on [0, 1], with values in the positive hermitian matrices of size

dim (⊗ns (PH)):

dM
(n)
P,N (λ) :=

N∑
k=n

δk/N (λ) Trn+1→kG
P
N,k.

We then have, using (5.15)

Tr

∣∣∣∣P⊗nγ(n)
ΓN
P⊗n −

∫ 1

0
λn dM

(n)
P,N (λ)

∣∣∣∣ ≤ C

N

N∑
k=n

TrGPN,k → 0 when N →∞. (5.16)

Since P is a finite rank projector and γ
(n)
N converges weakly-∗ by assumption,

P⊗nγ
(n)
N P⊗n → P⊗nγ(n)P⊗n (5.17)

strongly in trace-class norm. On the other hand

TrHn

[∫ 1

0
dM

(n)
P,N (λ)

]
=

N∑
k=n+1

TrHk G
P
N,k ≤

N∑
k=0

TrHk G
P
N,k = 1,

so M
(n)
P,N is a sequence of measures over a compact finite dimensional space (positive

hermitian matrices of size dimPH having a trace less than 1). One may thus extract

from it a subsequence converging weakly as measures to M
(n)
P . Combining with (5.16)

and (5.17) we have

P⊗nγ(n)P⊗n =

∫ 1

0
λn dM

(n)
P (λ). (5.18)

We now have to show that the sequence of measures
(
M

(n)
P

)
n∈N

that we just obtained

is consistent in the sense that, for all n ≥ 0,∫ 1

0
f(λ) Trn+1 dM

(n+1)
P (λ) =

∫ 1

0
f(λ)dM

(n)
P (λ) (5.19)

for all continuous functions f over [0, 1] vanishing at 0. Here Trn+1 denotes partial trace
with respect to the last variable. We have

Trn+1 dM
(n+1)
P,N (λ) =

N∑
k=n+1

δk/N (λ) Trn→kGN,k

= dM
(n)
P,N (λ)− δn/N (λ)GPN,n

and thus∫ 1

0
f(λ) TrHn

∣∣∣Trn+1M
(n+1)
P,N (λ)−M (n)

P,N (λ)
∣∣∣ ≤ ∫ 1

0
f(λ)δn/N (λ) TrHn G

P
N,n

≤ f
( n
N

)
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since TrHn G
P
N,n ≤ 1. Passing to the limit we obtain (5.19) for all function f such that

f(0) = 0.
We now apply Theorem 3.5 in finite dimension. Stricto sensu, this result applies only

at fixed λ, but approaching dM
(n)
P by step functions and then passing to the limit, we

obtain a measure νP sur [0, 1]× SH ∩ (PH) such that∫ 1

0
f(λ)dM

(n)
P (λ) =

∫
SH

∫ 1

0
f(λ)dνP (λ, u)|u⊗n〉〈u⊗n|

for all continuous function f vanishing at 0. We thus obtain

P⊗nγ(n)P⊗n =

∫ 1

0

∫
SH
dνP (λ, u)λn|u⊗n〉〈u⊗n|

=

∫ 1

0

∫
SH
dνP (λ, u) |(

√
λu)⊗n〉〈(

√
λu)⊗n|

=

∫
BH

dµP (u)|u⊗n〉〈u⊗n|,

defining the measure µP in radial coordinates. We are free to add a Dirac mass at the
origin to turn µP into a probability measure.

The argument can be applied to a sequence of finite rank projectors converging to the
identity. We then have a sequence of probability measures µk on BH such that

P⊗nk γ(n)P⊗nk =

∫
BH

dµk(u) |u⊗n〉〈u⊗n|.

Taking an increasing sequence of projectors (i.e. PkH ⊂ Pk+1H) it is clear that µk cöıncides
with µ` on P`H for ` ≤ k. Since all these measures have their supports in a bounded set,
there exists (see for example [176, Lemma 1]) a unique probability measure19 µ on BH
which cöıncides with µk on PkH in the sense that:∫

BH
dµk(u) |u⊗n〉〈u⊗n| =

∫
BH

dµ(u) |(Pku)⊗n〉〈(Pku)⊗n|.

We thus conclude

P⊗nk γ(n)P⊗nk = P⊗nk

(∫
BH

dµ(u) |u⊗n〉〈u⊗n|
)
P⊗nk

and there only remains to take the limit k → ∞ to deduce the existence of a measure
satisfying (3.24).

Let us now prove that this measure must be unique. Let µ and µ′ satisfy∫
BH
|u⊗k〉〈u⊗k|dµ(u)−

∫
BH
|u⊗k〉〈u⊗k|dµ′(u) = 0 (5.20)

for all k ≥ 1. Let V = vect(e1, . . . , ed) be a finite-dimensional subspace of H, Pi =
|ei〉〈ei| the associated projectors and µV , µ

′
V the cylindrical projections of µ and µ′ over V .

19To construct it, note that the σ-closure of the union for k ≥ 0 of the borelians of PkH cöıncides with
the borelians of H.
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Applying Pi1 ⊗ · · · ⊗ Pik on the left and Pj1 ⊗ · · · ⊗ Pjk on the right to (5.20), we obtain∫
BV

ui1 · · ·uikuj1 · · ·ujk d(µV − µ′V )(u) = 0

for all mutli-indices i1, ..., ik and j1, ..., jk (we denote u =
∑d

j=1 ujej). On the other hand,

by S1 invariance of both measuresit is clear that if k 6= `,∫
BV

ui1 · · ·uikuj1 · · ·uj` d(µV − µ′V )(u) = 0.

Since polynomials in ui and uj are dense in C0(BV,C) (continuous functions on the unit
ball of V ), we deduce that the cylindrical projections of µ and µ′ over V cöıncide. That
being true for all finite dimensional subspace V , we conclude that the two measures must
cöıncide everywhere. �

We now give a particular case, adapted to our needs in the next chapter, of a very useful
corollary of the above method of proof (see [106, Theorem 2.6] for the general statement):

Corollary 5.4 (Localization and de Finetti measure).
Let (ΓN )N∈N be a sequence of N -body states over H = L2(Rd) satisfying the assumptions
of Theorem 3.7 and µ be the associated de Finetti measure. Assume that

Tr
[
−∆γ

(1)
N

]
= Tr

[
|∇|γ(1)

N |∇|
]
≤ C (5.21)

for some constant independent of N . Let χ be a localization function with compact support
with 0 ≤ χ ≤ 1 and GχN be the localized state defined in Lemma 5.2. Then

lim
N→∞

N∑
k=0

f

(
k

N

)
TrHk G

χ
N,k =

∫
BH

dµ(u) f(‖χu‖2) (5.22)

for all continuous functions f on [0, 1].

Proof. Since polynomials are dense in the continuous functions on [0, 1] it is sufficient to
consider the case f(λ) = λn with n = 0, 1, .... We then use (5.10), (5.11) and (5.15) again
to write ∣∣∣∣∣

N∑
k=0

(
k

N

)n
TrHk G

χ
N,k − TrHn

[
χ⊗nγ

(n)
N χ⊗n

]∣∣∣∣∣→ 0 when N →∞.

Assumption (5.21) ensures

Tr

 n∑
j=1

−∆j

 γ
(n)
N

 ≤ Cn
and we may thus assume that n∑

j=1

|∇|j

 γ
(n)
N

 n∑
j=1

|∇|j

⇀∗

 n∑
j=1

|∇|j

 γ(n)

 n∑
j=1

|∇|j

 when N →∞.
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The multiplication operator by χ is relatvely compact with respect to the Laplacian, thus

Dχ
n := χ⊗n

 n∑
j=1

|∇|j

−1

is a compact operator. We then have

TrHn
[
χ⊗nγ

(n)
N χ⊗n

]
= TrHn

Dχ
n

 n∑
j=1

|∇|j

 γ
(n)
N

 n∑
j=1

|∇|j

Dχ
n


→ TrHn

Dχ
n

 n∑
j=1

|∇|j

 γ(n)

 n∑
j=1

|∇|j

Dχ
n


= TrHn

[
χ⊗nγ(n)χ⊗n

]
.

We conclude by using (3.24) that

N∑
k=0

(
k

N

)n
TrHk G

χ
N,k →

∫
BH

dµ(u) TrHn
[
|(χu)⊗n〉〈(χu)⊗n|

]
=

∫
BH

dµ(u) ‖χu‖2n =

∫
BH

dµ(u)f(‖χu‖2).

�

Remark 5.5 (Weak de Finetti measure and loss of mass.).

(1) Assumption (5.21) is used to ensure strong compactness of density matrices, see the
proof. It is of course very natural for the applications we have in mind (uniformly
bounded kinetic energy). The convergence in (5.22) means that the mass of the de
Finetti measure µ on the sphere {‖u‖2 = λ} corresponds to the probability that a
fraction λ of the particles does not escape to infinity.

(2) We will use this corollary to obtain information on particles escaping to infinity in
the following manner. We define the function

η =
√

1− χ2

which localizes “close to infinity”. One of course cannot apply the result directly
to the localized state GηN . Instead one may use Relation (5.12) to obtain

lim
N→∞

N∑
k=0

f

(
k

N

)
TrHk G

η
N,k = lim

N→∞

N∑
k=0

f

(
1− k

N

)
TrHk G

χ
N,k

=

∫
BH

dµ(u) f
(
1− ‖χu‖2

)
, (5.23)

which gives some control on the loss of mass at infinity, encoded in the de Finetti
measure. This is a bit surprising since the latter by definition describes particles
which stay trapped. Typically we will use (5.23) with f(λ) ' eH(λ), the Hartree
energy at mass λ, see the next chapter.

�
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6. Derivation of Hartree’s theory: general case

We now turn to the general case of the derivation of Hartree’s functional as a limit of the
N -body problem in the mean-field regime. In Chapter 3 we saw that, under simplifying
physical assumptions, the result is a rather direct consequence of the weak and strong de
Finetti theorems. The general case requires a more thorough analysis and we shall use
fully the localization tools introduced in Chapter 5.

The setting is now that of particles in a non-trapping potential V , interacting via a
potential that may have bound states. Let us recap the notation: The Hamiltonian of the
full system is

HV
N =

N∑
j=1

Tj +
1

N − 1

∑
1≤i<j≤N

w(xi − xj), (6.1)

acting on the Hilbert space HNs =
⊗N

s H, with H = L2(Rd). The one-body Hamiltonian is

T = −∆ + V, (6.2)

that we assume to be self-adjoint and bounded below. We have emphasized the dependence
on the potential V in the notation (6.1) because we will be lead to consider the system
where particles are lost at infinity described by the Hamiltonian H0

N where one sets V ≡ 0.
One can generalize in the same directions as mentioned in Remark 3.2, but we shall for
simplicity stick to the above model case.

The interaction potential w : R 7→ R will be asumed bounded relatively to T : for some
0 ≤ β−, β+ ≤ 1 and C > 0

− β−(T1 + T2)− C ≤ w(x1 − x2) ≤ β+(T1 + T2) + C. (6.3)

We also assume symmetry
w(−x) = w(x),

and some decay at infinity

w ∈ Lp(Rd) + L∞(Rd),max(1, d/2) < p <∞→ 0, w(x)→ 0 when |x| → ∞. (6.4)

This ensures [152] that HN is self-adjoint and bounded below. Again, it is rather vain
to consider partially trapping one-body potentials, and we thus assume that V is non-
trapping in all directions:

V ∈ Lp(Rd) + L∞(Rd),max 1, d/2 ≤ p <∞, V (x)→ 0 when |x| → ∞. (6.5)

The ground state energy of (3.1) is always given by

EV (N) = inf σHNH
V
N = inf

Ψ∈HN ,‖Ψ‖=1

〈
Ψ, HV

NΨ
〉
HN

. (6.6)

Finally let us recall what the limit objects are. The Hartree functional with potential V
is given by

EVH [u] :=

∫
Rd
|∇u|2 + V |u|2 +

1

2

∫∫
Rd×Rd

|u(x)|2w(x− y)|u(y)|2dxdy (6.7)

and we shall use the notation E0
H for the translation-invariant functional where V ≡ 0.

The Hartree energy at mass λ is given by

eVH(λ) := inf
‖u‖2=λ

EVH [u], 0 ≤ λ ≤ 1. (6.8)
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Under the previous assumptions we will always have the binding inequality

eVH(1) ≤ eVH(λ) + e0
H(1− λ) (6.9)

which is easily proved by evaluating the energy of a sequence of functions with a mass λ
in the well of the potential V and a mass 1 − λ escaping to infinity. We will prove the
following theorem, extracted from [106] (particular case of Theorem 1.1 therein).

Theorem 6.1 (Derivation of Hartree’s theory, general case).
Under the preceding assumptions, we have:

(i) Convergence of energy.

lim
N→∞

EV (N)

N
= eVH(1). (6.10)

(ii) Convergence of states. Let ΨN be sequence of L2(RdN )-normalized quasi-minimizers

for HV
N : 〈

ΨN , H
V
NΨN

〉
= EV (N) + o(N) when N →∞, (6.11)

and γ
(k)
N the corresponding reduced density matrices. There exists µ ∈ P(BH) a probability

measure on the unit ball of H with µ(MV ) = 1, where

MV =
{
u ∈ BH : EVH [u] = eVH(‖u‖2) = eVH(1)− e0

H(1− ‖u‖2)
}
, (6.12)

such that, along a subsequence,

γ
(k)
Nj

⇀∗

∫
MV

|u⊗k〉〈u⊗k| dµ(u) (6.13)

weakly-∗ in S1(Hk), for all k ≥ 1.

(iii) If in addition the strict binding inequality

eVH(1) < eVH(λ) + e0
H(1− λ) (6.14)

holds for all 0 ≤ λ < 1, the measure µ has its support in the sphere SH and the limit (6.13)
holds in trace-class norm. In particular, if eVH(1) has a unique (modulo a constant phase)
minimizer uH , then for the whole sequence

γ
(k)
N → |u⊗kH 〉〈u

⊗k
H | strongly in S1(Hk) (6.15)

for all fixed k ≥ 1.

The proof proceeds in two steps. In Section 6.1 we first consider the completely
translation-invariant case where V ≡ 0, which will describe particles escaping from the po-
tential well V in the general case. We show that the energy e0

H(1) is the limit of N−1E0(N).
In this case one cannot hope for much more since there always exist minimizing sequences
whose density matrices converge to 0 in trace-class norm. In addition to the tools already
introduced we shall rely on an idea of Lieb, Thirring and Yau [125, 126] to recover a bit
of compactness.

We then use fully the localization methods of Chapter 5 to treat the general case
in Section 6.2. In the spirit of the concentration-compactness principle we will localize
minimizing sequences inside and outside of a ball. The inside-localized part is described
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by the weak-∗ limit of reduced density matrices and we can thus use the weak de Finetti
theorem. The outside-localized part no longer sees the potential V and may thus apply
to it the results of Section 6.1.

6.1. The translation-invariant problem.

Here we deal where the case where V ≡ 0. It is then possible to construct quasi-

minimizing sequences for E0(N) with γ
(1)
N (. − yN ) ⇀∗ 0 for any sequence of translations

xN . One may thus have vanishing in Lions’ terminology [129, 130] and without any specific
trick one cannot hope for more than the convergence of the energy. Indeed, it is possible
to construct a state where the relative motion of the particles is bound by the interaction
potential w but where the center of mass vanishes. This implies vanishing for the whole
sequence. We shall thus be content with proving the convergence of the energy:

Theorem 6.2 (Translation-invariant systems).
Under the preceding assumptions, we have

lim
N→∞

E0(N)

N
= e0

H(1). (6.16)

The first step is to use part of the interaction potential to create an attractive one-body
potential (this roughly amounts to taking out the center of mass degree of freedom). This
way we will define an auxiliary problem whose energy is close to the original one, but
for which particles always stay trapped. This is done in the following lemma, inspired
from [125, 126]:

Lemma 6.3 (Auxiliary problem with binding).
We split w = w+ − w− into positive and negative parts and define, for some ε > 0

wε(x) = w(x) + εw−(x).

Consider the auxiliary Hamiltonian

Hε
N =

N∑
i=1

(
Ki − εw−(xi)

)
+

1

N − 1

∑
1≤i<j≤

wε(xi − xj) (6.17)

and Eε(N) the associated ground state energy. Then

aε := lim
N→∞

Eε(N)

N
≤ lim

N→∞

E0(N)

N
=: a. (6.18)

Proof. Using symmetry, we can for all Ψ ∈ L2
s(RdN ) write〈

Ψ,

(
N∑
i=1

−∆i

)
Ψ

〉
=

N

N − 1

〈
Ψ,

(
N−1∑
i=1

−∆i

)
Ψ

〉
.

Similarly

2

N(N − 1)

〈
Ψ,

∑
1≤i<j≤N

w(xi − xj)Ψ

〉
= TrH2

[
wγ

(2)
Ψ

]
= TrH2

[
wεγ

(2)
Ψ

]
− εTrH2

[
w−γ

(2)
Ψ

]
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with γΨ = |Ψ〉〈Ψ|, then

TrH2

[
wεγ

(2)
Ψ

]
=

2

(N − 1)(N − 2)
Tr

 ∑
1≤i<j≤N−1

wε(xi − xj)γΨ


and

εTrH2

[
w−γ

(2)
Ψ

]
=

ε

N − 1
Tr

[
N−1∑
i=1

w−(xi − xN )γΨ

]
.

All this implies

N − 1

N
〈Ψ, H0

NΨ〉

=

〈
Ψ,

N−1∑
i=1

(
−∆i − εw−(xi − xN )

)
+

1

N − 2

∑
1≤i<j≤N−1

wε(xi − xj)

Ψ

〉
. (6.19)

In the preceding equation the Hamiltonian between parenthesis depends on xN via the
one-body potential εw−(xi − xN ) but since the other terms are translation-invariant the
bottom of the spectrum is in fact independent of wN . We thus have

N − 1

N
〈Ψ, H0

NΨ〉 ≥ Eε(N − 1)〈Ψ,Ψ〉 (6.20)

for all Ψ ∈ L2
s(RdN ), which implies

E0(N)

N
≥ Eε(N − 1)

N − 1
.

The sequences E0(N)/N and Eε(N)/N are increasing since they are the infimum of vari-
ational problems set on decreasing sets (cf (1.55)). Using simple trial states one may on
the other hand show that

E0(N)

N
≤ 0,

Eε(N)

N
≤ 0

and thus that the limits a and aε exist. Then (6.20) clearly implies (6.18). �

We next derive a lower bound to Eε(N) for ε small enough. It is much easier to work on
this energy because the corresponding sequences of reduced density matrices are strongly
compact in S1. Indeed, compactness or its absence (physically, binding or its absence)
resuts from a comparison between the attractive and repulsive parts of the one- and two-
body potentials. Here the one-body potential εw− and the two-body potential wε are
well equilibrated because they have been built precisely for this purpose, starting from the
original two-body potential w. This trick will allow us to conclude the

Proof of Theorem 6.2. As usual, only the lower bound is non-trivial. Since e0
H(1) ≤ 0 one

may assume that a < 0 since otherwise a = e0
H(1) = 0 and there is nothing to prove. We

are going to prove the lower bound

aε ≥ eεH(1) := inf
‖u‖2=1

{
〈u, (−∆− εw−)u〉+

1

2

∫∫
|u(x)|2wε(x− y)|u(y)|2dxdy

}
, (6.21)

and it is then easy to show that eεH(1) → e0
H(1) when ε → to obtain (6.16) by combining

with (6.18).
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Let ΨN be a sequence of wave-functions such that

〈ΨN , H
ε
NΨN 〉 = Eε(N) + o(N).

and γ
(k)
N the corresponding reduced density matrices. Then

aε = lim
N→∞

〈ΨN , H
ε
NΨN 〉

N
= lim

N→∞

(
TrH

[
(−∆− εw−)γ

(1)
N

]
+

1

2
TrH2

[
wεγ

(2)
N

])
.

After the usual diagonal extraction we can assume that

γ
(k)
N ⇀∗ γ

(k)

and we are going to show that the convergence is actually strong. We shall afterwards use
the strong de Finetti theorem to obtain Hartree’s energy as a lower bound.

We pick a smooth partition of unity χ2
R + η2

R = 1 and use Lemma 3.12 to get

aε ≥ lim inf
R→∞

lim inf
N→∞

{
TrH

[
(−∆− εw−)χRγ

(1)
N χR

]
+

1

2
TrH2

[
wεχ

⊗2
R γ

(2)
N χ⊗2

R

]
+ TrH

[
−∆ηRγ

(1)
N ηR

]
+

1

2
TrH2

[
wεη

⊗2
R γ

(2)
N η⊗2

R

]}
. (6.22)

We define the χR– and ηR–localized states GχN and GηN by applying Lemma 5.2 to ΨN .
We will use those to estimate separately the two terms in the right side of (6.22).

The χR-localized term. Using (5.10) and (5.11) we have

TrH

[
(−∆− εw−)χRγ

(1)
N χR

]
+

1

2
TrH2

[
wεχ

⊗2
R γ

(2)
N χ⊗2

R

]
=

1

N

N∑
k=1

TrHk

 k∑
i=1

(−∆− εw−)i +
1

N − 1

k∑
i<j

wε(xi − xj)

GχN,k

 (6.23)

We apply the inequality

A+ tB = (1− t)A+ t(A+B) ≥ (1− t) inf σ(A) + t inf σ(A+B) (6.24)

with

A =
k∑
`=1

(−∆− εw−)`, A+B = Hε,k, t = (k − 1)/(N − 1).

We have

lim
ε→0

inf σ(−∆− εw−) = inf σ(−∆) = 0

and since we assume that a < 0, for ε small enough

inf σ(−∆− εw−) > a ≥ aε ≥ k−1 inf σ(Hε,k).

Thus

inf σ(A) ≥ inf σ(A+B)

and we may then write

TrH

[
(−∆− εw−)χRγ

(1)
N χR

]
+

1

2
TrH2

[
wεχ

⊗2
R γ

(2)
N χ⊗2

R

]
≥

N∑
k=1

kTrGχN,k
N

Eε(k)

k
.
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But since

N∑
k=0

kTrGχN,k
N

= Tr
[
χ2
Rγ

(1)
N

]
−→
N→∞

Tr
[
χ2
Rγ

(1)
]

and lim
k→∞

Eε(k)

k
= aε,

and k 7→ Eε(k)
k is increasing we conclude

lim inf
N→∞

(
TrH

[
(−∆− εw−)χRγ

(1)
N χR

]
+

1

2
TrH2

[
wεχ

⊗2
R γ

(2)
N χ⊗2

R

])
≥ aε Tr

[
χ2
Rγ

(1)
]

(6.25)
by monotone convergence.

The ηR-localized term. Using the results of Section 5.2 as above we have

TrH

[
TηRγ

(1)
N ηR

]
+

1

2
TrH2

[
wεη

⊗2
R γ

(2)
N η⊗2

R

]
=

1

N

N∑
k=1

TrHk

 k∑
i=1

−∆i +
1

N − 1

k∑
i<j

wε(xi − xj)

GηN,k

 . (6.26)

Here we use

−∆ ≥ 0, wε = w + 2εw− ≥ (1− 2ε)w and E0(k) ≤ ak < 0

to obtain

k∑
i=1

−∆i +
1

N − 1

k∑
i<j

wε(xi − xj) ≥
(1− 2ε)(k − 1)

N − 1
H0
k

≥ (1− 2ε)(k − 1)

N − 1
E0(k) ≥ E0(k)− 2εak

for all k ≥ 1. Combining with (6.26) we obtain

TrH

[
−∆ηRγ

(1)
N ηR

]
+

1

2
TrH2

[
wεη

⊗2
R γ

(2)
N η⊗2

R

]
≥

N∑
k=1

kTrGηN,k
N

·
(
E0(k)

k
− 2εa

)
.

We finally deduce that

lim inf
N→∞

(
TrH

[
TηRγ

(1)
N ηR

]
+

1

2
TrH2

[
wεη

⊗2
R γ

(2)
N η⊗2

R

])
≥ (1−2ε)a

(
1−Tr[χ2

Rγ
(1)]
)

(6.27)

upon using

N∑
k=0

k

N
TrGηN,k = Tr

[
η2
Rγ

(1)
N

]
−→
N→∞

1− Tr
[
χ2
Rγ

(1)
]

and lim
k→∞

E0(k)

k
= a

as well as the fact that k 7→ E0(k)
k is increasing.
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Conclusion. Inserting (6.25) and (6.27) in (6.22) we find

aε ≥ lim inf
R→∞

(
aε Tr

[
χ2
Rγ

(1)
]

+ (1− 2ε)a
(
1− Tr

[
χ2
Rγ

(1)
] ))

= aε Tr[γ(1)] + (1− 2ε)a
(
1− Tr[γ(1)]

)
Since we assumed aε ≤ a < 0, we obtain

Tr[γ(1)] = 1. (6.28)

There is thus no loss of mass for the auxiliary problem defined in Lemma 6.3. This suffices

to conclude that the reduced density matrices γ
(k)
N converge strongly. Indeed, one may

apply the weak de Finetti theorem to the sequence of weak limits γ(k) to obtain a measure
µ living on the unit ball of H. But (6.28) combined with (3.24) implies that the measure
must in fact live on the unit sphere. We thus have, for all k ≥ 0,

Tr[γ(k)] = 1,

which implies that the convergence of γ
(k)
N to γ(k) is actually strong in trace-class norm.

We can then go back to (6.22) to obtain

lim inf
N→∞

(
TrH

[
(−∆− εw−)γ

(1)
N

]
+

1

2
TrH2

[
wεγ

(2)
N

])
≥ TrH

[
(−∆− εw−)γ(1)

]
+

1

2
TrH2

[
wεγ

(2)
]
.

We then apply the strong de Finetti theorem to the limits of the reduced density matrices
to conclude that the right side is necessarily larger than eεH(1). This gives (6.21) and
concludes the proof. �

6.2. Concluding the proof in the general case.

We have almost all the ingredients of the proof of Theorem 6.1 at our disposal. We
only need a little bit more information on the translation-invariant problem, as we now
explain.

For k ≥ 2 consider the energy

bk(λ) :=
1

k
inf σHk

 k∑
i=1

−∆i +
λ

k − 1

k∑
i<j

w(xi − xj)

 , (6.29)

i.e. an energy for k particles with an interaction strength proportional to λ
k−1 . In the last

section we have already shown that the limit k →∞ of such an energy is given by λe0
H(λ)

when λ is a fixed parameter. Using Fock-space localization method, the energy of particles
lost at infinity in the minimization of the energy for N ≥ k particles will be naturally
described as a superposition of energies for k-particles systems with an interaction of
strength 1/(N − 1) inherited from the original problem. In other words, we will have to
evaluate a superposition of the energies bk(λ) with

λ =
k − 1

N − 1
,

a bit as in (6.23) and (6.26). Since this λ depends on k it will be useful to know that bk(λ)
is equicontinuous as a function of λ:
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Lemma 6.4 (Equi-continuity of the energy as a function of the interaction).
We set the convention

b0(λ) = b1(λ) = 0.

Then, for all λ ∈ [0, 1]

lim
k→∞

λ bk(λ) = e0
H(λ). (6.30)

Moreover, for all 0 ≤ λ ≤ λ′ ≤ 1

0 ≤ bk(λ)− bk(λ′) ≤ C|λ− λ′| (6.31)

where C does not depend on k.

Proof. We start by vindicating our claim that (6.30) is a direct consequence of the analysis
of the previous section. For λ = 0 there is nothing to prove. For λ > 0 we use Theorem 6.2
to obtain

lim
k→∞

λ bk(λ) = λ inf
‖u‖2=1

(
〈u,Ku〉+

λ

2

∫∫
w(x− y)|u(x)|2|u(y)|2

)
= inf
‖u‖2=λ

(
〈u,Ku〉+

1

2

∫∫
w(x− y)|u(x)|2|u(y)|2

)
= e0

H(λ).

The fact that

bk(λ) ≥ bk(λ′) for all 0 ≤ λ < λ′ ≤ 1

is a consequence of (6.24). Indeed, one can see that either bk(λ) = 0 for all λ or the same
kind of argument as in (6.24) applies.

For the equicontinuity (6.31) we fix some 0 < α ≤ 1 and remark that, with

δ := (λ′ − λ)(α−1 − λ)−1,

we have

1

k

 k∑
i=1

Ki +
λ′

k − 1

k∑
i<j

wij

 =
1− δ
k

 k∑
i=1

Ki +
λ

k − 1

k∑
i<j

wij


+

δ

kα

α k∑
i=1

Ki +
1

k − 1

k∑
i<j

wij


≥ (1− δ)bk(λ)− Cδ

α

using the fact the spectrum of the operator appearing in the second line is bounded below.
We deduce

0 ≤ bk(λ)− bk(λ′) ≤ δ(bk(λ) + Cα−1) ≤ C|λ′ − λ|
since bk(λ) is uniformly bounded and |δ| ≤ C|λ− λ′|. �

We may know conclude the

Proof of Theorem 6.1. Let ΨN be a sequence of N -body wave-functions such that

〈ΨN , H
V
NΨN 〉 = EV (N) + o(N),
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with γ
(k)
N the associated reduced density matrices. After a diagonal extraction we have

γ
(k)
N ⇀ γ(k)

weakly-∗. Theorem 3.7 ensures the existence of a probability measure µ such that

γ(k) =

∫
u∈BH

dµ(u)|u⊗k〉〈u⊗k|. (6.32)

We pick a smooth partition of unity χ2
R + η2

R = 1 as previously and deinfe the localized
state GχN and GηN constructed from |ΨN 〉〈ΨN |. Using Lemma 3.12 again we obtain

lim
N→∞

EV (N)

N
= lim

N→∞

(
TrH

[
Tγ

(1)
N

]
+

1

2
TrH2

[
wγ

(2)
N

])
≥ lim inf

R→∞
lim inf
N→∞

{
TrH

[
TχRγ

(1)
N χR

]
+

1

2
TrH2

[
wχ⊗2

R γ
(2)
N χ⊗2

R

]
+ TrH

[
−∆ηRγ

(1)
N ηR

]
+

1

2
TrH2

[
wη⊗2

R γ
(2)
N η⊗2

R

]}
. (6.33)

First we use the strong local compactness and (6.32) for the χR-localized term:

lim inf
N→∞

{
TrH

[
TχRγ

(1)
N χR

]
+

1

2
TrH2

[
wχ⊗2

R γ
(2)
N χ⊗2

R

]}
≥ TrH

[
TχRγ

(1)χR

]
+

1

2
TrH2

[
wχ⊗2

R γ(2)χ⊗2
R

]
=

∫
BH
EVH [χRu]dµ(u). (6.34)

Our main task is to control the second term in the right side of (6.33). We claim that

lim inf
N→∞

(
Tr
[
TηRγ

(1)
N ηR

]
+

1

2
TrH2

[
wη⊗2

R γ
(2)
N η⊗2

R

])
≥
∫
BH

e0
H(1− ‖χRu‖2)dµ(u). (6.35)

Indeed, using the ηR-localized state GηN we have

TrH

[
−∆ηRγ

(1)
N ηR

]
+

1

2
TrH2

[
wη⊗2

R γ
(2)
N η⊗2

R

]
=

1

N

N∑
k=1

TrHk

 k∑
i=1

−∆i +
1

N − 1

k∑
i<j

wij

GηN,k


≥

N∑
k=1

1

N
TrGηN,k inf σHk

 k∑
i=1

−∆i +
1

N − 1

k∑
i<j

wij


≥

N∑
k=0

TrGηN,k
k

N
bk

(
k − 1

N − 1

)
where bk is the function defined in (6.29). On the other hand

lim
N→∞

N∑
k=0

TrGηN,k

(
k

N
bk

(
k − 1

N − 1

)
− e0

H

(
k

N

))
= 0, (6.36)
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because, using the equicontinuity of {bk}∞k=1 and the convergence limk→∞ λbk(λ) = e0
H(λ)

given by Lemma 6.4, we get

lim
N→∞

sup
k=1,2,...,N

∣∣∣∣ kN bk

(
k − 1

N − 1

)
− e0

H

(
k

N

)∣∣∣∣ = 0.

We just have to combine this with

N∑
k=0

TrGηN,k = 1

to obtain (6.36). At this stage we thus have

lim inf
N→∞

TrH

[
−∆ηRγ

(1)
N ηR

]
+

1

2
TrH2

[
wη⊗2

R γ
(2)
N η⊗2

R

]
≥ lim

N→∞

N∑
k=0

TrGηN,ke
0
H

(
k

N

)
.

We now use the fundamental relation (5.12) and Corollary 5.4 as indicated in Section 5.3
to deduce

lim
N→∞

N∑
k=0

TrGηN,k e
0
H

(
k

N

)
= lim

N→∞

N∑
k=0

TrGχN,N−k e
0
H

(
k

N

)

= lim
N→∞

N∑
k=0

TrGχN,k e
0
H

(
1− k

N

)
=

∫
BH

e0
H(1− ‖χRu‖2)dµ(u),

which concludes the proof of (6.35).
There remains to insert (6.34) and (6.35) in (6.33) and use Fatou’s lemma. This gives

lim
N→∞

EV (N)

N
≥ lim inf

R→∞

(∫
BH

[
EVH [χRu] + e0

H(1− ‖χRu‖2)
]
dµ(u)

)
≥
∫
BH

lim inf
R→∞

[
EVH [χRu] + e0

H(1− ‖χRu‖2)
]
dµ(u)

=

∫
BH

[
EVH [u] + e0

H(1− ‖u‖2)
]
dµ(u)

≥
∫
BH

[
eVH(‖u‖2) + e0

H(1− ‖u‖2)
]
dµ(u) ≥ eH(1), (6.37)

using the continuity of λ 7→ e0
H(λ) and the binding inequality (6.9). This concludes the

proof of (6.10), and the other results of the theorem follow by inspecting the cases of
equality in (6.37). �
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7. Derivation of Gross-Pitaevskii functionals

We now turn to the derivation of non-linear Schrödinger (NLS) functionals with local
non-linearities:

Enls[ψ] :=

∫
Rd
|∇ψ|2 + V |ψ|2 +

a

2
|ψ|4.

One may obtain such objects starting from a Hartree functional such as (3.8) and taking
an interaction potential converging (in the sense of distributions) to a a Dirac mass

wL(x) = L−dw
(x
L

)
⇀

(∫
Rd
w

)
δ0 when L→ 0.

Since we already obtained (3.8) as the limit of a N -body problem, one might be tempted
to see the derivation of the NLS functional as a simple passage to the limit in a one-
body problem. The problem with such an approach is the total lack of control on the
relationship between the physical parameters N and L. One can see this as a problem
of non-commuting limits: it is not clear at all that one can interchange the order of the
limits N →∞ and20 L→ 0.

From a physical point of view, the good question is “What relation should N and L
satisfy if one is to obtain the NLS energy by taking simultaneously the limits N →∞ and
L → 0 of the N -body problem ?” The process leading to the NLS theory is thus more
subtle than leading to the Hartree theory. We shall first elaborate a litlle bit more on this
point in the following subsection.

7.1. Preliminary remarks.

Until now we have worked with only two physical parameters: the particle number N
and the interactions strength λ. In order to have a well-defined limit problem we have
been lead to considering the mean-field limit where λ ∝ N−1. In this case, the range
of the interaction potential is fixed and each particle interacts with all the others. The
interaction strength felt by a typical particle is thus of order λN ∝ 1, comparable with
its self-energy (kinetic + potential). We saw that this equilibration of forces acting on
each particle, combinded with structure results à la de Finetti, naturally leads to the
conclusion that particles approximately behave as if they were independent. It follows
that Hartree-type descriptions are valid in the limit N →∞.

There are other ways to justify such models: the equilibration of forces which allows the
limit problem to emerge may result from a more subtle mechanism. For example, in the
ultra-cold alkali gases where BEC has been observed, it has more to do with the dilute-
ness of the system than with the weakness of the interaction strength. For a theoretical
description of this situation, we can introduce in our model a length scale L characterizing
the range of the interactions. Taking the total system size as a reference, a dilute system
is materialized by taking the limit L → 0. The interaction strength for a typical particle
is then of order λNLd (interaction strength × number of particles in a ball of radius L
around a given particle). This parameter is the one we should fix when N →∞ to obtain
a limit problem. Different regimes are then possible, depending on the ratio between λ
and L.

20The L→ 0 limit of the N -body problem is by the way very hard to define properly.
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One may discuss the different possibilities starting from the N -body Hamiltonian21

HN =
N∑
j=1

−∆j + V (xj) +
1

N − 1

∑
1≤i<j≤N

Ndβw(Nβ(xi − xj)) (7.1)

which corresponds to choosing

L = N−β, λ ∝ Ndβ−1,

the fixed parameter 0 ≤ β is used to set the ratio between L and λ. We consider the
reference interaction potential w as fixed, and we shall denote

wN (x) := Ndβw(Nβx). (7.2)

For β > 0, wN converges in the sense of distributions to a Dirac mass

wN →
(∫

Rd
w

)
δ0, (7.3)

materializing the short range of the interactions/diluteness of the system. Reasoning
formally, one may want to directly replace wN by

(∫
Rd w

)
δ0 in (7.1). In this case we are

back to a mean-field limit, with a Dirac mass as interaction potential. This is of course
purely formal (except in 1D where the Sobolev injection H1 ↪→ C0 allows to properly
define the contact interaction). Accepting that this manipulation has a meaning and that
one may approximate the ground state of (7.1) under the form

ΨN = ψ⊗N (7.4)

we obtain the Hartree functional

EH[ψ] :=

∫
Rd
|∇ψ|2 + V |ψ|2 +

1

2
|ψ|2(w ∗ |ψ|2). (7.5)

Replacing the interaction potential by a Dirac mass at the origin leads to the Gross-
Pitaevskii functional

Enls[ψ] :=

∫
Rd
|∇ψ|2 + V |ψ|2 +

a

2
|ψ|4. (7.6)

In view of (7.3), the logical choice seems to imagine that when β > 0, we obtain, starting
from (7.1), the above functional with

a =

∫
Rd
w. (7.7)

In fact one may prove the following results (described in the case d = 3; d ≤ 2 leads to
subtleties and d ≥ 4 does not have much physical meaning):

• If β = 0 we have the previously studied mean-field (MF) regime. The range of
the interaction potential is fixed and its strength decreases proportionally to N−1.
The limit problem is then (7.5), as previously shown.

21Once again, it is possible to add fractional Laplacians and/or magnetic fields, cf Remark 3.2. For
simplicity we do not pursue this here.
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• If 0 < β < 1, the limit problem is (7.6) with the parameter choice (7.7), as can be
expected. We will call this case the non-linear Schrödinger (NLS) limit. This case
does not seem to have been considered in the literature prior to [108] but, at least
when w ≥ 0 and V is confining, one may adapt the analysis of the more difficult
case β = 1.
• If β = 1, the limit functional is now (7.6) with

a = 4π × scattering length of w

(see [118, Appendix C] for a definition). in this case, the ground state of (7.1)
includes a correction to the ansatz (7.4), in the form of short-range correlations.
In fact, one should expect to have

ΨN (x1, . . . , xN ) ≈
N∏
j=1

ψ(xj)
∏

1≤i<j≤N
f
(
Nβ(xi − xj)

)
(7.8)

where f is linked to the two-body problem defined by w (zero-energy scattering
solution). It so happens when β = 1, the correction has a leading order effect
on the energy, that of replacing

∫
Rd w by the corresponding scattering length, as

noted first in [57]. We will call this case the Gross-Pitaevskii (GP) limit. It is
studied in a long and remarkable series of papers by Lieb, Seiringer and Yngvason
(see for example [127, 128, 120, 119, 121, 116, 118]).

As already mentioned, the corresponding evolution problems have also been thoroughly
studied. Here too one has to distinguish the MF limit [9, 4, 74, 157, 149], the NLS
limit [66, 148] and the GP limit [67, 147, ?].

There is a fundamental physical difference between the MF and GP regimes: In both
cases the effective interaction parameter λNL3 is of order 1, but one goes (still in 3D)
from a case with numerous weak collistions when λ = N−1, L = 1 to a case where rare but
strong collisions when λ = N2, L = N−1. The different NLS scaling sort of interpolate
between these two extremes, the transition from “frequent weak collistions” to “rare strong
collisions” happens at λ = 1, L = N−1/3, i.e. β = 1/3.

The difficulty for obtaining (7.6) by taking the limit N →∞ is that there are in fact two
distinct limits N →∞ and wN → aδ0 to control at the same time. A simple compactness
argument will not suffice in this case and one has to work with quantitative estimates. The
goal of this chapter is to explain how one may proceed starting from the quantitative de
Finetti theorem stated in Chapter 4. Since this theorem is only valid in finite dimension,
we will need a natural way to project the problem onto finite dimensional spaces. We thus
deal with the case of trappend bosons, assuming that for some constants c, C > 0

c|x|s − C ≤ V (x). (7.9)

In this case, the one-body Hamiltonian −∆+V has a discrete spectrum on which we have
a good control thanks to Lieb-Thirring-like inequalities.

The results we are going to obtain are valid for 0 < β < β0 where β0 = β0(d, s) depends
only on the dimension of the configuration space and the potential V . We shall give
explicit estimates of β0, but the method, introduced in [108], is for the moment limited to
relatively small β. In particular, we will always obtain (7.7) as interaction parameter. The
main advantage compared to the Lieb-Seiringer-Yngvason method [127, 119, 121, 116] is
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that we can in some cases avoid the assumption w ≥ 0, always made in these papers (see
also [118]). In particular we present the first derivation of attractive NLS functionals22 in
1D and 2D.

Recently, a blend of the following arguments, the tools of [127, 119, 121, 116] and new
a priori estimates for the many-body ground state has allowed to extend the analysis to
the GP regime [141].

7.2. Statements and discussion.

We take comfortable assumptions on w:

w ∈ L∞(Rd,R) and w(x) = w(−x). (7.10)

Without loss of generality we assume

sup
Rd
|w| = 1

to simplify some expressions. We also assume that

x 7→ (1 + |x|)w(x) ∈ L1(Rd), (7.11)

which simplifies the replacement of wN by a Dirac mass. As usual we use the same notation
wN for the interaction potential (7.2) and the multiplication operator by wN (x−y) acting
on L2(R2d).

For β = 0 we have shown previously that

lim
N→∞

E(N)

N
= eH. (7.12)

We now deal with the case 0 < β < β0(d, s) < 1 where we obtain the ground state energy
of (7.6):

enls := inf
‖ψ‖

L2(Rd)=1
Enls[ψ] (7.13)

with a defined in (7.7). Because of the local non-linearity, the NLS theory is more deli-
cate than Hartree’s theory. We shall need some structure assumptionson the interactions
potential (see [108] for a more thorough discussion):

• When d = 3, it is well-known that a ground state for (7.6) exists if and only if a ≥ 0.
This is because the cubic non-linearity is super-critical23 in this case. Moreover,
it is easy to see that N−1E(N)→ −∞ if w is negative at the origin. The optimal
assumption happens to be a classical stability notion for the interaction potential:∫∫

Rd×Rd
ρ(x)w(x− y)ρ(y)dxdy ≥ 0, for all ρ ∈ L1(Rd), ρ ≥ 0. (7.14)

This is satisfied as soon as w = w1 + w2, w1 ≥ 0 and ŵ2 ≥ 0 with ŵ2 the Fourier
transform of w2. This assumption clearly implies

∫
Rd w ≥ 0, and one may easily see

by changing scales that if it is violated for a certain ρ ≥ 0, then E(N)/N → −∞.

22One often uses the non-linear optics vocabulary to distinguish the repulsive and attractive cases :
repulsive = defocusing, attractif = focusing.

23One may for example consult [98] for a classification of non-linearities in the NLS equation.
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• When d = 2, the cubic non-linearity is critical. A minimizer for (7.6) exists if and
only if a > −a∗ with

a∗ = ‖Q‖2L2 (7.15)

where Q ∈ H1(R2) is the unique [102] (modulo translations) solution to

−∆Q+Q−Q3 = 0. (7.16)

The critical interaction parameter a∗ is the best possible constant in the interpo-
lation inequality ∫

R2

|u|4 ≤ C
(∫

R2

|∇u|2
)(∫

R2

|u|2
)
. (7.17)

We refer to [85, 134] for the existence of a ground state and to [186] for the
inequality (7.17). A pedagogical discussion of this kind of subjects may be found
in [72].

In view of the above conditions, it is clear that in 2D we have to assume∫
w ≥ −a∗, but this is in fact not sufficient: as in 3D, if the interaction po-

tential is sufficiently negative at the origin, one may see that N−1E(N) → −∞.
The appropriate assumption is now

‖u‖2L2 ‖∇u‖2L2 +
1

2

∫∫
R2×R2

|u(x)|2|u(y)|2w(x− y) dx dy > 0 (7.18)

for all u ∈ H1(R2). Replacing u by λu(λx) and taking the limit λ→ 0 we obtain

‖u‖2L2 ‖∇u‖2L2 +
1

2

(∫
R2

w

)∫
R2

|u(x)|4 dx ≥ 0, ∀u ∈ H1(R2),

which implies that ∫
R2

w(x) dx ≥ −a∗.

A scaling argument shows that if the strict inequality in (7.18) is reversed by a
certain u, then E(N)/N → −∞. The case where equality may occur in (7.18) is
left aside in these notes. It requires a more thorough analysis, see [85] where this
is provided at the level of the NLS functional.
• When d = 1, the cubic non-linearity is sub-critical and there is always a minimizer

for the functional (7.6). In this case we need no further assumptions.

We may now state the

Theorem 7.1 (Derivation of NLS ground states).
Assume that either d = 1, or d = 2 and (7.18) holds, or d = 3 and (7.14) holds. Further
suppose that

0 < β ≤ β0(d, s) :=
s

2ds+ sd2 + 2d2
< 1. (7.19)

where s is the exponent appearing in (7.9). We then have

(1) Convergence of the energy:

E(N)

N
→ enls. (7.20)
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(2) Convergence of states: Let ΨN be a ground state of (7.1) and

γ
(n)
N := Trn+1→N [|ΨN 〉〈ΨN |]

its reduced density matrices. Along a subsequence we have, for all n ∈ N,

lim
N→∞

γ
(n)
N =

∫
u∈Mnls

dµ(u)|u⊗n〉〈u⊗n| (7.21)

strongly in S1(L2(Rdn)). Here µ is a probability measure supported on

Mnls =
{
u ∈ L2(Rd), ‖u‖L2 = 1, Enls[u] = enls

}
. (7.22)

In particular, when (7.6) has a unique minimizer unls (up to a constant phase),
we have for the whole sequence

lim
N→∞

γ
(n)
N = |u⊗nnls 〉〈u

⊗n
nls |. (7.23)

Uniqueness of unls is ensured if a ≥ 0 or |a| is small. If these conditions are not
satisfied, one can show that there are several minimizers in certain trapping potentials
having degenerate minima [8, 85].

Remark 7.2 (On the derivation of NLS functionals.).

(1) The assumption β < β0(d, s) is dictated by the method of proof but it is certainly
not optimal. see [116, 119, 127, 128]. One may relax a bit the condition on β,
at the price of heavier computations, something we prefer to avoid in these notes,
see [108]. In 1D, one may obtain the result for any β > 0.

(2) Let discuss in more details the conditions on β0(d, s). For the case of a quadratic
trapping potential V (x) = |x|2 for example, we can afford β < 1/24 in 3D, β < 1/12
in 2D and β < 1/4 in 1D. The method adapts with no difficulty to the case of
particles in a bounded domain which corresponds to setting formally s = ∞.
We then otain β0(d, s) = 1/15 in 3D, 1/8 in 2D and 1/3 in 1D. Improving these
theresholds in the case of (partially) attractive potentials remains an open problem.

(3) When β is smaller than the critical β0(d, s) by a given amount, the method gives
quantitative estimates for the convergence (7.20), see below. We refer to [108,
Remark 4.2] for a discussion of the cases where a convergence rate for the minimizer
can be deduced, based on tools from [31, 72] and assumptions on the behavior of
the NLS functional. �

The proof of this result occupies the rest of the chapter. We proceed in two steps.
The bulk of the analysis consists in obtaining a quantitative estimate of the discrepancy
between the N -body energy per particle N−1E(N) and the Hartree energy

eH := inf
‖u‖

L2(Rd)=1
EH[u] (7.24)

given by minimizing the functional

EH[u] :=

∫
Rd

(
|∇u|2 + V |u|2

)
dx+

1

2

∫∫
Rd×Rd

|u(x)|2wN (x− y)|u(y)|2dxdy. (7.25)

The objects depend on N when β > 0, whence the necessity to avoid compactness ar-
guments and obtain precise estimates. Once the link between N−1E(N) and (7.24) is
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established, there remains to estimate the difference |enls − eH|, which is a much easier
task. Most of the restrictive assumptions we have made on w are used only in this second
step. The estimates on the difference |eH −N−1E(N)| are valid without assuming (7.11)
and (7.14) or (7.18). They thus give some information on the divergence of N−1E(N) in
the case where eH does not converge to enls:

Theorem 7.3 (Quantitative derivation of Hartree’s theory).
Assume (7.9) and (7.10). Let

t :=
1 + 2dβ

2 + d/2 + d/s
. (7.26)

If

t > 2dβ, (7.27)

then, for all d ≥ 1 there exists a constant Cd > 0 such that

eH ≥
E(N)

N
≥ eH − CdN−t+2dβ. (7.28)

Remark 7.4 (Explicit estimates in the mean-field limit).

(1) Condition (7.27) is satisfied if 0 ≤ β < β0(d, s). For the proof of Theorem 7.1 we
are only interested in cases where |eH| is bounded independently of N , and (7.28)
then gives non-trivial information only if (7.27) holds.

(2) The result is valid in the mean-field case where β = 0 and thus eH does not depend
on N . We then obtain explicit estimates improving on Theorem 3.6. These present
a novelty in the case where Hartee’s functional has several minimizers, or a unique
degenerate minimizer. In other cases 24, better estimates are known, with an error
of order N−1 given by Bogoliubov’s theory [110, 166, 83, 54]. See [142] for exten-
sions of Bogoliubov’s theory to cases of mutiple and/or degenerate minimizers.

�

The proof of Theorem 7.3 occupies Section 7.3. We then complete the proof of Theo-
rem 7.1 in Section 7.4.

7.3. Quantitative estimates for Hartree’s theory.

The main idea of the proof is to apply Theorem 4.1 on a low-energy eigenspace of the
one-body operator

T = −∆ + V

acting on H = L2(Rd). Assumption (7.9) ensures that the resolvant of this operator is
compact and thus that its specturm is made of a sequence of eigenvalues tending to infinity.
We denote P− and P+ the spectral projectors corresponding to energies respectively below
and above a given truncation Λ:

P− = 1(−∞,Λ) (T ) , P+ = 1H − P− = P⊥− . (7.29)

We also denote

NΛ := dim(P−H) = number of eigenvalues of T smaller than Λ. (7.30)

24The simplest example ensuring uniqueness and non-degenerescence is that where ŵ > 0 with ŵ the
Fourier transform of w.
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Since the precision of the quantitative de Finetti theorem depends on the dimension of
the space on which it applies, it is clearly necessary to have at our disposal a convenient
control of NΛ. The tools to achieve this are well-known under the name of Lieb-Thirring
inequalities, or rather Cwikel-Lieb-Rosenblum in this case. We shall use the following
lemma:

Lemma 7.5 (Number of bound states of a Schrödinger operator).
Let V satisfy (7.9). For all d ≥ 1, there exists a constant Cd > 0 such that, for all Λ large
enough

NΛ ≤ CdΛd/s+d/2. (7.31)

Proof. When d ≥ 3, this is an application of [117, Theorem 4.1]. For d ≤ 2, the result
follows easily by applying [42, Theorem 2.1] or [175, Theorem 15.8], see [108] for details.
The familiarized reader can convince herself that the right side of (7.31) is proportional
to the expected number of energy levels in the semi-classical approximation. We refer
to [117, Chapter 4] for a more thorough discussion of this kind of inequalities. �

In the sequel we shall argue as follows:

(1) The eigenvectors of T form an orthogonal basis of L2(Rd) on which the N should
be distributed. The methods of Chapter 5 provide the right tools to analyze the
repartition of the particles between P−H and P+H.

(2) If the truncation Λ is chosen large enough, particles living on excited energy levels
will have a much larger energy per unit mass than the Hartree energy we are
aiming at. There can thus only be a small number of particles living on excited
energy levels.

(3) Particles living on P−H form a state on F≤Ns (P−H) (truncated bosonic Fock space
built on P−H). Since P−H has finite dimension, one may use Theorem 4.1 to de-
scribe these particles. These will give the Hartree energy, up to an error depending
on Λ and the expected number of P−-localized particles. More precisely, in view
of (4.2), we should expect an error of the form

(Λ +Ndβ)×NΛ

N−
, (7.32)

i.e. dimension of the localized space × operator norm of the projected Hamiltonian
/ number of localized particles.

(4) We next have to optimize over Λ, keeping the following heuristic in mind: if Λ
is large, there will be many P−-localized particles, which favors the denominator
of (7.32). On the other hand, taking Λ is small favors the numerator of (7.32).
Picking an optimal value to balance these two effects leads to the error terms of
Theorem 7.3.

Proof of Theorem 7.3. The upper bound in (7.28) is as usual proven by taking a trial state
of the form u⊗N . Only the lower bound is non-trivial. We proceed in several steps.

Step 1, truncated Hamiltonian. We first have to convince ourselves that it is legitimate
to think only in terms of P+ and P−-localized particles, as we did above. This is the oject
of the following lemma, which bounds from below the two-body Hamiltonian

H2 = T ⊗ 1 + 1⊗ T + wN (7.33)
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in terms of its P−-localization, P− ⊗ P−H2 P− ⊗ P− and a crude bound on the energy of
the P+-localized particles.

Lemma 7.6 (Truncated Hamiltonian).
Assume that Λ ≥ CNdβ for a large enough constant C > 0. Then

H2 ≥ P⊗2
− H2P

⊗2
− +

Λ

4
P⊗2

+ − 2N2dβ

Λ
(7.34)

Proof. We denote
H0

2 = T ⊗ 1 + 1⊗ T (7.35)

the two-body Hamiltonian with no interactions. We may then write

H0
2 = (P− + P+)⊗2H0

2 (P− + P+)⊗2 =
∑

i,j,k,`∈{−,+}

Pi ⊗ Pj H0
2 Pk ⊗ P`

=
∑

i,j∈{−,+}

Pi ⊗ Pj H0
2 Pi ⊗ Pj . (7.36)

Indeed,
Pi ⊗ Pj H0

2 Pk ⊗ P` = 0

if i 6= k or j 6= `, since T commutes with P± and P−P+ = 0. We then note that

P+TP+ ≥ ΛP+ and P−TP− ≥ −CP−,
which gives

P+ ⊗ P+H
0
2 P+ ⊗ P+ ≥ 2ΛP+ ⊗ P+

P+ ⊗ P−H0
2 P+ ⊗ P− ≥ (Λ− C)P+ ⊗ P−

P− ⊗ P+H
0
2 P− ⊗ P+ ≥ (Λ− C)P+ ⊗ P−.

This gives
H0

2 ≥ P⊗2
− H0

2 P
⊗2
− + (Λ− C)Π (7.37)

where
Π = P+ ⊗ P+ + P− ⊗ P+ + P+ ⊗ P− = 1H2 − P⊗2

− .

We turn to the interactions:

wN =
(
P⊗2
− + Π

)
wN

(
P⊗2
− + Π

)
. (7.38)

We have to bound from below the difference

wN − P⊗2
− wNP

⊗2
−

by controling the off-diagonal terms

ΠwNP
⊗2
− + P⊗2

− wNΠ

in (7.38). To this end we write

wN = w+
N − w

−
N with w±N ≥ 0

and we use the well-known fact that the diagonal elements of a self-adjoint operator control
the off-diagonal elements.25.

25Cf for a positive hermitian matrix (mi,j)1≤i,j≤n the inequality 2|mi,j | ≤ mi,i +mj,j .
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Since w±N are positive as multiplication operators on L2(R2d) we have for all b > 0(
b1/2P⊗2

− ± b−1/2Π
)
w±N

(
b1/2P⊗2

− ± b−1/2Π
)
≥ 0.

Combining these inequalities appropriately we obtain

ΠwNP
⊗2
− + P⊗2

− wNΠ ≥ −bP⊗2
− |wN |P⊗2

− − b−1Π|wN |Π

for all b > 0. We then recall that, as an operator,

|wN | ≤ ‖wN‖L∞ ≤ Ndβ

and we choose b = 2Ndβ/Λ to obtain

ΠwNP
⊗2
− + P⊗2

− wNΠ ≥ −2N2dβ

Λ
P⊗2
− −

Λ

2
Π

Inserting this bound in (7.38) we get

wN ≥ P⊗2
− wNP

⊗2
− −

2N2dβ

Λ
P⊗2
− −

(
Λ

2
+Ndβ

)
Π (7.39)

by simply bounding from below

ΠwNΠ ≥ −Π|wN |Π ≥ −NdβΠ.

Combining with (7.37) and (7.39) we obtain for all Λ ≥ 1 the lower bound

H2 ≥ P⊗2
− H2P

⊗2
− −

2N2dβ

Λ
P⊗2
− +

(
Λ

2
−Ndβ − C

)
Π

Since we assume Λ ≥ CNdβ for a large constant C > 0, we may use P− ⊗ P− ≤ 1H2 and
P− ⊗ P+, P+ ⊗ P− ≥ 0 to deduce

H2 ≥ P⊗2
− H2P

⊗2
− −

2N2dβ

Λ
+

Λ

4
P⊗2

+ ,

which concludes the proof. �

Step 2, estimating the localized energy. Let ΨN be a minimizer for the N -body
energy, ΓN = |ΨN 〉〈ΨN | and

γ
(n)
N = Trn+1→N [ΓN ]

the corresponding reduced density matrices. We can now think only in terms of the P−
and P+-localized states defined as in Lemma 5.2 by the relations(

G±N
)(n)

= P⊗n± γ
(n)
N P⊗n± . (7.40)

We recall that G±N are states on the truncated Fock space, i.e.

N∑
k=0

TrHk [G±N,k] = 1. (7.41)

We now comare the Hartree energy eH and the localized energy of ΓN defined by the
truncated Hamiltonian of Lemma 7.6:
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Lemma 7.7 (Lower bound for the localized energy).
If Λ ≥ CNdβ for a large enough constant C > 0 we have,

1

2
Tr
[
P⊗2
− H2P

⊗2
− γ

(2)
N

]
+

Λ

4
Tr
[
P⊗2

+ γ
(2)
N

]
≥ eH − C

ΛNΛ

N
− C Λ

N2
. (7.42)

This lemma is proved by combining Theorem 4.1 and the methods of Chapter 5. We
define an approximate de Finetti measure starting from G−N . The idea is related to that
we used for the proof of the weak de Finetti theorem in Section 5.3:

dµN (u) =

N∑
k=2

(
N

2

)−1(k
2

)
dim

(
(P−H)ks

)〈
u⊗k, G−N,ku

⊗k
〉
du (7.43)

where du is the uniform measure on the finite-dimensional sphere SP−H. The choice of the
weights in the above sum comes from the fact that we want to approximate the localized

two-body density matrix P⊗2
− γ

(2)
N P⊗2

− , which is the purpose of

Lemma 7.8 (Quantitative de Finetti for a localized state.).
For all Λ > 0, we have

TrH2

∣∣∣∣P⊗2
− γ

(2)
N P⊗2

− −
∫
SP−H

|u⊗2〉〈u⊗2|dµN (u)

∣∣∣∣ ≤ 8NΛ

N
.

Proof. Up to normalization, G−N,k is a state on (P−H)⊗ks . Applying Theorem 4.1 with the

explicit construction (4.6) we thus have

TrH2

∣∣∣∣Tr3→k

[
G−N,k

]
−
∫
SP−H

|u⊗2〉〈u⊗2|dµN,k(u)

∣∣∣∣ ≤ 8
NΛ

k
TrHk

[
G−N,k

]
with

dµN,k(u) = dim(P−H)ks

〈
u⊗k, G−N,ku

⊗k
〉
du.

In view of (7.40) and (7.43) we deduce

TrH2

∣∣∣∣P⊗2
− γ

(2)
N P⊗2

− −
∫
SP−H

|u⊗2〉〈u⊗2|dµN (u)

∣∣∣∣ ≤ N∑
k=2

(
N

2

)−1(k
2

)
8NΛ

k
TrHk

[
G−N,k

]
.

There remains to use the normalization (7.41) and(
N

2

)−1(k
2

)
=

k(k − 1)

N(N − 1)
≤ k

N

to conclude the proof. �

We proceed to the

Proof of Lemma 7.7. We start with the P−-localized term. By cyclicity of the trace we
have

Tr
[
P⊗2
− H2P

⊗2
− γ

(2)
N

]
= Tr

[
P⊗2
− H2P

⊗2
−
(
P⊗2
− γ

(2)
N P⊗2

−
)]
.

We then apply Lemma 7.8, which gives

TrH2

∣∣∣∣P⊗2
− γ

(2)
N P⊗2

− −
∫
SP−H

|u⊗2〉〈u⊗2|dµN (u)

∣∣∣∣ ≤ 8NΛ

N
.
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On the other hand we of course have∥∥P⊗2
− H2P

⊗2
−
∥∥ ≤ 2Λ + ‖wN‖L∞ ≤ 3Λ (7.44)

in operator norm, and thus

1

2
Tr
[
P⊗2
− H2P

⊗2
− γ

(2)
N

]
≥ 1

2

∫
SP−H

TrH2

[
H2|u⊗2〉〈u⊗2|

]
dµN −

CΛNΛ

N

=

∫
SP−H

EH[u]dµN −
CΛNΛ

N
. (7.45)

By the variational principle EH[u] ≥ eH, we deduce

1

2
Tr
[
P⊗2
− H2P

⊗2
− γ

(2)
N

]
≥ eH

N∑
k=2

(
N

2

)−1(k
2

)
TrHk

(
G−N,k

)
− CΛNΛ

N
(7.46)

where the computation of
∫
dµN is straightforward using Schur’s formula (4.5).

For the P+-localized term we use (7.40), (5.10) and (5.12) to obtain

Λ

4
Tr[P⊗2

+ γ
(2)
N P⊗2

+ ] =
Λ

4

N∑
k=2

(
N

2

)−1(k
2

)
Tr
[
G+
N,k

]

=
Λ

4

N−2∑
k=0

(
N

2

)−1(N − k
2

)
Tr
[
G−N,k

]
. (7.47)

Gathering (7.46), (7.47) and recalling that(
N

2

)−1(k
2

)
=

k2

N2
+O(N−1),

(
N

2

)−1(N − k
2

)
=

(N − k)2

N2
+O(N−1),

we find

1

2
Tr
[
P⊗2
− H2P

⊗2
− γ

(2)
N

]
+

Λ

4
Tr[P⊗2

+ γ
(2)
N ]

≥
N∑
k=0

Tr
[
G−N,k

]( k2

N2
eH +

(N − k)2

N2

Λ

4

)
− C(|eH|+ Λ)

N2
− CΛNΛ

N
. (7.48)

The first error term comes from the fact the sums in (7.46) and (7.47) do not run exactly
from 0 to N , and we have used the normalization of the localized states (7.41) to control
the missing terms.

It is easy to see that for all p, q, 0 ≤ λ ≤ 1

pλ2 + q(1− λ)2 ≥ p− p2

q
.

We then take p = eH, q = Λ/4, λ = k/N and use (7.41) again to deduce

Tr
[
P⊗2
− H2P

⊗2
− γ

(2)
N

]
+

Λ

2
Tr(P⊗2

+ γ
(2)
N )

≥ eH −
e2

H

Λ
− C(|eH|+ Λ)

N2
− CΛNΛ

N
.
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from (7.48). There remains to insert the simple estimate

|eH| ≤ C + ‖wN‖L∞ ≤ C +Ndβ ≤ C + Λ (7.49)

the obtain the sought-after result. �

Step 3, final optimization.. There only remains to optimize over Λ. Indeed, we recall
that by definition

E(N)

N
=

1

2
TrH2 [H2γ

(2)
N ]

with the two-body Hamiltonian (7.33). Combining Lemmas 7.6 and 7.7 we have the lower
bound

E(N)

N
≥ eH −

CN2dβ

Λ
− CΛNΛ

N
− C Λ

N2

for all Λ ≥ CNdβ with C > 0 large enough. Using Lemma 7.5, this reduces to

E(N)

N
≥ eH −

CN2dβ

Λ
− Cd

Λ1+d/s+d/2

N
.

Optimizing with respect to Λ we get

Λ = N t (7.50)

where

t = 2s
1 + 2dβ

4s+ ds+ 2d

and the condition t > 2dβ in (7.27) ensures that Λ� N2dβ for large N . We thus conclude

eH ≥
E(N)

N
≥ eH − CdN−t+2dβ,

which is the desired result. �

Remark 7.9 (Note for later use.).
Following the steps of the proof more precisely we obtain information on the asymptotic
behavior of minimizers. More specifically, going back to (7.45), using Lemma 7.6 and
dropping the positive P+ localized terms we have

eH ≥
E(N)

N
≥ 1

2
Tr[P⊗2

− H2P
⊗2
− γ

(2)
N ] + o(1) ≥

∫
SH
EH[u]dµN (u) + o(1)

and thus

o(1) ≥
∫
SH

(EH[u]− eH) dµN (u) (7.51)

when N → ∞. We do not specify here (cf Item (3) in Remark 7.2) the exact order of
magnitude of the o(1) obtained by optimizing in Step 3 above. Estimate (7.51) morally
says that µN must be concentrated on the minimizers of EH. This will be of use in the
proof of Theorem 7.1. �



100 NICOLAS ROUGERIE

7.4. From Hartree to NLS.

There remains to deduce Theorem 7.1 as a corollary of the above analysis. We start
with the following lemma:

Lemma 7.10 (Stability of one-body functionals).
Consider the functionals (7.25) and (7.6). Under the assumptions of Theorem 7.1, there
exists a minimizer for Enls. Moreover, for all normalized function u ∈ L2(Rd) we have

‖|u|‖2H1 ≤ C(EH[u] + C) (7.52)

and

|EH[u]− Enls[u]| ≤ CN−β
(

1 +

∫
Rd
|∇u|2

)2

. (7.53)

Consequently
|eH − enls| ≤ CN−β. (7.54)

Proof. The stability assumptions we have made guarantee that minimizing sequences for
Enls are bounded in H1. Assumption (7.3) allows to easily estimate the difference between
the Hartree and NLS functionals for H1 functions. Details are omitted and may be found
in [108]. �

We are now equiped to complete the derivation of NLS functional.

Proof of Theorem 7.1. Combining (7.54) with (7.28) concludes the proof of (7.20). There
thus remains to prove convergence of states, the second item of the theorem. We proceed
in four steps:
Step 1, strong compactness of reduced density matrices. We extract a diagonal
subsequence along which

γ
(n)
N ⇀∗ γ

(n) (7.55)

when N →∞, for all n ∈ N. On the other hand we have

Tr
[
Tγ

(1)
N

]
= Tr

[
(−∆ + V ) γ

(1)
N

]
≤ C, (7.56)

independently of N . To see this, pick some α > 0, define

HN,α =
N∑
j=1

(−∆j + V (xj)) +
1 + α

N − 1

∑
1≤i<j≤N

Ndβw(Nβ(xi − xj))

and apply Theorem 7.3 to this Hamiltonian. We find in particular HN,α ≥ −CN and
deduce

enls + o(1) ≥ 〈ΨN , HNΨN 〉
N

≥ −C(1 + α)−1 +
α

1 + α
Tr
[
Tγ

(1)
N

]
,

which gives (7.56). Since T = −∆ + V has compact resolvant, (7.55) and (7.56) imply

that, up to a subsequence γ
(1)
N strongly converges in trace-class norm. As noted previously,

Theorem 3.5 implies that also γ
(n)
N strongly converges, for all n ≥ 1.

Step 2, defining the limit measure. We simplify notation by calling rN the best
bound on |E(N)/N − enls| obtained previously. Let dµN be defined as in Lemma 7.8. It
satisfies

µN (SP−H) = Tr
[
P⊗2
− γ

(2)
N P⊗2

−

]
.
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We have

Tr

∣∣∣∣P⊗2
− γ

(2)
N P⊗2

− −
∫
SP−H

|u⊗2〉〈u⊗2|dµN (u)

∣∣∣∣ ≤ 8NΛ

N
≤ CΛ1+d/s+d/2

N
→ 0.

One may on the other hand deduce from the energy estimates of Section 7.3 a control on
the number of excited particles:

1− µN (SP−H) = Tr
[
(1− P⊗2

− )γ
(2)
N

]
≤ rN

Λ
. (7.57)

By the triangle and Cauchy-Schwarz inequalities we deduce

Tr

∣∣∣∣γ(2)
N −

∫
SP−H

|u⊗2〉〈u⊗2|dµN (u)

∣∣∣∣ ≤ CΛ1+d/s+d/2

N
+ C

√
rN
Λ
. (7.58)

We now denote PK the spectral projector of T on energies below a truncation K, defined

as in (7.29). Since γ
(2)
N → γ(2) and PK → 1

lim
K→∞

lim
N→∞

µN (SPKH) = 1.

This condition allows to use Prokhorov’s Theorem and [176, Lemma 1] to ensure that,
after a possible further extracion, µN converges to a measure µ on the ball BH. Passing
to the limit, we find

γ(2) =

∫
BH
|u⊗2〉〈u⊗2|dµ(u)

and it follows that µ has its support in the sphere SH since Tr[γ(2)] = 1 by strong conver-
gence of the subsequence.

Step 3, the limit measure only charges NLS minimizers. Using (7.51) and

µN (SP−H) = 1 +O
(rN

Λ

)
,

we deduce that ∫
SP−H

(
EH[u]− eH

)
dµN (u) ≤ o(1)

in the limit N →∞. By the estimates of Lemma 7.10, it follows that, for a large enough
constant B > 0 independent of N ,

B2

C

∫
‖∇u‖L2≥B

dµN (u) ≤
∫
‖∇u‖L2≥B

(
EH[u]− eH

)
dµN (u) ≤ o(1),

and∫
‖∇u‖L2≤B

(
Enls[u]− enls

)
dµN ≤ C(1 +B4)N−β +

∫
‖∇u‖L2≤B

(
EH[u]− eH

)
dµN (u) ≤ o(1).

Passing to the limit N →∞, we now see that µ is supported in Mnls.
At this stage, using (7.58) and the convergence of µN we have, strongly in trace-class

norm,

γ
(2)
N →

∫
Mnls

|u⊗2〉〈u⊗2|dµ(u),
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where µ is a probability measure supported in Mnls. Taking a partial trace we obtain

γ
(1)
N →

∫
Mnls

|u〉〈u|dµ(u)

and there only remains to obtain the convergence of reduced density matrices of order
n > 2.

Step 4, higher order density matrices. We want to obtain

γ
(n)
N →

∫
Mnls

|u⊗n〉〈u⊗n|dµ(u),

in trace-class norm when N →∞. In view of the definition of µ, it suffices to show that

Tr

∣∣∣∣γ(n)
N −

∫
SP−H

|u⊗n〉〈u⊗n|dµN (u)

∣∣∣∣→ 0 (7.59)

where µN is the measure defined by applying Lemma 7.8 to γ
(2)
N . To this end we start by

approximating γ
(n)
N using a new measure, a priori different from µN = µ2

N

dµnN (u) =
N∑
k=n

(
N

n

)−1(k
n

)
dim(P−H)ks

〈
u⊗k, G−N,ku

⊗k
〉
du. (7.60)

Proceeding as in the proof of Lemma 7.8 we obtain

TrHn

∣∣∣∣P⊗n− γ
(n)
N P⊗n− −

∫
SP−H

|u⊗n〉〈u⊗n|dµnN (u)

∣∣∣∣ ≤ CnNΛ

N
(7.61)

An estimate similar to (7.57) next shows that

TrHn

∣∣∣∣γ(n)
N −

∫
SP−H

|u⊗n〉〈u⊗n|dµnN (u)

∣∣∣∣→ 0.

Using again the bound (
N

n

)−1(k
n

)
=

(
k

N

)n
+O(N−1)

as well as the triangle inequality and Schur’s formula (4.5) we deduce from (7.61) that

Tr

∣∣∣∣γ(n)
N −

∫
SP−H

|u⊗n〉〈u⊗n|dµN (u)

∣∣∣∣ ≤ N∑
k=0

((
k

N

)2

−
(
k

N

)n)
TrHk

[
G−N,k

]
+

n−1∑
k=0

(
k

N

)n
TrHk

[
G−N,k

]
+

2∑
k=0

(
k

N

)2

TrHk
[
G−N,k

]
+ o(1). (7.62)

Finally, combining the various bounds we have obtained

N∑
k=2

(
k

N

)2

TrHk
[
G−N,k

]
→ 1.
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But, because of (7.41) it follows that

N∑
k=0

(
k

N

)2

TrHk
[
G−N,k

]
→ 1.

We may thus apply Jensen’s inequality to obtain

1 ≥
N∑
k=0

(
k

N

)n
TrHk

[
G−N,k

]
≥

(
N∑
k=0

(
k

N

)2

TrHk
[
G−N,k

])n/2
→ 1.

There only remains to insert this and (7.41) in (7.62) to deduce (7.59) and thus conclude
the proof of the theorem. �

Appendix A. A quantum use of the classical theorem

This appendix is devoted to an alternative proof of a weak version of Theorem 3.6. The
method, introduced in [96] is less general than those described previously. This cannot
be helped since it consists in an application of the Hewitt-Savage (classical de Finetti)
theorem to a quantum problem. Here we follow an unpublished note of Mathieu Lewin
and Nicolas Rougerie [111].

In some cases (absence of magnetic fields essentially), the wave-function ΨN minimizing
a N -body energy can be chosen strictly positive. The ground state of the quantum prob-
lem may then be entirely analyzed in terms of the N -body density ρΨN = |ΨN |2, which
is a purely classical object (a symmetric probability measure) whose limit can be de-
scribed using Theorem 2.1. This approach works only under assumptions on the one-body
Hamiltonian that are much more restrictive than those discussed in Remark 3.2.

A.1. Classical formulation of the quantum problem.

We here consider a quantum N -body Hamiltonian acting on L2(RdN )

HN =
N∑
j=1

(Tj + V (xj)) +
1

N − 1

∑
1≤i<j≤N

w(xi − xj) (A.1)

where the trapping potential V and the interaction potential w are chosen as in Section 3.2.
In particular we assume that V is confining. We shall need rather strong assumptions on
the kinetic energy operator T . The approach we shall discuss in this appendix is based on
the following notion:

Definition A.1 (Kinetic energy with positive kernel).
We say that T has a positive kernel if there exists T (x, y) : Rd × Rd → R+ such that

〈ψ, Tψ〉 =

∫∫
Rd×Rd

T (x, y) |ψ(x)− ψ(y)|2 dxdy (A.2)

for all functions ψ ∈ L2(Rd). �

It is well-known that the pseudo-relativitic kinetic energy is of this form. Indeed〈
ψ,
√
−∆ψ

〉
=

Γ(d+1
2 )

2π(n+1)/2

∫∫
Rd×Rd

|ψ(x)− ψ(y)|2

|x− y|d+1
dxdy, (A.3)
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see [115, Theorem 7.12]. More generally one may consider T = |p|s, 0 < s < 2:

〈ψ, |p|s〉 =
〈
ψ, (−∆)s/2ψ

〉
= Cd,s

∫∫
Rd×Rd

|ψ(x)− ψ(y)|2

|x− y|d+s
dxdy

recalling the correspondance (1.24).
The non-relavistic kinetic energy does not fit in this framework, but one may neverthe-

less apply the considerations of this appendix to it because

〈ψ,−∆ψ〉 =

∫
Rd
|∇ψ|2 = Cd lim

s↑1
(1− s)

∫∫
Rd×Rd

|ψ(x)− ψ(y)|2

|x− y|d+2s
dxdy (A.4)

with

Cd =

(∫
Sd−1

cos θ dσ

)−1

.

Here Sd−1 is the euclidean sphere equiped with its Lebesgue measure σ and θ represents
the angle with respect to the vertical axis. One may thus see −∆ as a limiting case of
Definition A.1. Formula (A.4) is proved in [23, Corollary 2] and [135], see also [24, 136].

The cases with magnetic fields T = (p+A)2 and T = |p+A| are not covered by this
framework. One may deal with them with the methods of the main body of the course,
as already mentioned, but not with those of this appendix.

An important consequence of the above choice of kinetic energy is that, by the triangle
inequality

〈ψ, Tψ〉 ≥ 〈|ψ|, T |ψ|〉
and thus the total N -body energy

EN [ΨN ] = 〈ΨN , HNΨN 〉
satisfies

EN [ΨN ] ≥ EN [|ΨN |] .
The ground state energy can thus be calculated using only positive test functions

E(N) = inf
{
EN [ΨN ],ΨN ∈ L2

s(RdN )
}

= inf
{
EN [ΨN ],ΨN ∈ L2

s(RdN ),ΨN ≥ 0
}
. (A.5)

This remark actually allows to prove a fact mentioned previously: the bosonic ground state
is identical to the absolute ground state in the case of a kinetic energy of the form (A.2)
or (A.4), see [117, Chapter 3].

We recall the definition of Hartree’s functional:

EH[u] = 〈u, Tu〉+

∫
Rd
V |u|2 +

1

2

∫∫
Rd×Rd

|u(x)|2w(x− y)|u(y)|2dxdy,

its infimum being denoted eH. In the sequel of this appendix we prove the following
statement, which is a weakened version of Theorem 3.6:

Theorem A.2 (Derivation of Hartree’s theory, alternative statement).
Let V and w satisfy the assumptions of Section 3.2, in prarticular (3.12). We moreover
assume that T has a positive kernel in the sense of Definition A.1, or is a limit case of
this definition, as in (A.4). We then have

lim
N→∞

E(N)

N
= eH.
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Let ΨN ≥ 0 be a ground state of HN , achieving the infimum in (A.5) and

ρ
(n)
N (x1, . . . , xn) :=

∫
Rd(N−n)

|ΨN (x1, . . . , xN )|2 dxn+1 . . . dxN

be its n-th reduced density matrix. There exists a probability measure µ on MH, the set
of minimizers of EH (modulo a phase), such that, along a subsequence

lim
N→∞

ρ
(n)
N =

∫
MH

∣∣u⊗n∣∣2 dµ(u) for all n ∈ N, (A.6)

strongly in L1
(
Rdn

)
. In particular, if eH has a unique minimizer (modulo a constant

phase), then for the whole sequence

lim
N→∞

ρ
(n)
N =

∣∣u⊗nH

∣∣2 for all n ∈ N, . (A.7)

Remark A.3 (Uniqueness for Hartree’s theory).
In the case of kinetic energy with positive kernel, uniqueness of the minimizer of EH is
immediate if w ≥ 0. Indeed, the kinetic energy 〈ψ, Tψ〉 is then a strictly convex functional

of ρ =
√
|ψ|2, see [115, Chapter 7]. If w is positive the functional EH is thus itself strictly

convex as a function of ρ. �

The particular case where T = −∆ has been dealt with by Kiessling in [96], and we
shall follow his method in the general case. It consists in treating the problem as a purely
classical one, which explains that we only obtain the convergence of reduced densities (A.6)
instead of the convergence of the full reduced density matrices (3.19). We pursue in the
direction of (A.5) by writing

E(N) = inf
{
EN [
√
µN ] ,µN ∈ Ps(RdN )

}
(A.8)

where µN plays the role of |ΨN |2 and we used the fact that we may assume ΨN ≥ 0. The
object we have to study is symmetric probability measure of N variables, and our strategy
shall be similar to that used to prove Theorem (2.6):

• Since the system is confined, one may easily pass to the limit and obtain a problem
in terms of a classical state with infinitely many particles µ ∈ Ps(RdN). We

then use Theorem 2.1 to describe the limit µ(n) of µ
(n)
N , for all n, using a unique

probability measure Pµ ∈ P(P(Rd)).
• The subtle point is to prove that the limit energy is indeed an affine function of µ.

This uses in an essential way the fact that the kinetic energy has a positive kernel
(or is a limit case of such energies), as well as the Hewitt-Savage theorem.

These two steps are contained in the two following sections. We then quickly conclude
the proof of Theorem A.2 in a third section.

A.2. Passing to the limit.

The limit problem we aim at deriving is describe by the functional (compare with (2.50))

E [µ] := lim sup
n→∞

1

n
T

(√
µ(n)

)
+

∫
Rd
V (x)dµ(1)(x) +

1

2

∫∫
Rd×Rd

w(x− y)dµ(2)(x, y), (A.9)
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where µ ∈ Ps(RdN) and we set

T (
√
µn) :=

〈
√
µn,

 n∑
j=1

Tj

√µn
〉

(A.10)

for all probability measure µn ∈ P(Rdn).

Lemma A.4 (Passing to the limit).
Let µN ∈ Ps(RdN ) achieve the infimum in (A.8). Along a subsequence we have

µ
(n)
N ⇀∗ µ

(n) ∈ Ps(Rdn)

for all n ∈ N, ine the sense of measures. The sequence
(
µ(n)

)
n∈N defines a probability

measure µ ∈ Ps(RdN) and we have

lim inf
N→∞

E(N)

N
≥ E [µ]. (A.11)

Proof. Extracting convergent subsequences si done as in Section 2.3. The existence of the
measure µ ∈ Ps(RdN) follows, using Kolmogorov’s theorem.

Passing to the liminf in the terms

1

N

N∑
j=1

∫
RdN

V (xj) dµN (x1, . . . , xN ) =

∫
Rd
V (x) dµ

(1)
N (x)

and

1

N

1

N − 1

N∑
1≤i<j≤N

∫
RdN

w(xi − xj) dµN (x1, . . . , xN ) =
1

2

∫∫
Rd×Rd

w(x− y) dµ
(2)
N (x, y)

uses the same ideas as in Chapters 2 and 3. We shall not elaborate on this point.
The new point is to deal with the kinetic energy in order to obtain

lim inf
N→∞

1

N
T (
√
µN ) ≥ lim sup

n→∞

1

n
T

(√
µ(n)

)
. (A.12)

To this end we denote ΨN = µ2
N a minimizer in (A.5) and we then have

1

N
T (
√
µN ) =

1

N
Tr

 N∑
j=1

Tj |ΨN 〉 〈ΨN |


=

1

n
Tr

 n∑
j=1

Tjγ
(n)
N


where γ

(n)
N is the n-th reduced density matrix of ΨN . It is a trace-class operator, that we

decompose under the form

γ
(n)
N =

+∞∑
k=1

λkn|ukn〉〈ukn|
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with ukn normalised in L2
s(Rdk) and

∑∞
k=1 λ

n
k = 1. Inserting this decomposition in the

previous equation and recalling (A.10) we obtain by linearity of the trace

1

N
T (
√
µN ) =

1

n

+∞∑
k=1

λkn T

(√
|ukn|2

)

≥ 1

n
T


√√√√+∞∑

k=1

λkn|ukn|2


=

1

n
T

(√
ρ
γ
(n)
N

)
where the inequality in the second line uses the convexity of the kinetic energy as a
functions of the density ρ, already recalled in Remark A.3, cf [115, Chapter 7]. In the last
equality

ρ
γ
(n)
N

=

∞∑
k=1

λkn|ukn|2

is the density26 of γ
(n)
N and it is easy to see that

ρ
γ
(n)
N

= ρ
(n)
N =

∫
Rd(N−n)

|ΨN (x1, . . . , xN )|2dxn+1 . . . dxN ,

which yields

1

N
T (
√
µN ) ≥ 1

n
T

(√
µ

(n)
N

)
.

To obtain (A.12), we first pass to the liminf in N (using Fatou’s lemma), then to the
limsup in n. �

The notion of kinetic energy with positive kernel is already crucial at this level. It
provides the convexity property that we just used. It will play an even greater role in the
next section.

A.3. Le problème limite. We now have to show that the functional (A.9) is affine on
Ps(RdN). The last two terms obviously are, which is not suprising since they are classical
in nature. It thus suffices to show that the first term, which encodes the quantum nature
of the problem, is also linear in the density:

Lemma A.5 (Linearity of the limit kinetic energy).
The functional

T (
√
µ) := lim sup

n→∞

1

n
T

(√
µ(n)

)
is affine Ps(RdN).

26Formally, the diagonal part of the kernel.
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Kiessling [96] gave a very elegant proof of this lemma in the case of the non-relativistic
kinetic energy. He notes that in this case

1

n
T

(√
µ(n)

)
=

1

n

n∑
j=1

∫
Rdn

∣∣∣∣∇j√µ(n)

∣∣∣∣2 =
1

4n

n∑
j=1

∫
Rdn

∣∣∣∇j logµ(n)
∣∣∣2 µ(n)

and that the last expression is identical to the Fisher information of the probability mea-
sure µ(n). The quantity we study can thus be interpreted as a “mean Fisher information”
of the measure µ ∈ Ps(RdN), in analogy with the mean entropy introduced in (2.50).

This quantity has an interesting connection to the classical entropy of a probability
measure. Letting µ(n) evolve following the heat flow, one may show that at each time
along the flow, the Fisher information is the derivative of the entropy. Since the heat
flow is linear and the mean entropy is affine (cf the simple computation in the proof of
Theorem 2.6, originating in [155]), Kiessling deduces that the mean Fisher information is
affine. Another point of view on this question is given in [88, Section 5].

Here we shall follow a more pedestrian approach whose advantage is to adapt to the
general kinetic energies described in Definition A.1, among other to the pseudo-relativistic
kinetic energy.

Proof. Theorem 2.1 implies that Ps(RdN) is the convex envelop of the propability measures

symmetric characterized by µ(n) = ρ⊗n, ρ ∈ P(Rd). To prove the lemma it thus suffices
to take

µ1 = ρ⊗n1 , µ2 = ρ⊗n2 , µ = 1
2µ1 + 1

2µ2

with ρ1, ρ2 ∈ P(Rd), ρ1 6= ρ2 and to prove that∣∣T (
√
µ)− 1

2T
(√

µ1

)
− 1

2T
(√

µ2

)∣∣ ≤ o(n)→ 0 (A.13)

when n→∞. By symmetry of µ(n) and in view of Definition A.1, we have to compute

T (
√
µ) = n

∫
Rd(n−1)

dX̂

∫∫
Rd×Rd

T (x, y)
∣∣∣√µ(X)−

√
µ(Y )

∣∣∣2 , (A.14)

where we denote

X = (x1, . . . , xn), Y = (y1, x2 . . . , xn), X̂ = (x2, . . . , xn).

We start by claiming that for all X,Y

|I(X,Y )| =
∣∣∣∣∣∣∣√µ(X)−

√
µ(Y )

∣∣∣2 − 1
2

∣∣∣√µ1(X)−
√
µ1(Y )

∣∣∣2 − 1
2

∣∣∣√µ2(X)−
√

µ2(Y )
∣∣∣2∣∣∣∣

≤ C

 n∏
j=2

ρ1(xj)ρ2(xj)

1/2(∣∣∣√ρ1(x1)−
√
ρ1(y1)

∣∣∣2 +
∣∣∣√ρ2(x1)−

√
ρ2(y1)

∣∣∣2) .
(A.15)

We will prove (A.15) in the case

ρ2(y1) ≤ ρ2(x1) et ρ1(y1) ≤ ρ1(x1). (A.16)

The adaptation to the other cases is left to the reader. We simplify notation by setting

ui =
√
ρi, Ui =

√
ρ⊗ni .
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After expanding the squares we obtain

2I(X,Y ) = U1(X)U1(Y ) + U2(X)U2(Y )

−
√
U2

1 (X)U2
1 (Y ) + U2

2 (X)U2
2 (Y ) + U2

1 (X)U2
2 (Y ) + U2

2 (X)U2
1 (Y ).

Then

U2
1 (X)U2

1 (Y ) + U2
2 (X)U2

2 (Y ) + U2
1 (X)U2

2 (Y ) + U2
2 (X)U2

1 (Y )

= (U1(X)U1(Y ) + U2(X)U2(Y ))2+U2
1 (X)U2

2 (Y )+U2
2 (X)U2

1 (Y )−2U1(X)U2(Y )U1(Y )U2(X)

and thus,

2|I(X,Y )| =
∣∣ (U1(X)U1(Y ) + U2(X)U2(Y ))

×

(
1−

√
1 +

U2
1 (X)U2

2 (Y ) + U2
2 (X)U2

1 (Y )− 2U1(X)U2
2 (Y )U1(Y )U2(X)

(U1(X)U1(Y ) + U2(X)U2(Y ))2

)∣∣∣∣∣
≤ U2

1 (X)U2
2 (Y ) + U2

2 (X)U2
1 (Y )− 2U1(X)U2

2 (Y )U1(Y )U2(X)

U1(X)U1(Y ) + U2(X)U2(Y )

=

 n∏
j=2

u1(xj)u2(xj)

 |u1(x1)u2(y1)− u1(y1)u2(x1)|2

u1(x1)u1(y1) + u2(x1)u2(y1)

=

 n∏
j=2

u1(xj)u2(xj)

 |u2(y1) (u1(x1)− u1(y1)) + u1(y1) (u2(y1)− u2(x1))|2

u1(x1)u1(y1) + u2(x1)u2(y1)

≤ 2

 n∏
j=2

u1(xj)u2(xj)

( u2(y1)2

u1(x1)u1(y1) + u2(x1)u2(y1)
(u1(x1)− u1(y1))2

+
u1(y1)2

u1(x1)u1(y1) + u2(x1)u2(y1)
(u2(y1)− u2(x1))2

)
.

Estimate (A.15) immediately follows in the case (A.16) and by similar considerations in
the other cases.

Inserting (A.15) in (A.14) and recalling (A.10) we obtain∣∣T (
√
µ)− 1

2T
(√

µ1

)
− 1

2T
(√

µ2

)∣∣ ≤ Cn(∫
Rd

√
ρ1
√
ρ2

)n−1 (
T (
√
ρ1) + T (

√
ρ2)
)

(A.17)
by Fubini. We may assume that T

(√
ρ1

)
and T

(√
ρ2

)
are finite, otherwise all the quan-

tities we estimate are equal to +∞ and there is nothing to prove. There remains to note
that

δ :=

∫
Rd

√
ρ1
√
ρ2 <

1

2

(∫
Rd
ρ1 +

∫
Rd
ρ2

)
< 1

since ρ1 6= ρ2 by assumption. We conclude that∣∣T (
√
µ)− 1

2T
(√

µ1

)
− 1

2T
(√

µ2

)∣∣ ≤ Cnδn−1

and δn−1 → 0 when n→ +∞, as desired.
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To deal with the case of the usual, non-relativistic, kinetic energy, we first apply the
preceding arguments to the kinetic energy Ts defined by the positive kernel

Ts(x, y) = Cd|x− y|−(d+2s)

with 0 < s < 1 fixed, to obtain the analogue of (A.17) with T = Ts. We then multiply
this inequality by (1− s) and take the limit s→ 1. Using (A.4) this gives (A.17) with T
the non-relativistic kinetic energy. We may then pass to the limit n → ∞ to obtain the
desired result. �

A.4. Conclusion.

The upper bound follows by the usual trial state argument. Combining Lemmas A.4
and A.5 as well as the representation of µ given by Theorem 2.1 we deduce

lim inf
N→∞

E(N)

N
= E

[∫
P(Rd)

ρ⊗∞dµ(ρ)

]

=

∫
P(Rd)

E
[
ρ⊗∞

]
dµ(ρ)

=

∫
P(Rd)

EH [
√
ρ] dµ(ρ) ≥

∫
P(Rd)

eH dµ(ρ) = eH,

which gives the energy convergecne. The convergence of reduced densities follows by noting
that there equality must hold in all the previous inequalities.
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Appendix B. Finite-dimensional bosons at large temperature

Until now we have only considered mean-field quantum systems at zero temperature,
and obtained in the limit N →∞ de Finetti measures concentrated on the minimizers of
the limit energy functional. It is possible, taking a large temperature limit at the same
time as the mean-field limit, to obtain a Gibbs measure. In this appendix we explain this
for the case of bosons with a finite dimensional state-space, following [82, 112].

In infinite dimension, important problems arise, in particular for the definition of the
limit problem. The non-linear Gibbs measures one obtains play an important role in
quantum field theory [52, 171, 183, 75, 78] and in the construction of rough solutions to
the NLS equation, see for example [104, 21, 22, 185, 28, 29, 27, 184, 50]. We refer to the
paper [107] for results on the limit “mean-field/large temperature in infinite dimension”
and a more thorough discussion of these subjects.

B.1. Setting and results.

In this appendix, the one-body state space will be a complex Hilbert space H with finite
dimension

dimH = d.

We consider the mean-field type Hamiltonian

HN =

N∑
j=1

hj +
1

N − 1

∑
1≤i<j≤N

wij (B.1)

where h is a self-adjoint operator on H and w a self-adjoint operator on H⊗H, symmetric
in the sense that

w(u⊗ v) = w(v ⊗ u), ∀u, v ∈ H.

The energy functional is as usual defined by

EN [ΨN ] = 〈ΨN , HNΨN 〉

for ΨN ∈
⊗N

s H and extends to mixed states ΓN of HN =
⊗N

s H by the formula

EN [ΓN ] = TrHN [HNΓN ] .

The equilibrium state of the system at temperature T is obtained by minimizing the
free-energy functional

FN [ΓN ] := EN [ΓN ] + T Tr [ΓN log ΓN ] (B.2)

amongst mixed states. The minimizer is the Gibbs state

ΓN =
exp

(
−T−1HN

)
Tr [exp (−T−1HN )]

. (B.3)

The associated minimum free-energy is obtained from the partition function (normalisation
factor in (B.3)) as follows:

FN = inf
{
FN [ΓN ],ΓN ∈ S(HN )

}
= −T log Tr

[
exp

(
− 1

T
HN

)]
. (B.4)

We shall be interested in the limit of these objects in the limit

N →∞, T = tN, t fixed (B.5)
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which happens to be the good regime to obtain an interesting limit problem. We will in
fact obtain a classical free-energy functional that we now define.

Since H is finite-dimensional, one may define du the normalized Lebesgue measure on
its unit sphere SH. The limiting objects will be de Finetti measures, hence probability
measures µ on SH, and more precisely functions of L1(SH, du). We introduce for these
objects a classical free-energy functional

Fcl[µ] =

∫
SH
EH[u]µ(u)du+ t

∫
SH
µ(u) log (µ(u)) du (B.6)

and denote Fcl its infimum amongst positive normalized L1 functions. It is attained by
the Gibbs measure

µcl =
exp

(
−t−1EH[u]

)∫
SH exp (−t−1EH[u]) du

(B.7)

and we have

Fcl = −t log

(∫
SH

exp

(
−1

t
EH[u]

)
du

)
Here EH[u] is the Hartree functional

EH[u] =
1

N

〈
u⊗N , HNu

⊗N〉
HN

= 〈u, hu〉H + 1
2 〈u⊗ u,wu⊗ u〉H2 . (B.8)

The theorem we shall prove, due to Gottlieb [82] (see also [81, 92]) is of a semi-classical
nature since it provides a link between the quantum and classical Gibbs states, (B.3)
and (B.7):

Theorem B.1 (Mean-field/large temperature limit in finite dimension). In the
limit (B.5), we have

FN = −T log dim
(
HNs
)

+NFcl +O(d). (B.9)

Moreover, denoting γ
(n)
N the n-th reduced density matrix of the Gibbs state (B.3),

γ
(n)
N →

∫
SH
|u⊗n〉〈u⊗n|µcl(u)du (B.10)

strongly in the trace-class norm of S1(Hn).

Remark B.2 (Mean-field/large temperature limit).
A few comments:

(1) One should understand this theorem as saying that essentially, in the limit under
consideration,

ΓN ≈
∫
SH
|u⊗N 〉〈u⊗N |µcl(u)du.

The Gibbs state is thus close to a superposition of Hartree states. The notions of
reduced density matrices and de Finetti measures provide the appropriate manner
to make this rigorous. We will see that the de Finetti measure (lower symbol)
associated to ΓN by the methods of Chapter 4 converges to µcl(u)du.

(2) Note that the first term in the energy expansion (B.9) diverges very rapidly,
see (4.16). The classical free-energy only appears as a correction. In view of the
dependence on d of this first term, it is clear that the approach in this appendix
cannot be adapted easily to an infinite dimensional setting.
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(3) Our method of proof differs from that of [82]. We shall exploit more fully the semi-
classical nature of the problem by using the Berezin-Lieb inequalities introduced
in [15, 113, 174]. The method we present [112] owes a lot to the seminal paper [113]
and is reminiscent of some aspects of [121].

(4) It will be crucial for the proof that the lower symbol of ΓN is an approximate de
Finetti measure for ΓN . This will allow us to apply the first Berezin-Lieb inequality
to obtain a lower bound to the entropy term. A new interest of the constructions
of Chapter 4 is thus important here. We use not only the estimate of Theorem 4.1
but also the particular form of the constructed measure.

�

B.2. Berezin-Lieb inequalities.

We recall the resolution of the identity (4.5) over HN given by Schur’s lemma. We thus
have for each state ΓN ∈ S(HNs ) a lower symbol defined as

µN = dim
(
HNs
)

Tr
[
ΓN |u⊗N 〉〈u⊗N |

]
.

The first Berezin-Lieb inequality is the following statement:

Lemma B.3 (First Berezin-Lieb inequality).
Let ΓN ∈ S(HNs ) have lower symbol µN and f : R+ → R be a convex function. We have

Tr [f(ΓN )] ≥ dim
(
HNs
) ∫

SH
f

(
µN

dim (HNs )

)
du. (B.11)

The second Berezin-Lieb inequality applies to state having a positive upper symbol (see
Section 4.2). One may in fact show that every state has an upper symbol, but it is in
general not a positive measure.

Lemma B.4 (Second Berezin-Lieb inequality).
Let ΓN ∈ S(HNs ) have upper symbol µN ≥ 0,

ΓN =

∫
u∈SH

|u⊗N 〉〈u⊗N |µN (u)du (B.12)

and f : R+ → R be a convex function. We have

Tr [f(ΓN )] ≤ dim
(
HNs
) ∫

SH
f

(
µN

dim (HNs )

)
du. (B.13)

Proof of Lemmas B.3 and B.4. We follow [174]. Since ΓN is a state we decompose it under
the form

ΓN =
∞∑
k=1

λkN |V k
N 〉〈V k

N |

with V k
N ∈ HNs normalized and

∑
k λ

k
N = 1. We denote

µkN (u) =
∣∣∣〈V k

N , u
⊗N
〉∣∣∣2

and by (4.5) we have

dim
(
HNs
) ∫

SH
µkN (u)du =

〈
V k
N , V

k
N

〉
= 1. (B.14)
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On the other hand, since (V k
N )k is a basis of HNs , for all u ∈ SH∑
k

µkN (u) =
∑
k

∣∣∣〈V k
N , u

⊗N
〉∣∣∣2 = 1. (B.15)

First inequality. Here µN is the lower symbol of ΓN and we have

µN (u) = dim
(
HNs
)∑

k

λkNµ
k
N (u)

and thus

dim
(
HNs
) ∫

SH
f

(
µN

dim (HNs )

)
du ≤ dim

(
HNs
) ∫

SH

∑
k

f
(
λkN

)
µkN (u)du

by Jensen’s inequality and (B.15). Next

dim
(
HNs
) ∫

SH

∑
k

f
(
λkN

)
µkN (u)du =

∑
k

f
(
λkN

)
= Tr [f(ΓN )]

using (B.14).

Second inequality. Here ΓN and µN are related via (B.12). We write

Tr [f(ΓN )] =
∑
k

f
(
λkN

)
=
∑
k

f
(
〈V k
N ,ΓNV

k
N 〉
)

=
∑
k

f

(∫
SH
µN (u)µkN (u)du

)
≤
∑
k

dim
(
HNs
) ∫

SH
f

(
µN (u)

dim (HNs )

)
µkN (u)du

= dim
(
HNs
) ∫

SH
f

(
µN (u)

dim (HNs )

)
du

using Jensen’s inequality and (B.14) to prove the inequality in the third line and
then (B.15) to conclude. �

We have here presented a specific version of these famous inequalities. It is clear that
the proof applies more generally to any self-adjoint operator on a separable Hilbert space
having a coherent state decomposition of the form (4.5). In the next section these inequali-
ties will be used to deal with the entropy term by taking f(x) = x log x. This will complete
the treatment of the energy using Theorem 4.1 and make the link with the discussion of
Chapter 4.

B.3. Proof of Theorem B.1.

Upper bound. We take as a trial state

Γtest
N :=

∫
SH
|u⊗N 〉〈u⊗N | µcl(u)du.

The energy being linear in the density matrix we have

EN
[
Γtest
N

]
=

∫
SH
EN
[
|u⊗N 〉〈u⊗N |

]
µcl(u)du = N

∫
SH
EH[u]µcl(u)du.
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For the entropy term we use the second Berezin-Lieb inequality, Lemma B.4, with f(x) =
x log x. This gives

Tr
[
Γtest
N log Γtest

N

]
≤ dim

(
HNs
) ∫

SH

µcl(u)

dim (HNs )
log

(
µcl(u)

dim (HNs )

)
du

= − log dim
(
HNs
)

+

∫
SH
µcl(u) log (µcl(u)) du.

Summing these estimates we obtain

FN ≤ FN
[
Γtest
N

]
≤ −T log dim

(
HNs
)

+NFcl

since µcl minimizes Fcl.

Lower bound. For the energy we use the reduced density matrices as usual to write

EN [ΓN ] = N TrH

[
hγ

(1)
N

]
+
N

2
TrH2

[
wγ

(2)
N

]
.

Denoting

µN (u) = dim
(
HNs
) 〈
u⊗N ,ΓNu

⊗N〉
the lower symbol of ΓN , we recall that it has been proved in Chapter 4 that

TrH

∣∣∣∣γ(1)
N −

∫
SH
|u〉〈u|µN (u)du

∣∣∣∣ ≤ C1
d

N

TrH2

∣∣∣∣γ(2)
N −

∫
SH
|u⊗2〉〈u⊗2|µN (u)du

∣∣∣∣ ≤ C2
d

N
.

Since we work in finite dimension, h and w are bounded operators and it follows that

EN [ΓN ] ≥ N
∫
SH

TrH [h|u〉〈u|]µN (u)du+
N

2

∫
SH

TrH2

[
w|u⊗2〉〈u⊗2|

]
µN (u)du− Cd

= N

∫
SH
EH[u]µN (u)du− Cd.

To estimate the entropy we use the first Berezin-Lieb inequality, Lemma B.3, with f(x) =
x log x. This yields

Tr [ΓN log ΓN ] ≥ dim
(
HNs
) ∫

SH

µN (u)

dim (HNs )
log

(
µN (u)

dim (HNs )

)
du

= − log dim
(
HNs
)

+

∫
SH
µN (u) log (µN (u)) du.

There only remains to sum these estimates to deduce

FN = FN [ΓN ] ≥ −T log dim
(
HNs
)

+NFcl[µN ]− Cd
≥ −T log dim

(
HNs
)

+NFcl − Cd

since ∫
SH
µN (u)du = 1

by definition.
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Convergence of reduced density matrices. The lower symbol µN (u)du is a probability
measure on the compact space SH. We extract a converging subsequence

µN (u)du→ µ(du) ∈ P(SH)

and it follows from the results of Chapter 4 that, for all n ≥ 0, along a subsequence,

γ
(n)
N →

∫
SH
|u⊗n〉〈u⊗n|dµ(u). (B.16)

Combining the previous estimates gives

Fcl ≥ Fcl[µN ]− C d

N
. (B.17)

To pass to the liminf N → ∞ in this inequality, the energy term is dealt with as in the
preceding chapters. For the entropy term we note that since du is normalized∫

SH
µN logµNdu ≥ 0

since this quantity may be interpreted as the relative entropy of µN with respect to the
constant function 1. Using Fatou’s lemma we thus deduce from (B.17) that

Fcl ≥ Fcl[µ]

and thus dµ(u) = µcl(u)du by uniqueness of the minimizer of Fcl. Uniqueness of the
limit also guarantees that the whole sequence converges and there only remains to go back
to (B.16) to conclude the proof. �
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