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Plan for the introduction

1. Bose-Einstein Condensation

2. Classical statistical mechanics

3. Mean-field approximation and de Finetti theorems



Bose-Einstein Condensation in a nutshell

I Many particles (bosons) in the same quantum state

I Bosons = indistinguishable quantum particles that do not satisfy Pauli’s
exclusion principle

I Phenomenon due to bosonic statistics, requires very low temperature

I Theoretical prediction: Bose 1924, Einstein 1925.

I For free bosonic particles, below a certain critical temperature, the lowest
energy state is macroscopically occupied.

I First experimental realization: 1995, Boulder (Colorado) and MIT (Nobel
prize in physics 2001: Cornell, Wieman and Ketterle).

I Nowadays observed and studied in many laboratories, mostly in
metastable states of dilute alkali gases

I BECs = macroscopic quantum objects (∼ 10µm), offer remarkable
possibilities for “directly” observing quantum phenomena.



Bose and Einstein’s argument

I N non interacting particles to be distributed in discrete energy levels.

I Thermostat, temperature T . Free energy = energy - T× entropy.

I Computation of entropy at fixed energy, basic statistical mechanics:
how many possible distributions of particles correspond to a given energy ?

I For indistinguishable particles, one obtains the Bose-Einstein distribution

ni =
1

exp (β(Ei − µ))− 1

I Einstein  for large β, lowest energy state macroscopically occupied



Natural objections

Einstein → Ehrenfest :
“This is a beautiful idea, but does it contain a part of truth ?”

First note how revolutionary the idea was: 1925 is the pre-dawn of quantum
mechanics, Schrödinger’s equation is from 1926 !

Moreover, three serious objections sprang to the mind of contemporaries:

1. Critical temperature for BEC is extremely low, unrealistically so, as it
seemed in the 1920’s.

2. At such temperatures, all known materials should be in a solid phase, not
gaseous as assumed in Einstein’s paper.

3. How would interactions affect the phenomenon ?

However, BEC was finally observed in the 90’s, 70 years later ...
... in experiments where interactions DO matter.



Experimental advances: 70 years of hard work

I Laser cooling (Nobel prize in physics 1997: Chu, Phillips and
Cohen-Tannoudji). Slow down atoms using matter-light interaction.

I Radiative pressure, Doppler effect ...  m-Kelvin

I Magneto-optic traps: separate gas from any material wall.

I Evaporative cooling: play with the trap’s potential barrier  µ-Kelvin

At the end of the day ... very cold and dilute metastable gases in which one is
able to detect BEC.



Experimental evidence (1): macroscopic occupancy

I Image a condensate after ballistic expansion

I Trapped particles in a potential well, at equilibrium

I Switch off potential and image the expanding cloud

I Reconstruct the initial distribution in momentum/energy space

Energy distribution of a could of trapped atoms (Sodium), decreasing
temperature from left to right.

Davis-Mewes-Andrews-van Druten-Durfee-Kurn-Ketterle, PRL, 95.



Experimental evidence (2): interfering condensates

I Test the wave nature of the condensate

I Create two condensates in the two wells of a symmetric potential

I Switch the barrier off: condensates overlap and interfere

I Coherent matter waves have indeed been created

Interference pattern created by the overlap of two BECs.
Andrews-Townsend-Miesner-Durfee-Kurn-Ketterle, Science, 97.



Model for interacting trapped BEC: Gross-Pitaevskii theory

I N particles in same quantum state: single wave function ψ ∈ L2(Rd)

I N|ψ|2 = matter density

I Interactions dealt with in a mean-field-like approximation

I Trapping potential V : Rd → R, interaction potential w : Rd → R
I Units: mass = ~ = 1, coupling constant g

I Energy functional:

E[ψ] =

∫
Rd

(
|∇ψ|2 + V (x)|ψ|2 +

g

2
(w ∗ |ψ|2)|ψ|2

)
I Ground state → minimize under mass constraint∫

Rd

|ψ|2 = 1.

I For dilute gases, take contact interactions, w = δ0

EGP[ψ] =

∫
Rd

(
|∇ψ|2 + V (x)|ψ|2 +

g

2
|ψ|4

)



A look at the density: interactions do matter !

I Small interactions, single particle physics:∫
Rd

(
|∇ψ|2 + V (x)|ψ|2

)
, −∆ψ + Vψ = µψ

e.g. V (x) = |x |2, harmonic oscillator, exactly soluble  gaussian

I Large interactions, “Thomas-Fermi regime” solve for ρ = |ψ|2∫
Rd

(
V (x)ρ+

g

2
ρ2
)
, gρ+ V = µ

I Thomas-Fermi profile, e.g. V (x) = |x |2  inverted parabola

ρTF = g−1 [µ− V ]+

much better approximation in many experiments.

Hau, Busch, Liu, Dutton, Burns, Golovchenko, PRA, 1998



Superfluidity and quantized vortices

I A BEC is a superfluid, and thus responds to rotation by the nucleation of
quantized vortices

I Vortices organize in triangular lattices, cf mixed phase of type II
superconductors (Abrikosov lattices)

I Rotational symmetry breaking: consequence of interactions

First few vortices appearing in a rotating BEC.
Jean Dalibard’s group, Laboratoire Kastler Brossel.

Vortex lattices.
W. Ketterle’s group, MIT.



Model for rotating trapped BEC

I Look for equilibrium state in the rotating frame. Energy functional:

E[ψ] =

∫
R2

(
|∇ − iΩx⊥ψ|2 +

(
V (x)− Ω2|x|2

)
|ψ|2 +

g

2
|ψ|4

)
I Non interacting case  no vortex lattice ! Single-particle physics.

Hamiltonian commutes with angular momentum. Ground state’s density is
rotationally symmetric.

I Interacting case: there is a vast literature about vortex nucleation in
rotating superfluids, including mathematical theorems.

I Rigorous theorems establish that vortices tend to be uniformly distributed,
repelling each other via 2D Coulomb-like forces.

I Open problem: the hexagonal lattice ⇔ crystallization for the 2D Jellium.

Numerically minimizing the GP energy, Ionut Danaila 2005.



Summary so far, and the questions it suggests

I Existence of BEC can be guessed by simple statistical mechanics
considerations.

I For free indistinguishable particles, only need the “statistical enhancement”
of condensed configurations.

I Experimental requirements seemed unrealistic in the 20’s, now met in
many labs worldwide.

I Effective models based on assuming BEC efficient to describe experiments.

I In many experiments, interactions between particles DO matter.

However, the case for BEC in presence of interactions is theoretically
unclear.

1. Is it true that the ground state of an interacting dilute Bose system shows
BEC ?

2. Is it true that BEC is preserved by the dynamical evolution along the
N-body Schrödinger flow ?

3. Is it true that the thermal state of an interacting dilute Bose system shows
Bose condensation below a critical temperature ?



Summary so far, and the questions it suggests

I Existence of BEC can be guessed by simple statistical mechanics
considerations.

I For free indistinguishable particles, only need the “statistical enhancement”
of condensed configurations.

I Experimental requirements seemed unrealistic in the 20’s, now met in
many labs worldwide.

I Effective models based on assuming BEC pretty efficient to describe
experiments.

I In many experiments, interactions between particles DO matter.

However, the case for BEC in presence of interactions is theoretically unclear.

1. Is it true that the ground state of a dilute Bose system shows Bose
condensation ? XYES !

2. Is it true that BEC is preserved by the dynamical evolution along the
N-body Schrödinger flow ? XYES !

3. Is it true that the thermal state of a dilute Bose system shows Bose
condensation below a critical temperature ? × OPEN PROBLEM.

We believe these questions to be of such importance that it is worth looking for
mathematically rigorous proofs.



Main theme of the lectures

Link the fundamental, microscopic, many-body Schrödinger description with
the effective, macroscopic, non-linear Schrödinger theory.

(We shall focus on the ground state to keep things within bounds.)

One may think of two kind of approaches:

I Methods based on properties of the Hamiltonian. Estimate in terms of
auxiliary one-body Hamiltonian. Depends on the physics at hand.

I Methods based on the structure of bosonic states. Enhanced role of
condensed states. Very general.

Program

I Derive NLS description in a mean-field limit: large N, weak interactions.

I Other, more realistic limits: dilute gases, strong but rare interactions.

I Main tools: quantum de Finetti theorems.

I Use as little as possible the properties of the Hamiltonian.

I Very much in the spirit of the pioneers: what matters is the statistics of
the particles.

For symmetry reasons, any bosonic N-body state looks like a superposition of
condensates for large N.


