

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Spring term 2012 / Sommersemester 2012

Functional Analysis – Final Test, 20.10.2012

Funktionalanalysis – Endklausur, 20.10.2012

Name: / Name:			
Matriculation number:/Matrik	elnr.:	Semester:/Fachsemester:	
Degree course: / <i>Studiengang:</i>	Bachelor PO 2010	 Lehramt Gymnasium (modularisiert) Lehramt Gymnasium (nicht modularisiert) TMP 	
Major:/Hauptfach: 🗅 Mathema	tik 📮 Wirtschaftsm.	🗅 Informatik 🗅 Physik 🗅 Statistik 🗅	
Minor:/Nebenfach: 🗅 Mathema	tik 🕒 Wirtschaftsm.	🗅 Informatik 🗅 Physik 🗅 Statistik 🗅	
Credits needed for:/Anrechnur	ng der Credit Points für	das: 🗅 Hauptfach 🕒 Nebenfach (Bachelor/M	aster)
Extra solution sheets submitte	ed:/Zusätzlich abgegebo	ene Lösungsblätter: 🗖 Yes 📮 No	

problem	1	2	3	4	5	\sum	
total marks	10	10	10	10	10	50	
scored marks							
final	tost		tot	ol l		FINAL	

homework	final test	total	FINAL	
bonus	performance	performance	MARK	

INSTRUCTIONS:

- This booklet is made of fourteen pages, including the cover, numbered from 1 to 14. The test consists of five problems. Each problem is worth the number of marks specified in the table above. 40 marks are counted as 100% performance in this test. You are free to attempt any problem and collect partial credits.
- The only material that you are allowed to use is black or blue pens/pencils and one hand-written, two-sided, A4-paper "cheat sheet" (Spickzettel). You cannot use your own paper: should you need more paper, raise your hand and you will be given extra sheets.
- Prove all your statements or refer to the standard material discussed in class.
- Work individually. Write with legible handwriting. You may hand in your solution in English or in German. Put your name on every sheet you hand in.
- You have 120 minutes.

Fill in the form here below only if you need the certificate (Schein).

Dieser	Leistungsnachweis	entspricht	auch den Anforde	rungen
nach §	Abs.	Nr.	Buchstabe	LPO I
nach §	Abs.	Nr.	Buchstabe	LPO I

UNIVERSITÄT MÜNCHEN

ZEUGNIS

Der / Die Studierende der			
Herr / Frau	aus		
geboren am in	hat im <u>SoSe</u>	Halbjahr _ 2012	
meine Übungen zur Funktionalanalysis			
mit			_ besuch
Er / Sie hat			
schriftliche Arbeiten geliefert, die mit ihm / ihr			
<i>J J J J J J J J J J</i>	1		

MÜNCHEN, den 20 Oktober 2012

PROBLEM 1. (10 marks)

Consider the vector space $C^{1}([0, 1])$ and define the following functionals on it:

- $F_1(f) := |f(0)| + \max_{x \in [0,1]} |f'(x)|$,
- $F_2(f) := \int_0^1 |f(x)| \, \mathrm{d}x + \max_{x \in [0,1]} |f'(x)|.$
- (i) Prove that both F_1 and F_2 are norms.
- (ii) Prove that F_1 and F_2 are equivalent (as norms). (Hint: $f(x) - f(0) = \int_0^x f'(t) dt$.)

SOLUTION:

(i) Both F_1 and F_2 are clearly well-defined. The positivity, triangle inequality and linear scaling under multiplication clearly hold for both F_1 and F_2 (but most be proved!). Assume $F_1(f) = 0$, then f(0) = 0 and $f' \equiv 0$, hence $|f(x)| = |\int_0^x f'(t)dt| = 0$ for all x, so that $f \equiv 0$. Thus, F_1 is a norm. Assume $F_2(f) = 0$, then $f' \equiv 0$, hence $|f(x) - f(0)| = |\int_0^x f'(t)dt| = 0$, i.e., f(x) = f(0) for all x. Also, $\int_0^1 |f(x)| dx = 0$ (since $F_2(f) = 0$), so $0 = \int_0^1 |f(0)| dx = f(0)$. It follows that f(x) = 0 for all x, and so F_2 is also a norm.

(ii) To prove is: There exists constants C, C' > 0 such that $C F_1(f) \leq F_2(f) \leq C' F_1(f)$ for all $f \in C^1([0,1])$.

We have

$$F_{2}(f) = \int_{0}^{1} dx \Big| f(0) + \int_{0}^{x} f'(t) dt \Big| + \max_{x \in [0,1]} |f'(x)|$$

$$\leq |f(0)| + \int_{0}^{1} (|x| \max_{t \in [0,1]} |f'(t)|) dx + \max_{x \in [0,1]} |f'(x)|$$

$$\leq |f(0)| + 2 \max_{x \in [0,1]} |f'(x)| \leq 2 F_{1}(f) .$$

Conversely, for all $x \in [0, 1]$,

$$|f(0)| \le |f(x) - f(0)| + |f(x)| \le \left| \int_0^x f'(t) dt \right| + |f(x)| \le \max_{x \in [0,1]} |f'(x)| + |f(x)|,$$

and integrating both sides in dx from x = 0 to x = 1 yields $|f(0)| \leq \int_0^1 |f(x)| dx + \max_{x \in [0,1]} |f'(x)|$, hence $F_1(f) \leq 2 F_2(f)$. SOLUTION TO PROBLEM 1 (CONTINUATION):

Name

PROBLEM 2. (10 marks)

Let (X, d) be a compact metric space. For each $n \in \mathbb{N}$ let $f_n : X \to \mathbb{R}$ be a continuous function such that $f_n(x) \ge 0 \ \forall x \in X$. Assume that $\forall x \in X$ the sequence $\{f_n(x)\}_{n=1}^{\infty}$ decreases monotonically and $\lim_{n \to \infty} f_n(x) = 0$. Prove that

$$\sup_{x \in X} |f_n(x)| \xrightarrow{n \to \infty} 0.$$

(Hint: Using the assumptions, write X as a suitable union of open balls.)

SOLUTION:

Let $\epsilon > 0$. For all $x \in X$ there exists $n_{\epsilon,x} \in \mathbb{N}$ such that $f_{n_{\epsilon,x}}(x) < \epsilon/2$ (since $\{f_n(x)\}_{n=1}^{\infty}$ decreases monotonically and $\lim_{n \to \infty} f_n(x) = 0$). Also (by continuity of $f_{n_{\epsilon,x}}$ at x), there exists $\delta_{\epsilon,x} > 0$ such that $|f_{n_{\epsilon,x}}(y) - f_{n_{\epsilon,x}}(x)| < \epsilon/2$ for all $y \in B_{\delta_{\epsilon,x}}(x)$. By compactness of X, the open cover $\bigcup_{x \in X} B_{\delta_{\epsilon,x}}(x) = X$ contains a finite subcover, $\bigcup_{i=1}^{m} B_{\delta_{x_i,\epsilon}}(x_i) = X$. Let $N := \max\{n_{\epsilon,x_1}, \ldots, n_{\epsilon,x_m}\}$.

Let now $y \in X$, then there exists some $i \in \{1, \ldots, m\}$ such that $y \in B_{\delta_{x_i,\epsilon}}(x_i)$, and hence, by the above: For all $n \geq N$:

$$0 \le f_n(y) \le f_N(y) \le f_{n_{\epsilon,x_i}}(y) \le f_{n_{\epsilon,x_i}}(x_i) + |f_{n_{\epsilon,x_i}}(y) - f_{n_{\epsilon,x_i}}(x_i)| < \epsilon/2 + \epsilon/2 = \epsilon,$$

hence, $\sup_{y \in X} |f_n(y)| \le \epsilon$ for all $n \ge N$. That is, $\sup_{x \in X} |f_n(x)| \xrightarrow{n \to \infty} 0$.

SOLUTION TO PROBLEM 2 (CONTINUATION):

PROBLEM 3. (10 marks)

Consider the set

 $c_{00} = \{x = (x_1, x_2, x_3, \dots) \mid x_n \in \mathbb{C} \text{ and } x \text{ has finitely many non-zero entries} \}$

equipped with the natural structure of vector space given by componentwise sum and multiplication by a scalar. Let $\| \|$ be an arbitrary norm on c_{00} .

- (i) Prove that c_{00} can be written as a countable union of finite dimensional subspaces.
- (ii) Prove that $(c_{00}, || ||)$ is not a Banach space.

SOLUTION:

(i) Let, for all $n \in \mathbb{N}$, $V_n = \{x \in c_{00} | x = (x_1, \dots, x_n, 0, 0, \dots)\}$. Then $V_n \subset c_{00}$ is clearly a linear subspace, and dim $V_n = n < \infty$, and, if $x = (x_1, x_2, x_3, \dots) \in c_{00}$, then there is an $N \in \mathbb{N}$ such that $x_n = 0$ for $n \ge N$. Hence $x \in V_N$. So $c_{00} = \bigcup_{n=1}^{\infty} V_n$.

(ii) Assume for contradiction that $(c_{00}, \|\cdot\|)$ is a Banach space, in particular, a complete metric space.

From (i), $c_{00} = \bigcup_{n=1}^{\infty} V_n$ with dim $V_n = n$. Hence each V_n is closed (all normed finite dimensional vector spaces are complete in themselves). Claim: Any proper subspace V of a normed space X has empty interior (hence, $(\overline{V_n})^\circ = (V_n)^\circ = \emptyset$). Proof: Let $v \in V$ and $x \in X \setminus V$ (in particular, $x \neq 0$). Then, for all $\epsilon > 0$, $v + \frac{\epsilon}{2\|x\|} x \notin V$, otherwise, by linearity,

$$x = \frac{2\|x\|}{\epsilon} \left[\left(v + \frac{\epsilon}{2\|x\|} x \right) - v \right] \in V$$

too. But $v + \frac{\epsilon}{2\|x\|} x \in B_{\epsilon}(v)$. Hence, $B_{\epsilon}(v) \cap (X \setminus V) \neq \emptyset$ for all $\epsilon > 0$, so v cannot be inner point of V.

Hence, $c_{00} = \bigcup_{n=1}^{\infty} V_n$, with $(\overline{V_n})^\circ = \emptyset$ for all $n \in \mathbb{N}$. This contradicts Baire's Category Theorem (or, one of its corollaries), since $(c_{00}, \|\cdot\|)$ is assumed complete. So $(c_{00}, \|\cdot\|)$ is not Banach.

SOLUTION TO PROBLEM 3 (CONTINUATION):

PROBLEM 4. (10 marks)

In $L^2([\frac{1}{2},2])$ consider the subspace

$$\mathcal{M} := \left\{ f \in L^2([\frac{1}{2}, 2]) \mid f(x) = f(\frac{1}{x}) \text{ a.e. for } x \in [\frac{1}{2}, 2] \right\}.$$

- (i) Prove that $\mathcal{M}^{\perp} = \{g \in L^2([\frac{1}{2}, 2]) \mid g(\frac{1}{x}) = -x^2 g(x) \text{ a.e. for } x \in [\frac{1}{2}, 2] \}.$ (Hint: $[\frac{1}{2}, 2] = [\frac{1}{2}, 1] \cup [1, 2].$)
- (ii) Find the orthogonal projection of the function $f_0(x) = x$ onto the subspace \mathcal{M} . (Hint: $L^2([\frac{1}{2}, 2]) = \mathcal{M} \oplus \mathcal{M}^{\perp}$.)

SOLUTION:

(i) Any $g \in \mathcal{M}^{\perp}$ is characterised by $\langle g, f \rangle = 0$ for all $f \in \mathcal{M}$. From

$$0 = \langle g, f \rangle = \int_{1/2}^{2} \overline{g(x)} f(x) dx = \int_{1/2}^{1} \overline{g(x)} f(x) dx + \int_{1}^{2} \overline{g(x)} f(x) dx$$
$$= \int_{2}^{1} \overline{g(\frac{1}{y})} f(\frac{1}{y}) (-\frac{dy}{y^2}) + \int_{1}^{2} \overline{g(x)} f(x) dx = \int_{1}^{2} \overline{(g(\frac{1}{x}) + \frac{1}{x^2}g(x))} f(x) dx \quad \text{for all} \quad f \in \mathcal{U}$$

(where we used $f(x) = f(\frac{1}{x})$) and from the fact that f on the right hand side above is an arbitrary L^2 -function on [1, 2], that is,

$$\left\{ \widetilde{f} \text{ such that } \widetilde{f} = f \Big|_{[1,2]} \text{ with } f \in \mathcal{M} \right\} = L^2([1,2]),$$

one has $g(\frac{1}{x}) = -x^2 g(x)$ a.e. for $x \in [1, 2]$. The same relation for g clearly holds a.e. for $x \in [\frac{1}{2}, 1]$ too.

(ii) To prove that \mathcal{M} is closed, take $\{f_n\}_{n\in\mathbb{N}}\subset\mathcal{M}$, with $f_n\to f\in L^2([\frac{1}{2},2])$ (convergence in $L^2([\frac{1}{2},2])$). Then there exists a subsequence $\{f_{n_k}\}_{k\in\mathbb{N}}$ which converges pointwise to f a.e. $x\in[\frac{1}{2},2]$. Since $f_{n_k}(x)=f_{n_k}(\frac{1}{x})$ for a.e. x, it follows that $f(x)=f(\frac{1}{x})$ for a.e. x, and so $f\in\mathcal{M}$.

Hence, by the Projection Theorem, $L^2([\frac{1}{2}, 2]) = \mathcal{M} \oplus \mathcal{M}^{\perp}$.

Decompose $f_0 = f + g$ with $f \in \mathcal{M}$ and $g \in \mathcal{M}^{\perp}$ (clearly, $f_0 \in L^2([\frac{1}{2}, 2])$). The orthogonal projection of f_0 on \mathcal{M} is exactly f. For almost all $x \in [\frac{1}{2}, 2]$ one has

$$f_0(x) = x = f(x) + g(x)$$

$$f_0(\frac{1}{x}) = \frac{1}{x} = f(\frac{1}{x}) + g(\frac{1}{x}) = f(x) - x^2 g(x).$$

Solving for f(x), g(x), this gives

$$f(x) = \frac{x^2 + x^{-2}}{x + x^{-1}}$$
, $g(x) = \frac{x - x^{-1}}{x^2 + 1}$.

SOLUTION TO PROBLEM 4 (CONTINUATION):

PROBLEM 5. (10 marks)

Let $(X, || ||_X)$ be a Banach space over the field \mathbb{K} ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}). Let $Y = \ell_1$, the Banach space of summable sequences in \mathbb{K} equipped with the usual $|| ||_1$ norm. Let $T : X \to Y$ be a linear, bounded, and surjective operator.

- (i) Prove that there exists c > 0 such that $cB_Y \subset T(B_X)$. (Here, B_X, B_Y are the open unit balls in X, Y and $cB_Y = B_c(0_Y)$.)
- (ii) Prove that there exists a bounded linear operator $S: Y \to X$ such that TS is the identity operator on Y. (Hint: Use (i) and try to construct S by hand)

(Hint: Use (i), and try to construct S by hand.)

SOLUTION:

(i) By the Open Mapping Theorem, T is an open map. Let B_X be the open unit ball in X, then $T(B_X)$ is open in Y and contains $0_Y (= T0_X, 0_X \in B_X)$. Hence, there exists c > 0 such that $cB_Y = B_c(0_Y) \subset T(B_X)$.

(ii) Let $\{e_n\}_{n\in\mathbb{N}}$ denote the canonical "basis" of ℓ_1 , i.e.,

$$e_n = \{0, 0, \dots, 0, \frac{1}{(n)}, 0, \dots\} \in \ell_1, \quad ||e_n||_1 = 1.$$

There exists some $u_n \in X$ such that $||u_n||_X < 2/c$ and $T(u_n) = e_n$. (Proof: $\frac{c}{2}e_n \in cB_Y$, so there exists $\tilde{u}_n \in B_X$ such that $T(\tilde{u}_n) = \frac{c}{2}e_n$. Then let $u_n = \frac{2}{c}\tilde{u}_n$). Given $y = \{y_1, y_2, \ldots, y_n, \ldots\} \in \ell_1$, set $Sy := \sum_{i=1}^{\infty} y_i u_i$. Clearly the series converges in X (since it converges absolutely, $\sum_{i=1}^{\infty} ||y_i u_i||_X \leq \frac{2}{c} \sum_{i=1}^{\infty} |y_i| < \infty$, and X is Banach), and S is linear, and bounded $(||Sy||_X \leq \frac{2}{c} ||y||_1$ by the above). Also, by continuity and linearity of T,

$$TS(y) = T(\sum_{i=1}^{\infty} y_i u_i) = T(\lim_{N \to \infty} \sum_{i=1}^{N} y_i u_i) = \lim_{N \to \infty} \left[T(\sum_{i=1}^{N} y_i u_i) \right] = \lim_{N \to \infty} \left[\sum_{i=1}^{N} y_i Tu_i \right]$$
$$= \lim_{N \to \infty} \left[\sum_{i=1}^{N} y_i e_i \right] = \{y_1, y_2, \dots, y_n, \dots\} = y \in \ell_1.$$

Hence, TS is the identity operator on Y.

SOLUTION TO PROBLEM 5 (CONTINUATION):