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INSTRUCTIONS:

• This booklet is made of fourteen pages, including the cover, numbered from 1 to 14. The test consists of five
problems. Each problem is worth the number of marks specified in the table above. 40 marks are counted as
100% performance in this test. You are free to attempt any problem and collect partial credits.

• The only material that you are allowed to use is black or blue pens/pencils and one hand-written, two-sided,
A4-paper “cheat sheet” (Spickzettel). You cannot use your own paper: should you need more paper, raise
your hand and you will be given extra sheets.

• Prove all your statements or refer to the standard material discussed in class.

• Work individually. Write with legible handwriting. You may hand in your solution in English or in German.
Put your name on every sheet you hand in.

• You have 120 minutes.

GOOD LUCK!
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Fill in the form here below only if you need the certificate (Schein).

UNIVERSITÄT MÜNCHEN

Dieser Leistungsnachweis entspricht auch den Anforderungen
nach § Abs. Nr. Buchstabe LPO I
nach § Abs. Nr. Buchstabe LPO I

ZEUGNIS
Der / Die Studierende der
Herr / Frau aus
geboren am in hat im SoSe –Halbjahr 2012
meine Übungen zur Funktionalanalysis

mit besucht.
Er / Sie hat
schriftliche Arbeiten geliefert, die mit ihm / ihr besprochen wurden.

MÜNCHEN, den 20 Oktober 2012
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Name

PROBLEM 1. (10 marks)

Consider the vector space C1([0, 1]) and define the following functionals on it:

• F1(f) := |f(0)|+ max
x∈[0,1]

|f ′(x)| ,

• F2(f) :=
∫ 1

0
|f(x)| dx+ max

x∈[0,1]
|f ′(x)|.

(i) Prove that both F1 and F2 are norms.

(ii) Prove that F1 and F2 are equivalent (as norms).

(Hint: f(x)− f(0) =
∫ x
0
f ′(t)dt.)

SOLUTION:
(i) Both F1 and F2 are clearly well-defined. The positivity, triangle inequality and linear
scaling under multiplication clearly hold for both F1 and F2 (but most be proved!). Assume
F1(f) = 0, then f(0) = 0 and f ′ ≡ 0, hence |f(x)| = |

∫ x
0
f ′(t)dt| = 0 for all x, so that f ≡ 0.

Thus, F1 is a norm. Assume F2(f) = 0, then f ′ ≡ 0, hence |f(x) − f(0)| = |
∫ x
0
f ′(t)dt| = 0,

i.e., f(x) = f(0) for all x. Also,
∫ 1

0
|f(x)|dx = 0 (since F2(f) = 0), so 0 =

∫ 1

0
|f(0)|dx = f(0).

It follows that f(x) = 0 for all x, and so F2 is also a norm.

(ii) To prove is: There exists constants C,C ′ > 0 such that C F1(f) ≤ F2(f) ≤ C ′ F1(f) for all
f ∈ C1([0, 1]).

We have

F2(f) =

∫ 1

0

dx
∣∣∣f(0) +

∫ x

0

f ′(t)dt
∣∣∣+ max

x∈[0,1]
|f ′(x)|

≤ |f(0)|+
∫ 1

0

(
|x| max

t∈[0,1]
|f ′(t)|

)
dx+ max

x∈[0,1]
|f ′(x)|

≤ |f(0)|+ 2 max
x∈[0,1]

|f ′(x)| ≤ 2F1(f) .

Conversely, for all x ∈ [0, 1],

|f(0)| ≤ |f(x)− f(0)|+ |f(x)| ≤
∣∣∣ ∫ x

0

f ′(t)dt
∣∣∣+ |f(x)| ≤ max

x∈[0,1]
|f ′(x)|+ |f(x)| ,

and integrating both sides in dx from x = 0 to x = 1 yields |f(0)| ≤
∫ 1

0
|f(x)|dx+maxx∈[0,1] |f ′(x)|,

hence F1(f) ≤ 2F2(f).
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SOLUTION TO PROBLEM 1 (CONTINUATION):
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Name

PROBLEM 2. (10 marks)

Let (X, d) be a compact metric space. For each n ∈ N let fn : X → R be a continuous
function such that fn(x) > 0 ∀x ∈ X. Assume that ∀x ∈ X the sequence {fn(x)}∞n=1 decreases
monotonically and lim

n→∞
fn(x) = 0. Prove that

sup
x∈X
|fn(x)| n→∞−−−−→ 0 .

(Hint: Using the assumptions, write X as a suitable union of open balls.)

SOLUTION:
Let ε > 0. For all x ∈ X there exists nε,x ∈ N such that fnε,x(x) < ε/2 (since {fn(x)}∞n=1

decreases monotonically and lim
n→∞

fn(x) = 0). Also (by continuity of fnε,x at x), there exists

δε,x > 0 such that |fnε,x(y) − fnε,x(x)| < ε/2 for all y ∈ Bδε,x(x). By compactness of X, the
open cover

⋃
x∈X Bδε,x(x) = X contains a finite subcover,

⋃m
i=1Bδxi,ε

(xi) = X. Let N :=
max{nε,x1 , . . . , nε,xm}.

Let now y ∈ X, then there exists some i ∈ {1, . . . ,m} such that y ∈ Bδxi,ε
(xi), and hence,

by the above: For all n ≥ N :

0 ≤ fn(y) ≤ fN(y) ≤ fnε,xi (y) ≤ fnε,xi (xi) + |fnε,xi (y)− fnε,xi (xi)| < ε/2 + ε/2 = ε ,

hence, supy∈X |fn(y)| ≤ ε for all n ≥ N . That is, supx∈X |fn(x)| n→∞−−−−→ 0.
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SOLUTION TO PROBLEM 2 (CONTINUATION):
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Name

PROBLEM 3. (10 marks)

Consider the set

c00 =
{
x = (x1, x2, x3, . . . ) |xn ∈ C and x has finitely many non-zero entries

}
equipped with the natural structure of vector space given by componentwise sum and multi-
plication by a scalar. Let ‖ ‖ be an arbitrary norm on c00.

(i) Prove that c00 can be written as a countable union of finite dimensional subspaces.

(ii) Prove that (c00, ‖ ‖) is not a Banach space.

SOLUTION:
(i) Let, for all n ∈ N, Vn = {x ∈ c00 |x = (x1, . . . , xn, 0, 0, . . .) }. Then Vn ⊂ c00 is clearly
a linear subspace, and dimVn = n < ∞, and, if x = (x1, x2, x3, . . . ) ∈ c00, then there is an
N ∈ N such that xn = 0 for n ≥ N . Hence x ∈ VN . So c00 =

⋃∞
n=1 Vn.

(ii) Assume for contradiction that (c00, ‖·‖) is a Banach space, in particular, a complete metric
space.

From (i), c00 =
⋃∞
n=1 Vn with dimVn = n. Hence each Vn is closed (all normed finite

dimensional vector spaces are complete in themselves). Claim: Any proper subspace V of
a normed space X has empty interior (hence, (Vn)◦ = (Vn)◦ = ∅). Proof: Let v ∈ V and
x ∈ X \ V (in particular, x 6= 0). Then, for all ε > 0, v + ε

2‖x‖x 6∈ V , otherwise, by linearity,

x =
2‖x‖
ε

[(
v +

ε

2‖x‖
x
)
− v
]
∈ V

too. But v + ε
2‖x‖x ∈ Bε(v). Hence, Bε(v) ∩ (X \ V ) 6= ∅ for all ε > 0, so v cannot be inner

point of V .
Hence, c00 =

⋃∞
n=1 Vn, with (Vn)◦ = ∅ for all n ∈ N. This contradicts Baire’s Category

Theorem (or, one of its corollaries), since (c00, ‖ · ‖) is assumed complete. So (c00, ‖ · ‖) is not
Banach.
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SOLUTION TO PROBLEM 3 (CONTINUATION):
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Name

PROBLEM 4. (10 marks)

In L2([1
2
, 2]) consider the subspace

M :=
{
f ∈ L2([ 1

2
, 2]) | f(x) = f( 1

x
) a.e. for x ∈ [ 1

2
, 2]
}
.

(i) Prove that M⊥ =
{
g ∈ L2([1

2
, 2]) | g( 1

x
) = −x2g(x) a.e. for x ∈ [ 1

2
, 2]
}

.
(Hint: [1

2
, 2] = [1

2
, 1] ∪ [1, 2].)

(ii) Find the orthogonal projection of the function f0(x) = x onto the subspace M.
(Hint: L2([1

2
, 2]) =M⊕M⊥.)

SOLUTION:
(i) Any g ∈M⊥ is characterised by 〈g, f〉 = 0 for all f ∈M. From

0 = 〈g, f〉 =

∫ 2

1/2

g(x)f(x)dx =

∫ 1

1/2

g(x)f(x)dx+

∫ 2

1

g(x)f(x)dx

=

∫ 1

2

g( 1
y
)f( 1

y
)(−dy

y2
) +

∫ 2

1

g(x)f(x)dx =

∫ 2

1

(g( 1
x
) + 1

x2
g(x))f(x)dx for all f ∈ U

(where we used f(x) = f( 1
x
)) and from the fact that f on the right hand side above is an

arbitrary L2-function on [1, 2], that is,{
f̃ such that f̃ = f

∣∣
[1,2]

with f ∈M
}

= L2([1, 2]) ,

one has g( 1
x
) = −x2g(x) a.e. for x ∈ [1, 2]. The same relation for g clearly holds a.e. for

x ∈ [1
2
, 1] too.

(ii) To prove that M is closed, take {fn}n∈N ⊂ M, with fn → f ∈ L2([1
2
, 2]) (convergence

in L2([1
2
, 2])). Then there exists a subsequence {fnk}k∈N which converges pointwise to f a.e.

x ∈ [1
2
, 2]. Since fnk(x) = fnk(

1
x
) for a.e. x, it follows that f(x) = f( 1

x
) for a.e. x, and so

f ∈M.
Hence, by the Projection Theorem, L2([1

2
, 2]) =M⊕M⊥.

Decompose f0 = f + g with f ∈ M and g ∈ M⊥ (clearly, f0 ∈ L2([1
2
, 2])). The orthogonal

projection of f0 on M is exactly f . For almost all x ∈ [1
2
, 2] one has

f0(x) = x = f(x) + g(x)

f0(
1
x
) = 1

x
= f( 1

x
) + g( 1

x
) = f(x)− x2g(x) .

Solving for f(x), g(x), this gives

f(x) =
x2 + x−2

x+ x−1
, g(x) =

x− x−1

x2 + 1
.
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SOLUTION TO PROBLEM 4 (CONTINUATION):
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Name

PROBLEM 5. (10 marks)

Let (X, ‖ ‖X) be a Banach space over the field K (K = R or C). Let Y = `1, the Banach space
of summable sequences in K equipped with the usual ‖ ‖1 norm. Let T : X → Y be a linear,
bounded, and surjective operator.

(i) Prove that there exists c > 0 such that cBY ⊂ T (BX). (Here, BX , BY are the open unit
balls in X, Y and cBY = Bc(0Y ).)

(ii) Prove that there exists a bounded linear operator S : Y → X such that TS is the identity
operator on Y .
(Hint: Use (i), and try to construct S by hand.)

SOLUTION:
(i) By the Open Mapping Theorem, T is an open map. Let BX be the open unit ball in X,
then T (BX) is open in Y and contains 0Y (= T0X , 0X ∈ BX). Hence, there exists c > 0 such
that cBY = Bc(0Y ) ⊂ T (BX).
(ii) Let {en}n∈N denote the canonical “basis” of `1, i.e.,

en = {0, 0, . . . , 0, 1
(n)
, 0, . . .} ∈ `1 , ‖en‖1 = 1 .

There exists some un ∈ X such that ‖un‖X < 2/c and T (un) = en. (Proof: c
2
en ∈ cBY , so there

exists ũn ∈ BX such that T (ũn) = c
2
en. Then let un = 2

c
ũn). Given y = {y1, y2, . . . , yn, . . .} ∈

`1, set Sy :=
∑∞

i=1 yiui. Clearly the series converges in X (since it converges absolutely,∑∞
i=1 ‖yiui‖X ≤

2
c

∑∞
i=1 |yi| < ∞, and X is Banach), and S is linear, and bounded (‖Sy‖X ≤

2
c
‖y‖1 by the above). Also, by continuity and linearity of T ,

TS(y) = T (
∞∑
i=1

yiui) = T ( lim
N→∞

N∑
i=1

yiui) = lim
N→∞

[
T (

N∑
i=1

yiui)
]

= lim
N→∞

[ N∑
i=1

yiTui
]

= lim
N→∞

[ N∑
i=1

yiei
]

= {y1, y2, . . . , yn, . . .} = y ∈ `1 .

Hence, TS is the identity operator on Y .
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SOLUTION TO PROBLEM 5 (CONTINUATION):
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