PDG I (Tutorium)

Tutorial 6

(Convex sets in \mathbb{R}^n and the exterior ball condition)

Question 1

Let $\Omega \subset \mathbb{R}^n$ be open and convex.

- (i) Show that $\overline{\Omega}$ is also convex.
- (ii) For $x \in \mathbb{R}^n$, show that there exists an element $x_{\infty} \in \overline{\Omega}$ such that

$$|x - x_{\infty}| = \inf_{z \in \overline{\Omega}} |x - z|.$$

(i.e. x_{∞} minimises $z \mapsto |x - z|$ in $\overline{\Omega}$.)

- (iii) If $x \notin \Omega$, show that $x_{\infty} \in \partial \Omega$.
- (iv) Show that x_{∞} is unique (*Hint*: Use the strict convexity of the map $y \mapsto |y|^2$).

Hence we have shown that the map $x \mapsto x_{\infty} =: p(x)$ is well defined on \mathbb{R}^n . It is called the *projection* onto $\overline{\Omega}$.

Question 2

Let Ω , $p \colon \mathbb{R}^n \to \overline{\Omega}$ be as in Question 1. For $x \in \mathbb{R}^n$, $z \in \overline{\Omega}$, and $t \in [0, 1]$, define

 $g(t) := |x - [(1 - t)p(x) + tz]|^2$.

- (i) By considering difference quotients, show that we must have $g'(0) \ge 0$ (where this is understood to be the right hand derivative at 0).
- (ii) Calculate g'(t). Deduce from part (i) that we must have

$$\langle x - p(x), z - p(x) \rangle \le 0.$$

(iii) Show that if $x, y \in \mathbb{R}^n$, then

$$|p(x) - p(y)|^2 \le \langle p(x) - p(y), x - y \rangle,$$

$$|p(x) - p(y)| \le |x - y|.$$

Question 3

(i) Suppose $x_0 \notin \overline{\Omega}$. Show that $a = p(x_0) - x_0 \neq 0$ satisfies

$$\langle x_0, a \rangle < \inf\{\langle z, a \rangle : z \in \overline{\Omega}\}.$$

(ii) Now suppose $x_0 \in \partial \Omega$. Show that there exists a vector $a \in \mathbb{R}^n$, $a \neq 0$, such that

$$\langle x_0, a \rangle \leq \langle z, a \rangle \quad \forall z \in \overline{\Omega},$$

and

$$\langle x_0, a \rangle < \langle z, a \rangle \quad \forall z \in \Omega.$$