PDG I (Tutorium)

Tutorial 13

(Weak derivatives and Sobolev Spaces)

In this tutorial we covered the following topics:

Approximation of weak derivatives with smooth functions, using mollifiers. In particular, if u ∈ L¹_{loc}(Ω) has a weak derivative ^{∂u}/_{∂x_i}, E ⊂⊂ Ω, and ρ_ϵ is a mollifier (where 0 < ϵ < dist(E, ∂Ω), then for x ∈ E,

$$\frac{\partial}{\partial x_i}(\varrho_\epsilon * u)(x) = \left(\varrho_\epsilon * \frac{\partial u}{\partial x_i}\right)(x).$$

- If $u \in L^1_{loc}(\Omega)$ has all weak derivatives equal to zero, then it is (almost everywhere) constant.
- A discussion of some properties of the Sobolev spaces W^{1,p}(Ω): e.g. density of smooth functions in W^{1,p}(Ω) for 1 ≤ p < ∞; if Ω is bounded and ∂Ω is Lipschitz, then u ∈ W^{1,∞}(Ω) if and only if it is Lipschitz continuous.