PDG I (Zentralübung)

Problem Sheet 4

Question 1

Let $\Omega \subset \mathbb{R}^n$ be open and bounded. A function $v \in C^2(\overline{\Omega})$ is said to be *sub-harmonic* if

$$-\Delta v(x) \leq 0$$
 for all $x \in \Omega$.

(i) Prove that if v is sub-harmonic, then

$$v(x) \leq \int_{B(x,r)} v(y) \, \mathrm{d}y \quad \text{for all } B(x,r) \subset \subset \Omega \,.$$

(ii) Prove therefore that for $v \in C^2(\overline{\Omega})$ sub-harmonic we have

$$\max_{x\in\overline{\Omega}}v(x) = \max_{x\in\partial\Omega}v(x)\,.$$

(iii) Suppose v is sub-harmonic and, for a ball $B = B(x, r) \subset \Omega$, define $H_B v$ as in the lectures by integration against the Poisson kernel. Show that

$$v(y) \le H_B v(y)$$
 for all $y \in B$.

(iv) Let $\varphi \colon \mathbb{R} \to \mathbb{R}$ be smooth and convex. Suppose $u \in C^2(\overline{\Omega})$ is harmonic in Ω and define $v(x) := \varphi(u(x))$. Prove that v is sub-harmonic.

Hint: Recall that since φ is convex and C^2 , $\varphi''(t) \ge 0$ for all $t \in \mathbb{R}$.

(v) Suppose $u \in C^2(\overline{\Omega})$ is harmonic. Prove that $v(x) := |\nabla u(x)|^2$ is sub-harmonic.

Question 2

(i) For a point $x \in \mathbb{R}^n \setminus \{0\}$, define

$$\bar{x} := \frac{x}{|x|^2} \,.$$

Show that

$$\nabla_x \bar{x} (\nabla_x \bar{x})^t = |\bar{x}|^4 I,$$

where

$$\nabla_x \bar{x} = \left((x/|x|^2)_{x_1}, (x/|x|^2)_{x_2}, \dots, (x/|x|^2)_{x_n} \right)^t.$$

(ii) Let $\Omega \subset \mathbb{R}^n \setminus \{0\}$ be open $(n \ge 2)$. The *Kelvin transform* $\mathcal{K}u = \overline{u}$ of u is defined as

$$\bar{u}(x) := u(\bar{x})|\bar{x}|^{n-2}$$
$$= u(x/|x|^2)|x|^{2-n}.$$

Show that if u is harmonic on Ω , then so is \bar{u} .

Deadline for handing in: 0800 Wednesday 12 November

Please put solutions in Box 17, 1st floor (near the library)

Homepage: http://www.mathematik.uni-muenchen.de/~soneji/pde1.php