PDG I (Zentralübung)

Problem Sheet 10

Question 1

Assume that for some attenuation function $\alpha = \alpha(r)$ and delay function $\beta = \beta(r) \ge 0$, there exist for *all* profiles φ solutions of the wave equation in $\mathbb{R} \times (\mathbb{R}^n \setminus \{0\})$ having the form

$$u(t, x) = \alpha(r)\varphi(t - \beta(r)).$$

Here r = |x| and we assume $\beta(0) = 0$. Show that this is possible only if n = 1 or n = 3, and compute the form of the functions α, β .

Question 2

Let $g = \text{diag}(-1, 1, 1, 1) \in \mathbb{R}^{4 \times 4}$. A real 4×4 matrix $\Lambda \in \mathbb{R}^{4 \times 4}$ is called a *Lorentz transformation* if and only if $\Lambda^T g \Lambda = g$, where Λ^T denotes the transpose of Λ .

- (a) Show that the product of two Lorentz transformations is also a Lorentz transformation.
- (b) Show that every Lorentz transformation is invertible, and that its inverse is also a Lorentz transformation. (Hence the set of all Lorentz transformations is a group.)
- (c) Define the quadratic form $\langle x, y \rangle_g := x^T g y$, for $x, y \in \mathbb{R}^4$. Show that for every Lorentz transformation Λ we have $\langle \Lambda x, \Lambda y \rangle_g = \langle x, y \rangle_g$.
- (d) Show that the following are Lorentz transformations (where $(t, x) \in \mathbb{R}^4$, with $t \in \mathbb{R}$, $x \in \mathbb{R}^3$):
 - (i) $(t, x) \mapsto (t, Ox)$, where O is an othogonal transformation of \mathbb{R}^3 ,
 - (ii) $(t, x) \mapsto (-t, x)$,
 - (iii) $(t, x) \mapsto \left(\frac{t-ax_1}{\sqrt{1-a^2}}, \frac{x_1-at}{\sqrt{1-a^2}}, x_2, x_3\right)$, where 0 < a < 1. (This transformation is called a *Lorentz boost*.)
- (e) Show that the wave equation is Lorentz-covariant. That is, if u is a solution to the wave equation $u_{tt} \Delta u = 0$ in \mathbb{R}^4 , then for every Lorentz transformation Λ , the function $v(t, x) := u(\Lambda(t, x))$ is also a solution.

Question 3

Let $S := \{(\varphi(x), x) : x \in \mathbb{R}^3\} \subset \mathbb{R}^4$ be a smooth hypersurface (i.e. $\varphi \in C^{\infty}(\mathbb{R}^3)$). The Cauchy problem for the wave equation with initial surface S is:

$$\begin{cases} u_{tt} - \Delta u = 0 & \text{ in } \mathbb{R}^4 \\ u = g \quad u_t = h & \text{ on } S . \end{cases}$$

We say that S is space-like if $1 - |\nabla \varphi|^2 > 0$ on \mathbb{R}^3 .

Show that the Cauchy problem for the wave equation with the space-like initial surface $S = \{(t, x) \in \mathbb{R}^4 : t = ax_1\}, 0 < a < 1$, is equivalent to the initial-value problem (i.e. when $S = \{(t, x) \in \mathbb{R}^4 : t = 0\}$). *Hint:* Use a Lorentz transformation.

Holiday Problems

(Not for handing in: we will go through this in the first tutorials of the new year)

Question 1 (Vitali's Covering Lemma)

Let $E \subset \mathbb{R}^n$ be the union of a finite number of balls $B(x_i, r_i)$, i = 1, 2...k. Show that there exists a subset $I \subset \{1, ..., k\}$ such that the balls $B(x_i, r_i)$ with $i \in I$ are pairwise disjoint (that is, $B(x_i, r_i) \cap B(x_j, r_j)$ = whenever $i, j \in I$ and $i \neq j$), and

$$E \subset \bigcup_{i \in I} B(x_i, 3r_i)$$

Question 2 (A "weak-type" inequality for the Hardy-Littlewood Maximal Function)

Let $u \in L^1(\mathbb{R}^n)$. For $x \in \mathbb{R}^n$, define the Maximal Function Mu as

$$(Mu)(x) := \sup_{r>0} \frac{1}{\mathscr{L}^n(B(x,r))} \int_{B(x,r)} |u(y)| \, \mathrm{d}y \quad \left(= \sup_{r>0} \oint_{B(x,r)} |u(y)| \, \mathrm{d}y \right),$$

where $\mathscr{L}^n(\cdot)$ denotes the *n*-dimensional Lebesgue measure/volume (so $\mathscr{L}^n(B(x,r)) = r^n \alpha_n$). You may assume this is a measurable function. Let $t \in (0, \infty)$. Show that

$$\mathscr{L}^n\big(\{x \in \mathbb{R}^n : (Mu)(x) > t\}\big) \le \frac{3^n}{t} \int_{\mathbb{R}^n} |u(y)| \,\mathrm{d}y\,. \tag{1}$$

To do this, use Vitali's Covering Lemma from Question 1. You may also use the fact that Lebesgue Measure is "inner regular" i.e. for any Lebesgue-measurable set E,

 $\mathscr{L}^n(E) = \sup\{\,\mathscr{L}^n(K): K \subset E \text{ and } K \text{ compact}\}\,.$

This means that it suffices to prove the estimate

$$\mathscr{L}^n(K) \le \frac{3^n}{t} \int_{\mathbb{R}^n} |u(y)| \,\mathrm{d}y$$

for any compact set $K \subset \{x \in \mathbb{R}^n : (Mu)(x) > t\}.$

Question 3 (Lebesgue's Differentiation Theorem)

In this quetion we shall prove *Lebesgue's Differentiation Theorem*: i.e. if $u \in L^1(\mathbb{R}^n)$ then for almost all $x \in \mathbb{R}^n$,

$$\limsup_{r \searrow 0} \oint_{B(x,r)} |u(y) - u(x)| \,\mathrm{d}y = 0.$$
⁽²⁾

Recall that if u is continuous, then this holds for all $x \in \mathbb{R}^n$ (in one dimension this is just the Fundamental Theorem of Calculus!) Our aim is to extend such a result to integrable functions.

(i) Let $u \in L^1(\mathbb{R}^n)$, and let $\varphi \in L^1(\mathbb{R}^n) \cap C(\mathbb{R}^n)$. Fix $x \in \mathbb{R}^n$ and show that

$$\limsup_{r \searrow 0} \oint_{B(x,r)} |u(y) - u(x)| \, \mathrm{d}y \le M(|u - \varphi|)(x) + |u(x) - \varphi(x)|$$

where $M(|u - \varphi|)$ is the Maximal Function of $(u - \varphi)$ at x, defined as in Question 2.

(ii) Let $\epsilon > 0$ and observe that the previous part implies that, for fixed x, if

$$\limsup_{r\searrow 0} \oint_{B(x,r)} |u(y) - u(x)| \, \mathrm{d}y > \epsilon \,,$$

then

$$M(|u-\varphi|)(x) > \frac{\epsilon}{2} \text{ or } |u(x)-\varphi(x)| > \frac{\epsilon}{2}$$

Using the Maximal inequality (1) from Question 2 and the density of continuous functions in $L^1(\Omega)$ (in the $\|\cdot\|_1$ norm topology), deduce

$$\mathscr{L}^n\left(\left\{x: \limsup_{r \searrow 0} \int_{B(x,r)} |u(y) - u(x)| \, \mathrm{d}y > \epsilon\right\}\right) = 0,$$

and then use this to establish (2).

Deadline for handing in: 0800 Wednesday 7 January

Please put solutions in Box 17, 1st floor (near the library)