Algebraische Geometrie 1 Übungsblatt 1

Aufgabe 1. Seien K ein unendlicher Körper und $n \geq 1$.

Zeige: Mit Zariski-Topologie ist der affine Raum \mathbb{A}^n_K nicht Hausdorff'sch.

Aufgabe 2. Seien R ein Integritätsbereich, $n \ge 1$ und

$$\varphi \colon R[x_1,\ldots,x_n] \to \operatorname{Maps}(R^n \to R)$$

der Einsetzungshomomorphismus $F \mapsto ((a_1, \ldots, a_n) \mapsto F(a_1, \ldots, a_n)).$

- 1) Wenn R unendlich ist, dann ist φ injektiv, aber nicht surjektiv.
- 2) Wenn R endlich ist, dann ist φ surjektiv, aber nicht injektiv.

Hinweis: Seien $R = \mathbb{F}_q$ (mit $q = p^m$ für eine Primzahl p) und $f: \mathbb{R}^n \to \mathbb{R}$ eine Funktion. Zeige, dass $f = \varphi(P_f)$ ist, wobei

$$P_f(x_1, \dots, x_n) = \sum_{(a_1, \dots, a_n) \in \mathbb{R}^n} f(a_1, \dots, a_n) \cdot \prod_{i=1}^n (1 - (x_i - a_i)^{q-1}).$$

Aufgabe 3. Seien p eine Primzahl, m eine natürliche Zahl, $q=p^m$ und \mathbb{F}_q der Körper mit q Elementen. Ein Monom $Cx_1^{\alpha_1}\cdots x_n^{\alpha_n}\in \mathbb{F}_q[x_1,\ldots,x_n]$ heißt reduziert, wenn für alle i gilt

 $\alpha_i < q$. (Zum Beispiel, ist das Polynom P_f aus der Übungsaufgabe 2 reduziert.) Für alle $a \in \mathbb{F}_q$ gilt $a^m = a^q \cdot a^{m-q} = a \cdot a^{m-q} = a^{m-(q-1)}$, wenn $m \ge q$. Für jedes Polynom $P \in \mathbb{F}_q[x_1, \dots, x_n]$ können wir das reduzierte Polynom P_{red} konstruieren indem wir diese Operation wiederholt auf die Variablen x_i anwenden (d.h. indem wir jedes x_i^m durch $x_i^{m-(q-1)}$ wiederholt ersetzen). Sei $P \in \mathbb{F}_q[x_1, \dots, x_n]$ mit $n > \deg P$. Definiere

$$Z := \{(a_1, \dots, a_n) \in \mathbb{F}_q^n \mid P(a_1, \dots, a_n) = 0\}.$$

Zeige: $|Z| = 0 \mod p$. Insbesondere, falls das Polynom P keinen konstanten Term enthält, hat die Gleichung P=0 mindestens zwei Lösungen.

Hinweis: Schritt 1. Sei $Q = 1 - P(x_1, \dots, x_n)^{q-1}$. Dann gilt

$$Q(a_1, \dots, a_n) = \begin{cases} 1, & \text{falls } (a_1, \dots, a_n) \in \mathbb{Z}; \\ 0, & \text{sonst.} \end{cases}$$

Nach der Übungsaufgabe 2 ist $Q_Z(x_1,\ldots,x_n):=\sum_{(a_1,\ldots,a_n)\in Z}\prod_{i=1}^n(1-(x_i-a_i)^{q-1})$ ein reduzierter Repräsentant von Q. Zeige, dass ein reduzierter Repräsentant eines Polynoms eindeutig bestimmt ist.

Schritt 2. Angenommen $|Z| \neq 0 \mod p$. Vergleiche die Grade von Q und Q_Z , um einen Widerspruch zu bekommen.