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From a classical proof that the gcd of natural numhgrandas is a linear combination of the two, we extract

by Godel's Dialectica interpretation an algorithm computing the coefficients. The proof uses the minimum
principle. We show generally how well-founded recursion can be used to Dialectica interpret well-founded
induction, which is needed in the proof of the minimum principle. In the special case of the example above it
turns out that we obtain a reasonable extracted term, representing an algorithm close to Euclid’s.
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Finding and extracting computational content in existence proofs is a challenging subject, particularly so
when the proofs do not seem to have such content. This is regularly the case when what is proved is only a
“weak” existential formula, that is, a formulamilon(x,y) with 3 the weak existential quantifier defined by
3, Ao(z,y) := ~V,~Ag(z,y), andAy quantifier-free.

Yiannis Moschovakis suggested the following example: the gcd of natural numbensd a, is a linear
combination of the two. This proof uses the minimum principle. Here we treat that example as a case study
for program extraction from classical proofs by@&l's Dialectica interpretation. We show generally how well-
founded recursion can be used to Dialectica interpret well-founded induction, which is needed in the proof of the
minimum principle. In the special case of the example above it turns out that we obtain a reasonable extracted
term, representing an algorithm close to Euclid’s.

In [3] the same example has already been treated, but with a different method: a refined [1] form 4f the “
translation” [5, 4]. The extracted algorithm was again close to Euclid’s. The work in [3] would probably benefit
as well from the use of well-founded induction. This and also a detailed comparison of the two methods is left
for future work.

1 Arithmetic in finite types

We use a standard formalizati®hA“ of arithmetic in finite types, based on natural deduction; cf. [10]. In fact,
its “negative” fragment suffices, because we will only need implication and universal quantification to build for-
mulas. For simplicity we take as the only base types thelymé natural numbers (generated by the constructors
zero0 and successdf), andB of booleans (with constructotsandff).

1.1 Language

Typesare built from base typell andB by arrowsp — o and product® x o. (Typed)termsare formed from

typed variables and constants by (type correct) lambda abstraction, application, pairing and projections; for the
latter we use the notatiard, r1 (for the left/right component af). Constantgincluding the structural and well-
founded recursion operators; see below) are definezbbyputation rulesWe assume that the constants denote
total functions only. It is well known that under the standard conversion rules plus the computation rules every
term posesses a unique normal form, which in fact can be computednizlization by evaluatigrsee [2]. To

avoid equality reasoning in formal derivations we identify terms with the same normal form. The only predicates
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2 H. Schwichtenberg: Dialectica Interpretation of Well-Founded Induction

we admit are Leibniz equalitiq,, for our two base types= N and:. = B. The axioms are
Eq": V,Eq(z, z),
Eq™: Vg, (Eq(x,y) — V. C(z,x) — C(m,y)).

One easily proves symmetry, transitivity and
Lemma (Compatibility) V., (Eq(z,y) — A(z) — A(y)).

Proof. UseEq , with C(z,y) := A(zx) — A(y). O
Lemma (Ex-Falso-Quodlibet) Definefalsity by F' := Eqg(ff, tt). Then
F — A.
Proof. We first show thaf” — Eq(z,y). To see this, notice that frofq(ff, tt) we obtain
Eq|if t then z elsey]|if ff then z elsey]
by compatibility. Hencdiq(z, y). The claim follows by induction on formulas. O

A further crucial use of the equality predicdte is that it allows to lift a boolean term® to a formula, using
atom(rB) := Eq(rB, t). This opens up a convenient way to deal with equalityNamotice that we can define
decidable equality as a boolean-valued functiog: N — N — B. The computation rules ensure that for
instance the boolean terfi{r) =n S(s) is identified withr = s. We can now turn this boolean term into the
formulaEq(S(r) =n S(s), tt), which again is abbreviated %) =n S(s), but this time with the understanding
that it is a formula. Then the two formul&$r) =N S(s) andr =x s are identified, and consequently there is
no need to prove such trivial propositions explicitely.

Negationis defined by-A := A — F.

1.2 Derivation terms

It will be convenient to write derivations as terms, where the derived formula is viewed as the type of the term.
This representation is known under the nathery-Howard correspondence

We give an inductive definition of derivation terms in Table 1, where for clarity we have written the correspond-
ing derivations to the left. For the universal quantifighere is an introduction rulé*z and an elimination rule
v~, whose right premise is the ternto be substituted. The rul¢™z is subject to the standa(&igen-) variable
condition The derivation term\/ of the premiseA should not contain any open assumption witlas a free
variable.

1.3 Well-founded induction and recursion
1.3.1 Well-founded induction

Structural induction is naturally connected with the inductive generation of free algebras: at each point one recurs
to its immediate predecessors. The reason for the validity of this induction principle is of course the fact that free
algebras are well-founded. We now study a more general form of induction, called “well-founded induction”,
which allows recurrence tall points “strictly below” the present one. For applications it is best to make the
necessary comparisons w.r.t. a “measure functjonThen it suffices to use an initial segment of the ordinals
instead of a well-founded set. For simplicity we here restrict ourselves to the segment givesdahe ordering

we refer to is just the standard-relation on the natural numbers. The principle of well-founded induction is

GIndy, 4 V0 (Progh A(z) — A(z)) (1)
whereProgh A(x) expresses “progressiveness” w.r.t. the measure fungtamd the ordering::
Progh A(z) :=V, (Vy;#y<wA(y) — A(x))

It is easy to see that in our special case of ¢heelation we carprove (1) from structural induction. However,
using well-founded induction as a primitive axiom has an advantage when we consider its computational content,
which is well-founded recursion.
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derivation term
u: A ut
[u: A]
| M ()\U‘AMB)A*)B
_ B
A-pB Y
| M | N
A— B A B (MA—>BNA>B
B —
| M
A\Yo A (i
A Wrz  (with var.cond.) (Az M4)7=4 (with var.cond.)
V. A
| M
V. A(x) T (M= A@)p)Alr)
A7

Table 1 Derivation terms for— andV.

1.3.2 Well-founded recursion

What was said above f@roof by induction holds mutatis mutandis fdefinitionby recursion, as a principle to
definetotal functions. As in [9], we define the constahtof well-founded recursioby

FuzG = Gx(/\y[if ny < px then FuyG elsee]), (2)

wheree denotes a canonical inhabitant of the value type. In our special case ef-takation well-founded
recursion is easily definable from structural recursion; the details are spelled out in [9, p.399—-400]. However,
well-founded recursion is preferable from an efficiency point of view.

2 Godel’s Dialectica interpretation

In his original functional interpretation [6], &lel assigned to every formul& a new oned;VyAp (2, 7) with
Ap(Z, ) quantifier-free. Heré&, i are lists of variables of finite types; the use of higher types is necessary even
when the original formul& is first-order. He did this in such a way that whenever a prood @f arithmetic is
given, one could produce closed terisuch that the quantifier-free formulgy, (7, %) is provable inT.

In [6] Godel used a Hilbert-style proof calculus. However, since the realizers will be formed-takulus
formulation of systenil’, Godel’s interpretation becomes a lot more perspicious when it is done for natural
deduction, as in the present exposition. A difference to the earlier treatments of Jgrgensen [8] and Hernest
[7] is that we view open assumptions not as formulas, but as assumption variables. The well-known need for
contractions then comes up in the (only) logical rule with two premises: modus ponens (or implication elimination
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4 H. Schwichtenberg: Dialectica Interpretation of Well-Founded Induction

—7). We will need that for every quantifier-free formulathere is a boolean term- such that”' < r¢ = tt;
but this clearly is the case for our language.

2.1 Positive and negative types

To determine the types afandyj, we assign to every formuld objectsr™(A), 7~ (A) (a type or the “nulltype”
symbole). 71 (A) is for the realizer;~ (A) for the challenge. We also extend the use ef o andp x o to the
nulltype symbok:

(p—e)=c¢, (pxe)=np,
(e = 0) =0, (e x0):=o0,
(e —»¢e):=g¢, (exe):=e.
Then
T (Eq(r, s)) =, 77 (Eq(r, s)) :=¢,
T (Ve A) i= p — 77 (A), 7 (VerA) := px 7 (4)

and for implication

(A= B) = (17(A) = 77(B)) x (r7(A) - 7~ (B) — 7~ (4)),
(A—>B) T (A) X T (B).

In caser ™ (A) (r7(A)) is # ¢ we say thatd haspositive (negative) computational content

2.2 Godel translation

For every formulad and termsr, s of type 7+ (A), 7~ (A) we define a new quantifier-free formuld|” by
induction onA. It is convenient here to allow a “nullterm” symbe] in case one of*(A), 7= (A) is the
nulltype symbol, and to extend the use of term operations terit:= cc := €0 := €1 := ¢, re := r and
(rye) = (e,r) :==7.

|Eq(ty,t2)|z := Eq(ti, t2),
Ve A(2)[5 = [A(s0)] 11,
r E 7‘0 50
|A—>B|s = |A‘rl(30) s1) |B| .

If r,sin |A|; are formed by the pair constructor in case they are of pair type, we have the easier-to-memorize
equations

VeA(@)|], = AN, |A— BIL =14l — 1BI.

qst
The formula3, v, |A[; is called theGodel translationof A, where3,, V,, is missing ifr*(A), 77 (A) is the
nulltype symbol, respectively.

Theorem (Soundness)Let M be a derivation ofd from assumptions, : C; (wherei = 1,...,n). Letx; of
typer+(C;) be variables for realizers of the assumptions, grige a variable of type—(A) for a challenge of
the goal. Then we can find terms

o [M]* =:toftypert(A)withy ¢ FV(¢) and
o [M]; =:r; of typer—(C;),

and a derivation of A[! from assumptions; : |Cy[:.
The proof is by induction on/. It will be given in the following three sections: for the logic rules, for
(ordinary) induction and for well-founded induction.
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2.3 Soundness of logic

Caseu: A. Letz of type 77 (A) be the variable for a realizer of the assumptionDefine [u]™ := z and
[u] ™ := .
Case\, 4 MB. By IH (induction hypothesis) we have a derivation Bf% fromu: |A|% anda, : |C;|%¢, where
u: |A| may be absent. Substitut® for x andy1 for z. By (—*) we obta|n|A|y°I my0g1] |B|t[”“ =y0l,
which is (up tog-conversion)

Aot Ao — i
1A — B|y' BAesT  from T |Ci|f,i[x,z:=y07y1]'

Herer is the canonical inhabitant of the type (A) in caseu: |A|? is absent. Hence we can define the required
terms by (assuming that* is u;)

[[/\uM]]+ = ()‘w[[M]]+v)‘9:,Z[[M]]1_)7 [\ M]; = [[Mﬂ;l[x,z = y0,y1].

CaseM4—~B N4, By IH we have a derivation of

xT
pg, and of

t0(xz0
|A — B|t |A‘t1 20)(z1) — Bl (+0)
A2 from IC Iqj |Crl g
Substituting(s, y) for « in the first derivation and aofl sy for z in the second derivation gives
|A|flsy - |B|f;0S |§fa and

Al from [C; 27 Gl

Now we contractC’k\i,’; and|C’k\§f: since|Cy|ZF is quantifier-free, there is a boolean terg), such that

|/lU
|Cr|5F — ro,w = tt. (3)

Hence withry, := [if r¢, p), then g, elsep),] we can derive botl[Ck\” and\Ck|“7k from |Cy[7+. The derivation

proceeds by cases on the boolean tegnp,.. If itis true, thenry, converts |nt0qk, and we only need to derive
|Ck|Z;’:. But this follows by substituting; for w in (3). If ¢, pj, is false, therr;, converts intgj,, and we only

need to deriv¢0k\§;’:, from \Ck.|;',’“. But the latter impliesf = tt (substitute agaip). for w in (3)) and therefore
k
every quantifier-free formula, in particulg®y,[; .
k
Using (—~) we obtain

0«
1Bl,”

Cjlyl |kl

Let [MN]* :=t0s and[M N]; := pl, [[MN]]; = ¢}, [MN] :=r.
Case\, M (). By IH we have a derivation dfA(z)|% from @;: |C;|*:. Substitutey0 for z andy1 for z. We
obtain| A(y0)|,} =01 \which is (up to3-conversion)

Vo A(z)[)*f,  from  aj: |Ci|”

ri [r zi=y0,y1]"
Hence we can define the required terms by
oM™ = N [M] T,
e M]; = [M]; [z, 2 := 0, y1].
CaseMVmA(x)s. By IH we have a derivation df/, A(z)[t = |A(z0)["*”) from |C;|=:. Substituting(s, y) for
2z gives

X4

i[zi=(s,y)]"
Let [Ms]" :=tsand[Ms]; :=ri[z := (s, y)].

|A(s)]}> from |Cy?
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6 H. Schwichtenberg: Dialectica Interpretation of Well-Founded Induction

2.4 Soundness of ordinary induction

We consider induction for the natural numbers, given by construgtanslS; for boolean induction the argument
is similar (and simpler). The induction schema then reads

Ind,,, 41 Yy (A(0) = Vi (A(m) — A(m + 1)) — A(n)).

Let B(n) := A(0) — Vi (A(m) — A(m + 1)) — A(n). Clearly we can derivé3(0) andB(n) — B(n + 1).
By those parts of the proof of the Soundness Theorem that we have dealt with already, we obtain realizing terms
s andt, r and derivations ofB(0)|¢ and of| B(n) — B(n + 1)|%",, hence of

|S
Y T,u?

[ B(0)|70u — [B(n+ D

Vy[B(n)ly — [B(n+ D,
Yy B(n)ly — ¥y |B(n + 1),

Yy
So if we defingy(0) := s andg(n + 1) := t(g(n)), then we have proved by induction that| B(n)|5™, which
ISV, |V, B(n)3 .
However, for an implementation of the Dialectica interpretation it is advisable to replace axioms by rules
whenever possible. In particular, more perspicious realizers for proofs involving induction can be obtained if the
induction axiom appears with sufficiently many arguments, so that it can be seen as an application of an induction
rule. Note that this can always be achieved by means@fpansion. Moreover, in this way we are able to stay

within a quantifier-free setup.
Considerlndn,Ad’aMOA(O)M1 n(A(n)—An+) By IH we have derivations of
Vn(A(n) — A(n+ 1) ¢, =

[A(n) — A(n+ DI, =

A1 gy = (Al + D[ from Gy

and of

x;
ri0(20)"

|A(0)]2  from |C;

i ranges over all assumption variabledinl,, 4daMM; (if necessary choose canonical termsandr;;). It
suffices to construct terms (involving recursion operattrg) with free variables among such that

Vi ((1ClZ )i — [A(m)[E™), 4)

where(C;); — Ais short forC; — --- — C,, — A. For then we can definfind,, aGaMyM;]* := ta and
[Ind,, adaMyM]; := 7;ay. The recursion equations foare

t0=ty, t(n+1)=1tn0(in)
and forr;

T n,fn, =:5; |f - Ci x; ,
’ony =Ti0 (y)7 T (’I’L + 1)y =9 _ 1( ~y) (y) | |-sl (v)
Fin(tnl(tn)y) otherwise.

t, ¥; can be written explicitely with recursion operators:

tm = Rmto (A, (tn0)),
Fim = Rm(Ayrio) (Anp,y [if rc,si(y) then p(tnl(in)y) elses;(y)])

with s;(y) as above. It remains to prove (4). We shall do this by quantifier-free induction. To this end, define
s0ym =y, §(k+ ym:=t(m = k= 1)1(t(m = k= 1))(5kym).
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We prove by induction on that

insm=nyym)i = P wnyym- (5)

Then (4) will follow with n := m. For the base case= 0 we must show

(IC

Recall that the global IH (for the base derivation) gives wigh= smym

(IC:

By definition of¢ and#; this is what we want. Now consider the successor case. Assume < m. We write
5k for skym. Notice that fork + 1 = m = n by definition ofs we haves(m =~ n) = tnl(tn)(5(m =~ n = 1)).
Assume|C |7 (1) (3(m=n-1) TOr all i. We must showA(n + 1)|t;((’:n+lr)t 1)+ Letyo abbreviates(m = n = 1).
(y ) for somei, then by definition’; (n. + 1)yo = si(yo) and we haveC; ”(y )» @ contradiction. Hence
|G| “7’ ,) foralli, and therefore*i(n + Dyo = 7in (tnl(tn)yo) = 7n(§(m = n)). The IH (5) therefore gives
|A(n > )

gives W|thf :=tnandy :=3(m =~ n = 1)

(13!

and we are done.

n<m—>(

— A(0)|©

Smym*

i17;,0(3mym) ) %

fzo(smym)> ‘A( ) Smym*

Recall that the global IH (for the step derivation)

7 (n+1)y

§(m=n-=1)

2.5 Soundness of well-founded induction
We now treat well-founded induction. Consid@knd,, 4@hkMF2:4(M) : A(n). By IH we can derive

[Progp A(n)l}, ;.. =

Vi (Vimshm<hnA(m) — A(n))|L, foz =

Vimshm<nn A(m) — A(n)|7, =

Vst <in A(m) | 5, — [A(n)[207 =

(h(tnlf20) < hn — \A(tnlfz0)|féiﬁi'§zo)) — |A(n)|7

T (nfz)’

wherei ranges over all assumption variablesGiind,, 4@hkM (if necessary choose canonical termy It
suffices to construct terms (involving well-founded recursion operators)with free variables among such
that

nx ((ICH25,)i — [A)[T), (6)

for then we can definfGInd,, aahkM]* = tk and[GInd,, aahkM]; = 7;kz. The recursion equations for
andr; are

~ ~ - T'i(na [t]<hna Z) =5
t = t O t ny i = i
n=tnO[t|<pn, 7Tinz {[ﬁkhn(t’o)(f/l) otherwise,

with the abbreviations
[7]<hn := Am[if hm < hn thenrm elses], t' = tnl[t]pn2.
It remains to prove (6). For its proof we use well-founded induction.sFi¥Ve can assume

i) = Am)[E™). ()
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8 H. Schwichtenberg: Dialectica Interpretation of Well-Founded Induction

Fix z and assumeC;[77, . for all i. We must showA(n)|i. If =|C;|% for somei, then by definition?;nz = s
and we haveC;|%i, a contradiction. Hencg;|* for all 7, and thereforé;nz = [7;] <p,(t'0)(¢'1). The IH (7)

with m := t0 andz := t'1 gives

z; t(t'0
m ) ())i [AF0)[557 .

Recall that the global IH (for the derivation of progressiveness) gives fvith [t] - 1,,,

(IC|2); — (h('0) < hn — |AE0)| =+ D) = | A(n) [0 <nn,

Sincet(t'0) = [t]<pn(t'0) andfinz = [7;]<pn(£'0)(¢'1) = 7 (¢'0)(¢'1) we are done.
Notice that we can view this proof as an applicationqofntifier-freewell-founded induction, where the
formula(|C;|% ); — |A(n)|L™ is proved w.r.t. the measure functidfmz := hn.

Tinz

3 An application: Euclid’s theorem

3.1 Informal proof

Theorem Assumé) < a,. Then there must exist natural numbeis k2 such thatd < |kja; — kqas| and
Rem(a;, |k1a1 — koas]) =0 (i = 1,2).

Proof. Assume) < ay. Denote|kia; — kyas| by hk andRem(a,b) = 0 by b | a, and(b | a1) A (b ] az) by
b | a1, as. Since the theorem claims existence in the weak (or “classical”) sense, from the “false” assumption

u: vE;o<hE(hE | ar,as — F)

we need to derivéd”. Assumeu. It suffices to Provevs. i hk | a1, a2, for then the desired contradiction
follows with £, = 0 andky = 1, using the assumptidh< as. For the proof we use well-founded induction with
measureér and formulad(k) := 0 < hk — hk | a1, as. Therefore it suffices to prove

Prog" := Prog% A(k) =

. L (8)
vg(v Ehl|a1,a2—>0<hk;—>hk:|a1,a2).

L0<hi<h
Fix k£ and assume
Uy : vf;O<hf<hE hl | ai,as,
uy: 0 < hk.

We must show:k | a; fori = 1,2. By symmetry it suffices to consider= 1. DenoteQuot (a4, hE) by ¢ and
Rem(ay, hk) by r. We must show = 0. Because of) < hk general properties djuot andRem ensure

aq :q~hE+T, r < hk.
From this we obtain

r= ‘Step(alaGQakthaq) a; — qkz a2| = hf< hE,
~~~

::ll 7~Z2
where

gk, — 1 if koas < k1a1 and0 < q,

Ste a,a,ka, = .
p(a1, az, k1, k2, q) {qk1+1 otherwise.

Assume0 < hl. Thenhl | ay, as by u;. Now u applied tol gives F. Therefored < hi'— F and hencél = 0.
Now r = hl givesr = 0, as desired. O
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3.2 Formalization
The informal proof has been given in such detail that it is now easy to formalize it completely. Let

M = )\a)\vg<a2)\uvﬁ;0<h5(hE|“1’a2_>F).
P M VY- ~uk —
u01vg (Glndv‘i’“*k(ng v’“?0<“’“Mk|al’az)CLhO1]Wl°rogUO)
where

Vi - f}lﬂﬂl.(lQ 7
L l;0<hi<hk ’ 0<hk
Mpmg = )\E)\ul s )\Ug <MhE|a17MhE|a2>7

Mg, o= Lury (Rly) M0 00T

hE|a; *

Ml’: = LSlé’qurl (LQG,l (hE)Ug),

o\, 0<hll 7 hlila1,az
My g = Aw" " ulywMy g

Ml,div = ulflw(Lgrl (hfl)(hE)ML: (LRa1 (hE)UQ))

and similarlyM, My —, My 4, M> qiv. We have used abbreviations

E‘GQ’
q; = Quot(a;, hE) (i=1,2),
ri == Rem(a;, hk) (i =1,2),

=

1 := (Step(a1, as, k1, ka2, q1), q1k2),

ol

2 := (qok1, Step(az, a1, k2, k1, q2))
and lemmata

Li:V(r=1—-0<l—F)—r=0),
Ly:Vep(r=1—r<k—1<k),

Lg:VYep(0 <b— a= Quot(a,b) - b+ Rem(a,b)),
Lg:V.,(0 <b— Rem(a,b) <),

Lgi: Va’,;ﬁq’r(al =q- hk+r —7r= hfl),

Lgo: VE,E,q,T(aQ =q- Rk +1r — 1= hfg)

3.3 Term extraction for Mp,.g
We begin with some observations concerning special situations of extraction of terms from proofs, as treated
generally in the proof of the Soundness Theorem.

1. Lemmata without positive content — for instance, purely universal ones — can be added as axioms in the
statement of the Soundness Theorem, both in the premise and the conclusion.

2. Abstraction of an assumption variable for a quantifier-free formula does not affect the positive or negative
content.

We now compute the Dialectica realizers and challenges for the derivations alipvehas neither positive nor
negative contench,;‘al, M, +, M 4y all have no positive content, and their negative content w.r.t. the free

assumptions and/oru, are alwaysfl. <MhE\a1 , MhE|a2> again has no positive content. Its negative content w.r.t.
the shared assumptian is to be formed by contraction:

[if 0 < hly — hiy < hk — hly | a1, as then I elsely]
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10 H. Schwichtenberg: Dialectica Interpretation of Well-Founded Induction

and the negative content w.r.t. the shared assumptisn
[if 0 < hfl — hfl | ai,as — F then fg elseﬂ].
Therefore forMp,., We obtain

t = [Mprog] ™ = Aglif 0<hly — hly<hk — hiy | a1, as then I elseﬂ],
r(K) := [Mprog] ™ = [if 0 < hiy — hly | a1,a5 — F thenl; elsel;]
[if 0 < hiy A hly | a1, a; thenly elsels).

3.4 Term extraction for GInd @¢h01Mp;eg

We now specialize the general term extraction procedure for well-founded induction (cf. 2.5) to the present case.
From the definition oProg” in (8) itis easy to see that" (Prog") = NxN — NxN andr~ (Prog") = NxN.
Using the notation form 2.5, > are not present here, and we have derived

|Proglt A(F)|:

L= (h(tk) < hk — A(tk)) — A(k) from ICI% &)

HereC :=V;

3 0<hk(hE | a1, a2 — F) is the formula of the assumption variakleNote that

ICIE gy = (0 < h(r(R) — h(r(R) | ar,az — F),
(

IO 7y = 0 < h(r(B) Ah(r(K)) | a, az.

ThereforeA(k) is derivable fromC|°.., with 7 defined by well-founded recursion:

fg{“@ it 0 < A(r(F)) A R(r(F)) | a1, 00

[f]<h,g(tE) otherwise.

—

According to the general definition we haj@Ind 6hEMpr0g]]* = T7k.

3.5 Term extraction for M

Sinceu has another occurrence outsitle..¢, a further contraction is necessary. We obtain

[u01vg (Glnd c‘ihOlMprogvo)]r =
[if 0 < h{(0,1) — h{0,1) | a1,a2 — F thenr(0,1) else(0,1)] =
[if 0 < h{0,1) A R(0,1) | a1, as then (0, 1) elseF(0, 1)]

and finally
[M]* = Aa.[if 0 < h(0,1) A h{0,1) | a1, as then (0, 1) elser(0, 1)].

To understand hovjM]™* operates, recall the abbreviations - (which use theStep function) andhk :=
|k1a1 — kaas|. After an initial check whetheb, 1 are already the desired coefficiens/] ™ calls7 with (0, 1>.
7k checks whether(k ) (WhICh is one ofl; andl,) are the coefficients needed, and if not, steps downAia
(which again is one of, andlg) and then recursively calls itself.

This extracted algorithm is rather close to Euclid’s. The difference is [th&f™ keepsa; anda, fixed,
whereas in Euclid’s algorithm; anda, are replaced by, and the remainder of dividing; by a». The gcd is
not affected by this change, but the numbers get smaller, which helps for calculations.
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